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Abstract

The understanding and prediction of transport due to plasma microturbulence is a key open problem in
modern plasma physics, and a Grand Challenge for fusion energy research. Ab initio simulations of such
small-scale, low-frequency turbulence are to be based on the gyrokinetic equations, a set of nonlinear
integro-differential equations in reduced (five-dimensional) phase space. In the present paper, the
extension of the well-established and widely used gyrokinetic code Gene [F. Jenko et al., Phys. Plasmas
7, 1904 (2000)] from a radially local to a radially global (nonlocal) version is described. The necessary
modifications of both the basic equations and the employed numerical methods are detailed, including,
e.g., the change from spectral methods to finite difference and interpolation techniques in the radial
direction and the implementation of sources and sinks. In addition, code verification studies and
benchmarks are presented.
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1. Introduction

One of the key physics problems on the way
to efficient fusion power plants based on toroidal
magnetic confinement is the thorough under-
standing and reliable prediction of the so-called
anomalous transport of heat, momentum, and
particles across the magnetic surfaces (hereafter
referred to as the radial direction). This ef-
fect, which significantly degrades the quality of
the plasma confinement (thus preventing burn-
ing plasmas in present-day experiments), is com-
monly attributed to small-scale (roughly com-
parable to the ion or electron gyroradius), low-
frequency (much smaller than the ion and electron
gyrofrequency) turbulence driven by microinsta-
bilities which extract free energy from the back-
ground temperature and density gradients.
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Since the high-temperature, low-density fusion
plasmas are only weakly collisional, kinetic the-
ory provides the appropriate framework for their
theoretical description. In principle, this would
amount to solving self-consistently one Vlasov
equation per particle species for the respective six-
dimensional distribution function together with
Maxwell’s equations. For the study of micro-
turbulence, this system includes many irrelevant
spatio-temporal scales, however, and moreover,
it is (still) inaccessible to well-resolved numeri-
cal simulations. To remedy this situation, the
so-called (nonlinear) gyrokinetic approach [1] has
been developed since the 1980s, which eliminates
fast dynamics (like the gyromotion of the particles
as well as plasma waves or compressional Alfvén
waves) but retains the complete low-frequency
physics, expressed in terms of five-dimensional
distribution functions (the gyrophase-dependence
is removed) and three scalar fluctuating fields (the
electrostatic potential, the parallel component of
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the vector potential, and the parallel component
of the magnetic field). As it turns out, such a
description is perfectly suited to study gradient-
driven microturbulence in magnetized plasmas.

Various gyrokinetic codes have been developed
since the 1990s (many of them are discussed, e.g.,
in Ref. [2]), differing primarily in the following
ways: (1) the employed algorithms may be of Eu-
lerian (grid-based), Lagrangian (particle-based),
or semi-Lagrangian type – using a δf splitting or
not; (2) the physics models may be reduced with
respect to the full gyrokinetic system (neglecting,
e.g., kinetic electrons and/or electromagnetic ef-
fects); (3) the geometry treatment may be based
on realistic magnetohydrodynamic (MHD) equi-
libria or on simplified models; (4) the simulation
domain may range from a (radially local) flux-
tube to the full torus (including nonlocal effects);
(5) the codes may be accessible only to the code
authors or to a wider user community. The Gene
code [3], which was first developed (starting in
1999) by F. Jenko [4] at IPP Garching, and later
extended by various co-workers and collaborators
(see, e.g., Refs. [5, 6, 7, 8, 9]), is a comprehensive
Eulerian δf code (retaining full physics contents
and geometry input) which is publicly available
and has a world-wide user base. Gene is portable
to a large number of supercomputer architectures
and usually scales well up to the maximum num-
ber of available processors (see, e.g., Refs. [7, 10]).
While the original version was restricted to a radi-
ally local flux-tube treatment, a full-torus (global)
version of Gene has recently been developed in
the context of a close collaboration of the au-
thors of the present paper from IPP Garching and
EPFL Lausanne. The key steps which were nec-
essary for this extension will be described below.

Before that, a few more explanations concern-
ing the differences between local and global simu-
lations may be in place, however. Since the typi-
cal radial correlation lengths of turbulence driven
by the most common microinstabilities like ion
temperature gradient modes or trapped electron
modes tend to be in the range of only several
ion gyroradii (those of electron temperature gradi-
ent modes are still smaller), it seems justified to
neglect radial variations of the background pro-

files and the magnetic geometry in the context of
flux-tube simulations as long as the correspond-
ing scale lengths are sufficiently disparate from
the correlation lengths. This may be assumed to
hold in the core region (except for discharges with
internal transport barriers) of larger present-day
or future tokamaks like JET or ITER, and to a
significant degree also for medium-size machines
like ASDEX Upgrade or DIII-D. Here, all pro-
files are evaluated just at a single radial position
so that, e.g., temperatures and densities are con-
stant throughout the whole radial simulation do-
main. First order derivatives appearing explicitly
in the gyrokinetic equations are kept as well in or-
der to retain, e.g., the linear gradient drive terms,
as can be justified by means of a multiscale ap-
proach. For convenience, periodic boundary con-
ditions are then often used in the radial direction,
automatically keeping the (average) background
gradients fixed and facilitating the use of spectral
techniques. The latter, in turn, allow for a sim-
ple and very accurate computation of correspond-
ing derivatives and operators in the gyrokinetic
equations as will be shown later. With all these
simplifications, however, one implicitly assumes a
gyro-Bohm transport scaling, i.e. a Bohm scaling
reduced by the gyroradius-to-machine-size ratio
ρ∗ where the latter has to be small. In order to
determine the limit of such a-priori scalings and in
order to capture meso-scale effects like heat flux
avalanches (see, for instance, Refs. [11, 12, 13, 14])
one thus has to rely on global (as opposed to lo-
cal) codes where the radial simulation box sizes
can extend up to the full machine size, therefore
covering full radial temperature, density and ge-
ometry profiles. In this case, periodic boundary
conditions are inappropriate and have to be re-
placed, leading to major changes in the underly-
ing numerical schemes. Nevertheless, as the cor-
rect prediction of the transport scaling represents
a crucial task for the development of future fusion
devices, sufficient motivation is provided to tackle
this effort – in particular, as most of the existing
global simulation results have been obtained em-
ploying reduced physics, e.g., adiabatic electrons.

The aim of the present paper is to describe
the corresponding modifications of the previously
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solely local Gene code (for some additional de-
tails, see Refs. [15, 16]) in order to meet the afore-
mentioned requirements for the investigation of
nonlocal effects. It is organized as follows. In
the next section, the basic equations will be pre-
sented. In Sec. 3, the numerical implementations
are discussed, followed by presentations of verifi-
cation and validation studies in Sec. 4. Finally, a
summary and conclusions are detailed in Sec. 5.

2. Theoretical background

2.1. Gyrokinetics

Both theoretical considerations and experimen-
tal observations indicate that the turbulent fluc-
tuations of various plasma quantities in the core of
fusion experiments obey the so-called gyrokinetic
ordering [1]. According to the latter, the fluctu-
ations are highly anisotropic (the parallel corre-
lation lengths typically exceed the perpendicular
ones by 2-3 orders of magnitude), of small ampli-
tude (compared to the respective mean values),
and of low frequency in relation to the gyrofre-
quency:

k‖
k⊥
∼ qφ1

T
∼ n1

n
∼ T1

T
∼ B1

B
∼ ω

Ω
∼ ε� 1. (1)

Here, k‖ and k⊥ denote, respectively, the charac-
teristic wave numbers parallel and perpendicular
to the background magnetic field, q is the charge,
φ1, n1, T1, and B1 the fluctuating parts of the
electrostatic field φ, the density n, the tempera-
ture T and the magnetic field B. Furthermore,
ω denotes a characteristic fluctuation frequency,
Ω = |q|B/(mc) is the gyrofrequency and ε is a
smallness parameter. In addition, the perpendic-
ular turbulence length scales typically satisfy

ρ

LG
∼ ε� 1, (2)

with the gyroradius ρ =
√
T/m/Ω and the char-

acteristical gradient length LG of temperature,
density, and magnetic field. Based on those or-
derings, it is reasonable to employ a reduced de-
scription of the particle dynamics, i.e., to find –
e.g., with the help of Lie perturbation methods
[1] – a set of coordinates for which the gyroangle

remains a cyclic variable even in the presence of
fluctuating fields. The fast particle gyromotion
in a nearly constant background field can thus be
substituted by a gyro-ring description, so that the
six-dimensional set of particle space and velocity
coordinates (x,v) is replaced by five so-called gy-
rocenter coordinates (X, µ, v‖) where X is the gy-
rocenter position, µ = mv2

⊥/(2B) is the magnetic
moment, and v‖/v⊥ are the velocity components
parallel/perpendicular to the magnetic field.

2.2. The gyrokinetic Vlasov equation

The accordingly transformed so-called full-f
Vlasov equation of the species σ then reads [1]

∂Fσ
∂t

+
dX

dt
· ∇Fσ +

dv‖
dt

∂Fσ
∂v‖

+
dµ

dt

∂Fσ
∂µ

= 0 (3)

in advection equation form, with

dX

dt
= v‖b̂0 +

B0

B∗0‖

(
vξ̄ + v∇B + vc

)
,

dv‖
dt

= −dX/dt

mσv‖
·
(
qσ∇φ̄1 +

qσ
c

b̂0

∂Ā1‖

∂t
+ µ∇B0

)
,

and

dµ

dt
= 0 (4)

in the low β limit where the thermal to mag-
netic pressure ratio β ≡ 8πp0/B

2
0 is less than

a few percent as in most present-day tokamaks.
Here, B0 denotes the modulus of the magnetic
field vector B0, b̂0 = B0/B0 the correspond-
ing unit vector, B∗0‖ = b̂ · B∗0 the parallel

component of B∗0 = B0 +∇× (B0v‖/Ω), ξ̄1 =
φ̄1 − v‖

c
Ā1‖ the gyroaveraged modified potential,

vξ̄ = c
B2

0
B0 × ∇ξ̄1 the generalized E × B veloc-

ity, v∇B0 = µc
qσB2

0
B0 × ∇B0 the gradient-B veloc-

ity, and vc =
v2‖
Ωσ

(
∇× b̂0

)
⊥

the curvature drift

velocity which can alternatively be expressed as

vc =
v2‖
Ωσ

(
b̂0 ×

[
∇B0

B0
+ β

2
∇p0
p0

])
. Overbars denote

gyroaverages being defined as

φ̄1(X) ≡ G [φ1(X)] ≡ 1

2π

∮
dθ φ1(X + r(θ)) (5)
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with the gyroaverage operator G and the gyrora-
dius vector r(θ) being orthogonally aligned to the
magnetic field.
The gyrokinetic Vlasov equation can be rewritten
and also further simplified in the context of a δf
splitting of the total distribution function into an
equilibrium part F0 – here, a local Maxwellian –
and a fluctuating part F1. According to the gy-
rokinetic ordering, one has F1/F0 ∼ ε which can
be applied to Eq. (3). Hence, keeping only first
order terms in ε, the ∇ξ × B nonlinearity is re-
tained while higher-order terms like the so-called
v‖-nonlinearity are neglected in line with careful
studies in Refs. [17, 18, 19]. Finally, a new vari-
able

g1σ = F1σ −
qσ
mσc

Ā1‖
∂F0σ

∂v‖
(6)

will be used in the following in order to combine
the two time derivatives appearing in Eq. (3).

2.2.1. Field aligned coordinates

Taking advantage of the anisotropic character
of the turbulent fluctuations, the Gene code uti-
lizes a field aligned coordinate system (x, y, z) in
which x is a radial coordinate acting as a flux-
surface label, z is a parallel coordinate, and y is a
binormal coordinate. Given that the parallel cor-
relation lengths exceed the perpendicular ones by
2-3 orders of magnitude, this procedure helps to
save a respective number of grid points compared
to a simple geometry setup ignoring this feature.
The x and y directions are related to the equilib-
rium field via the relation

B0 = C(x)∇x×∇y . (7)

where C(x) is a transformation function which
generally depends on the flux surface and which
is defined by the specific MHD equilibrium. The
corresponding Jacobian and the metric read

J−1 = (∇x×∇y) · ∇z =
B0 · ∇z
C(x)

(8)

and

g = (gij) = (∇ui · ∇uj) (9)

with i, j = (1, 2, 3) and u(1,2,3) = (x, y, z).
Furthermore, the combined metric coefficients
γ1 = gxxgyy − gxygyx, γ2 = gxxgyz − gyxgxz and
γ3 = gxygyz − gyygxz will be used in the follow-
ing sections. More details may be found, e.g., in
Refs. [20, 15, 16].

2.2.2. Normalization

In the context of numerical simulations, appro-
priately normalized equations are generally called
for. Here, all physical quantities will be expressed
in terms of a dimensional quantity usually identi-
fiable by the index ’ref’ and a dimensionless pref-
actor, earmarked with a hat. The basic refer-
ence values are the elementary charge e, a ref-
erence mass mref , a reference temperature Tref , a
(macroscopic) reference length Lref and a refer-
ence magnetic field Bref , so that e.g. the charge of
the σth species can be written as qσ = eq̂σ. More-
over, some composed quantities are used, which
are the reference velocity cref =

√
Tref/mref , the

reference gyrofrequency Ωref = eBref/(mrefc), the
reference gyroradius ρref = cref/Ωref and the ref-
erence thermal to magnetic pressure ratio βref =
8πnrefTref/B

2
ref . With those definitions, the gy-

rocenter coordinates and time are normalized as
listed in Table 1 where vTσ(x) =

√
2T0σ(x)/mσ =

Table 1: Normalization of the gyrocenter coordinates and
time

x y z v‖ µ t
ρref ρref 1 vTσ(x0) T0σ(x0)/Bref Lref/cref

cref v̂Tσ(x) denotes the thermal velocity of the
σth species at radial position x. While on the
one hand, a separation of scales due to different
masses has been taken into account, it is not desir-
able to normalize the velocity space coordinates
to radially dependent temperature profiles since
such an approach would require additional in-
terpolation schemes in corresponding derivatives
or integrations. Thus, temperatures in velocity
space normalization factors are just taken at a
reference position x0 which may for instance cor-
respond to the center of the simulation domain
or the position at which the profiles reach half
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of their maximum. However, their species depen-
dence is still taken into account which allows for a
velocity space adaption to highly separated tem-
perature profiles which might for instance happen
during strong electron heating. Finally, it should
be noted that the parallel coordinate z is consid-
ered to be dimensionless (angle-like), the corre-
sponding length scale hence appears in the metric
normalization.

The potentials, fields and distribution functions
are chosen to be expressed as shown in Table 2
where again radial dependencies are only present

Table 2: Normalizations of the fields and the distribution
functions

φ1 A1‖ F0σ F1σ
Tref
e

ρref
Lref

ρrefBref
ρref
Lref

n0σ(x0)

v3Tσ(x0)
ρref
Lref

n0σ(x0)

v3Tσ(x0)

in the normalized distribution functions itself. For
further clarification, the normalized equilibrium
part shall be given explicitly considering the pre-
viously mentioned local Maxwellian

F̂0σ(x) =
n̂pσ(x)

[πT̂pσ(x)]3/2
e
−
v̂2‖+µ̂B̂0(x)

T̂pσ(x) , (10)

where additional abbreviations have been intro-
duced for density and temperature profiles which
are normalized to their value at the reference
position x0, n̂pσ = n0σ(x)/n0σ(x0) and T̂pσ =
T0σ(x)/T0σ(x0). Finally, the (combined) metric
coefficients are given in the units being presented
in Table 3.

Table 3: Normalizations of the combined metric coeffi-
cients and further geometry related factors

γ1 γ2 γ3 J C
1 1/Lref 1/Lref Lref Bref

With the aforementioned approximations and
definitions, the normalized version of the gyroki-

netic Vlasov-equation, Eq. (3), reads

∂ĝ1σ

∂t̂
=Vξ,y∂ŷ ˆ̄ξ1 + VΓ,xΓ̂σ,x + VΓ,yΓ̂σ,y

− B̂0

B̂∗0‖

1

Ĉ

(
∂x̂

ˆ̄ξ1Γ̂σ,y − ∂ŷ ˆ̄ξ1Γ̂σ,x

)
+ VΓ,zΓ̂σ,z + VF1,v‖

∂F̂1σ

∂v̂‖
+ VF0F̂0σ (11)

with the abbreviations

Γ̂σ,i = ∂iF̂1σ +
q̂σ

T̂0σ

F̂0σ∂i
ˆ̄φ1. (12)

and

B̂∗0‖

B̂0

= 1 + βref

√
m̂σT̂0σ(x0)

2

ĵ0‖

q̂σB̂2
0

v̂‖ (13)

where the equilibrium current density j0‖ is nor-
malized to enrefcref . The first term on the right
hand side of Eq. (11) including the prefactor

Vξ,y =− 1

Ĉ
B̂0

B̂∗0‖

[
Lref

Lnσ
+
Lref

LTσ

(
v̂2
‖+µ̂B̂0

T̂pσ
− 3

2

)]
F̂0σ

represents the linear drive term which
is a function of the logarithmic radial
density and temperature background
gradients, L−1

nσ (x′) = − ∂x lnn0σ|x′ , and
L−1
Tσ

(x′) = − ∂x lnT0σ|x′ . In local codes where
the gyroradius is considered to be infinitesimally
small compared to the tokamak minor radius,
i.e. ρ∗ = ρ/a → 0, those gradients and all other
(slowly) radially varying equilibrium functions
A(x) are now evaluated at a single flux surface
at x = x0 following the approximation

A(x) =A(x0) +
∂A

∂(x/Lref)

∣∣∣∣
x0

x− x0

Lref

∼A(x0) +
∂A

∂(x/Lref)

∣∣∣∣
x0

O(ρ∗).

However, in the global code, radial variations be-
ing in line with the aforementioned orderings are
taken into account instead. The linear drive is
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thus a function of the radial coordinate. The sec-
ond and third term contain the the combined cur-
vature and gradient-B prefactors

VΓ,x =− T̂0σ(x0)

q̂σ

µ̂B̂0 + 2v̂2
‖

B̂∗0‖
K̂x,

and

VΓ,y =− T̂0σ(x0)

q̂σB̂∗0‖

[
(µ̂B̂0+2v̂2

‖)K̂y−βref

v̂2
‖ p̂0

Ĉ B̂0

Lref

Lp

]
,

with the gradients of the equilibrium mag-

netic field K̂x = − 1

Ĉ
Lref

Bref

(
∂B0

∂y
+ γ2

γ1

∂B0

∂z

)
and

K̂y = 1

Ĉ
Lref

Bref

(
∂B0

∂x
− γ3

γ1

∂B0

∂z

)
and the logarithmic

background pressure gradient L−1
p = −∂x ln p0(x).

The remaining prefactors succeeding the nonlin-
earity (term 4 and 5) in Eq. (11) are the parallel
derivative prefactor

VΓ,z =−v̂Tσ(x0)
Ĉ
ĴB̂0

v̂‖,

the trapping term prefactor

VF1,v‖ =
v̂Tσ(x0)

2

Ĉ
ĴB̂0

µ̂∂ẑB̂0,

and the F0 contribution term

VF0 =
T̂0σ(x0)

q̂σ

µ̂B̂0 + 2v̂2
‖

B̂∗0‖
K̂x

·
[
Lref

Lnσ
+
Lref

LTσ

(
v̂2
‖ + µ̂B̂0

T̂pσ
− 3

2

)]
,

stemming from the gradient-B and curvature
drifts being multiplied with ∇F0. In the cur-
rent code version, the local Maxwellian is con-
sidered as an exact equilibrium distribution and
the above term is thus neglected, hence follow-
ing an often employed approach, see Ref. [21] and
the discussion therein. The generalization to, e.g,
a canonical Maxwellian or to precomputed neo-
classical equilibria will be addressed in a future
work. Anyway, linear simulations are not affected
as this term just acts on the ky = 0 mode in ax-
isymmetric devices. Furthermore, even nonlinear

simulations using this approximation can exhibit
an amazing level of agreement compared to sim-
ulations with a canonical Maxwellian as has been
demonstrated in Ref. [22].

2.3. The gyrokinetic field equations

2.3.1. Velocity space moments of the particle dis-
tribution function

Both in order to solve Maxwell’s equations
(which are employed to determine the perturbed
fields self-consistently) as well as for diagnostic
purposes, velocity space moments of the distribu-
tion functions – expressed in particle coordinates
– are required. Hence, the following considera-
tions prove useful. Starting with the definition of
the ath moment in v‖ and the bth moment in v⊥,

Mab,σ(x) =

∫
d3v va‖v

b
⊥fσ(x,v), (14)

one arrives at the guiding-center formulation by
applying the previously introduced transforma-
tion

Mab,σ(x) =

∫
d3Xdv‖dµdθJ va‖vb⊥·

δ(X + r− x)Fσ,gc(X, v‖, µ, θ) (15)

where the corresponding phase space Jacobian
is given by J = 1

m3

√
|(ωλν)| with the determi-

nant of the Lagrange tensor, see e.g. Ref. [23],

|ωλν | =
∣∣∣∂Γ̄0,ν

∂Zλ
− ∂Γ̄0,λ

∂Zν

∣∣∣ = m2B∗0‖. Employing now

a first-order pull-back operator [1] in order to use
the gyrocenter instead of the guiding-center dis-
tribution function Fσ,gc and considering a local
Maxwellian as background distribution function
yields to first order in ε

Mab,σ(x) = π

∫∫
dv‖dµ

′ G†
B∗0‖
B0

va‖ (µ′)
b
2 v

b
2

+1

Tσ F1σ

− qσ
{
n0σv

a+b
Tσ

T0σ

Υ(a) (b/2)!

−
∫

dµ′ G†n0σv
a+b
Tσ

T0σ

Υ(a) (µ′)b/2 e−µ
′ G
}
φ1 (16)
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with the abbreviation

Υ(a) = I(a) +
8πT0σ

B2
0

j0‖

qσvTσ
I(a+ 1) (17)

for the v‖ integration where

I(a) =
1√
π

∫ ∞
−∞

dx xae−x
2

=


0, a odd

1, a = 0
1·3···(a−1)√

2
a a even.

(18)

Here, G† denotes the adjoint operator of G,
which represents gyroaverages of the form G†F ≡
1

2π

∮
dθ F (x − r(θ)) and µ′ = µB0/T0σ has been

introduced in order to improve the readability al-
though the implementation is employing a µ grid.

2.3.2. The gyrokinetic Poisson equation

The perturbed electrostatic potential is linked
to the perturbed charge density by means of the
Poisson equation

−∇2φ1(x) = 4π
∑
σ

n1σ(x)qσ (19)

where σ is running over all species and the density
perturbation of the σth species n1σ(x) = M00,σ(x)
is given by the (0, 0)-velocity space moment of the
distribution function f1σ(x,v) in particle coordi-
nates. Using Eq. (16) and considering the flute-
like character of the turbulent fields, which allows
to neglect parallel derivatives compared to per-
pendicular ones, leads to{
−∇̂2

⊥λ̂
2
D+
∑
σ

q̂2
σ

[
n̂0σ

T̂0σ

1−
∫

dµ̂′ G† n̂0σ

T̂0σ

e−µ̂
′ G
]}
φ̂1

=
∑
σ

n̂0σ(x0)q̂σπ

∫∫
dv̂‖dµ̂G†B̂0F̂1σ (20)

in normalized units. Here, λ̂D = λD
ρref

=√
B2

ref

4πnrefmrefc2
which can be identified as the nor-

malized Debye length.

Adiabatic electrons. For basic investigations, the
limit of massless/adiabatic electrons is often em-
ployed, in particular in order to lower the compu-
tational costs. In this case, fluctuations of the

electrostatic potential along the magnetic field
lines are almost instantaneously balanced by the
electrons which implies a modified adiabaticity re-
lation

n1e

n0e

=
e

T0e

(φ1 − 〈φ1〉FS). (21)

Here, 〈· · ·〉FS denotes flux surface averaging [24]
which is defined for an arbitrary function f(x) as

〈f〉FS(x) =
∂

∂V

∫
V

dV ′f(x)

=

∫∫
dydzf(x)J(x)dydz

/∫∫
J(x).

(22)

Considering in addition a vanishing electron gyro-
radius and Debye length and neglecting magnetic
field fluctuations, the normalized Poisson equa-
tion in the adiabatic electron limit becomes

φ̂1 =

{
n̂0e

T̂0e

1+
∑
σ 6=e

q̂2
σ

[
n̂0σ

T̂0σ

1−
∫

dµ̂′G† n̂0σ

T̂0σ

e−µ̂
′ G
]}−1

·
[
π
∑
σ 6=e

n̂0σ(x0)q̂σ

∫∫
dv̂‖dµ̂G†B̂0F̂1σ+1

n̂0e

T̂0e

〈φ̂1〉FS

]
.

The flux surface averaged potential is finally ob-
tained by flux surface averaging the whole quasi-
neutrality equation, thus erasing the electron con-
tribution. Assuming a separate and independent
treatment of operators and potentials, it is given
by

〈φ̂1〉FS = π
∑
σ 6=e

n̂0σ q̂σ

〈∫∫
dv̂‖dµ̂G†B̂0F̂1σ

〉
FS

·
{∑
σ 6=e

q̂2
σ

[
n̂0σ

T̂0σ

1−
〈∫

dµ̂′G† n̂0σ

T̂0σ

e−µ̂
′ G
〉

FS

]}−1

.

(23)

2.3.3. Ampère’s law

Using the Coulomb gauge ∇ · A = 0 and ne-
glecting any equilibrium electric field, Ampère’s
law can be expressed as

−∇2
⊥A1‖ =

4π

c
j1‖ =

4π

c

∑
σ

qσM10,σ(x). (24)
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for the perturbed parallel component using the
same approximations provided by the gyrokinetic
ordering as, for instance, in the derivation of Pois-
son’s equation. Replacing M10,σ(x) by its explicit
representation given in Eq. (16) and changing to
normalized quantities yields one arrives at the fol-
lowing normalized equation{
−∇̂2

⊥ + βref

∑
σ

q̂2
σ

∫
dµ̂′G† n̂0σI(2)

m̂σ

e−µ̂
′ G
}
Â1‖

=
βref

2

∑
σ

q̂σ

{̂
n0σ(x0)v̂Tσ(x0)π

∫∫
B̂∗0‖v̂‖G†ĝ1σdv̂‖dµ̂

−βref

[
n̂0σ ĵ0‖

B̂2
0

I(2)−
∫

dµ̂′G† n̂0σ ĵ0‖

B̂2
0

I(2) e−µ̂
′ G
]
φ̂1

}
(25)

where I(2) is typically evaluated numerically in
order to avoid the so-called Ampère cancellation
problem [25] which otherwise would stem from dif-
ferent treatments of the v‖ integration on the left
and right hand side of Eq. (25).

2.4. The collision operator

As mentioned before, the low densities and high
temperatures of fusion plasmas lead to low col-
lisionalities. For certain regimes, this may jus-
tify the use of a Vlasov treatment, focusing on
indirect particle interactions via collectively gen-
erated fields and neglecting collisions altogether.
In general, however, direct particle interactions,
to lowest order binary collisions, constitute an im-
portant ingredient of the overall dynamics. Thus,
an additional collision operator, here C(Fσ, Fσ′),
is constructed and added to the right hand side
of the kinetic equation,

∂Fσ
∂t

+Ẋ·∇Fσ+µ̇
∂Fσ
∂µ

+v̇‖
∂Fσ
∂v‖

=
∑
σ′

C(Fσ, Fσ′).

(26)

In Gene, collisions are modeled using a Landau-
Boltzmann collision operator,

C(Fσ, Fσ′) =
∂

∂v
·
(←→
D · ∂

∂v
−R

)
Fσ (27)

where
←→
D denotes a diffusion tensor

←→
D =

2πq2
σ q

2
σ′

m2
σ

ln Λc
∂2

∂v∂v

∫
d3v′ |v − v′|Fσ′

(28)

with the Coulomb logarithm ln Λc (see, e.g.,
Ref. [26]), and the dynamical friction

R =
4πq2

σ q
2
σ′

mσ mσ′
ln Λc

∂

∂v

∫
d3v′

Fσ′

|v − v′| . (29)

Consistently with the δf approach, the collision
operator is linearized as follows:

C̃ = C(F0σ, F1σ′) + C(F1σ, F0σ′).

Further details can be found in Ref. [8].

2.5. Sources and sinks

In the absence of any explicit heat or parti-
cle source, the temperature and density profiles
in a global nonlinear simulation tend to relax.
The corresponding gradients eventually get close
to their critical values, the turbulence drive is
strongly decreased, and a state close to marginal-
ity is reached. The goal of adding sources and
sinks is thus to maintain a quasi-steady state tur-
bulence regime.

2.5.1. The Krook operator

When Dirichlet boundary conditions are con-
sidered in the radial direction for both the dis-
tribution function F1, as well as the fluctuating
fields φ1 and A‖1, the temperature and density
at both ends of the simulation domain are con-
strained to their initial values, while a profile re-
laxation occurs in the center of the domain. This
may lead to strong, unphysical profile variations
close to the boundaries, which in turn can gener-
ate strong turbulence in the edge of the simulation
box. In order to avoid such behavior, an artificial
Krook damping operator is applied in buffer re-
gions. This operator is added to the right hand
side of the gyrokinetic Vlasov equation (11) and
is defined as

ĥK = −ν̂K(x) ĝ1σ, (30)
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Figure 1: Coefficient profile ν̂k(x) of the damping Krook
operator applied within edge buffer regions in nonlinear
simulations.

where the profile function ν̂K(x) is zero outside
of the buffer regions, and is typically determined
by a fourth order polynomial ramp inside, as il-
lustrated in Fig. 1. The maximal amplitude of νk
is set to be comparable to the linear growth rates
and the width of the buffer regions typically rep-
resents 5− 10% of the simulation domain on each
sides.

2.5.2. The Krook-type heat source

In order to allow for quasi-steady state non-
linear simulations, an artificial Krook-type heat
source is implemented in addition. This source,
similar to the one described in Ref. [27], is applied
over the whole radial simulation domain and is
designed to control the temperature profile, while
conserving the flux-surface averaged density and
parallel momentum. The following term is thus
added to the right hand side of the gyrokinetic
Vlasov equation (11):

ŜK(x, |v‖|, µ) = −γ̂h
[
〈F̂1σ(X, |v‖|, µ)〉

−〈F̂0σ(X, |v‖|, µ)〉 〈
∫
dv 〈F̂1σ(X, |v‖|, µ)〉〉
〈
∫
dv 〈F̂0σ(X, v‖, µ)〉〉

]
,

(31)

where 〈. . .〉 refers to the flux-surface average and

F̂1σ(X, |v‖|, µ) =
F̂1σ(X, v‖, µ) + F̂1σ(X,−v‖, µ)

2
.

(32)
The conservation of density is ensured through
the correction term 〈

∫
· · ·〉/〈

∫
· · ·〉, while the con-

servation of parallel momentum is verified since

SK is even in v‖ as result of the symmetrization
of the distribution with respect to this variable.

2.5.3. The localized heat source

The most realistic source model currently avail-
able in Gene is closely following the implemen-
tation being, e.g., described in Ref. [28] for the
gyrokinetic turbulence code Gysela [29]. It rep-
resents a localized heat source and is added to the
right hand side of the Vlasov equation as follows

dg

dt
= SH = S0ŜxŜE. (33)

Here,

ŜE =
2

3

1

p̂0σ(x)

(
Ê

T̂pσ
− 3

2

)
F̂0σ, (34)

with Ê =
(
v̂2
‖ + µ̂B̂0

)
, denotes an en-

ergy source term being normalized such that
πB̂0p̂0σ(x0)

∫
dv̂‖dµ̂ ÊŜE = 1. This choice en-

sures that neither particle nor momentum are in-
jected as can be confirmed by computing the ac-
cording moments. In addition, a radial source
profile Sx,in(x̂), e.g. a Gaussian shape, can be
freely defined by the user. It is then normalized
according to

Ŝx(x̂) = Sx,in(x̂) /

∫
d3x̂Sx,in(x̂)Ĵ(x̂, ẑ). (35)

Finally, an amplitude S0 which is given in units of
n0σ(x0)ρrefcref/(v

3
Tσ(x0)L2

ref) can be specified. The
total injected power is thus

Padd = S0

∫
d3x

∫
d3vE ŜxŜE

= Ŝ0nrefTrefρ
3
ref cref/Lref . (36)

2.6. Equilibrium models

So far, no explicit expressions have been given
for the different geometrical terms appearing in
Eq. (11) which are related to the actually cho-
sen magnetic equilibrium. In an axisymmetric
system, as is currently considered in the global
version of the code, the field aligned coordinates
(x, y, z) can be obtained from the straight field
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line coordinate system (Ψ, χ, φ), where Ψ is the
poloidal flux function, χ the generalized poloidal
angle and φ the toroidal angle through the rela-
tions:

x = Cx(Ψ)− x0 , y = Cy (qχ− φ)− y0 , z = χ .
(37)

with the coefficients functions Cx and Cy such

that C(x) = (dCx(x)
dΨ

Cy)
−1.

For many applications, it can be useful to con-
sider a simple analytical equilibrium, and a cir-
cular concentric flux surface model is thus imple-
mented in the code. Considering Solovev-type so-
lutions of the Grad-Shafranov equation [30] in the
large aspect ratio limit R0/a � 1, where R0 and
a are respectively the major and minor tokamak
radii, the equilibrium poloidal flux function can
be expressed as Ψ = Ψedge(r/a)2. Here, r is the
radius local to a given flux surface as illustrated in
Fig. 2.6. In this limit, the magnetic surfaces thus
have a circular cross section, and the magnetic
field is given by

B0 =
R0Bref

R

[
eφ +

r

R0 q̄
eθ

]
, (38)

where Bref is the magnetic field at the magnetic
axis, and q̄ is a pseudo safety factor which can be
related to the real safety factor according to

q(r) =
1

2π

∫ 2π

0

dθ
B0 · ∇φ
B0 · ∇θ

=
q̄(r)√
1− ε2

, (39)

with the inverse aspect ratio ε = r/R0. This
pseudo safety factor profile q̄ = q̄(r) is moti-
vated by the ad-hoc relation dΨ/dr = Bref r/q̄(r)
and occasionally used instead of q(r) as input pa-
rameter in intercode benchmarks. However, the
straight field line angle χ is defined such that
(B0 · ∇φ)/(B0 · ∇χ) = q, which leads to the q(r)
dependent relation dχ/dθ = B0 · ∇φ/(qB0 · ∇θ).
Integrating over θ yields

χ(r, θ) =
1

q

∫ θ

0

dθ′
B0 · ∇φ
B0 · ∇θ′

= 2 arctan

[√
1− ε
1 + ε

tan

(
θ

2

)]
. (40)

Figure 2: Circular flux surface in toroidal coordinates
(r, θ,Φ).

From these definitions for Ψ and χ, the metric ten-
sor gαβ = ∇α · ∇β in (Ψ, χ, φ) is obtained from
the known metric in the (r, θ, φ) coordinate sys-
tem, leading to

gΨΨ =
B2

ref r
2

q̄2
, gχχ =

1

r2

[
R2

0q̄
2

R2q2
+
ε2 sin2 χ

(1− ε2)2

]
,

gΨχ = −Brefε

q̄

sinχ

(1− ε2)
, gφφ =

1

R2
,

gΨφ = gχφ = 0 . (41)

With those relations, the metric tensor in the field
aligned coordinates (x, y, z) can finally be derived
to be

gxx =

(
dCx
dΨ

)2

gΨΨ , gzz = gχχ ,

gxy =
dCx
dΨ

Cy
(
q′χgΨΨ + qgΨχ

)
,

gyy = C 2
y

[
(q′)2χ2gΨΨ + 2qq′χ gΨχ + q2gχχ + gφφ

]
,

gxz =
dCx
dΨ

gΨχ , gyz = Cy
(
q′χ gΨχ + q gχχ

)
.

(42)

When using this circular analytical model, the x
variable is chosen as x = r − x0, i.e. dCx/dΨ =
q̄/(r Bref), and Cy = r0/q0. Note, that the pre-
sented equilibrium model differs from the stan-
dard implementation of the s − α model as all
terms in ε are retained here [20].
In order to investigate more realistic equilibria, in-
terfaces with the MHD equilibrium code Chease
[31] or the field line tracer Tracer [32] can al-
ternatively be used.
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3. Numerical implementation

Having discussed the theoretical framework,
the present section is dedicated to the discussion
of the numerical schemes which are used to dis-
cretize the gyrokinetic system of equations.

Following the method of lines [33], the distri-
bution function and the fields are first discretized
on a fixed grid in phase space while the time vari-
able is left continuous. The hyperbolic integro-
differential system of equations is thus reduced to
a system of ordinary differential equations which
can then be solved using, e.g., a standard Runge-
Kutta method.

3.1. Eigenvalue and initial value solver

Often, gyrokinetic investigations involve a care-
ful study of the linear properties of the existing
microinstabilities, determining, for instance, their
growth rates and real frequencies. For linear in-
vestigations, all relevant terms in the gyrokinetic
Vlasov equation can be cast into an operator act-
ing on a state vector representing the distribu-
tion function. Using iterative eigenvalue solvers
provided by the Slepc [34, 35] extension of the
Petsc [36, 37, 38] package then allows for the
analysis of the full eigenvalue spectrum or of parts
thereof. These libraries are also employed to de-
termine the maximum linear time step for initial
value calculations based on explicit time schemes.
Concerning the latter, several options are at hand.
Besides standard Runge-Kutta schemes of 3rd
and 4th order, a numerically optimized 6-stage,
4th order Runge-Kutta scheme as proposed in [39]
is available as well. A more detailed discussion
can be found in [8].

3.2. Flux tube approach and boundary conditions

The flute-like character of plasma microturbu-
lence – already mentioned in the context of the
gyrokinetic ordering – allows for a minimization
of the simulation volume and thus of the compu-
tational costs. Local codes, for instance, usually
consider a flux-tube domain whose length corre-
sponds to one poloidal turn [40, 41, 42]. The ap-
propriate boundary conditions will be discussed
in the following since they are linked to the ones
used in the global Gene version.

3.2.1. Radial boundary condition

Periodic boundary conditions, f(x, y, z) =
f(x+Lx, y, z) (here, f denotes an arbitrary func-
tion), as they are typically implemented in lo-
cal codes can still be used in the global ver-
sion for comparisons. However, such a choice
is not applicable in global computations since
radial and in general non-periodic variations of
equilibrium quantities shall be kept. Thus,
Gene is currently equipped with two alterna-
tives. Either, all quantities are held fixed at
the boundaries B using Dirichlet type condi-
tions, f(x, y, z)|x∈B = 0, or floating temperatures
and density profiles are allowed. The latter is
achieved by employing von Neumann type con-
ditions, ∂xf(x, ky = 0, z)|x∈B = 0 for the constant
part in the y direction (ky = 0) and else (ky 6= 0)
the aforementioned Dirichlet type conditions such
that particle and heat fluxes vanish at the bound-
aries. In the present version of the code, these
conditions are applied to both gyrocenter and par-
ticle coordinate representations in the same man-
ner. It should be mentioned at this point that
the effect of the boundary conditions is expected
to penetrate some distance into the simulation do-
main. The associated characteristical length scale
naturally depends on ρ∗ and on the strength of the
radial coupling being, for instance, caused by ra-
dial derivatives and the gyroaveraging procedure.

3.2.2. Boundary condition in the binormal direc-
tion

In the y direction, often called binormal (re-
ferring to the orthogonal vectors (êx, êy, êz) at
outboard midplane) or toroidal (with respect to
the alignment of the corresponding covariant ba-
sis vector êy) direction, periodic boundary condi-
tions are taken in the local as well as the global
Gene code which is well justified for axisymmet-
ric devices. Within the flux tube concept the box
size might, however, be restricted to an integer
fraction (inverse toroidal mode number n0) of the
full flux surface. Here, periodicity can still be as-
sumed if the box size Ly is larger than a few cor-
relation lengths of the turbulence structures to be
investigated. As pointed out in Ref. [43], such an
approach corresponds to a thinning out of mode
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numbers in the y direction as becomes obvious if
a Fourier transformation

f(x, ky, z) =
1

Ly

∫ Ly

0

dy e−ikyy f(x, y, z) (43)

is applied. Here, the discretized mode number
spectrum is given by ky = kmin

y · j with kmin
y =

2π/Ly = n0/Cy and j being integer-valued. Thus,
increasing the toroidal mode number n0 similarly
increases kmin

y or – if kmin
y shall be kept constant

– the possible j values are restricted to j = n0 · l
with l = 0, 1, 2, . . .. The implementation in Gene
is based on such a Fourier representation in the y
direction to allow for the application of spectral
methods.

3.2.3. Parallel boundary condition

Obviously, a thin flux tube in an axisymmetric
equilibrium which extends for one poloidal turn
is characterized by exactly the same geometric
quantities at both ends. However, it is clear that
these ends do not physically match for non-integer
q values, and that finite magnetic shear induces
a tilting of the simulation box. An additional x
and y dependent phase factor is thus introduced
[42] in order to compensate for those effects. The
parallel (z) boundary condition then reads

f(x, ky, z + Lz) = f(x, ky, z) exp (−2πin0q(x)j)
(44)

where j denotes, as before, the integer-valued in-
dex of the ky mode and n0 is the aforementioned
toroidal mode number. At this point it should
be noted that local codes consider the magnetic
shear, as well, by keeping the first order Taylor ex-
pansion of the safety factor profile in the ρ∗ → 0
limit – similar to the treatment of the background
gradient terms in Eq. (11).

3.3. Spatial differentiation

Currently, both the radial (x) and the parallel
(z) directions are discretized on a fixed equidis-
tant grid, and finite difference schemes are ap-
plied for the numerical representation of deriva-
tives. Typically, fourth-order centered schemes

turn out to be most efficient while providing rea-
sonable accuracy. The third direction (y) is rep-
resented in Fourier space and thus allows for an
exact representation of spatial derivatives. Alter-
natively, the nonlinear terms can be treated using
a mixed spectral/finite difference variant of the
Arakawa scheme [44]. The latter discretizes the
nonlinear terms such that the conservation prop-
erties which are analytically fulfilled, are also re-
tained numerically. With this scheme, the code
achieves stable nonlinear saturation with small or
even zero numerical dissipation in the perpendic-
ular plane, allowing for more robust code opera-
tion than with standard centered differences. The
implemented term is

N =
1

3

[(
iky ξ̄1 ·

∂g1σ

∂x
− ∂ξ̄1

∂x
· ikyg1σ

)
+ iky

(
ξ̄1 ·

∂g1σ

∂x
− g1σ ·

∂ξ̄1

∂x

)
+

∂

∂x

(
g1σ · iky ξ̄1 − ξ̄1 · ikyg1σ

) ]
, (45)

where, for computational efficiency, all terms sep-
arated by dots (·) are Fourier-transformed to real
space before performing the multiplication.

3.4. Gyroaveraging

Several terms in the basic equations contain gy-
roaveraged quantities like

f̄(x) = G [f(x)] =
1

2π

∮
dθ f(x + r(θ)) (46)

where r = r(θ) is the (cyclic) gyroradius vector
orthogonally aligned to the magnetic field and G
denotes the aforementioned gyroaverage operator
whose explicit representation is going to be de-
rived in the following.

In a first step, periodic boundary conditions are
utilized in the y direction which allows for switch-
ing to a Fourier representation. Hence, Eq. (46)
can be written as

f̄(x) =
1

2π

∑
ky

∫ 2π

0

dθ f(x+ rx(θ), ky, z) eiky(y+ry(θ))

(47)
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where the contravariant components of r
in the nonorthogonal flux tube coordinates
is given by rx = r · ∇x =

√
g11ρσ cos θ and

ry = r · ∇y = ρσ(g12 cos θ +
√
γ1 sin θ)/

√
g11 if a

linearized metric is considered. For the evaluation
of the θ integration, interpolation techniques are
obviously required. A finite elements approach
seems to be a reasonable choice for this purpose.
The function to be gyroaveraged is rewritten in
terms of finite-element base functions Λn(x) for
each value of f on the coarse-grained grid at po-
sition x(n). Using the compact vector representa-
tion

f(x) = Λ(x) · f (48)

with Λ(x) = (Λ0(x), . . . ,ΛNx−1(x))T and f =
(f(x(0)), . . . , f(x(Nx−1)))

T transforms Eq. (47) into

f̄(ky, z, µ) = G(ky, z, µ) · f(ky, z) . (49)

The gyroaverage operator is thus a matrix with
the elements

Gin(ky, z, µ) =
1

2π

∫ 2π

0

dθΛn(x(i) + rx) eikyry (50)

In order to avoid further computational effort,
the base functions Λn(x) are chosen such that the
values on the coarse grid can easily be extracted
again, which happens if the interpolated function
coincides with the original values. Furthermore,
Λn(x) is considered to be finite just in the vicin-
ity of the coarse grid point x(n), thus becoming
zero when approaching the next neighboring grid
point. Possible alternatives taking into account
several grid points, for instance splines, would re-
quire a solution of a linear system of equations.

A simple choice in this context are polynomi-
als of order p at each position x(n) following the
boundary conditions

∂u

∂xu
Pn,m(x)

∣∣∣∣
x=x(i)

= δinδum (51)

for the mth derivative of the function which ef-
fectively amounts to a Hermite polynomial inter-
polation. Here, the indices are i = n, (n + 1)
and u = 0, . . . , (p − 1)/2. Changing again to

a matrix-vector notation where f contains all
function values on the coarse grid and Pm =
(P0,m, . . . , PNx−1,m)T , derivatives of mth order can
be formally represented by the mth power of a
matrix D. The construction of the latter then
depends on the finite difference scheme actually
chosen for the numerical evaluation of derivatives
which is a 4th order centered scheme. In sum-
mary, Eq. (48) becomes

f(x) = Λ(x) · f =

(p−1)/2∑
m=0

Pm(x)Dmf . (52)

For most applications, polynomials of degree

p = 5
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Figure 3: Illustration and comparison of the finite ele-
ment interpolation implemented in Gene . In the upper
plot, black dots (a) represent the values of a test function
sin(2πx) (c) on a coarse grid whereas the blue line (b) indi-
cates interpolation results using the base functions drawn
as dotted lines. Since differences between (b) and (c) are
hardly visible, they are explicitly shown in the lower plot.

p = 5 as shown in Fig. 3 seem to be a good trade-
off between high accuracy and moderate compu-
tational effort.
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3.5. Integration

Except for some post-processing applications,
numerical integrations are almost exclusively per-
formed in the velocity space since associated mo-
ments are required in the field equations. To allow
for an optimum number of grid points, a Gaussian
quadrature scheme with Gauß-Legendre weights
and knots is used in the µ direction while the al-
ternative extended Simpson’s rule [45] is applied
in the v‖ direction.

4. Code verification

Some results obtained with the global Gene
version are presented in this section and bench-
marked against analytical and numerical test
cases.

4.1. The local limit

A first obvious and important test is to check
whether the global code eventually reaches the lo-
cal limit with decreasing ρ∗ parameter which is in
the following given by ρ∗ = ρi/a. As a side effect,
judgments on the validity of local simulations for
specific devices can be drawn. Naturally, the de-
tails of such a study depend to some extent on
the chosen radial profiles which has been shown
elsewhere [46, 15, 47]. In the present case, peaked
temperature and density gradient profiles are cho-
sen of the form

T̂i,e = exp

[
−κT ε∆T tanh

(
(x− x0)/a

∆T

)]
,

n̂i,e = exp

[
−κnε∆n tanh

(
(x− x0)/a

∆n

)]
, (53)

where κT = max(R0/LT ) = 6.9589 and κn =
max(R0/Ln) = 2.232 denote the maximum gra-
dient values, ε = a/R0 = 0.3616 the inverse
aspect ratio, and ∆T,∆n = 0.3 the character-
istical width of the gradient peak which is cen-
tered at x0 = 0.5 a. In addition, the flux surfaces
are assumed to be circular and concentric with
a safety factor profile of q(x/a) = 0.498(x/a)4 −
0.466(x/a)3 + 2.373(x/a)2 + 0.854 such that q0 =
q(x0 = 0.5 a) = 1.42 matches the Cyclone Base
Case (CBC) [48] value. Two species – electrons

and one ion species – are considered with their
mass ratio set to mi/me = 1836 as in hydro-
gen plasmas. The resulting growth rates of linear
simulations with a fixed binormal wavenumber of
kyρs ≈ 0.284 in the center of the simulation do-
main and a fixed reference βref value of 2.5% but
varying ρ∗ are shown in Fig. 4. The normalization
used is the ion sound speed cs =

√
Te/mi divided

by the tokamak major radius R0. Obviously, the
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Figure 4: Growth rate at kyρs ≈ 0.284 as function of the
inverse ρ∗ value. Here, kinetic electrons with a proton-
electron mass ratio are considered as well as a finite βref of
2.5%. The temperature and density gradient profiles are
peaked with ∆Ti,e,∆n = 0.3. The radial simulation box is
kept fixed with respect to (I) the gyroradius and (II) the
minor radius. The local code result using the maximum
gradients is shown as thin, black line.

local and global results converge for ρ∗ . 1/400
– but even at ρ∗ ∼ 1/200, they differ only by
less than 10%. This finding does not depend on
the way the ρ∗ scan is performed. As one option,
the radial simulation box length can be kept fixed
with respect to the gyroradius so that a smaller
and smaller radial domain of the macroscopic pro-
files will be resolved with decreasing ρ∗ (note that
in this case, periodic boundary conditions have to
be employed instead of Dirichlet boundary condi-
tions else). Alternatively, the radial box size can
be set to a fixed fraction of the minor radius, and
hence the number of ion gyroradii within the do-
main is increasing with decreasing ρ∗. (In order
to resolve those fine scales, more and more radial
grid points need to be employed, making this sec-
ond approach computationally much more chal-
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lenging.) The first approach has been chosen for
another set of linear investigations where β has
been modified. The resulting growth rates of the
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Figure 5: Growth rate at kyρs ≈ 0.284 as function of the
βref for different values of ρ∗ together with the local code
result. The global growth rates resemble the local ones but
are reduced in amplitude depending on the gyroradius-to-
machine-size ratio

corresponding ITG-KBM transition are presented
in Fig. 5 for several values of ρ∗. Generally, the
variation of the global growth rates qualitatively
resembles the local one but is reduced in ampli-
tude depending on the gyroradius-to-machine-size
ratio.

These local limit tests can be considered suc-
cessful, serving as a first indicator for the relia-
bility of the global-Gene implementation. How-
ever, comparisons with analytical models or other
codes allow for a more comprehensive evaluation
and will thus be presented in the following sec-
tions.

4.2. Rosenbluth-Hinton test

A well established test for gyrokinetic codes is
based on the time evolution of an initial E × B
zonal flow impulse in a toroidal plasma with cir-
cular flux surfaces and a large aspect ratio. In the
absence of collisions and any nonlinear coupling,
a rapid but damped oscillation of the geodesic
acoustic mode (GAM) [49] is observed which re-

laxes to a finite stationary value AR so that

〈φ1〉FS(x, t)

〈φ1〉FS(x, t = 0)
= (1− AR) e−γGt cos(ωGt) + AR.

(54)

In the local limit – i.e., neglecting radial cou-
plings – and for adiabatic electrons, the resid-
ual has been analytically predicted by Rosenbluth
and Hinton [50, 51] to be

AR =
1

1 + 1.6 q(r)2/
√
r/R0

. (55)

Since zonal flows are identified as one of the most
important saturation mechanisms in several pa-
rameter regimes, for instance in ITG mode dom-
inated turbulence, it is widely accepted that this
test has to be passed by gyrokinetic codes.

In the following investigation, the same safety
factor profile as before is employed but tempera-
ture and density profiles are taken to be constant
as in the analytic calculation. The number of grid
points in the (x, z, v‖, µ) directions is (63 × 16 ×
128 × 16) and the box lengths are chosen to be
(Lx, Lv‖ , Lµ) = (48ρref , 3 vT i(x0), 9T0i(x0)/Bref).
The resulting residual levels at the center of the
simulation domain are plotted in Fig. 6 for sev-
eral values of ρ∗. While the deviation from
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Figure 6: Rosenbluth-Hinton residual (black dots and line)
evaluated at the radial center position of the simulation
box for different settings of ρ∗. The red line indicates the
Rosenbluth-Hinton prediction.

the Rosenbluth-Hinton prediction is significant at
large ρ∗, it becomes less than 10% at 1/ρ∗ & 200
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and thus demonstrates a reasonably good agree-
ment when taking into account the relatively large
inverse aspect ratio and effective kmin

x mode.
A further example employs parameters being

similar but not identical to those presented in
Ref. [21]. In particular, they prescribe a linear
safety factor profile q(x/a) = 0.7 + 0.9 · (x/a) and
an inverse aspect ratio of a/R0 = 1/10. With this
choice, an even better agreement with the ana-
lytic prediction can be expected, although ρ∗ is
taken to be 1/40. The numerical parameters are
the same as before, except for the radial direction
where 48 grid points are taken along a box length
of Lx = 38ρref . Contrary to local codes where ex-
actly one safety factor q and radial position x/R0

are chosen and thus just one residual can be in-
vestigated per simulation, a global code automat-
ically provides results for a wide parameter range.
Hence, the residual levels and oscillation frequen-
cies gained by fitting are displayed for all radial
positions except for the two outermost grid points
in Fig. 7. The analytical results, given by Eq. (55)
and

ωG
R0

cs
=

√
(7/τe + 4)AG

2
(56)

with τe = Te/Ti and AG =
[1 + (2(23 + 16τe + 4τ 2

e ))/(q(7 + 4τe))
2] [52],

are included for comparison. Clearly, both
values agree well with the predictions within
0.3 . x/a . 0.8. The deviations at the remain-
ing radial positions can be attributed to the
Dirichlet boundary condition. Considering the
relatively large reference gyroradius ρs = 0.025 a
employed in this simulation, it is obvious that
gyroaverages at intermediate to high µ values,
which might partially be calculated outside the
simulation domain, may exhibit an influence
even at radial positions being far away from the
boundaries. Indeed, simulations at smaller ρ∗

(ρ∗ = 1/100, 1/200), possess a narrower transition
region but do not show such excellent agreement.
For instance, numerical and analytical residual
levels deviate up to about 20% at x/a = 0.3.
Hence, the remarkable coincidence found in the
present case seems to be restricted to a very
narrow parameter regime.
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Figure 7: Rosenbluth-Hinton residual (a) and oscillation
frequency (b) evaluated at all radial positions except for
the two outermost grid points. The black dots represent
numerical results whereas the red solid line illustrates the
analytical prediction. Note that (unphysical) negative val-
ues of AR are suppressed close to the boundaries.

4.3. Linear benchmark

Having successfully passed the Rosenbluth-
Hinton and local limit tests, more complicated
scenarios involving more comprehensive physical
effects can be studied.

In this section, direct comparisons between
Gene and the global particle-in-cell (PIC) code
Gygles [53] solving the linear gyrokinetic equa-
tions are presented. Once again, parameters
similar to the CBC set are employed so that
ε = a/R0 = 0.6043 m/1.6714 m = 0.3616. The
temperature and density profiles of the gyroki-
netic ions and adiabatic electrons are assumed
to follow Eq. (53) with gradient peak values of
κT = 6.9589 and κn = 2.2320 at x0 = 0.5 a. The
characteristical widths are set to ∆T = ∆n =
0.3. Extracting from the DIII-D discharge 81499
which constitutes the CBC basis, a temperature
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of T0(x0) = 1.9693 keV and a reference mag-
netic field of Bref = 1.9 T allows for estimating
ρ∗ ≈ 1/180 in case of pure deuterium plasmas.
The geometry is chosen to be circular concentric
as before with a parabolic safety factor profile of

q(x/a) = 0.854 + 2.4045 (x/a)2. (57)

The resulting growth rates and frequencies ob-
tained by Gygles [54] and Gene using Dirichlet
boundary conditions are presented in Fig. 8 and
show excellent agreement except for the highest ky
modes. However, this deviation can be explained
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Figure 8: A comparison of growth rates (left) and real fre-
quencies (right) calculated by the linear, gyrokinetic PIC
code Gygles and the global Gene version for an adiabatic
electron test case further described in the text.

by the different treatment of gyroaverage and field
operators at these wave numbers. In the Gygles
version at hand, a long wavelength approxima-
tion, k⊥ρ � 1, is applied so that Larmor radius
effects are kept up to second order (k⊥ρ)2 while
all orders are considered in Gene.

The numerical Gene parameters employed in
the present linear study are the following. At each
binormal wave number, the radial box size is set
to Lx = 160ρs and 16 grid points are used in
the parallel direction. All remaining grid sizes
and resolutions vary. For instance, at low wave
numbers, i.e. kyρs < 0.5, (160×32×16) grid points
in the (x, v‖, µ) directions and a velocity space box
of (Lv‖ , Lµ) = (3 vT i(x0), 9T0i(x0)/Bref) turn out
to be sufficient while at higher wave numbers up
to (256 × 64 × 128) grid points and (Lv‖ , Lµ) =
(5 vT i(x0), 18T0i(x0)/Bref) are required.

4.4. Nonlinear benchmark

In 2008, a test case for nonlinear gyrokinetic
simulations with adiabatic electrons has been de-
fined within the framework of the European Inte-
grated Tokamak Modeling (ITM) benchmarking
effort [55] and was considered to check the non-
linear Gene behavior.

The underlying physical parameters are very
similar to those used in the linear Gygles-Gene
comparison so that only important deviations are
listed in the following. In particular, they com-
prise the temperature and density profiles since
their gradients are not peaked but flat over a wide
radial range,

ω(T,n)(r) =κ(T,n)

(
1− sech2 [(r − ri)/(a∆r)]−

sech2 [(r − ra)/(a∆r)]
)

(58)

with ri/a = 0.1, ra/a = 0.9 and ∆r = 0.04.
The benchmark itself describes a nonlinear re-

laxation problem, i.e. no additional sources or
sinks are applied. The chosen observable is the
volume averaged turbulent, ion thermal diffusiv-
ity as a function of the average ion temperature
gradient, both averages done over the radial do-
main 0.4 < r/a < 0.6. Sampling both values at
successive time points generates a cloud of points
as can be seen in Fig. 9. The following stages
can be identified: At the beginning, the thermal
diffusivity grows at a fixed temperature gradient,
thus clearly reflecting the linear phase. As soon
as the nonlinearity becomes important, an over-
shoot occurs which is followed by a first saturation
phase where the diffusivity and the gradient both
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Figure 9: Volume averaged turbulent ion thermal diffusiv-
ity in units of χGB = csρ

2
s/a vs. the normalized ion tem-

perature gradient. The points represent both values at
successive time points. Here, nonlinear Gene simulation
results are shown for two different initial gradient settings
(a) and (b), together with the reference result obtained
from local simulations [48] (c).

fluctuate around a constant value for some time.
Eventually, the ion temperature profile starts to
relax and thus lowers the heat diffusivity. All
these features have been found within the ITM
benchmarking effort by the nonlinear, gyrokinetic
PIC codes Orb5, Gysela [29, 56], and Elm-
fire [57]. A comparison of Fig. 9 with Fig. 2 in
Ref. [55] confirms that the Gene results using
Dirichlet boundary conditions well fit with those
of the ITM benchmark.

For a very extensive nonlinear benchmark be-
tween Orb5 and Gene using heat sources and
sinks in order to allow for a quasi-stationary state
comparison, the reader is furthermore referred to
Ref. [22].

4.5. Code performance and parallelization

In order to perform time efficient computations
and to treat large problem sizes, massive paral-
lelization is called for. For instance, the grid reso-
lution for a typical two-species, nonlocal and non-
linear trapped electron mode turbulence simula-
tion for a medium-sized tokamak can be estimated
to 512× 32× 24× 64× 24 in the x, ky, z, v‖, µ di-
rections which roughly translates to 200 GB mem-
ory. In terms of computational time, several
100 kCPUh can be expected. Gene thus offers
MPI parallelization along all of the (x, y, z, v‖, µ)
directions as well as over the species label, and
it also provides the possibility to use OpenMP.

Hence, the code is able to run on several 10,000
cores. However, determining the most efficient
MPI mapping then clearly constitutes a nontriv-
ial task which is why Gene is equipped with an
automatic detection comparing the timings of all
available mappings during initialization. Further-
more, an effort has been made to automatically
adapt the code to the available cache size which
typically varies from machine to machine. For
this purpose, two or more alternatives are im-
plemented for core parts of Gene which differ in
the way the arrays are distributed in memory and
which are also compared with respect to the run-
time during initialization. In extreme cases, a fac-
tor of 10 has been saved compared to a single im-
plementation being used on all available architec-
tures. Examples of Gene scalings using the local
approximation can, e.g., be found in Ref. [10]. A
strong scaling, i.e. increasing the number of cores
while keeping the system size constant, computed
on the EPCC Hector CRAY XE6 machine for the
global parameters described above is additionally
shown in Fig. 10.
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number of cores for global computations on the EPCC
Hector CRAY XE6 machine with respective resolutions
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5. Conclusions

The grid-based gyrokinetic turbulence code
Gene has been extended to include radial vari-
ations of the background profiles and metric co-
efficients, thus enabling investigations of nonlo-
cal phenomena. In addition, various types of
source/sink terms have been added which allow
for a control of the profile evolution. The numer-
ical implementation of the underlying equation
has been discussed and several verification stud-
ies have been presented which confirm the ma-
turity and correctness of the software. Finally, a
good parallel performance has been demonstrated
which is an essential prerequisite due to the enor-
mous computational effort being required to re-
solve the turbulent structures while considering a
large radial fraction of a fusion device.
We gratefully acknowledge insightful discussions
and, in particular, the invaluable cooperativeness
of L. Villard and B.F. McMillan to perform inter-
code comparisons.
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fects, Ph.D. thesis, École Polytechnique Fédérale de
Lausanne (2010).

[17] J. Candy, R. E. Waltz, S. E. Parker, Y. Chen, Rele-
vance of the parallel nonlinearity in gyrokinetic simu-
lations of tokamak plasmas, Phys. Plasmas 13 (2006)
074501.

[18] Y. Idomura, M. Ida, S. Tokuda, L. Villard, New con-
servative gyrokinetic full-f Vlasov code and its com-
parison to gyrokinetic δf particle-in-cell code, J. Com-
put. Phys. 226 (2007) 244–262.

[19] S. Jolliet, Gyrokinetic particle-in-cell global simula-
tions of ion-temperature-gradient and collisionless-
trapped-electron-mode turbulence in tokamaks, phd
thesis no. 4326, Ph.D. thesis, Ecole Polytechnique
Fédérale de Lausanne (2009).

[20] X. Lapillonne, S. Brunner, T. Dannert, S. Jolliet,
A. Marinoni, L. Villard, T. Görler, F. Jenko, F. Merz,
Clarifications to the limitations of the s-alpha equi-
librium model for gyrokinetic computations of turbu-
lence, Phys. Plasmas 16 (2009) 032308.

[21] S. Jolliet, A. Bottino, P. Angelino, R. Hatzky,
T. Tran, B. McMillan, O. Sauter, K. Appert, Y. Ido-
mura, L. Villard, A global collisionless PIC code in
magnetic coordinates, Comput. Phys. Commun. 177
(2007) 409–425.

[22] X. Lapillonne, B. F. McMillan, T. Görler, S. Brunner,
T. Dannert, F. Jenko, F. Merz, L. Villard, Nonlin-
ear quasisteady state benchmark of global gyrokinetic
codes, Phys. Plasmas 17 (2010) 112321.

[23] R. G. Littlejohn, Hamiltonian formulation of guiding
center motion, Phys. Fluids 24 (1981) 1730–1749.

19



[24] W. D. D’haeseleer, W. N. G. Hitchon, J. D. Callen,
J. L. Shohet, Flux Coordinates and Magnetic Field
Structure. A Guide to a Fundamental Tool of Plasma
Theory, Springer-Verlag, New York, 1991.

[25] J. C. Cummings, Gyrokinetic simulation of finite-beta
and self-generated sheared-flow effects on pressure-
gradient-driven instabilities, Ph.D. thesis, Princeton
University, Princeton (1995).

[26] J. D. Huba, NRL (Naval Research Laboratory)
plasma formulary (2007).

[27] B. F. McMillan, S. Jolliet, T. M. Tran, L. Villard,
A. Bottino, P. Angelino, Long global gyrokinetic sim-
ulations: Source terms and particle noise control,
Phys. Plasmas 15 (2008) 052308.

[28] Y. Sarazin, V. Grandgirard, J. Abiteboul, S. All-
frey, X. Garbet, P. Ghendrih, G. Latu, A. Stru-
garek, G. Dif-Pradalier, Large scale dynamics in flux
driven gyrokinetic turbulence, Nucl. Fusion 50 (2010)
054004.

[29] V. Grandgirard, Y. Sarazin, P. Angelino, A. Bot-
tino, N. Crouseilles, G. Darmet, G. Dif-Pradalier,
X. Garbet, P. Ghendrih, S. Jolliet, G. Latu, E. Son-
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