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Abstract

A probabilistic representation for initial value semilinear parabolic problems based
on generalized random trees has been derived. Two different strategies have been
proposed, both requiring generating suitable random trees combined with a Pade
approximant for approximating accurately a given divergent series. Such series are
obtained by summing the partial contribution to the solution coming from trees
with arbitrary number of branches. The new representation greately expands the
class of problems amenable to be solved probabilistically, and was used success-
fully to develop a generalized probabilistic domain decomposition method. Such a
method has been shown to be suited for massively parallel computers, enjoying full
scalability and fault tolerance. Finally, a few numerical examples are given to il-
lustrate the remarkable performance of the algorithm, comparing the results with
those obtained with a classical method.

Key words: Monte Carlo methods, domain decomposition, semilinear parabolic
problems, parallel computing, fault-tolerant algorithms, random trees
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1 Introduction

Nowadays, most of the more popular numerical methods developed for solv-
ing partial differential equations (PDE) are based as a rule in generating a
computational mesh, discretizing the given problem using the nodes of a com-
putational mesh as discretization nodes, and solving the ensuing linear algebra
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problem for such nodes. As an alternative, the so-called meshless methods have
started to be exploited more recently to avoid the need of building a compu-
tational mesh, but unfortunately they cannot exclude solving a corresponding
linear algebra problem. Moreover, both numerical methods share also an im-
portant disadvantage, consisting namely in the impossibility of computing the
solution of the problem at a single point inside the domain. Clearly this is
due to the globally coupled nature behind these numerical methods. In the
past such a feature did not constitute any serious limitation of the methods,
being implemented frequently in sequential computers, but currently with the
advent of parallel computers, this can be seen as a strong limiting factor to
the overall efficiency of the corresponding numerical algorithms.

In fact, there are three sources of problem that have been observed. First,
the tightly coupled nature of the algorithms induces a strong communica-
tion among the large number of processors currently present in the more
advanced high performance supercomputing, and thus reducing the effective
performance. Second, the chance to get a failure in one or several processors
during the computation time increases with the number of processors involved.
There is indeed a non negligible probability that a small percentage of pro-
cessors or the network connecting them experience a failure. Most existing
algorithms simply stop and are aborted as a consequence of such failures, and
the proposed remedies usually require some kind of storing and restarting pro-
cedures, which degrades seriously the overall performance. Finally, in case of
the grid computing and heterogeneous distributed computing, things can be
even worse due to the high degree of systems heterogeneity and high network
latency. Three major and recently published studies about the current source
of problems in scientific computing can be found in [17], [24], and [25].

A successful alternative to such traditional methods consists of developing par-
allel numerical algorithms based on probabilistic numerical methods [1,2,3,4,12,20,22].
Such methods are inherently parallel, and naturally fault-tolerant, hence over-
come all the obstacles mentioned above. Moreover, they allow to compute the
solution at a single point inside the domain without the need of a compu-
tational mesh for solving the entire problem. However, they are not recom-
mended to be applied in every point of the mesh due to the slow convergence
rate, but rather to be combined with a classical Domain Decomposition [9,21]
to compute merely the solution in a few points along some interfaces inside
the domain. This is essentially the method called Probabilistic Domain De-
composition (PDD) proposed for the first time in [1,2] for solving linear ellip-
tic problems, and generalized further to deal with some particular semilinear
parabolic problems in [3,4]. In short, the idea consists of generating only few
interfacial values using probabilistic methods along a given possibly artificial
interfaces inside the domain, obtaining approximate values interpolating on
such interfaces, and then use such values as boundary data in order to split
the original problem into fully decoupled sub-problems.

2



The aforementioned problems, successfully resolved by the PDD method, are
very common and generally recognized by the global high performance com-
puting community. At the present time, the situation becomes even more dra-
matic because of the number of scientific and engineering challenging problems
requiring levels of petaflops, even exaflops, thus computing performance tends
to increase very fast. A compelling and comprehensive reference about this
fact can be found in the recently published roadmap of the International Ex-

ascale Software Project (IESP) [10]. In this project a worldwide joint effort is
being conducted trying to overcome the current problems looking for a high
quality computational environment for petascale/exascale systems. Inciden-
tally in [10], it is claimed the need of rethinking completely new algorithms,
and in particular it was suggested to reconsider the use of Monte Carlo based
approaches, which is actually the case of the PDD method.

A key ingredient for implementing any PDD method requires having a prob-
abilistic representation of the solution, since it will allow to compute the so-
lution at the interfacial values. Probabilistic representations do exist for some
elementary semilinear parabolic equations. Indeed, in [18] H.P. McKean de-
rived the representation formula

u(x, t) = E[
kt(ω)
∏

i=1

f(xi(ω, t))] (1)

for the KPP equation

ut = uxx + u(u− 1), x ∈ R, t > 0, (2)

subject to the initial value u(x, 0) = f(x); see also [13,19,23]. It is understood
that in (1) the point xi(ω, t) is the position of the ith branch of a branching
stochastic process surviving at time t, ω denoting the chance variable. The
quantity kt(ω) is the random number of descendants at time t. A similar
representation has been recently found in [3,4] for the solution of a more
general semilinear parabolic problem, given by

∂u

∂t
= Lu− cu+

m
∑

j=2

αju
j, (3)

where L is a general linear elliptic operator, say L := aij(x, t)∂i∂j + bi(x, t)∂i
(using the summation convention), with continuous bounded coefficients, m ≥
2 is an integer, αj ≥ 0,

∑m
j=2 αj = 1, and c is a positive constant. Such a

representation is based on generating branching diffusion processes, associated
with the elliptic operator in Eq. (3), and governed by an exponential random
time, S, with probability density p(S) = c exp(−cS).
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In this paper this method is extended to deal with a wider class of semilinear
parabolic problems, whose general form now is given by

∂u

∂t
= Lu+ f(u, x, t), x ∈ Rn, t > 0 (4)

u(x, 0) = g(x),

where

f(u, x, t) =
m
∑

j=2

cj(x, t)u
j. (5)

It is worth to observe that this generalizes further the previous representa-
tion obtained in [3,4], since it accounts for the following aspects: A constant
potential term such as −cu is not required anymore; the coefficients mul-
tiplying the nonlinear terms, cj(x, t), can be now chosen arbitrarily, hence
overcoming the constraint imposed in the previous representation consisting
in

∑m
j=2 cj(x, t) = 1, and finally the initial data g(x) may now be chosen neg-

ative, or greater than 1.

Moreover, using such a generalized probabilistic representation, the PDD me-
thod will be generalized further increasing notably the type of semilinear
parabolic problems capable to be numerically solved in a highly efficient way.
Finally, in order to assess the computational feasibility of the algorithm, we
have compared our results with those obtained using competitive (freely avail-
able) parallel numerical codes, which are widely used by the high-performance
scientific computing community.

Here it is the outline of the paper. In Sec. 2 a generalized probabilistic re-
presentation is presented, discussing two different possible strategies based on
suitable random trees. Moreover, a qualitative study of the numerical errors
is accomplished analyzing a few relevant test examples. Sec. 3 is devoted to
numerical examples, where the high efficiency of the PDD method comparing
with classical methods is illustrated. Finally, we summarize the more relevant
findings to close the paper.

2 A generalized probabilistic representation

In order to generalize the class of parabolic problems amenable to a probabilis-
tic representation in terms of branching diffusion processes, it becomes more
convenient to rewrite Eq.(4) in an integral form. This can be done readily re-
sorting to the Duhamel principle [11] for inhomogeneous initial-value parabolic
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problems, and yields

u(x, t) =
∫

Rn

dy g(y) p(x, t, y, 0) +

t
∫

0

∫

Rn

ds dy f(u(y, s), y, s) p(x, t, y, s), (6)

where p(x, t, y, τ) is the associated Green’s function, satisfying the equation

∂p

∂t
= Lp, x ∈ Rn, t > τ

p(x, τ, y, τ) = δ(x− y). (7)

The main difference with the previous representation obtained in (3) rests on
the absence of the constant potential term −cu(x, t). Such a term was crucial,
since it allowed to obtain a probabilistic representation based on generating
branching diffusion processes governed by an exponential random time, S, with
density probability p(S) = c exp(−cS) in [3,4]. In the following we propose
two different strategies capable to overcome such a constraint generalizing
further the aforementioned representation.

2.1 Strategy A

This first strategy consists in inserting artificially a constant potential term
into the PDE, by simply changing variables as follows

u(x, t) = v(x, t)et. (8)

Then, v(x, t) should satisfy the following equation:

v(x, t) = e−t
∫

Rn

dy g(y) p(x, t, y, 0)

+
m
∑

j=2

t
∫

0

∫

Rn

ds dy e−s cj(y, t− s)e(j−1)(t−s)vj(y, t− s) p(x, s, y, 0). (9)

The Green function can be obtained probabilistically by means of the cele-
brated Feynman-Kac formula [15] as follows

p(x, t, y, τ) = E[δ(β(t)− y)], (10)
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where β(t) is the solution of an initial-value problem for the stochastic differ-
ential equation (SDE) of the Ito type, related to the elliptic operator in (4),
i.e.,

dβ = b(β, t) dt+ σ(β, t) dW (t), β(τ) = x. (11)

Here W (t) represents the N-dimensional standard Brownian motion (also
called Wiener process); see [15], e.g., for generalities, and [16,19] for related
numerical treatments. The drift, b, and the diffusion, σ, in (11), are related to
the coefficients of the elliptic operator in (4) by σ2 = a, with a > 0. Substitut-
ing (10) into Eq.(9), and introducing 1[S>t] as the indicator (or characteristic)
function, being 1 or 0 depending whether S is or is not greater than t, Eq.(9)
can be rewritten as follows

v(x, t) =E
[

g(β(t)) 1[S>t]

]

(12)

+E





m
∑

j=2

cj(β(S), t− S) e(t−S)(j−1) vj(β(S), t− S) 1[S≤t]



 .

Here the time S is a random time, drawn from the exponential density distri-
bution p(S) = exp(−S).

The equation above can be recursively solved, replacing the last term on the
right-hand side with the solution v(x, t), obtaining in such way an expansion
in terms of multiple exponential random times, Si, similarly as it was done
in [3,4]. However, rather here the procedure is much more involved since now
the integral equation contains both, variable coefficient terms, cj(β(S), t −
S) e(t−S)(j−1), and various nonlinear terms labeled by j. The latter can be
reformulated probabilistically introducing a new discrete random variable α
taken values between 2 and m, and governed by a uniform probability distri-
bution with probability p = 1/(m− 1), as follows

v(x, t) =E
[

g(β(t)) 1[S>t]

]

(13)

+E
[

c′α(β(S), t− S) e(t−S)(α−1) vα(β(S), t− S) 1[S≤t]

]

,

where c′i = (m − 1)ci. Note that the probability distribution for the random
variable α can be chosen in principle arbitrarily, however in order to minimize
the statistical error it turns out convenient to assume α uniformly distributed
since in such way all the nonlinear terms are equally sampled. Expanding
recursively the equation above, we obtain:

v(x, t) = E
[

g(β(t)) 1[S0>t]

]
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+E

[

h(α1)(y1(S0), S0)
α1
∏

i=1

g(xi(t− S0)) 1[Si>t−S0] 1[S0<t]

]

+E
[

h(α1)(y1(S0), S0)h
(α2)(y2(S0 + S1), S0 + S1)1[Si>t−S1]

×
α1
∏

i=2

g(xi(t− S0))
α1+α2
∏

i=α1+1

g(xi(t− S0 − S1))1[Si>t−S0−S1]1[S1<t−S0]1[S0<t]





+ · · · , (14)

where h(α)(y, s) = c′α(y, t−s) e(t−S)(α−1). Here xi(t), yi(t) denote the position of
the ith path of the stochastic process β(t) surviving or expiring, respectively,
at time t.

Note that in Eq. (14) the solution can be evaluated by simply summing each
partial contribution, and similarly to the class of equations studied in [3,4],
the computational tool based on generating random trees turns out to be very
useful since it allows to rapidly obtain analytically or compute numerically
such contributions.

In the following, we assume the reader is familiar with the terminology used
here, like the concepts of branch, random tree, etc. However, it is useful at this
point to recall some terminology pertaining to trees, usually directed trees. A
tree is a connected graph, i.e., a set of nodes linked by edges, with only one
starting node, called root, a number of final nodes, called leaves, while the
other (internal) nodes are called vertices, and we call here branch every set of
edges joining vertices to leaves. Therefore, in this sense the number of leaves
in a tree is equivalent to the number of branches. Finally, the number of nodes
linked to a given node is called the number of children.

The algorithm works as follows: We first generate a random exponentially dis-
tributed time, S0, and a random path belonging to the stochastic process β.
If S0 is less than the final time t, then we split the given path into as many
branches as those corresponding to the randomly chosen value α, the degree
of nonlinearity. They depart from the position where the previous path was at
time S0, and continue along independent trajectories until the next splitting
event takes place. Whenever one of the possible branches reaches the final
time, t, the initial value, g, is evaluated at the position where the path was
located. Finally, the partial contribution to the solution is reconstructed multi-
plying all contributions coming from each branch and the coefficients h(α)(y, s)
conveniently evaluated at specific points. For the purpose of illustration, we
sketch a typical configuration in the second picture of Fig. 1, corresponding
to two different splitting events. Note that such a configuration represents
graphically what appears in the last term of Eq. (14). Moreover, it can be
seen clearly the structure of the random tree, where the dots denotes the
splitting events, being marked in black or white depending on whether the
splitting time obtained is less or not than the final time, T . Therefore, the
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white dots correspond to the leaves of the tree, while the black dots are the
corresponding vertices. Note that the number of children associated to a given
node depends on the value of α, which has been randomly chosen.

(a) (b)

Fig. 1. Two possible configuration diagrams. In (a) only one splitting event occurs,
with α1 = 3. Rather in (b) two of such events occur, the first one with α1 = 2, and
the second one with α2 = 3.

Hence the solution v(x, t) in Eq. (13) can be rewritten as a expectation value
over random trees of a suitable multiplicative functional of the initial data
g(x), the random times Si, and the variable coefficients c′j, as follows,

v(x, t) =E





Ne(ω)
∏

i=1

h(αi(ω))(yi(ω), S̄i(ω))
k(ω)
∏

l=1

g(xl)



 . (15)

Here k(ω), and Ne(ω) are the random number of branches at final time t, and
the number of splitting events obtained when generating the random tree, re-
spectively. By S̄ we denote the corresponding global random time obtained by
summing conveniently the random times Si according to the specific structure
of the generated random tree. It is worth to observe that such trees are used
as a tool to construct the structure representing a given partial contribution
to the solution, allowing afterward to follow easily how the arguments of the
functions h(α)(y, s) are exchanged when solving recursively Eq.(13).

Even though such a new representation allows to expand further the class
of equations suited to be computed probabilistically, however rather than in
the representation obtained in [3,4], a major drawback now should be faced.
This is because the coefficients multiplying the nonlinear terms vj might be
greater than 1, therefore being the convergence of the numerical procedure
not guaranteed. In fact, the series obtained by expanding Eq. (13) could be
divergent, and in general cannot be summed simply by a sequence of partial
sums. Additionally, the pruning techniques presented in [3,4] cannot be ap-
plied for the same reason. Nevertheless, numerical experiments show that in
many cases the asymptotic series can be summed up resorting to summation
methods such as the Euler’s formula, or approximation techniques based on
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the Pade approximant. In this paper, we consider merely the latter one, be-
cause from numerical experiments seems to be more robust in dealing with
the unavoidable numerical errors affecting the coefficients of the series com-
puted numerically. In Sec. 2.4 a few test problems have been investigated to
illustrate the robustness and convergence of the Pade approximant.

2.2 Strategy B

A different strategy for obtaining a probabilistic representation for the problem
in Eq. (4) consists in sampling both terms of the integral equation (6), by
introducing a two-point discrete random variable ξ taking the values 0, and
1, with probability P (0) = q, P (1) = 1 − q. Therefore, the integral equation
(6) can be rewritten as follows,

u(x, t) = q
∫

Ω

dy g̃(y) p(x, t, y, 0)

+ (1− q)

t
∫

0

∫

Ω

ds dy
m
∑

j=2

c̃j(y, t− s)uj(y, t− s) p(x, s, y, 0), (16)

where g̃(x) = g(x)/q, and c̃j(x, t) = cj(x, t)/(1 − q). The probabilistic repre-
sentation can be readily found and has the form

u(x, t) =E [g̃(β(t))δ(ξ)]

+E [η(t)c̃′α(β(tS), t(1− S)) uα(β(tS), t(1− S))δ(ξ − 1)] , (17)

where the time S is a random time between 0 and 1 uniformly distributed, α a
discrete random variable taking values between 2 andm with equal probability
p = 1/(m−1), c̃′α = (m−1)c̃α, and η(t) = t. Similarly to the previous strategy,
the equation above can be recursively expanded, and yields

u(x, t) = E [g̃(β(t)) δ(ξ0)]

+E

[

η(t)c̃′α1
(y1(tS0), t(1− S0))

α1
∏

i=1

g̃(xi(t(1− S0)) δ(ξi)δ(ξ0 − 1)

]

+E
[

η(t)η(t(1− S0))c̃
′
α1
(y1(tS0), t(1− S0))

× c̃′α2
(y2(t(1− S0)S1), t(1− S0)(1− S1))

α1
∏

i=2

g(xi(t(1− S0)))) δ(ξi)

×
α1+α2+1

∏

j=α1+1

g(xj(t(1− S0)(1− S1)))δ(ξj)δ(ξ1 − 1)δ(ξ0 − 1)



+ · · · (18)
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Therefore, as in the strategy A, the solution can be obtained as the expectation
value over suitable random trees of a given multiplicative functional of the
initial condition, being given now as follows,

u(x, t) =E





Ne(ω)
∏

i=1

η(tS̄i(ω))cαi(ω)(yi(ω), tS̄i(ω))
k(ω)
∏

l=1

g(xl)



 . (19)

Here S̄ is the global time random variable associated to the generated random
tree. It is obtained multiplying the different random times Si according to the
specific structure of the tree.

In view of the probabilistic representation obtained for both strategies, it
is worth to point out that both strategies require generating random trees
to evaluate numerically the partial contribution to the solution, however in
practice the computational procedure needed is quite different. In fact, while
the random trees in the strategy A are constructed by generating a unique
random number, the random time S, which governs how the trees branch off in
time, rather those in the strategy B require two independent random numbers
for the same purpose. This is because in the strategy A the change of variable
introduces a time dependent exponential coefficient, which can be used to
construct a probabilistic representation for Eq. (12) based on an exponential
random time, and therefore the random trees can be fully characterized by
such random time. On the contrary, the probabilistic representation in Eq. (17)
requires both, a random number ξ which governs the branching process, and
a random time S uniformly distributed, for evaluating numerically the partial
contribution to the solution corresponding to a given random tree.

Similarly to the strategy A, the series obtained using the strategy B in Eq.
(18) may be divergent, being therefore necessary to resort to approximation
techniques, such as the Pade approximant, to approximate conveniently the
sum of the series.

To illustrate how both strategies can be implemented in practice for solving an
initial value semilinear parabolic problem, let consider the following equation,

∂u

∂t
=

∂2u

∂x2
+ u2, x ∈ R, t > 0 (20)

u(x, 0) = f(x). (21)

Since the procedure underlying the strategy A is formally similar to that
followed when a constant potential term is present, we refer to the reader to
[3,4] for a practical implementation for such a case, and here we focus merely
on the strategy B. From Eq. (17), the probabilistic representation is given by
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u(x, t) = E [g̃(β(t))δ(ξ)] + E
[

η(t) u2(β(tS), t(1− S))δ(ξ − 1)
]

, (22)

or in a more compact format, using Eq.(19) for the expectation value over
random trees of a given multiplicative functional in Eq.(22), by

u(x, t) =E





Ne(ω)
∏

i=1

η(tS̄i(ω))
k(ω)
∏

l=1

g(xl)



 . (23)

Every random tree is built generating a sequence of interconnected binary
random variables, ξi, branching off from the previous one as follows: Let ξ1
the random variable associated to the root of the tree. Only when ξ1 takes
value 1 with probability P (1) = 1 − q, two new random variables denoted by
ξ2,3 (child nodes of the root), are created. These new variables proceed further
creating other nodes governed by the same rule, until no random number ξi
takes anymore the value 1. At this point the procedure is concluded, giving
rise to a random tree characterized by k branches or leaves, and Ne splitting
events.

The nodes of the tree are labeled in binary format according to their ancestors
as follows: A given node with label [a0a1a2...aN ], where ai = 0, 1, is connected
to the set of nodes {[a0], [a0a1], [a0a1a2], . . . , [a0a1a2 · · · aN−1]}. The global time
random variable S̄ associated to a given tree with k branches is given by

S̄ =
2k−1−1
∏

i=1

S
γj
j , γl =

2k−1−1
∑

j=l+1

νj 〈j|l〉 , l = 1, . . . , 2k−1 − 1 (24)

where νl is 0, or 1 depending on whether the tree contains or not the node l.
The function 〈·|·〉 is defined as follows,

〈j|l〉 :=











1 if T
[l]
j = l

0 otherwise.
, (25)

where both, j and l are numbers written in binary format, and T
[l]
j is an

operator that truncates the number j to their most significant [l] digits, where

[l] is the number of digits of l. By example, let j = [a0a1a2...aN ], then T
[l]
j =

[a0a1...a[l]−1].

Figure 2 shows the different random trees obtained with k = 4, and Ne = 3,
and their corresponding labels according to the rule defined above.
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S1

(a)

(c)

(e)(d)

(b)

S2

S3

S1

S2

S4

S1

S3

S7

S1

S3

S6

S1

S2
S5

Fig. 2. Configuration diagram for the case of 4 branches and 3 splitting events. Here
Si is a random time uniformly distributed between the previous generated time,
and the final time, T . The corresponding labels i of the random time Si are defined
according to the rule explained in the text.

2.3 Computational complexity of the strategy B

In this subsection we estimate the computational complexity in terms of the
computational time required to compute probabilistically the solution at a
single point (x, t) based solely on the strategy B, since the computational
complexity of the strategy A coincides with that analyzed already in [3,4].

The branching stochastic process associated to the nonlinear term uj, requires
creating j branches every time a splitting event occurs, being therefore more
costly whenever the power of the nonlinearity is higher. Then, it is worth to
observe that for the general nonlinear function in Eq. (4), the overall compu-
tational time is governed by the computational time spent by the nonlinear
coefficient with the highest power, say um.

The computational time spent to generate any given branch, is a function of
the final time, t, as well as of the time step, ∆t, chosen to solve numerically the
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associated stochastic differential equation in (11). In addition, we should take
into account the random times ∆ts responsible for branching. From Eq. (17), it
holds that ∆ts = t S, where S is a random number picked up from the uniform
distribution U(0, 1). It is thus necessary that the time-step discretization, used
to solve (11), also captures the instants when the random exponential times
occur. In practice, the actual time step is chosen according to the minimum
value between ∆t and ∆ts. Since ∆ts is chosen randomly, the probability of
being less than ∆t can be easily estimated, and turns out to be (∆t)/t. When
this occurs, the actual time step used for the numerical solution of (11) should
be chosen to be ∆ts. Averaging over all random trees, we obtain the most
probable time step to be used, which is given by

∆ts =

∆t
∫

0

ds s
1

t
+∆t

t
∫

∆t

ds
1

t
= ∆t− 1

2

(∆t)2

t
. (26)

The computational time can be measured, typically, in terms of the number
of iterations in time, required to fully generate a random tree with k branches
up to the final time, t. Defining tc as the time spent per iteration, such com-
putational time can be estimated as ktc t/∆ts. In case of N random trees, the
average computational time, tb (b standing for “branching”), turns out to be

tb = N
∞
∑

k=1

ktc
t

∆ts
P (k,m), (27)

where P (k,m) is the probability of finding a random tree with k branches,
being m the number of children.

Such a probability can be evaluated by first enumerating and then summing up
the various probabilities, pi(k), of having k branches as a final configuration,
that is

P (k,m) =
ND(k,m)
∑

i=1

pi(k,m). (28)

Here ND(k,m) denotes the total number of possible diagrams characterized
by k branches and m children, and pi(k,m) the probability of obtaining each
of them. In Fig. 3 we show, for the purpose of illustration, some diagrams
for k = 2, 3. In particular, for k = 4 the total number of possibilities of
obtaining 4 branches has been shown in Fig. 2. It is reasonable to assume that
each diagram contributes equally to the probability function (28). Therefore,
such a probability can be obtained by simply counting the number of possible
diagrams with k branches, ND(k,m), and then multiplying by the probability

13



of having one of them, that is P (k,m) = ND(k,m)p1(k,m). For convenience,
we consider the special diagram shown in Fig. 4. The probability of obtaining
such a diagram as a final configuration is given by

(a)

(b) (c)

Fig. 3. Configuration diagrams for the case of 2, and 3 branches, illustrating the
notation used in the probabilistic representation obtained for Strategy A in Eq. (15).
Here αi denotes the power of the nonlinearity, chosen randomly between 2 and m,
and governing the number of branches created every time a splitting event i takes
place; yi denotes the position of the ith path of the stochastic process expiring at a
given time S̄. By S̄ we denote the corresponding global time obtained by summing
conveniently the random times Si according to the rules described in the text.

Fig. 4. Configuration diagram with k branches. See Fig. 3 for a detailed explanation
of the corresponding labels.

p1(k) = qk(1− q)Ne. (29)
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Note that the number of branches, k, is related to the number of splitting
events, Ne, by k = (m− 1)Ne + 1.

Concerning the number of possible diagrams, ND, this should be a function
of the number of branches, k. A simple strategy to compute the all possible
configurations requires analyzing the distribution of leaves at any depth level
of the random tree.

For simplicity, in the following let consider first the case of m = 2, which
corresponds to binary trees, and a tree composed of k branches. When the
tree is generated, the first splitting event gives rise to two new sub-trees, each
one having at least one leaf, and at most k − 1 leaves, since the total number
of leaves should be k. The different possible ways of distributing the k leaves
among the two sub-trees determines the different possible configurations at
this level, namely let assign 1 leaf to the first sub-tree, and k−1 to the second
one; or 2 to the first one, and k− 2 to the second one, and so on. Clearly, this
procedure should be recursively applied to every sub-tree, since any of them
exhibits different type of configurations. As a result the following nonlinear,
full memory, convoluted recurrence is obtained

ND(k, 2)=
k−1
∑

j=1

ND(k − j, 2) ND(j, 2),

ND(0, 2)= 0, ND(1, 2) = 1,

see [14] e.g. This recurrence can be solved by means of generating functions,
yielding

ND(k, 2)=
1

k







2k − 2

k − 1





 .

Moreover, this can be generalized further to any number of children by con-
sidering the Fuss-Catalan numbers, see [6]. Recall that the number of children
is given by the power of the nonlinearity m in Eq.(4), and therefore the cor-
responding tree should be in general an m-ary tree. For this case it becomes
more convenient to describe the number of configurations ND in terms of the
number of splitting events Ne instead of using the number of branches k, since
when m is different from 2, k is not a consecutive integer number. The solution
is given by

ND(Ne,m) =
1

Ne m+ 1







Ne m+ 1

Ne





 .
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Summarizing, the probability of obtaining a random tree with k branches is
given by

P (k,m) = qk(1− q)Ne 1

mNe + 1







mNe + 1

Ne





 . (30)

However, it turns out that the function P (k,m) in Eq.(30) can be considered
a probability function for a particular range of values of q, since only for
such values

∑∞
Ne=0 P (k,m) = 1 is satisfied, being different from one or even

unbounded otherwise. In fact, let u =
∑∞

Ne=0 P (k,m), v = u/q, and x =
qm−1(1− q), then

v =
∞
∑

Ne=0

xNe 1

mNe + 1







mNe + 1

Ne





 . (31)

Note that the power series above coincides with the generalized binomial series
[14], thus v = Bm(x). From the properties of the generalized binomial series,
it holds that

v = 1 + x vm. (32)

Among them possible solutions of Eq.(32), only that one satisfying limx→0 v =
1 is meaningful, which corresponds to the trivial probability function P (k) =
δk0 being q = 1. The solution v can be constructed iteratively applying a
Picard iteration as follows,

vn = 1 + x vmn−1, (33)

with v0 arbitrarily chosen. Note that this can be seen as a dynamical map
vn = f(vn−1), with f(v) = 1+x vm. Such a map has as a fixed point v∗ = 1/q,
being stable whenever f ′(v∗) ≤ 1. This corresponds to values of q satisfying

q ≥ (m− 1)/m. (34)

This can be generalized further for a nonlinear function as in Eq. (4), obtaining
the range of allowed values of q for which a probability function P (k,m) can be
found. Let define now the function u =

∑∞
k=1

∑k−1
l=⌈(k−1)/(m−1)⌉ P (k, l)/(m− 1)

Similarly to the previous case, it can be readily proved that u satisfies the
following equation,
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u = q +
(1− q)

m− 1

m
∑

i=2

ui. (35)

The solution u = 1 can be iteratively constructed by applying a Picard itera-
tion, thus obtaining the following nonlinear map,

un = f(un−1), (36)

where f(u) = q + (1−q)
m−1

∑m
i=2 u

i. Since f ′(1) = (1− q)[1 + (m+ 1)/2], the fixed
point u = 1 turns out to be stable when

q ≥ m/(m+ 2). (37)

The validity of Eq. (30) can be confirmed by some numerical simulations,
consisting in generating N random trees with a given q satisfying the specific
constraint described above, and counting the number of branches obtained. A
comparison between the probability P (k,m) as function of k, obtained both
numerically and theoretically, is plotted in Fig. 5. This has been done for the
case m = 2 in Fig. 5(a), and m = 3 in Fig. 5(b). The perfect agreement
validates the formula (30).

Once the probability function, P (k,m) is known, the computational time tb
spent by the probabilistic part of the algorithm, can be evaluated. From (27),
we have

tb ≤ Ntc
t

∆ts
〈k〉P (k,m) , (38)

where 〈k〉P (k,m) denotes the mean number of leaves, that is
∑∞

k=1 kP (k,m).
Such a number can be easily computed exploiting the following relation, ob-
tained from Eq.(31) simply deriving with respect to x and then multiplying
by x,

∞
∑

Ne=0

NexNe 1

mNe + 1







mNe + 1

Ne





 = x
dv

dx
. (39)

Since for the allowed values of q, v is given by 1/q, then from Eq. (32) 〈k〉P (k,m)

can be readily obtained and is given by

〈k〉P (k,m) =
q

1−m(1− q)
. (40)
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Fig. 5. Comparison between the probability function P (k,m) obtained analytically
and numerically simulating 106 random trees for m = 2 in (a), and m = 3 in (b).

Hence an estimate of the computational time tb satisfies the following bound,

tb ≤ Ntc
t

∆ts

q

1−m(1− q)
. (41)

Note that the estimate obtained above exhibits a linear growth on t. This
contrasts with the theoretical estimates of the computational time obtained
for the strategy A [3,4], which grows instead unboundedly in time. Such a
remarkable feature of this strategy in comparison with the strategy A allows
to speed up notably the simulations. Moreover, the bound obtained for the
computational time suggests that decreasing q may decrease further such a
time, becoming singular however when q = (m− 1)/m, and therefore useless
when such an occurrence happens.

In Fig. 6, a comparison between the theoretical estimates obtained for m = 2,
and two different values of q, and the measured computational times are shown
as function of the final time. Note the good agreement with the theoretical
results.

2.4 Qualitative study of the numerical errors

The numerical errors appearing when solving parabolic problems by some
of the probabilistic strategies described above, are essentially the same as
those analyzed in [3,4]. In fact, the most important source of numerical errors
arises from replacing the expected value in Eq.(19) by a finite sum, and when
the stochastic paths are actually simulated resorting to suitable numerical
schemes. Thus, approximately,

u(x, t) ≈ 1

N

N
∑

j=1

f(β∗
j (t)), (42)
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Fig. 6. Comparison between the computational time spent in solving Eq. (21) at
a single point x = 0, and the estimated computational time obtained theoretically
in (41) for m = 2. This has been done for q = 1/2, and q = 2/3. The numerical
results have been fitted to a line with correlation coefficients r = 0.9973364, and
r = 0.9998173, respectively. Parameters are N = 106.

where f denotes the multiplicative functional in Eq.(19), N is the sample size,
and β∗ is the stochastic path with discretized time. Clearly, such a discretiza-
tion procedure unavoidably introduces two sources of numerical error. The
first one is the pure Monte Carlo statistical error, which it is known to be
of order O(1/

√
N) when N goes to infinity. The second error is due to the

fact that the ideal stochastic path, βj(·), has to be approximated, discretiz-
ing time, by some numerical scheme yielding the paths β∗

j (·). The truncation
error made when solving numerically the stochastic differential equation (11),
obviously depends on the specific scheme chosen, see [16], e.g. Among these
are the Euler scheme, which was used here to simulate numerically Eq. (11).
Such scheme is well known to have a truncation error of order O(∆tα), where
α = 1/2 or α = 1 depending on whether the scheme being of the “strong” or
“weak” type, respectively [16].

Concerning the first error for the strategy B, the freedom to choose the value
of q from a set of allowed values can be exploited in order to minimize such
an error. In fact, rather than the strategy A, the strategy B requires choos-
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ing specifically a given value of q satisfying the constraints mentioned in the
previous section. Among the set of allowed values, in the following we show
that there exists an optimal one such that the statistical error made in com-
puting probabilistically the coefficients of the Pade approximant turns out to
be minimum.

Clearly, the statistical error becomes larger when computing the contributions
coming from trees with arbitrarily large number of branches, since for such a
case the number of generated trees is expected to be smaller, and consequently
the associated multidimensional integral in (16) to be computed may be af-
fected by a large statistical error. The number of generated trees Nk with k
branches can be readily obtained, known the probability distribution P (k,m),
and is given by Nk = NP (k,m), where N is the sample size. Therefore the

statistical error can be estimated, and it turns out to be of order of O(N
−1/2
k ).

For simplicity let consider first the case of a nonlinear function in (4) with
a single nonlinear term, uj . The value of q minimizing the statistical error is
attained when the number of random trees Nk is maximum. Such a value can
be obtained simply evaluating dNk/dq, using the probability function in Eq.
(30), and looking for the global maximum q∗. The result is given by

q∗ =
k(j − 1)

k j − 1
. (43)

Since the number of generated random trees Nk is minimum, and consequently
the statistical error maximum, for trees with large number of branches, the
optimal value of q can be obtained considering in particular the limiting case
limk→∞q∗, yielding qopt = (j − 1)/j. Note that this coincides precisely with
the minimum value from the range of allowed values obtained in Eq. (34).

This result can be generalized further for an arbitrary nonlinear function
f(u) = q + (1−q)

m−1

∑m
i=2 u

i. Recall that for such a function the random trees
obtained may be composed in general of m− 1 different type of vertices, each
one possessing from 2 to m children. A crucial hint is to realize that the most
probable configuration of any generated random tree with arbitrary number of
branches k occurs when the number of different type of vertices are identical,
or in other words the number of children in the random tree are uniformly dis-
tributed. To illustrate through numerical simulations the observation above,
N random trees are generated for a nonlinear function with m = 3, giving
rise therefore to trees composed of vertices with two and three children. For
each tree the number of vertices with two children n2, and with three chil-
dren n3, were recorded, and computed the difference between them. In Fig. 7
a histogram showing the number of configurations obtained as a function of
n2−n3 is shown, and this has been done for two different values of the number
of branches k. Note, as expected, that the maximum number of configurations
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corresponds to generated trees composed of the same number of vertices with
two, and three children, that is, when n2 − n3 = 0.
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Fig. 7. Number of configurations of generated random trees as function of n2 − n3,
being n2, n3 the number of vertices with two and three children, respectively. This
has been done for trees with (a) k = 13, and (b) k = 19. Parameters are N = 105,
and m = 3

For the general function f(u) with m− 1 nonlinear terms the most probable
configuration of a random tree with k branches satisfies n2 = n3 = . . . nm = n,
being nj the number of vertices with j children. Then, the global number of
splitting events Ne for such a configuration is given by Ne = (m−1)n. Clearly
the number of branches k of such a tree is related with the number of splitting
events Ne, and this relation can be obtained readily, yielding for k

k = 1 +
m−1
∑

i=1

(m− i)n = n
m− 1

2
m+ 1. (44)

Given Ne = (m − 1)n, it holds that k = Ne
2
m + 1. For a given finite sample

size N, the number of random trees Nk with k branches should be maximal,
and consequently the statistical error minimal, provided that the value of q is
chosen such as (dNk/dq)|q∗ = 0. This yields,

q∗ =
km

k(m+ 2)− 2
. (45)

Similarly to the simple case analyzed above, the optimal value of q can be
obtained considering in particular the limiting case limk→∞q∗, yielding now
qopt = m/(m + 2). Note that such a value coincides again with the smallest
value from the range of allowed values in Eq. (37).

Apart from the errors discussed above, a new source of error now should be
taken into account. This consists of the numerical error made in approximat-

21



ing divergent series by a Pade approximant, since for the class of problems
considered in this paper, both strategies proposed require dealing with series
that in general may be divergent. Since finding theoretical estimates of such
an error for any given problem may be a formidable task, our goal in this sec-
tion consists merely to gain some insight of such an error, illustrating how well
Pade approximation actually works by analyzing a few relevant test problems.
More specifically, our aim is twofold.

On one hand we show that the statistical error made in evaluating the partial
contributions to the solution in Eq. (18) by Monte Carlo propagates to the
coefficients of the Pade approximant. However, when the statistical error is
sufficiently small, the coefficients of the Pade approximant can be obtained
within a reasonable accuracy, being therefore the Pade approximant rather
robust at least for the examples here considered.

On the other hand, the convergence of the Pade approximant to the solution
is analyzed for such examples. Since for computational purpose the expansion
generated with both strategies must be truncated, it becomes essential to de-
termine whether the Pade approximant converges rapidly to the solution for
the finite number of terms involved, or rather it is required to increase further
the order of the approximation by considering more terms in the expansion. In
[4], a pruning technique of the full random tree was proposed, which in prac-
tice amounts to keep only few trees possessing a certain number of branches.
This is because it was observed that truncating the expansion in (3) up to only
a certain number of branches, might not affect appreciably the result, since
the partial contributions to the global solution decay very rapidly as the num-
ber of branches increases. However, for the class of problems discussed here,
the expansion in Eq.(18) may give rise to a divergent series with coefficients,
associated to the partial contributions to the solution, growing as the number
of branches increases. Truncating the expansion, or equivalently pruning the
trees, might be applied, but because it turns out to be uncontrollable, an spe-
cial care should be taken. In particular the effect of including more coefficients
in the expansion, increasing further the order of the Pade approximation, will
be analyzed for the test examples considered below. Recall that in general the
convergence of the Pade approximant can be affected by artificial poles present
in the denominator of the approximant, but not being own by the function to
be approximated, see e.g. [8]. Therefore, to assess properly the validity of our
findings, it becomes essential to compute the Pade approximant for different
number of coefficients.

Concerning the apparent robustness of the Pade approximant against the sta-
tistical error affecting the coefficients of the power series in (18), a main reason
could be that the solution of the test examples seems to be apparently locally
Lipschitz. Thus, the error made in computing the coefficients of the Pade ap-
proximant should be bounded. In fact, in [26] it has been proved the following
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related theorem

‖ Pf − Pf ′ ‖≤ K ‖ c− c′ ‖, (46)

provided that ‖ c − c′ ‖≤ d. Here Pf , and Pf ′ are the Pade approximants of
order (m,n) in [a, b] of a given power series f and f ′ with coefficients cj , and
c′j respectively, being ‖ c ‖= maxi≤i≤n+m|ci|, f locally Lipschitz, and K and
d constants depending only on ci and [a, b].

Moreover, it is worth to observe that both errors described above may be allevi-
ated in any case by increasing conveniently the sample size N , and considering
more coefficients in the expansion in order to compute the Pade approximant.

In the following, we present several test examples concerning one-dimensional
initial value parabolic problems to illustrate what it was described before. The
solution was computed probabilistically at the points (x, t), where x = 0, and
t several values chosen to be distributed between 0 and T . In absence of an
analytical solution the results were compared with the solution obtained upon
applying an implicit finite difference scheme with a very fine mesh, and solving
the ensuing algebra linear problem, characterized by a banded matrix, with
LAPACK.

Example 1. An IV parabolic problem with a purely quadratic negative non-
linear term. Consider the problem

ut = uxx − u2, x ∈ R,

u(x, 0) =
e
− x2

4(t+1)

√

4π(t+ 1)
(47)

The numerical error made when solving probabilistically Example 1 at a few
points with x = 0, and t ∈ [0, 1], using both strategies, A and B, are depicted
in Fig. 8 and 9, respectively. Note that for both strategies, truncating the
expansion to only four coefficients, that is pruning the trees to kmax = 4
branches, is already close to convergence for any purpose. Although for this
example the number of coefficients to be included in the expansion could be
any number above kmax = 4, it becomes clear that choosing a larger number
rather than improving accuracy, it acts reversely degrading them. In fact larger
number of coefficients corresponds to contributions to the solution coming
from random trees with large number of branches, and as it was explained
above such contributions are affected by larger statistical error. Moreover, it
turns out to be disadvantageous as well under a computational point of view,
since generating trees with large number of branches have been proved to be
rather inefficient.
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Fig. 8. Numerical error made when solving Example 1 with the strategy A.This has
been done for two different values of the number of coefficients in the corresponding
expansion, denoted by kmax. The number of realizations N was kept fixed in (a),
while in (b) kmax was kept fixed.
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Fig. 9. Numerical error made when solving Example 1 with the strategy B. Identical
values as in Fig. 8 have been used to obtain the results plotted in (a) and (b).

Finally, note that keeping fixed the number of coefficients, and increasing the
sample size, N , reduces accordingly the statistical error as expected.

Similar results are shown for the strategy B in Fig. 9, and therefore identical
conclusions hold for this case.

Example 2. An IV problem with a negative initial condition, u(x, 0) < 0.
Consider the problem

ut = uxx + u2, x ∈ R,

u(x, 0) = − 6
e−

x2

4(t+1)

√

4π(t+ 1)
(48)
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Note that the initial condition is now defined negative, and greater than 1
in absolute value. Results are depicted in Fig. 10 and 11, corresponding to
strategies A and B, respectively. As in Example 1, similar conclusions can be
reached.
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Fig. 10. Numerical error made when solving Example 2 with the strategy A. This has
been done for two different number of coefficients in the corresponding expansion,
denoted by kmax. The number of realizations N was kept fixed in (a), while in (b)
it was kept fixed kmax.
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Fig. 11. Numerical error made when solving Example 2 with the strategy B. Identical
values as in Fig. 10 have been used to obtain the results plotted in (a) and (b).

Example 3. An IV problem with two nonlinear terms. Consider the more
general problem

ut = uxx − (1 + a)u2 − u3, x ∈ R,

u(x, 0) =
1

1 + e
−

x+
√
2(0.5−a)t
√

2

, (49)

where the parameter a has been chosen arbitrarily to be 0.25.
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Fig. 12. Numerical error made when solving Example 3 with the strategy A. This has
been done for two different number of coefficients in the corresponding expansion,
denoted by kmax. The number of realizations N was kept fixed in (a), while in (b)
it was kept fixed kmax.
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Fig. 13. Numerical error made when solving Example 3 with the strategy B. Identical
values as in Fig. 12 have been used to obtain the results plotted in (a) and (b).

Clearly this consists of a more involved example compared with the previous
cases, since now the nonlinear function is composed of two different terms.
Moreover, the coefficients multiplying both terms appear to be negative, and
one of them even greater than 1. Obviously, the joint effect of both terms gives
rise to a more complex solution, suggesting the need of considering a larger
number of coefficients in the expansion in order to reach convergence for the
Pade approximant. This is indeed what it is observed in Fig. 12(a) and 13(a).
In particular for this example, it can be seen that the strategy B seems to
require more coefficients than the strategy A.

Again as in the examples above, in Figs. 12(b) and 13(b) it can be observed
that increasing the sample size, N , for both strategies reduces largely the sta-
tistical error, and in turn improves the convergence of the Pade approximant
to the solution.
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To conclude, both strategies showed similar performance in all test examples
analyzed, however the strategy B turns out to be advantageous in any case,
because when implemented in practice, the computational time increases lin-
early with the final time, growing unboundedly rather for the strategy A.

3 Numerical examples

The probabilistic representation described in Sec. 2 can be hardly used for
solving efficiently semilinear parabolic problems in a whole domain, due to
the high computational cost of evaluating the solution at single points. How-
ever, such a representation can be combined successfully with a classical do-
main decomposition method, as it was proposed in [1,2]. The method was
called probabilistic domain decomposition (PDD for short), and consists of a
hybrid algorithm which requires generating only few interfacial values along
given, possibly artificial interfaces inside the domain, then obtaining approx-
imate values upon interpolation on such interfaces. Such values are used as
boundary data to split the original problem into a number of fully decoupled
sub-problems. The main advantage of this method is that the corresponding
codes are especially suited for massively parallel computing [20]. In fact, being
the solution obtained probabilistically through an expected value over a given
finite sample whose elements are independent from each other, and then after
the domain decomposition the corresponding sub-problems fully decoupled,
the implemented parallel codes are characterized by an extremely low com-
munication overhead among the various processors, affecting positively crucial
properties such as scalability and fault tolerance. In the following, we describe
briefly the main parts of the PDD algorithm, and for more details we refer the
reader to [3],e.g.

Probabilistic part. This is the first step to be carried out, and consists of
computing the solution of the PDE at a few suitable points by some of the
probabilistic strategies described in Sec. 2.

Interpolation. Once the solution has been computed at few points on each
interface, a second step consists of interpolating on such points, being used as
nodal points, thus obtaining continuous approximations of interfacial values
of the solution. For this purpose, since the examples analyzed below corre-
sponds to two-dimensional problems a tensor product interpolation based on
cubic spline [5] was used. The computational cost of this part turns out to be
negligible compared with the time spent in the other parts of the algorithm.
The nodal points are uniformly distributed on each plane, and a not-a-knot
condition is imposed.

Local solver. The third and final step consists of computing the solution in-
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side each subdomain, this task being assigned to different processors. This
can be accomplished resorting to local solvers, which may use classical nume-
rical schemes, such as implicit finite differences for simple geometries or finite
elements methods for more complex configurations. For the former case, sub-
routines based on LAPACK for solving the ensuing linear algebra problems
has been chosen, since the corresponding matrices are banded. Therefore, each
processor can be devoted only to the solution of its local linear system, whose
banded associated matrix is smaller. Concerning the memory consumption per
processor, including an extra fill-in space, the total amount is considerably re-
duced [4].

In Fig. 14 we sketch a diagram, illustrating how the algorithm works in practice
for a two-dimensional case. Here the solution is obtained probabilistically at
a few points pertaining to some “interfaces” conveniently chosen inside the
space-time domain D := Ω × [0, T ], with Ω ⊂ R

2. Such interfaces divide the
domain into p subdomains, Ωi, from i = 1, ..., p, being assigned to different
processors, pi, i = 1, ..., p. The more convenient way to parallelize this part is
splitting in independent sets of points. Since the number of points where the
solution is computed is larger than the number of processors p, computing
such a solution can be assigned as a task to different processors. This can be
seen as a coarse-grain parallelization, and even though other finest strategies
can be adopted, this one turns out to be the more convenient for the examples
analyzed in this section.

Here we present some numerical examples for 2D initial value problems to
illustrate the PDD algorithm, being the probabilistic part built up with the
two strategies A and B discussed in the previous section. All simulations were
carried out on the Matrix supercomputer, belonging to the Inter-University
Consortium for the Application of Super-Computing for Universities and Re-
search (CASPUR) located in Rome (Italy), using up to 512 processors. This
supercomputer consists of a Linux cluster based on multi-core Opteron pro-
cessor nodes with Infiniband interconnection, and it was ranked in the Top500
list with a peak performance of 22 TFlops.

As in [3,4], a comparison was made solving the same problems by some other
classical numerical methods in order to asses the performance of both methods.
For the space-time domain as well as for the subdomains in our decomposition,
we used the Crank-Nicolson (implicit) finite difference method. On the various
decoupled subdomains obtained by the PDD algorithm we used LAPACK for
solving the ensuing linear algebra problem, while the full domain solution was
computed by ScaLAPACK. This widely used and freely available numerical
package has been considered extremely efficient for the parallel solution of
banded linear systems. For more details concerning the computational cost of
both methods, LAPACK and ScaLAPACK, see [4], e.g.
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Fig. 14. A sketchy diagram illustrating the main steps of the algorithm in 2D: The
figure on the left shows how the domain decomposition is done in practice. The figure
on the right shows the points where the solution is computed probabilistically; these
are used afterward as nodal points for interpolation.

Example 4. An IV problem with two nonlinear terms. Consider the problem

ut=uxx + uyy − (1 + a)u2 − u3, (x, y) ∈ R2,

u(x, y, 0) = −2 cos2(
π x

2Ax

) cos2(
π y

2Ay

). (50)

where a = 0.25, Ax = 10, Ay = 40. The space and time discretization step
has been chosen to be ∆x = ∆y = 0.25,∆t = 10−3, and the solution was
computed for a final time T = 0.5.

Note that the unbounded domain should be truncated conveniently to a boun-
ded domain in order to be able to solve numerically the problem using a
finite difference scheme. This requires introducing some artificial boundary
conditions to confine the computational domain. Since the problem is for-
mulated as a pure initial value problem, the artificial boundary conditions
should be prescribed in such a way no additional data are imposed on such
boundaries. In practice, this can be done readily imposing Dirichlet bound-
ary conditions on the artificial boundaries, such that the boundary conditions
are automatically satisfied by the solution of the problem. However, being
the solution of the problem unknown, one should resort to several type of
approximations of the solution to be used as boundary conditions. For the
problem above, the solution of the problem is assumed to decay sufficiently
fast to infinity, and being the computational domain chosen to be large enough
Ω ∈ [−Lx, Lx]×[−Ly, Ly], with Lx = 40 and Ly = 160, a zero Dirichlet bound-
ary condition can be properly imposed at x = ±Lx,y = ±Ly .

When a probabilistic representation is available, such a representation were
used as well to obtain much more accurate approximations for the artificial
boundary conditions, since it allows to obtain the solution at any single point
arbitrarily chosen. This is remarkable feature of the probabilistic representa-
tion, not owned by any other numerical method.

In Fig. 15 and Fig. 16 the pointwise numerical error around the origin made
with the strategy A and strategy B, respectively, is shown. Here the value of
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Fig. 15. Pointwise numerical error made when solving Example 4 with the strategy
A.

Fig. 16. Pointwise numerical error made when solving Example 4 with the strategy
B.

the parameters were kept fixed to ∆x = ∆y = 10−2, ∆t = 10−3, T = 1. For
clarity, only the maximum absolute value of the error obtained in the y−axis
is plotted.
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Table 1
Example 4: TPDD, TScaLAPACK denotes the computational time spent in seconds
by PDD with the strategy A, and ScaLAPACK, respectively. TMC , and TINT corre-
spond to the time spent by the probabilistic and the interpolation part, respectively;
Memory denotes the total memory consumption.

Procs. TMC TINT Memory TPDD TScaLAPACK

128 902” <1” 0.86 GBs 5572” 29881”

256 998” <1” 0.19 GBs 2086” 23953”

512 1018” <1” 0.06 GBs 1327” 23334”

Table 2
Example 4: TPDD, TScaLAPACK denotes the computational time spent in seconds
by PDD with the strategy B, and ScaLAPACK, respectively. TMC , and TINT corre-
spond to the time spent by the probabilistic and the interpolation part, respectively;
Memory denotes the total memory consumption.

Procs. TMC TINT Memory TPDD TScaLAPACK

128 736” <1” 0.86 GBs 5413” 29881”

256 824” <1” 0.19 GBs 1917” 23953”

512 837” <1” 0.06 GBs 1152” 23334”

In Table 1 and Table 2, the computational times obtained when solving the
example 4 using the PDD algorithm with the strategy A and the strategy B,
respectively, are shown. The partial computational times spent by the proba-
bilistic part and the interpolation part of the algorithm, as well as the com-
putational time spent by ScaLAPACK, have also been displayed. The two
methods were compared correspondingly to the same maximum error, 10−3.

It is worth to observe that the computational times obtained with the strategy
B are significantly smaller than those obtained with the strategy A. This
can be explained in view of the less computational cost of the probabilistic
representation based on the strategy B, as it was already theoretically shown
in the previous section.

Example 5. An IV problem with a single nonlinear term and variable coeffi-
cients. Consider the problem

ut=uxx + uyy − e−x2 1

t + 0.1
u2, (x, y) ∈ R2,

u(x, y, 0) =
e−

x2

4√
4π

. (51)

The space and time steps are ∆x = ∆y = 0.25,∆t = 10−3, and the solution
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was computed at the final time T = 0.5.

Note that in this example a variable coefficient depending on time and space,
multiplying the nonlinear term u2 has been considered, and it may be in
general taken values larger than one.

The computational times are shown in Table 3 and Table 4, comparing the
strategy A and B, respectively, with ScaLAPACK. Note that the computa-
tional times turns out to be slightly smaller than those obtained in the previ-
ous example, and this is because the generated random trees now are purely
binary. The strategy B wins again over the strategy A, and the same reason
of the previous example holds also for the present case.

Table 3
Example 5: TPDD, TSCALAPACK denotes the computational time spent in seconds
by PDD with the strategy A, and ScaLAPACK, respectively. TMC , and TINT corre-
spond to the time spent by the Monte Carlo and the interpolation part, respectively;
Memory denotes the total memory consumption.

Procs. TMC TINT Memory TPDD TScaLAPACK

128 807” <1” 0.86 GBs 5461” 27466”

256 889” <1” 0.19 GBs 1954” 22070”

512 906” <1” 0.06 GBs 1102” 21327”

Table 4
Example 5: TPDD, TScaLAPACK denotes the computational time spent in seconds
by PDD with the strategy B, and ScaLAPACK, respectively. TMC , and TINT corre-
spond to the time spent by the probabilistic and the interpolation part, respectively;
Memory denotes the total memory consumption.

Procs. TMC TINT Memory TPDD TScaLAPACK

128 511” <1” 0.86 GBs 5148” 27466”

256 562” <1” 0.19 GBs 1623” 22070”

512 569” <1” 0.06 GBs 882” 21327”

4 Summary

The class of semilinear parabolic problems amenable to a probabilistic so-
lution has been expanded by introducing suitable generalized random trees.
The probabilistic computation consists of evaluating averages on the generated
random tree, which plays a role similar to that of a random path in linear prob-
lems. The new representation allows treatment of semilinear problems without
a potential term, with arbitrary coefficients multiplying the nonlinear term,
and arbitrary initial data, including negative definite and greater than one.
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The implementation uses two different strategies, which require computing the
solution through a series where the coefficients represent the partial contribu-
tion to the solution coming from generated random trees with any number
of branches. Since such a series might be divergent, in general it cannot be
summed simply by a sequence of partial sums. Nevertheless, numerical exper-
iments show that, in many cases, the asymptotic series can be approximated
quite accurately by techniques based on the Pade approximant. A qualita-
tive analysis of the error done has been carried out, showing that for the test
problems analyzed so far, considering a few coefficients of the series suffices to
obtain a reasonable accuracy.

Moreover, it has been shown that the strategy termed B greatly reduces the
computation time compared with strategy A, which is based rather on gener-
ating random trees governed by an exponential random time. The new prob-
abilistic representation has been used successfully as a crucial element for im-
plementing a suitable probabilistic domain decomposition method. In contrast
to the classical deterministic method for solving partial differential equations,
the probabilistic approach computes the solution at single points internal to
the domain, without first generating a computational mesh and solving the
full problem. The generalized PDD method has been shown to be suited for
massively parallel computers. In fact, some numerical examples have been run
that show excellent scalability properties of the PDD algorithm in large-scale
simulations, using up to 512 processors on a high performance supercomputer.
Finally, the performance of the algorithm has been compared with other effi-
cient, freely available parallel algorithms, showing a striking difference.
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