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Abstract

In this paper, we study the numerical simulations for Euler system
with maximal density constraint. This model is developed in [9, 17]
with the constraint introduced into the system by a singular pressure
law, which causes the transition of different asymptotic dynamics between
different regions. To overcome these difficulties, we adapt and implement
two asymptotic preserving (AP) schemes originally designed for low Mach
number limit [16, 18] to our model. These schemes work for the differ-
ent dynamics and capture the transitions well. Several numerical tests
both in one dimensional and two dimensional cases are carried out for our
schemes.
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All-speed flows, Pressureless Gas Dynamics

1 Introduction

Several models involve congestion constraints: concentration constraints occur
in multi-phase flow modeling [12], maximal density constraints occur when deal-
ing with finite-size interactive agents in herds of gregarious mammals [17], in
cars or pedestrians flows [9, 10, 3], flux constraints occur for supply chains [2],...
The dynamics in congested regions strongly differ from the dynamics dynamics
in free regions. To study the transitions between congested and free regions,
a general methodology was first carried out in [12] for multiphase flows and
later on generalized to traffic [9] or herding problems [17]: the stiffness of the
constraint leads to a singular perturbation problem and then the limit prob-
lem provides a clear cut-off between the two dynamics. In this paper, we will
consider the Euler system with a singular pressure which encodes a maximal
density constraint. As in [17], the limit problem is a two-phase model between
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incompressible regions, where the maximal density is reached, and compressible
regions for lower densities. Our goal is to provide numerical schemes that are
able to capture this limit problem and these transitions. In this paper, we adapt
and compare two numerical methods presented in [18] and in [16] for the low
Mach number limit.

A lot of efforts have been made to devise numerical schemes valid for all
Mach numbers, that is, for both compressible and incompressible flows. They
avoid the switch between different methods, when different Mach numbers occur
in different sub-domains. Among such schemes, one approach is the extension
of compressible conservative methods to incompressible flows thanks to precon-
ditioning techniques [37, 20, 19, 28]. The second approach is the extension of
incompressible methods to compressible flows and leads to pressure correction
methods on staggered grids [21] and their conservative versions [33, 6, 38]. Their
adaptation to the conservative frameworks has led to time semi-implicit schemes
: the implicit discretization of the fluxes (the mass flux and the pressure part
of the momentum flux are taken implicitly) is combined with the resolution of
the elliptic equation satisfied by the pressure. The implicit treatment of the
pressure flux ensures stability with respect to the propagation of fast acoustic
waves in the low-Mach number limit but induces a lot of diffusion. We can cite
numerous works following this methodology [25, 39, 30, 31, 34]. The methods
we consider in this paper are among the simplest ones: the scheme in [18] is a
semi-implicit scheme with a division of the pressure into explicit and implicit
parts and in [16], the Gauge decomposition of the momentum enables the hy-
drostatic pressure to act only on the divergence-free part of the momentum.
The former method will be called in the present paper the Direct method, while
the Gauge method will refer to the latter.

The purpose of this paper is to present simple variants of the Direct [18]
and the Gauge method [16], that are able to handle congestion problems. As
announced above, they are designed to solve the isentropic Euler system sup-
plemented by a pressure law p(ρ), which is singular as the density ρ approaches
a maximal density denoted ρ∗. A small parameter ε is introduced to control
the stiffness of this maximal density constraint: the rescaled pressure εp(ρ) is
of order O(1) in congested regions ρ ∼ ρ∗ and of order O(ε) in low density
regions ρ < ρ∗. In the limit ε → 0, the system leads to a two-phase model:
the incompressible Euler system in maximal density domains and the pressure-
less gas dynamics system for uncongested densities domains. This asymptotic
model was first proposed and studied in [12, 8] in a one-dimensional framework.
However, this asymptotic model is only partially defined since transmission
conditions at the interfaces between the two phases are lacking. Besides, un-
less one-dimensional solutions can be provided (see [12] and appendix A), their
extensions to the two-dimensional case are open problems (especially the dynam-
ics of two colliding congested domains). In this context, asymptotic preserving
scheme is a good tool for this problem.

The Direct and the Gauge methods are called asymptotic-preserving (AP)
since they are uniformly consistent with the low-Mach number limit. Besides,
they are also uniformly stable. These methods are expected to capture both the
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compressible and the incompressible dynamics arising in the congestion limit
of the Euler system with the maximal density constraint. In this case, such
AP numerical schemes are very powerful since they provide the dynamics of
transitions, for which analytical results may be lacking. Moreover, they enable
us to avoid dealing with physical and numerical interface tools, such as front-
tracking [36] or volume-of-fluid methods [23]. Unlike these tracking methods,
ours are front-capturing methods and then share some analogies with level-set
[32] and diffusive interface methods [1]: like level-set method, the dynamics of
the transition are implicitly embodied in the dynamics of an auxiliary function
which here is the density and like the diffusive interface methods, the sharp
interface is viewed as the limit of the smooth transitions of the perturbation
problem.

The Direct method cannot be directly applied to the congestion problem.
Indeed, in [18], the pressure p(ρ) is splitted into an explicit part p0(ρ) and an
implicit part p1(ρ) in order to keep some numerical diffusion and avoid numerical
oscillations. For the singular congestion pressure-law, we modify this splitting,
such that it still ensures the stability of the scheme. Besides, it ensures the
consistency of the explicit part of the scheme with the limit pressureless gas
dynamics in the low density regions. Indeed, the pressureless gas dynamics
system is weakly hyperbolic and there is no uniqueness of the entropic solution
[11]. Then, keeping an explicit pressure p0(ρ) makes the asymptotic numerical
solutions consistent with the good entropic solutions. For the same reasons, this
pressure splitting is introduced into the Gauge method.

The AP property of the two methods for the congested Euler system is
demonstrated for the congested domains. This analysis is hard to extend to co-
existent congested and uncongested regions since the dynamics of the interfaces
between the different regions is not explicitly implemented into the schemes.
However, several numerical test-cases provides numerical evidence of the AP
property. Comparisons of the two schemes are also carried out and different
behaviours of the schemes at the interfaces are measured.

The paper is organized as follows. In section 2, we introduce the Euler
system with the maximal density constraint. To have some basic idea of the
solution, we give its formal asymptotic limit. In section 3, we describe the
time semi-discretization of the Direct and Gauge schemes. The fully space and
time discretizations are exposed in section 4, in one dimensional setting: they
are based on the centered Rusanov scheme, also called the local Lax-Friedrichs
scheme [27]. The two dimensional setting is quite similar. Therefore, we present
it in the appendix. Finally, numerical simulations are performed in section 5 to
compare the two schemes: several test cases in the one dimensional setting and
one case in the two dimensional setting. Two appendices close this study: we
describe one-dimensional solutions and the two dimensional discretizations.
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2 The Euler system with congestion and its asymp-
totic limit

2.1 The model

We consider the two-dimensional Euler system:

∂tρ+∇x · q = 0, (1)

∂tq +∇x ·
(
q ⊗ q

ρ

)
+∇xp(ρ) = 0, (2)

where ρ(x, t) ∈ R denotes the mass density, q = ρu(x, t) ∈ R2 is the momentum
field depending on the position x ∈ R2 and the time t > 0. The pressure p(ρ) is
an increasing function such that p(ρ) ∼ ργ for densities ρ� 1 and p(ρ)→ +∞
as ρ tends to the congestion density ρ∗. In the following, we will consider the
function:

p(ρ) =
1(

1
ρ −

1
ρ∗

)γ , γ > 0. (3)

This pressure prevents the density from exceeding the congestion density. A
variant is the van der Waals equation of state [22]. The operators ∇x and ∇x·
are the gradient and the divergence of vector fields or tensor. For two vectors
a and b, a⊗ b denotes the tensor product.

This model already appears in [17] with the additional constraint: q/ρ = u ∈
S1. In this paper, we focus on the pressure singularity and the corresponding
numerical schemes.

The singular pressure induces two different dynamics: for regions with densi-
ties near ρ∗, the pressure takes very large values in comparison with the pressure
in low-density regions. As in [17] and previous work on traffic modeling [9], we
would like to clearly separate the two different dynamics. To this aim, we rescale
p(ρ) into εp(ρ), where the parameter ε� 1 is the scale of the pressure in the low
density regions: p(ρ) = O(ε) for density ρ � 1 while p(ρ) = O(1) for density
ρ ∼ ρ∗, see Fig. 1.

Denoting ρε and qε the new unknowns, system (1)-(2) becomes:

∂tρ
ε +∇x · qε = 0, (4)

∂tq
ε +∇x ·

(
qε ⊗ qε

ρε

)
+∇x (εp(ρε)) = 0, (5)

Moreover, taking the time derivative of (4) and subtracting the divergence of
equation (5), we easily obtain the wave-like equation satisfied by the density:

∂t2ρ−∇2
x :

(
qε ⊗ qε

ρε

)
−∆x(εp(ρε)) = 0,

where ∇2
x denotes the tensor of the second derivatives and for two tensors a

and b and a : b denotes the contracted product of tensor. The operator ∆x
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Figure 1: The pressure p and the rescaled pressure εp

denotes the Laplacian of a scalar function. Actually, system (4)-(5) is a strictly
hyperbolic problem, with characteristic wave speeds in the x-direction (where
x is the first component of a basis of R2) given by:

λε1 = uεx −
√
εp′(ρε), λε2 = uεx, λε3 = uεx +

√
εp′(ρε), (6)

where uεx is the x-component of the macroscopic velocity uε(x, t) = qε(x, t)/ρε(x, t).
Standard hyperbolic numerical schemes have to resolve the Courant-Friedrichs-
Levy (CFL) condition:

max(|λε1|, |λε2|, |λε3|)∆t ≤ ∆x. (7)

In the next section, we will see that this constraint may be too stringent for
these schemes to capture the asymptotic limit.

2.2 The asymptotic limit

The limit of the pressure term εp(ρε) depends on the limit of ρε. Indeed, if
ρε → ρ with ρ < ρ∗, then εp(ρε) converges to 0. Otherwise, ρε → ρ∗ and the
limit of εp(ρε), denoted p̄, can be non zero and depends on the convergence rate
of ρε. We assume that the limit p̄ is always finite. Therefore, the formal limit
of system (4)-(5) as ε goes to zero is:

∂tρ+∇x · q = 0, (8)

∂tq +∇x ·
(
q ⊗ q

ρ

)
+∇xp̄ = 0, (9)

(ρ− ρ∗)p̄ = 0. (10)

A one-dimensional version of this asymptotic model was proposed for two-phase
flow modeling in [12], where the density plays the role of the volume fraction
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of liquid in a liquid-gas model. The derivation of the model lies on a relaxation
to zero of the relative velocities of the gas and liquid and is therefore different
from the one studied in this article. Existence and stability of solutions are
proved for the one-dimensional version of system (8)-(9)-(10) in [8], and in all
dimensions with viscous term in [29].

As regards the characteristic speeds, we note that if εp(ρε) tends to p̄ < +∞,

then we have ρ∗ − ρε = O(ε
1
γ ) and then εp′(ρε) = O(ε

1
γ−1). Therefore, if

γ > 1, λε± can become infinite and waves with infinite speed can occur. It
is the low-Mach number asymptotics that leads to incompressible dynamics.
Actually, in the congested domain where ρ = ρ∗, system (8)-(9)-(10) yields the
incompressible Euler equation:

ρ = ρ∗,

∇x · u = 0, (11)

∂tu + u · ∇xu +
1

ρ∗
∇xp̄ = 0.

Equation (11) is the incompressible constraint and the Lagrange multiplier re-
lated to this constraint is the pressure p̄. The CFL condition (7) degenerate
into ∆t = 0: standard hyperbolic schemes are unable to compute the asymp-
totic dynamics. Thus, numerical schemes with relaxed CFL condition have to
be designed.

In the free domain where ρ < ρ∗, the CFL condition (7) is not an obsta-
cle although the system degenerates into a non-hyperbolic problem: limλε1 =
limλε3 = u. This is a large-Mach number asymptotic. Numerical schemes,
originally developed for hyperbolic systems, have to be proved to capture this
singular limit. System (8)-(9)-(10) yields the pressureless gas dynamics:

ρ < ρ∗,

∂tρ+∇x · q = 0,

∂tq +∇x ·
(
q ⊗ q

ρ

)
= 0,

Without upper-bound on the density, this system would lead to concentration
phenomena even for smooth initial data and so the density may become a mea-
sure with singular part. It is related to the so-called sticky particle dynamics.
Existence of solutions and numerical schemes have been developed in the one-
dimensional case [11, 14].

The asymptotic system (8)-(9)-(10) is not complete: the well-posed defini-
tion of p̄ requires boundary conditions at the interface between congested regions
{ρ = ρ∗} and free regions {ρ < ρ∗}. They can not be directly obtained by the
formal derivation. One possible answer to this question is to look at the theo-
retical asymptotic behaviour of solutions of the initial system (4)-(5). Such an
approach is investigated in appendix A but only in the one-dimensional case.
Extensions to two dimensional settings are difficult and will be the subject of
future works. The second possible approach is to use numerical schemes to
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capture the asymptotic dynamics: this is the main methodology we develop in
this paper. It has the advantage to be applicable in any dimensions. How-
ever, one-dimensional problems are still good test cases to valid these numerical
schemes.

3 Time semi-discretization schemes

This section is the center of this paper. It is dedicated to the presentation of two
numerical schemes, which are able to capture the asymptotic limit of the Euler
system with congestion presented in the previous section. For this purpose, we
adapt the asymptotic-preserving (AP) schemes developed in [18] and [16] for
the low-Mach limit of the isentropic Euler system.

3.1 The time semi-implicit discretization

We first define a time semi-implicit discretization, which will be the building
block of the considered AP schemes.

Let ρn, qn be the approximations of the density ρ and the momentum q at
tn = n∆t, n = 0, 1, . . ., where ∆t is the time step. The semi-discretization of
the AP scheme for the n-th time step is as follows:

ρn+1 − ρn

∆t
+∇x · qn+1 = 0, (12)

qn+1 − qn

∆t
+∇x ·

(
qn ⊗ qn

ρn

)
+∇x(εp(ρn+1)) = 0. (13)

The full discretization in time and space is postponed to the next section. We
want to show that the scheme is asymptotic-preserving. In other words, it
captures the correct behaviour of the limiting equation as ε → 0. To achieve
this, the implicitness of ρ, q is crucial.

Observe that the explicit part of the above scheme is pressureless. However,
the pressureless Euler system is weakly hyperbolic, giving rise to the formation
of density concentrations known as delta-shocks. Several numerical schemes
for this system was proposed in [13, 26, 4, 7]. In [13], the authors proposed
a kinetic scheme, that is valid for the isothermal Euler system and leads to a
kinetic scheme for the pressureless system in the vanishing pressure limit. Here,
to avoid this difficulty and as already proposed in [18], we split the pressure into
an explicit and an implicit part. Numerical tests in section 5 will demonstrate
how this splitting reduces oscillations. Thus, the scheme is written as follows:

ρn+1 − ρn

∆t
+∇x · qn+1 = 0, (14)

qn+1 − qn

∆t
+∇x ·

(
qn ⊗ qn

ρn

)
+∇x(εp0(ρn)) +∇x(εp1(ρn+1)) = 0, (15)
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Figure 2: The plots of εp and εp0 as functions of ρ with ε = 10−4, γ = 2.

where the explicit part is given as

p0(ρ) =



1

2
p(ρ), if ρ ≤ ρ∗ − δ,

1

2

(
p(ρ∗ − δ) + p′(ρ∗ − δ)(ρ− ρ∗ + δ)

+
1

2
p′′(ρ∗ − δ)(ρ− ρ∗ + δ)2

) , if ρ > ρ∗ − δ,
(16)

and the implicit part is

p1(ρ) = p(ρ)− p0(ρ), δ = ε
1
γ+2 . (17)

The choice of δ makes sure that p0 and its derivatives up to second order are
always bounded. To make sure all the coefficients appearing in the elliptic
equation we will derive in the next section are continuous, we choose p0 to
be a second order approximation to p, instead of a first order one. For later
usage, also note that the function p1(ρ) is invertible. This is easily seen from
the property of function p and p0, see Fig 2. By the definition, the Courant-
Friedrich-Lewy (CFL) condition for the explicit part is

∆t ≤ σ∆x

max{|qρ |+
√
εp′0(ρ)}

, (18)

where σ is the Courant number. Since εp′0 is always bounded, the CFL condition
can be satisfied uniformly in ε.
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3.2 The Direct method

To get the solution, we will rewrite the above scheme into another form. By
inserting (15) into (14), we can get an elliptic equation for ρ:

ρn+1 − ρn

∆t
+∇x · qn −∆t∆x(εp1(ρn+1))−∆t∇2

x :

(
qn ⊗ qn

ρn

)
−∆t∆x (εp0(ρn)) = 0.

(19)

From this equation, we can solve ρn+1. However, if we solve ρ directly, the
density constraint ρ ≤ ρ∗ may not be satisfied due to discretization errors.
Thus, we write ρn+1 = ρ(pn+1

1 ) in (19) and solve the equation in terms of p1.
The density constraint ρ ≤ ρ∗ will be automatically satisfied. Moreover, the
positivity of ρ can be ensured by the fact that the discretized equation satisfies
the maximal principle.

Once ρn+1 is obtained, we can obtain qn+1 from (15) easily.

qn+1 = qn −∆t

{
∇x ·

(
qn ⊗ qn

ρn

)
+∇x (εp0(ρn)) +∇x(εp1(ρn+1))

}
. (20)

Remark 1 In the numerical simulation, we can also improve the accuracy by
implementing a fully implicit scheme, which iterates the above scheme to solve
(14) and (15) with q⊗q

ρ implicit. Suppose ρn+1,0 = ρn and qn+1,0 = qn and

ρn+1,k, qn+1,k are the solutions to the following equations.

ρn+1,k+1 − ρn

∆t
+∇x · qn −∆t∆x(εp1(ρn+1,k+1))

−∆t ∇2
x :

(
qn+1,k ⊗ qn+1,k

ρn+1,k

)
+ ∆x (εp0(ρn)) = 0, (21)

qn+1,k+1 = qn −∆t

{
∇x

(
qn+1,k ⊗ qn+1,k

ρn+1,k

)
+∇x (εp0(ρn)) +∇x(εp1(ρn+1,k+1))

}
.

(22)

As k →∞, the solution approximates to the one solving the fully implicit scheme
(both in ρ and q⊗q

ρ ). This modification provides little improvement compared to
the additional computational cost.

3.3 The Gauge method

Another way to implement the AP scheme is the Gauge method developed in
[16]. It can be obtained by applying the Gauge decomposition

q = a−∇xϕ, ∇x · a = 0 (23)

where a is the incompressible part of field q and ϕ is the irrotational one. This
decomposition is expected to be more robust for capturing incompressibility
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constraint. We will see that it is partially right. By including this decomposition
into equations (14) and (15), we get

ρn+1 − ρn

∆t
+∇x · qn −∆t∆x(εp1(ρn+1))

−∆t∇2
x :

(
qn ⊗ qn

ρn

)
−∆t∆x(εp0(ρn)) = 0,

(24)

∆xϕ
n+1 =

1

∆t
(ρn+1 − ρn), (25)

∆xP
n+1 = −∇2

x :

(
qn ⊗ qn

ρn

)
−∆x(εp0(ρn)), (26)

an+1 − an

∆t
+∇x ·

(
qn ⊗ qn

ρn

)
+∇x(εp0(ρn)) +∇xP

n+1 = 0, (27)

qn+1 = an+1 −∇xϕ
n+1. (28)

Indeed, the equation (24) for pn+1
1 is derived from (14) and (15) similarly as in

the Direct method. The Laplace equation (25) for ϕn+1 is the direct consequence
of applying the decomposition (28) and ∇x · an+1 = 0 to the density equation
(14). The equation (26) for Pn+1 and the equation (27) for an+1 are obtained
by inserting (28) and ∇x · an+1 = ∇x · an = 0 into the momentum equation
(15). Here a new unknown P is introduced, which is defined by

Pn+1 = εp1(ρn+1)− ϕn+1 − ϕn

∆t
, (29)

since (24)-(25) and (27) imply (15).
The original equations (14) and (15) can also be recovered from (24)-(28)

by assuming ∇x · an = 0. In fact, the equations for Pn+1 and an+1 ((26)-(27))
and ∇x · an = 0 imply ∇x · an+1 = 0. This leads to the density equation (14)
from the ϕn+1 equation (25) and the decomposition (28). (14) combined with
the pn+1

1 equation (24) will then allow us to recover the momentum equation
(15).

The boundary conditions By solving the equations (24)-(28) in sequential
order, we can update the value of ρ, q. To do this, we need to provide boundary
conditions for the Laplace equations for ϕ and P . The boundary conditions for
Pn+1 are somehow straightforward due to the implicit relation (29), once ϕ is
known. And in solving ϕn+1, we may impose Dirichlet boundary condition on
ϕn+1 as follows:

ϕn+1|Ω = 0. (30)

Indeed, other non-homogeneous Dirichlet boundary conditions can be chosen.
This makes the unknown ϕn+1 determined up to a linear function in space.
However, this uncertainty can be removed by redefining an+1. So we can always
impose the homogeneous Dirichlet boundary conditions.
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Simplification in the one dimensional case Observe that in the one di-
mensional case, ∇x · a = 0 implies that a is independent of x. We may thus
rewrite (26) and (27) into a simpler equation by using (29)

an+1 = an − ∆t

c− b

(
(qn)2

ρn
+ εp0(ρn) + εp1(ρn+1)

) ∣∣∣∣c
b

+
1

c− b
(
ϕn+1|cb − ϕn|cb

)
,

(31)

where the space-domain is [b, c] and f |cb = f(c)−f(b). This equation can be fur-
ther simplified, since we impose the homogeneous Dirichlet boundary condition
on ϕ all the time. This lead to

an+1 = an − ∆t

c− b

(
(qn)2

ρn
+ εp0(ρn) + εp1(ρn+1)

) ∣∣∣∣c
b

. (32)

With this reformulation, in the one dimensional case, we can reduce the number
of elliptic equations to be solved to one and update the space independent
variable a more efficiently. Also as a consequence of (30), an should be defined
as the average of qn.

an =
1

c− b

∫ c

b

qndx. (33)

In summary, the Gauge method in the one dimensional case is implemented
through equations (24), (25), (28) and (32).

3.4 Discussion of the AP property

As for the AP property of the scheme, we give a formal proof. To be precise, we
want to show that the system (19) and (15) becomes the incompressible Euler
system as ε→ 0 in the congested region.

However, in contrast with the low Mach number limit of the isentropic Euler
equation discussed in [18] or [16], the singularity in our model is embedded in the
definition of p. New congestion regions may arise from non-congested ones. And
by the analysis in section A, there is the possibility that ρε → ρ∗ but the limit
of the pressure εp1(ρε)→ 0 as ε→ 0. This means that although the congestion
density is reached, there is no real congestion in this region. So it seems better
to characterize the congestion region by defining p̄ = limε→0 εp1(ρε) > 0.

Currently, we can only show that in regions where both p̄n+1 = limε→0 εp1((ρn+1)ε) >
0 and p̄n = limε→0 εp1((ρn)ε) > 0, (19) and (20) tend to the incompressible
Euler system as ε → 0. The assumption p̄n+1 = limε→0 εp1((ρn+1)ε) > 0 is
somehow essential given that declustering wave may appear in our model, since
the pressure p̄ can change from positive value to 0 instantaneously due to a
declustering wave. The assumption p̄n = limε→0 εp1((ρn)ε) > 0 is also needed
in case of the appearance of new congestion regions. In regions where p̄n+1 > 0
and p̄n > 0, we have naturally that (ρn+1)ε → ρ∗ and (ρn)ε → ρ∗ as ε → 0.
Taking the divergence of (20) and using (19), we can indeed recover (14), which
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leads to the incompressibility of (qn+1)ε: ∇x · (qn+1)n+1 = 0. Here the implic-
itness in (14) is crucial. Then (11) follows. Although we can only prove the AP
property inside a congestion region, the numerical solutions provide evidence
that the scheme is globally AP, including at transition between compressible
and incompressible region.

As for the Gauge method, it is also AP since it is a direct consequence of
(14) and (15).

In the numerical simulations, we will check the AP property for concrete
test cases.

4 Full time and space discretization

In this section, we present the one dimensional full time and space discretization.
The two dimensional discretization is the easy extension of the one dimensional
case. For the sake of completeness, we include it in the appendix.

The Direct method: In the following, we consider the domain [b, c] = [0, 1].
Let the uniform spatial mesh be ∆x = 1

M , where M is a positive integer. Denote

by Un+1
j = (ρnj , q

n
j )T the approximations of U = (ρ, q)T at time tn = n∆t and

positions xj = j∆x, for j = 0, 1, . . . ,M . We fully discretize the scheme (14) and
(15) in the spirit of a local Lax-Friedrichs (or Rusanov) method [27] as follows:

ρn+1
j − ρnj

∆t
+

1

∆x

[
Qj+1/2(Unj , U

n
j+1, U

n+1
j , Un+1

j+1 )

−Qj−1/2(Unj−1, U
n
j , U

n+1
j−1 , U

n+1
j )

]
= 0,

(34)

qn+1
j − qnj

∆t
+

1

∆x

[
Fj+1/2(Unj , U

n
j+1)− Fj−1/2(Unj−1, U

n
j )
]

+
1

2∆x

[
εp1(ρn+1

j+1 )− εp1(ρn+1
j−1 )

]
= 0.

(35)

where the fluxes are given by:

Q
n+1/2
j+1/2 =

1

2

[
qn+1
j + qn+1

j+1

]
− 1

2
Cnj+1/2(ρnj+1 − ρnj ), (36)

Fnj+1/2 =
1

2

[
(qnj )2

ρnj
+

(qnj+1)2

ρnj+1

+ εp0(ρnj+1) + εp0(ρnj )

]
− 1

2
Cnj+1/2(qnj+1 − qnj ).

(37)

They consist of the sum of a centered flux, implicit in (36) , explicit in (37) and
biased terms introducing diffusion. The quantity Cnj+1/2 is the local diffusion
coefficient and is given by:

Cnj+1/2 = max

{∣∣∣∣∣ qnjρnj
∣∣∣∣∣+
√
εp′0(ρnj ),

∣∣∣∣∣ qnj+1

ρnj+1

∣∣∣∣∣+
√
εp′0(ρnj+1)

}
. (38)
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It is defined as the local maximal characteristic speed related to the explicit
pressure p0. Therefore, it remains bounded as ε goes to zero. The quantity
Cnj+1/2 provides a numerical viscosity which is needed for scheme stability. We
note that only the central discretization part of the flux is taken implicit, while
the numerical viscosity part is kept explicit. In the momentum flux, only the
part of the flux which relates to pressure is taken implicit.

Based on this discretization, we can apply the same strategy as described in
section 3.2 to get an elliptic equation in ρ by substituting (35) into (34):

ρn+1
j − ρnj

∆t
+
qnj+1 − qnj−1

2∆x
− ∆t

4∆x2

[
εp1(ρn+1

j+2 )− 2εp1(ρn+1
j ) + εp1(ρn+1

j−2 )
]

− 1

2∆x

[
Cj+1/2(ρnj+1 − ρnj )− Cj−1/2(ρnj − ρnj−1)

]
− ∆t

2∆x2

[
Fnj+3/2 − F

n
j+1/2 − F

n
j−1/2 + Fnj−3/2

]
= 0.

(39)

This equation is consistent with equation (19) of the Direct method. Then we
get a nonlinear equation for p1:

ρ((p1)n+1
j )− ∆t2

4∆x2

[
ε(p1)n+1

j+2 − 2ε(p1)n+1
j + ε(p1)n+1

j−2

]
= ρnj −

∆t

2∆x
(qnj+1 − qnj−1) +

∆t

2∆x

[
Cj+1/2(ρnj+1 − ρnj )− Cj−1/2(ρnj − ρnj−1)

]
+

∆t2

2∆x2

[
Fnj+3/2 − F

n
j+1/2 − F

n
j−1/2 + Fnj−3/2

]
.

(40)

As mentioned before, we will use Newton iterations to solve this nonlinear equa-
tion and get pn+1

1 . The density ρn+1 is then obtained by inverting the nonlinear
function p1 = p1(ρ) with another Newton iteration. Once ρn+1 is solved, qn+1

can be obtained by

qn+1
j = Φ(Unj−1, U

n
j , U

n
j+1)− ∆t

2∆x

[
εp1(ρn+1

j+1 )− εp1(ρn+1
j−1 )

]
, (41)

with

Φ(Unj−1, U
n
j , U

n
j+1) = qnj −

∆t

∆x

[
Fnj+1/2 − F

n
j−1/2

]
. (42)

The Gauge method Also based on (34) and (35), we can have the full time-
space discretization of the Gauge method. Indeed, for the Gauge method, we
need to discretize (40). This leads to

1

4∆x2

[
ϕn+1
j+2 − 2ϕn+1

j + ϕn+1
j−2

]
=

1

∆t
(ρn+1
j − ρnj )− 1

2∆x

[
Cj+1/2(ρnj+1 − ρnj )− Cj−1/2(ρnj − ρnj−1)

]
, (43)

an+1 = an −∆t

(
(qn ⊗ qn)

ρn
+ εp0(ρn) + εp1(ρn+1)

) ∣∣∣∣1
0
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+
∆t

2

M∑
1

[
Cj+1/2(qnj+1 − qnj )− Cj−1/2(qnj − qnj−1)

]
, (44)

qn+1
j = an+1 − 1

2∆x
(ϕn+1
j+1 − ϕ

n+1
j−1 ). (45)

The above equations are the direct consequences of (24)-(25), (28) and (32).
However, in the numerical simulation, we will mainly test the schemes with (43)
replaced by

1

∆x2

[
ϕn+1
j+1 − 2ϕn+1

j + ϕn+1
j−1

]
=

1

∆t
(ρn+1
j − ρnj )

− 1

2∆x

[
Cj+1/2(ρnj+1 − ρnj )− Cj−1/2(ρnj − ρnj−1)

]
,

(46)

which may be justified as being the direct discretization of (25) with some
numerical viscosity added to the right hand side. The stencils are different
in two cases. We call the Gauge method with stencil (43) Gauge 2 method
and the one with stencil (46) Gauge 1 method, since they use grids ϕj±2 and
ϕj±1 respectively in addition to ϕj . There is a big difference in performance
between the two discretizations. In fact, we will see in the next section that
the Gauge 2 method ( with (43)) yields almost the same numerical result as the
Direct method, while the Gauge 1 method (with (46)) performs quite differently
from the Direct method. This may be partially due to the fact that the Gauge
1 method introduces more diffusion than the Gauge 2 method, which can be
seen by inserting the Taylor expansion of ϕn+1

j±1 , ϕ
n+1
j±2 around x = j∆x into the

discretizations:(
− 1

∆x2

[
ϕn+1
j+1 − 2ϕn+1

j + ϕn+1
j−1

])
−
(
− 1

4∆x2

[
ϕn+1
j+2 − 2ϕn+1

j + ϕn+1
j−2

])
=

1

4

d4

dx4
ϕn+1(j∆x)∆x2 +O(∆x4).

Numerical diffusion An important issue about the scheme is the numerical
diffusion. From the equation (40), it can be seen that the diffusion for ρ is of
the order of(

1

2
(|un|+

√
εp′0(ρn))∆x+ ∆tεp′1(ρn)

)
∆xρ

n + ∆t∆x(ρnun ⊗ un). (47)

And similarly, by inserting (34) into the pressure p1 term in (35) we can see
that the diffusion for q is of the order of(

1

2
(|un|+

√
εp′0(ρn))

)
∆x∆xq

n + ∆tεp′1(ρn)∆xq
n. (48)

To damp out the oscillations in the mass and momentum equations, the required
numerical diffusion is [27](

1

2
(|un|+

√
εp′(ρn))

)
∆x∆xρ

n,

(
1

2
(|un|+

√
εp′(ρn))

)
∆x∆xq

n, (49)
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respectively. To ensure that this numerical diffusion is achieved, we need the
condition(

1

2
(|un|+

√
εp′0(ρn))∆x+ εp′1(ρn)∆t

)
≥
(

1

2
(|un|+

√
εp′(ρn))

)
∆x, (50)

which leads to

∆t

∆x
≥ 1

2
(√

εp′0(ρn) +
√
εp′(ρn)

) . (51)

This condition is automatically satisfied in the congested region (ρ → ρ∗) for
small ε, since εp′(ρn)→∞ as ε→ 0. However, it contradicts the CFL condition
in the non-congested region for small ε, since εp′(ρn) and εp′0(ρn)→ 0 as ε→ 0.
From this analysis, there should be no oscillations in the congestion region
while the numerical diffusion may not be sufficient in the non-congested region.
However, numerical simulation seems to indicate that the numerical viscosity
in this scheme is sufficient to damp out the oscillations in the non-congested
region.

5 Numerical results

5.1 One dimensional test cases

In this section, we use several numerical examples to test the performance of
the schemes. Corresponding to different situations, four examples are tested.
All these examples are the compositions of Riemann problems. Since the exact
solutions to Riemann problem can be determined as in section 2, we can compare
the exact and numerical solutions. Different measurements of the relative errors
will be applied to test the performance of our schemes. And the numerical
Courant number is computed.

In the following, we choose γ = 2 and the maximal density ρ∗ = 1. The test
problems are:

(P1) : (ρ, q)(x, 0) =

{
(0.7, 0.8), x ∈ [0, 0.5),

(0.7,−0.8), x ∈ (0.5, 1],
(52)

(P2) : (ρ, q)(x, 0) =

{
(0.7,−0.8), x ∈ [0, 0.5),

(0.7, 0.8), x ∈ (0.5, 1],
(53)

(P3) : (ρ, q)(x, 0) =


(0.7, 0.8), x ∈ [0, 0.25),

(0.8,−0.3), x ∈ (0.25, 0.75),

(0.7,−1.2), x ∈ (0.75, 1],

(54)

(P4) : (ρ, q)(x, 0) =

{
(0.8, 0.3), x ∈ [0, 0.5),

(0.5, 0.1), x ∈ (0.5, 1],
(55)
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Figure 3: The direct and Gauge 1 methods for problem (P1) at t = 0.05 with
ε = 10−4,∆x = 5×10−3,∆t = 5×10−4. The solid lines are the exact solutions.
The dashed curves are the numerical solutions. The left graphs are for ρ, the
right ones for q, both as functions of x.

The first example (P1) illustrates how the AP schemes capture shocks near
congestion. The second example (P2) shows how the AP schemes work near
vacuum. The third example (P3) simulates the interaction of two shocks near
congestion. The last example (P4) shows some problems in the Gauge 1 method
and will be used to justify the splitting of p.

Example 1. The solution to the Riemann problem (P1) consists of two
shocks propagating in the opposite directions. The density of the intermediate
state is close to the maximal density. In the following, we will test the two
methods described in section 4 with different parameters ε and different mesh
sizes ∆x,∆t.

1. First, we choose ε = 10−4,∆x = 5 × 10−3,∆t = 5 × 10−4. We will
compare the performances of the two methods proposed in section 4. It
can be seen from Figure 3 that there is large oscillations of the momentum
in the congested region. But the propagation of the shock is captured well.
In comparison, the Gauge 1 method as illustrated in Figure 3 eliminates
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Figure 4: Fix ∆x = 5 × 10−3,∆t = 5 × 10−4. The numerical results of the
Direct method for problem (P1) at t = 0.05 with ε = 10−2 and ε = 10−8. The
left graphs are for ρ, the right ones for q, both as functions of x.

all the oscillation.

2. We look how the choices of the parameters ε ∆x and ∆t affect the numer-
ical result. We may fix ∆x,∆t but change the value of ε so as to test the
cases ε < ∆t and ε > ∆t. From the numerical results, it can be seen that
the oscillations in the momentum always appear for different choices of ε
but are smaller as ε→ 0 for this choice of parameter. This verifies the AP
property. As for the Gauge 1 method, it has the same performance for all
value of ε. Thus it shares the same property.

3. The above observation can be quantitatively investigated by measuring
the difference between the numerical solution W and the theoretical one
w. We use two measurements: one is the relative error of the numerical
solution W compared with w in the sense of L1 norm and the other is the
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Parameters Direct Gauge 1

ε ∆x ∆t e(W ) ratio e(W ) ratio

10−4

1/200 1/250 1.1012× 10−2 - 1.1209× 10−2 -
1/200 1/500 8.0103× 10−3 1.3747 7.8670× 10−3 1.4248
1/200 1/1000 4.2631× 10−3 1.8790 4.9486× 10−3 1.5897
1/200 1/2000 5.1528× 10−3 0.8273 5.4107× 10−3 0.9146
1/200 1/10000 5.6843× 10−3 0.9065 1.5761× 10−2 0.3433

1/200 1/1000 4.2631× 10−3 - 4.9486× 10−3 -
1/400 1/2000 3.5612× 10−3 1.1971 3.1706× 10−3 1.5608
1/800 1/4000 1.3085× 10−3 2.7216 1.4253× 10−3 2.2245
1/1600 1/8000 5.7676× 10−4 2.2687 6.1850× 10−4 2.3044
1/1600 1/16000 7.2302× 10−4 0.79771 7.0713× 10−4 0.87466

10−2

1/200 1/250 1.3188× 10−2 - 1.3721× 10−2 -
1/200 1/500 7.7490× 10−3 1.7019 8.5433× 10−3 1.6061
1/200 1/1000 7.6793× 10−3 1.0091 7.8588× 10−3 1.0871
1/200 1/2000 8.2751× 10−3 0.9280 7.5447× 10−3 1.0416
1/200 1/10000 1.0758× 10−2 0.7692 1.5761× 10−2 0.4787

1/200 1/1000 7.6793× 10−3 - 7.8588× 10−3 -
1/400 1/2000 3.7602× 10−3 2.0423 3.8637× 10−3 2.0340
1/800 1/4000 1.7934× 10−3 2.0967 1.8646× 10−3 2.0721
1/1600 1/8000 8.0483× 10−4 2.2283 8.7074× 10−4 2.1414
1/1600 1/16000 7.9308× 10−4 1.0148 8.4647× 10−4 1.0287

Table 1: Comparison of the L1 relative error between the Direct and Gauge
1 methods at t = 0.025. The ’ratio’ column ratio provides comparisons of the
relative L1 norm error between the previous and current rows, where either ∆x
is fixed or ∆x/∆t is fixed.

difference of their total variation:

e(W ) =
‖W − w‖L1

‖w‖L1

, where ‖w‖L1 =
1

M

∑
j

|wj |, (56)

g(W ) =
|Tot.Var.{W} − Tot.Var.{w}|

Tot.Var.{w}
, where Tot.Var.{w} =

∑
j

|wj+1 − wj |.

(57)

In Table 1 and 2, the relative error in terms of L1 distance and total
variation between the numerical and exact solutions at t = 0.025 are
computed. The Gauge 2 method yields quite similar result to the Direct
method. So it is not listed in the table. It can be seen that the Direct
method is usually better than the Gauge 1 method in the L1 norm. To
reflect the observation we made from looking at Figure 3, we use the
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Parameters Direct Gauge 1

ε ∆x ∆t g(W ) ratio g(W ) ratio

10−4

1/200 1/250 7.4909× 10−3 - 7.2225× 10−4 -
1/200 1/500 7.5636× 10−2 0.0990 6.7956× 10−3 0.1063
1/200 1/1000 4.1433× 10−1 0.1826 2.4506× 10−2 0.2773
1/200 1/2000 8.5937× 10−1 0.4821 1.4766× 10−2 1.6596
1/200 1/10000 1.0603 0.8105 1.8995× 10−2 0.7774

1/200 1/1000 4.1433× 10−1 - 2.4506× 10−2 -
1/400 1/2000 4.0126× 10−1 1.0326 3.8585× 10−2 0.6351
1/800 1/4000 2.5996× 10−1 1.5435 2.4447× 10−2 1.5783
1/1600 1/8000 5.4191× 10−1 0.4797 2.3520× 10−2 1.0394
1/1600 1/16000 1.0294 0.5264 1.3054× 10−2 1.8017

10−2

1/200 1/250 5.1377× 10−5 - 4.1271× 10−4 -
1/200 1/500 5.2584× 10−3 0.0098 2.1808× 10−4 1.8925
1/200 1/1000 1.1354× 10−1 0.0463 2.8711× 10−3 0.0760
1/200 1/2000 4.9598× 10−1 0.2289 9.9861× 10−3 0.2875
1/200 1/10000 1.2766 0.3885 4.4336× 10−3 2.2524

1/200 1/1000 1.1354× 10−1 - 2.8711× 10−3 -
1/400 1/2000 1.1856× 10−1 0.9577 2.9617× 10−3 0.9694
1/800 1/4000 1.2408× 10−1 0.9555 2.9916× 10−3 0.9900
1/1600 1/8000 1.2200× 10−1 1.0170 2.7207× 10−3 1.0996
1/1600 1/16000 3.9234× 10−1 0.3110 1.3249× 10−2 0.2054

Table 2: Comparison of the total variation relative error between the Direct
and Gauge 1 methods at t = 0.025. The ’ratio’ column provides comparisons of
the total variation relative error g(W ) between the previous and current rows,
where either ∆x is fixed or ∆x/∆t is fixed.
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ε ∆x stable ∆t maxλ (maxλ) ∆t
∆x

10−4 1/100 1/100 1.2186 1.2186
10−4 1/200 1/210 1.2669 1.2066
10−4 1/400 1/430 1.1962 1.1128
10−4 1/800 1/870 1.1962 1.1000
10−4 1/1600 1/1730 1.1938 1.1041

10−2 1/100 1/100 1.7903 1.4902
10−2 1/200 1/280 1.6571 1.1836
10−2 1/400 1/580 1.6486 1.1370
10−2 1/800 1/1170 1.6486 1.1272
10−2 1/1600 1/2340 1.6645 1.1381

Table 3: The numerical Courant number for the Direct method. maxλ is the
maximal eigenvalue of the explicit part of the scheme for all time steps before
the waves reach the boundary.

total variation norm, which captures the oscillations better. For the total
variation measurement, it can be seen that the Gauge 1 method is always
better in controlling the oscillations. Another observation can be made
from the tables is how the accuracy is changed with different parameters.
For both two measurements, we test the accuracy with ∆x fixed or ∆x/∆t
fixed. In the test where ∆x is fixed, it can also be seen that the relative
error in L1 norm can not be reduced much by refining the time mesh from
1/500 to 1/10000 with fixed ∆x = 1/200. This feature is the same as
the standard hyperbolic solvers: better accuracy can not be obtained by
using a smaller ∆t once the scheme is stable. In the test where ∆x/∆t
is fixed, we check how the relative error is decreasing with respect to
∆x. It is interesting to see that the error is not always decreasing. And
since the convergence order for explicit local Lax-Friedrichs scheme with
discontinuities is 1

2 [27], we may expect that the relative error in L1 norm

is reduced by
√

2 when the space mesh is refined by 2 with ∆x/∆t fixed.
However, this is not the case.

4. We will also check the numerical Courant number in tables 3 and 4. It can
be seen that the CFL condition of our scheme is greatly improved from
the one for standard hyperbolic solver ∆t = O(ε∆x).

5. We can also quantify the observation as in Figure 4. In Table 5, the relative
errors of solutions in the L1 norm or total variation are summarized. The
data for ε = 10−2, 10−4 are the same as those in Table 1 and 2. It can
be seen that there is no big increase in the relative error for different ε
with fixed ∆x,∆t. As discussed in section A, the theoretical solutions to
system (62) and (63) with positive ε are converging to the solutions to
systems with ε = 0 when ε → 0. Thus, the numerical solutions tend to
the theoretical solutions systems with ε = 0 for fixed ∆x,∆t as well. This
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ε ∆x stable ∆t maxλ maxλ∆t
∆x

10−4 1/100 1/100 1.2151 1.2151
10−4 1/200 1/210 1.2279 1.1695
10−4 1/400 1/500 1.3482 1.0786
10−4 1/800 1/1340 1.4398 0.8596
10−4 1/1600 1/3130 1.3555 0.69293

10−2 1/100 1/100 1.6480 1.6480
10−2 1/200 1/260 1.6475 1.2673
10−2 1/400 1/540 1.6475 1.2204
10−2 1/800 1/1190 1.6530 1.1112
10−2 1/1600 1/2520 1.6490 1.0470

Table 4: The numerical Courant number for the Gauge 1 method. maxλ is the
maximal eigenvalue of the explicit part of the scheme for all time steps before
the waves reach the boundary.

versifies the AP property.

6. With a slightly variant version of this test case, we can also see the role
played by the splitting of pressure p. By making the momentum of the left
and right states 10 times smaller, we have another test case (P1′) sharing
the similar behaviour of (P1).

(P1′) : (ρ, q)(x, 0) =

{
(0.7, 0.08), x ∈ [0, 0.5),

(0.7,−0.08), x ∈ (0.5, 1],
(58)

In Figure 5, the numerical solutions obtained by the Direct method with
and without p0 are compared. This confirms the observation made in
[18] for the low Mach number limit. It can be seen that a lot of extra
oscillations appear in the numerical solutions when there is no splitting of
pressure p (p0 = 0, p1 = p). That is the reason why we should add a p0

term in the explicit part of the numerical scheme.

Example 2. The Riemann problem (P2) is obtained by exchanging the left
and right states of Riemann problem (P1). So the solution to the problem (P2)
consists of two rarefaction waves and a vacuum state appears as the intermediate
state. As shown in proposition 4, these two rarefaction waves tend to be contact
waves.

As in example 1, We choose ε = 10−4,∆x = 5 × 10−3,∆t = 5 × 10−4.
t=0.0005. It can be seen from Figure 6 that the Direct method captures the
vacuum and rarefaction waves well. In comparison, the Gauge 1 method as
illustrated in Figure 6 shows larger diffusion.

Example 3. The solution to the problem (P3) consists of two Riemann
problems: both of them are like the Riemann problem in (P1). So there are two
congested regions and eventually they will collide. We are interested in observing

21



0 0.2 0.4 0.6 0.8 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

x

ρ
(x

)

0 0.2 0.4 0.6 0.8 1
−0.1

−0.05

0

0.05

0.1

x

q
(x

)

 

 
With p

0

Exact

0 0.2 0.4 0.6 0.8 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

x

ρ
(x

)

0 0.2 0.4 0.6 0.8 1
−0.1

−0.05

0

0.05

0.1

x

q
(x

)

 

 
p

0
=0

Exact

Figure 5: The numerical results of the Direct method with and without p0 for
problem (P1’) at t = 0.2 with ε = 10−4,∆x = 5×10−3,∆t = 5×10−4. The solid
lines are the exact solutions. The dashed curves are the numerical solutions.
The left graphs are for ρ, the right ones for q, both as functions of x.
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Figure 6: The Direct and Gauge 1 methods for problem (P2) at t = 0.05 with
ε = 10−4,∆x = 5×10−3,∆t = 5×10−4. The solid lines are the exact solutions.
The dashed curves are the numerical solutions. The left graphs are for ρ, the
right ones for q, both as functions of x.
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Parameters Direct Gauge 1

ε ∆x ∆t e(W ) g(W ) e(W ) g(W )

10−2

1/200 1/1000 7.6793× 10−3 1.1354× 10−1 7.8588× 10−3 2.8711× 10−3

1/200 1/2000 8.2751× 10−3 4.9598× 10−1 7.5447× 10−3 9.9861× 10−3

1/800 1/4000 1.7934× 10−3 1.2408× 10−1 1.8646× 10−3 2.9916× 10−3

1/1600 1/16000 7.9308× 10−4 3.9234× 10−1 8.4647× 10−4 1.3249× 10−2

10−4

1/200 1/1000 4.2631× 10−3 4.1433× 10−1 4.9486× 10−3 2.4506× 10−2

1/200 1/2000 5.1528× 10−3 8.5937× 10−1 5.4107× 10−3 1.4766× 10−2

1/800 1/4000 1.3085× 10−3 2.5996× 10−1 1.4253× 10−3 2.4447× 10−2

1/1600 1/16000 7.2302× 10−4 1.0294 7.0713× 10−4 1.3054× 10−2

10−8

1/200 1/1000 7.0600× 10−3 6.4521× 10−1 5.8159× 10−3 1.4861× 10−2

1/200 1/2000 5.8872× 10−3 6.4091× 10−3 5.8872× 10−3 6.4091× 10−3

1/800 1/4000 1.7611× 10−3 6.7218× 10−1 1.4624× 10−3 1.5544× 10−2

1/1600 1/16000 9.1296× 10−4 8.2410× 10−1 8.0587× 10−4 1.6092× 10−2

Table 5: The L1 and total variation relative error of the Direct and Gauge 1
methods at t = 0.025 for different ε.

how the numerical methods behave at collision. We fix ∆x = 5 × 10−3,∆t =
5× 10−4 and choose ε = 10−4 and 10−8. Since only shocks are involved, we will
use the Gauge 1 method only.

From Figures 7 and 8, as ε becomes smaller, it takes shorter time to form a
new congestion region from the two colliding congestion regions: from 48 time
steps to no more than one time step. It can be seen that as ε→ 0, the collision
of these two congested shocks aggregate instantaneously.

Example 4. The solution to the Riemann problem (P4) consists of two
shocks with intermediate state away from the congestion density. So in the
second Riemann problem there are two rarefaction waves and a vacuum state
appears as the intermediate state. As shown in section 2, these two rarefaction
waves tend to be contact waves.

As above, we choose ε = 10−4,∆x = 5 × 10−3,∆t = 5 × 10−4. It can be
seen from Figure 9 that the Direct method performs well when the density is
far away from congestion. However, the Gauge 1 method does not work well
possibly due to the extra diffusion.

Remark 2 All the features described above are preserved when we apply the
fully implicit method (21)(22)(implicit in both ρ and q⊗q

ρ ) to the Direct and
Gauge 1 method. There is a little improvement in the accuracy but no major
one.

Finally, we can compare the Gauge 1 and Gauge 2 methods. With the stencil
of (46) in the same setting as that of example 2, the Gauge 2 method yields
almost the same numerical result as the Direct method (see Fig. 10).
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Figure 7: Gauge 1 method for problem (P3) with ε = 10−4,∆x = 5×10−3,∆t =
5× 10−4. The left graphs are for ρ, the right ones for q, both as functions of x.
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Figure 8: Gauge 1 method for problem (P3) with ε = 10−8,∆x = 5×10−3,∆t =
5× 10−4. The left graphs are for ρ, the right ones for q, both as functions of x.
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Figure 9: The Direct and Gauge 1 methods for problem (P4) at t = 0.2 with
ε = 10−4,∆x = 5×10−3,∆t = 5×10−4. The solid lines are the exact solutions.
The dashed curves are the numerical solutions. The left graphs are for ρ, the
right ones for q, both as functions of x.
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Figure 10: The Direct and Gauge 2 methods with discretization (43) for problem
(P2) at t = 0.05. The solid lines are the exact solutions. The dashed curves are
the numerical solutions. The left graphs are for ρ, the right ones for q, both as
functions of x.
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5.2 A two dimensional test case

In this section, we will test the Direct and Gauge 1 method in the 2D case.
Since there is no theoretical solution in 2D case, only some phenomena will be
presented.

The test example is chosen to illustrate the collision of two congested regions.
It is basically a two dimensional extension of the test case (P3) with some lateral
shift. The initial data of the density and velocity is:

ρ = 0.8× 1A∪B + 0.6× 1[0,1]×[0,1]\(A∪B), (59)

q(x, y, 0) =

(
1
0

)
1A +

(
−1
0

)
1B , (60)

A =

[
1

6
,

5

12

]
×
[

1

3
,

7

12

]
, B =

[
7

12
,

5

6

]
×
[

5

12
,

2

3

]
. (61)

The vector field q is plotted in the Figure 11.

Remark 3 In this test example, the background density is ρ = 0.6. It is even
more interesting to see what happens when the background density is close to
zero. However, our schemes are not performing well in this situation. Indeed,
vacuum is a big problem which needs some special treatment. And when the
background density is close to zero, the system is almost pressureless, which is
also a difficult problem. These problems may be considered in the future work.

It can be expected that there will be two congested regions forming and
moving towards each other with two shocks in the front and two rarefaction
waves left behind. These two shocks compress the fluid and cause congestion.
This is reflected in Figure 12.

These two shocks with opposite directions meet at a later time. The interac-
tion of these shocks forms a bigger congestion region with higher density, which
can be illustrated in Figure 13. The interaction of the two shocks induces the
formation of two new shocks moving in the orthogonal direction compared to
the initial motion.

The similar result can be obtained by the Gauge 1 method as in Figure 14
and 15.

The difference between the two methods in the two dimensional case is not
striking. In order to illustrate them, we look at a cut at y = 0.5. The cuts are
displayed on Figure 16 and 17.

Similar observations as in the one dimensional case can be made from Fig-
ure 16 and 17. The Gauge 1 method provides a little less oscillations in the
congestion region but also brings more diffusion.
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Figure 11: The initial data of the density and momentum q, both as functions
of x and y.
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Figure 12: The Direct method with ε = 10−4,∆x = 5 × 10−3,∆t = 5 × 10−4

at t = 0.05. The left graph is for ρ, the right one for vector field q, both as
functions of x and y.
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Figure 13: The Direct method with ε = 10−4,∆x = 5× 10−3,∆t = 5× 10−4 at
t = 0.2. The left graph is for ρ, the right one for vector field q, both as functions
of x and y.
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Figure 14: The Gauge 1 method with ε = 10−4,∆x = 5× 10−3,∆t = 5× 10−4

at t = 0.05. The left graph is for ρ, the right one for vector field q, both as
functions of x and y.
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Figure 15: The Gauge 1 method with ε = 10−4,∆x = 5× 10−3,∆t = 5× 10−4

at t = 0.2. The left graph is for ρ, the right one for vector field q, both as
functions of x and y.
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Figure 16: Direct and Gauge 1 methods with ε = 10−4,∆x = 5 × 10−3,∆t =
5× 10−4 at t = 0.05. Cut of the density along the line y = 0.5, as a function of
x. Left hand: Direct method; right hand: Gauge 1 method.
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Figure 17: Momentum of the Direct and Gauge 1 methods with ε = 10−4,∆x =
5×10−3,∆t = 5×10−4 at t = 0.05. Cut of the momentum along the line y = 0.5,
as a function of x. Left hand: Direct method; right hand: Gauge 1 method.
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6 Conclusion

In this paper, we have studied the Euler system with a maximal density con-
straint. A small parameter ε was introduced to measure the stiffness of the
constraint. As ε→ 0, the model gives rise to a two-phase model with congested
regions (with maximal density) and uncongested regions (with density below
the maximal density).

One-dimensional solutions of this asymptotic problem have been investigated
to provide the information of the interface conditions. However, it can not char-
acterize the whole dynamics and it is hard to extend to higher dimensional cases.
Therefore, we have devised asymptotic preserving numerical schemes, which are
valid for all range of ε and thus are capable of capturing the asymptotic dy-
namics. Two numerical schemes have been considered and compared on both
one-dimensional and two dimensional test-cases. They both capture the con-
gested regions well. However, the first method shows some oscillations near
the interface between congested and uncongested regions, while the second has
much less oscillations but is more diffusive. A careful error analysis in differ-
ent norms with respect to different parameters (time and space steps, ε) are
conducted for a one dimensional test case.

Following [35], the development of second order schemes will be performed in
future works. More robust schemes for capturing the divergence free constraint
in the congested regions could also be investigated. Coupling our methodology
with schemes dedicated to the pressureless gas dynamics could also improve the
results in the low density regions. Finally, simulations of the non-conservative
model with a supplementary geometric constraint on the speed of the flow [17]
will be an interesting problem.
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tions of the European Commission in the frame of the DEASE project (MEST-
CT-2005-021122), by the Agence Nationale de la Recherche (ANR) under con-
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A Appendix : Solutions of the one-dimensional
problem: the Riemann problem and the clus-
ter collisions

The one-dimensional version of system (4)-(5) can be written as follows:

∂tρ+ ∂xq = 0, (62)

∂tq + ∂x

(
q2

ρ

)
+ ∂x(εp(ρ)) = 0, (63)

where q(x, t) is here a scalar function and x is the position in R. In this section,
we first investigate the Riemann problem and the limits of its solutions as ε→ 0
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and then we briefly recall the one-dimensional solutions of the limit system (8)-
(9)-(10) provided in [12], which consists of the collision of two finite clusters
(domain where ρ = ρ∗).

A.1 The one-dimensional Riemann problem

The Riemann problem is an initial value problem, where the initial condition is
a piece-wise constant function with a discontinuity between two constant states:

(ρ0, q0)(x) =

{
(ρ`, q`), for x < 0,
(ρr, qr), for x ≥ 0.

The solutions of this problem for the Euler system (62)-(63) are well known.
So, the strategy is to take the limits of these solutions as ε goes to zero. This
provides the solutions of the Riemann problem for the singular asymptotic limit
(8)-(9)-(10). Similar studies was carried out in [5] for the isentropic Euler equa-
tion, in [9] for a traffic jam model and in [17] for a herding problem.

A.1.1 Shock and rarefaction waves

The material of this section is classical, and is given here only for the reader’s
convenience.

The two characteristic speeds λε± and the two characteristic fields rε± of the
one-dimensional system (62)-(63) are:

λε± = u±
√
εp′(ρ), rε± =

(
1

u±
√
εp′(ρ)

)
.

It can be easily checked that both characteristic fields are genuinely non linear
for positive densities. Therefore, the solutions of the Riemann problem are made
of constant states separated by rarefaction or shock waves [27].

The rarefaction waves are continuous self similar solutions: (ρ(x/t), q(x/t)).
Given a state (ρ̂, q̂), the states which can be connected to (ρ̂, q̂) by a rarefaction
wave are those located on the integral curves iε± of the right eigenvectors of the
Jacobian matrix of the flux function issued from (ρ̂, q̂). They are given by:

ρ′(s) = 1, iε
′

± (s) = û±
√
εp′(ρ), ρ(0) = ρ̂, iε±(0) = q̂,

which is equivalent to iε
′

± (ρ) = û±
√
εp′(ρ), iε±(ρ̂) = q̂ and then to equation:

iε±(ρ) = ρû± ρ
√
ε(P (ρ)− P (ρ̂)), (64)

where P is an antiderivative of
√
p′(u)/u and û = q̂/ρ̂. The graph of iε− (resp.

iε+) is called the 1-integral curve (resp. the 2-integral curve). The following
proposition provides several features of the integral curves.

Proposition 1 (Integral and rarefaction curves)
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1. The 1-integral curve iε− (resp. the 2-integral curve iε+) is concave (resp.
convex) as functions of ρ and iε−(0) = iε+(0) = 0.

2. The limit of the integral curves as ε goes to zero is the union of the straight
lines {q = ρû} and {ρ = ρ∗}.

3. Suppose that the state ρ̂ε is such that ρ̂ε → ρ∗ and εp(ρ̂ε) → p̄. For all
ρ < ρ̂ε, we have:∣∣∣∣ iε±(ρ)

ρ
− û
∣∣∣∣ ≤ √ε ∫ ρ̂ε

0

√
p′(u)

u
du = O

ρ̂ε→ρ∗
(ε

1
2γ )

4. If (ρ̂, q̂) is a left state, the right states which can be connected to it by a rar-
efaction wave are those located on the 1-rarefaction curve

{
(ρ, iε−(ρ)), ρ < ρ̂

}
or the 2-rarefaction curve

{
(ρ, iε+(ρ)), ρ > ρ̂

}
.

The last point of this proposition stems from the compatibility conditions of the
characteristic speeds. The proof of this proposition is classical and omitted.

A shock wave is a discontinuity between two constant states, (ρ̂, q̂) and
(ρ, q), travelling at constant speed σ. The states (ρ, q), which can be connected
to (ρ̂, q̂) by a shock wave, are determined by the Rankine-Hugoniot conditions:

[q] = σ[ρ],

[
q2

ρ
+ εp(ρ)

]
= σ[q], (65)

where [f ] := f − f̂ for all quantities f . Easy computations show that the
admissible states are of the form (ρ, hε±(ρ)), where hε± is :

hε±(ρ) = û±
√
ρ

ρ̂

√
(ρ− ρ̂)(εp(ρ)− εp(ρ̂)). (66)

and the shock speeds are:

σ± =
(hε±(ρ)− q̂)

(ρ− ρ̂)
= û±

√
ρ

ρ̂

√
(εp(ρ)− εp(ρ̂))

(ρ− ρ̂)
. (67)

The graph of hε− (resp. hε+) is called the 1-Hugoniot curve (resp. the 2-Hugoniot
curve). The following proposition provides several properties of the Hugoniot
curves:

Proposition 2 (Hugoniot and shock curves)

1. The 1-Hugoniot function hε− (resp. the 2-Hugoniot function hε+) is concave
(resp. convex) and hε−(0) = hε+(0) = 0.

2. The limits of the graphs of hε− and hε+ when ε goes to zero are the union
of the straight lines {q = ρû} and {ρ = ρ∗}. This is true also when ρ̂ = ρ̂ε

depends on ε and tends to ρ∗.
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Figure 18: Curves issued from (ρ̂, q̂) = (0.5, 0.5) and ε ∈
{

10, 1, 10−2
}

. In
dotted line : the rarefaction curves. In solid line : the shock curves. In blue :
the 1-curves. In black : the 2-curves. As ε → 0, the curves are tending to the
straight lines {q = ûρ} and {ρ = ρ∗}. Parameters : k = 2, ρ∗ = 1.

3. If (ρ̂, q̂) is a left state, the right states which can be connected to it by an en-
tropic shock wave are those located on the 1-shock curve

{
(ρ, hε−(ρ)), ρ > ρ̂

}
or the 2-shock curve

{
(ρ, hε+(ρ)), ρ < ρ̂

}
.

The proof of this proposition is classical and omitted.

A.1.2 The Riemann problem for system (62)-(63)

Geometric considerations on the intersection of the integral and Hugoniot curves
enable us to solve the Riemann problem [27]. These arguments are really sim-
plified in the limit ε→ 0, due to the much simpler behaviour of the integral and
Hugoniot curves: they both converge to union of the straight lines {q = ρû} and
{ρ = ρ∗}. This behaviour is illustrated in Fig. 18. The following proposition
provides the nature of the solutions of the Riemann problem for ε small enough.
It depends on the sign of the relative velocity u` − ur, where u` = q`/ρ` and
ur = qr/ρr:

Proposition 3 Let (ρ`, q`), (ρr, qr), left and right states. Then the solutions
of the Riemann problem related to (62)-(63) have the following forms:

1. If u` < ur, then for ε small enough, the intermediate state is the intersec-
tion point of the 1-integral curve issued from (ρ`, q`, p̄`) and the 2-integral
curve issued from (ρr, qr, p̄r). Besides, the intermediate density ρ̃ is lower
than ρr and ρ`. This is valid even if ρ` or/and ρr tends to ρ∗.
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2. If u` > ur, then for ε small enough, there are two subcases:

• if hε−(ρεr) > qr and hε+(ρε`) < q`, the intermediate state is the in-
tersection point of the 1-Hugoniot curve issued from (ρ`, q`) and the
2-Hugoniot curve issued from (ρr, qr).

• if hε−(ρεr) < qr (resp. hε+(ρε`) > q`), the intermediate state is the
intersection point of the 1-Hugoniot curve (resp. 1-integral curve)
issued from (ρ`, q`) and the 2-integral curve (resp. 2-Hugoniot curve)
issued from (ρr, qr).

3. If ur = u` and ρ` < ρr (resp. ρ` > ρr), then the intermediate state is the
intersection point of the 1-Hugoniot curve (resp. 1-integral curve) issued
from (ρ`, q`, p̄`) and the 2-integral curve (resp. 2-Hugoniot curve) issued
from (ρr, qr, p̄r). Besides, the intermediate density ρ̃ is the interval [ρ`, ρr]
(resp. [ρr, ρ`]). This is valid even if ρ` or/and ρr tends to ρ∗.

This proposition results from propositions 1 and 2. The proof is omitted here (it
is an easy adaptation of the proof of Theorem 1 in [17]). Note that the nature of
the curves (integral or Hugoniot curve) implies the nature of the waves involved
in the Riemann problem.

A.1.3 The limits of solutions of the Riemann problem.

We introduce the following initial conditions:

(ρε0, q
ε
0)(x) =

{
(ρε` , q

ε
` ), for x < 0,

(ρεr, q
ε
r), for x ≥ 0.

with (ρε` , q
ε
` , εp(ρ

ε
`))→ (ρ`, q`, p̄`) and (ρεr, q

ε
r , εp(ρ

ε
r))→ (ρr, qr, p̄r) as ε goes to

zero.
The following proposition provides the solution when ρ`, ρr < ρ∗ and so

p̄` = p̄r = 0. The nature of the solution only depends on the sign of the relative
velocity u` − ur, where u` = q`/ρ` and ur = qr/ρr.

Proposition 4 (case ρ` < ρ∗, ρr < ρ∗)

1. If u` − ur < 0, then the solution consists of two contact waves connecting
the two states to the vacuum. This is summarised in the following diagram:

(ρ`, q`, 0)
contact−→ (0, q`, 0)

vacuum−→ (0, qr, 0)
contact−→ (ρr, qr, 0).

2. If u` − ur > 0, then the solution consists of two shock waves connecting
the left state (ρ`, q`, 0) to an intermediate state (ρ∗, q̃, p̄) and then (ρ∗, q̃, p̄)
to the right state (ρr, qr, 0):

(ρ`, q`, 0)
shock−→ (ρ∗, q̃, p̄)

shock−→ (ρr, qr, 0),
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where the intermediate momentum q̃ and the intermediate pressure p̄ are:

q̃ = u`ρ
∗ −

√
ρ∗

ρ`

√
(ρ∗ − ρ`)p̄ = urρ

∗ +

√
ρ∗

ρr

√
(ρ∗ − ρr)p̄,

p̄ = (u` − ur)2

(√
ρ∗ − ρ`
ρ`ρ∗

+

√
ρ∗ − ρr
ρrρ∗

)−2

,

and the shock speeds σ− and σ+ are given by:

σ− = u` −

√
ρ∗

ρ`(ρ∗ − ρ`)
√
p̄, σ+ = ur +

√
ρ∗

ρr(ρ∗ − ρr)
√
p̄.

3. If u` = ur, then the solution consists of only one contact wave connecting
(ρ`, q`, 0) to (ρr, qr, 0):

(ρ`, q`, 0)
contact−→ (ρr, qr, 0).

It is the same results as those obtained in [12], where they directly proved it by
defining a notion of entropy solutions for the asymptotic problem.

In all the following proofs, (ρ`, q`), (ρ̃, q̃), (ρr, qr) will respectively denote the
left, the intermediate and the right states involved in each different Riemann
problems. λε− (resp. λε+) will implicitly refer to the first (resp. second) char-
acteristic speed of the left state (resp. right state). The characteristic speeds
related to the intermediate state are denoted: λ̃ε−, λ̃ε+. In the following, iε− and
hε− (resp. iε+ and hε+) will refer to the 1-curves (resp. 2-curves) issued from the

left state (resp. right state). The notation [f ]` = f̃ − f` (resp. [f ]r = f̃ − fr)
will denote the difference between the intermediate and the left (resp. the right)
values of any quantity f .

Proof 1. From proposition 3, the solution for small ε consists of two rarefaction
waves. The intermediate density solves equation iε−(ρ̃) = iε+(ρ̃), that is:

ρ̃ur ± ρ̃
√
ε[P (ρ)]r = ρ̃u` ± ρ̃

√
ε[P (ρ)]`

Since ρ̃ is lower than ρ` and ρr (and then [P (ρ)]r and [P (ρ)]` are bounded) and
ur − u` is not zero, it is easy to deduce that the limit solution of this equation
is ρ̃ = 0, which defines a vacuum state. Besides, λε− and λ̃ε− tends to u` (resp.

λ̃ε+ and λε+ tends to ur). Therefore, the limit waves are contact waves.
2. From proposition 3, the solution for small ε consists of two shock waves

(since limhε+(ρ`) = ρ`ur and limε
− h

ε
−(ρ`) = ρrq`). We have hε−,`(ρ̃) = hε+,r(ρ̃),

that is:

ρ̃u` −

√
ρ̃

ρ`

√
[ρ]`[εp(ρ)]` = ρ̃ur +

√
ρ̃

ρr

√
[ρ]r[εp(ρ)]r,

which yields

(u` − ur) =

√
[ρ]`[εp(ρ)]`

ρ`ρ̃
+

√
[ρ]r[εp(ρ)]r

ρrρ̃
,
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Since u`−ur is different from zero, the limit intermediate pressure, lim εp(ρ̃ε) =
lim[εp(ρ)]` = lim[εp(ρ)]r, is not zero. Thus ρ̃→ ρ∗ as ε→ 0. Finally, the limit
values of the two shock speeds can be easily inferred from equation (67).

3. Supposing that ρ` < ρr, then the intermediate density satisfies ρ` ≤ ρ̃ε ≤
ρr and consequently λε−, λ̃

ε
±, λ

ε
+ → u` = ur as ε goes to zero, which yields a

unique contact wave.

We now consider the case where the left state is a congested state: ρ` =
ρ∗, ρr < ρ∗ and p̄` < +∞. By a symmetry argument, the case ρ` < ρ∗, ρr = ρ∗

can be easily deduced. The limits of rarefactions waves when one state tends to
congestion lead to the so-called declustering waves:

Definition 1 (Declustering waves) A declustering wave consists of a shock
wave between two congested state, with infinite speed, and with a zero pressure
for positive time.

The following proposition states the solutions of the Riemann problem.

Proposition 5 (case ρ` = ρ∗, ρr < ρ∗)

1. If u`−ur < 0, then the solution consists of one declustering wave connect-
ing the left state (ρ∗, q`, p̄`) to a congested and pressureless state (ρ∗, q`, 0)
and then a contact wave connecting (ρ∗, q`, 0) to vacuum and another con-
tact wave connecting vacuum to the right state (ρr, qr, 0):

(ρ∗, q`, p̄`)
declust.−→ (ρ∗, q`, 0)

contact−→ (0, q`, 0)
vacuum−→ (0, qr, 0)

contact−→ (ρr, qr, 0).

2. If u` − ur > 0, then the solution consists of two shock waves connecting
the left state (ρ∗, q`, p̄`) to an intermediate congested state (ρ∗, q̃, p̄) and
then connecting this intermediate state to the right state speeds (ρr, qr, 0):

(ρ∗, q`, p̄`)
shock−→ (ρ∗, q̃, p̄)

shock−→ (ρr, qr, 0),

where the intermediate momentum q̃ and the intermediate pressure p̄ are
given by:

q̃ = ρ∗u`, p̄ =
ρ∗ρr
ρ∗ − ρr

(u` − ur)2,

and the two speed σ− and σ+ are:

σ− = −∞, σ+ = ur +

√
ρ∗

ρr

√
p̄

ρ∗ − ρr
.

3. If u` = ur, then the solution consists of one declustering wave connecting
the left state (ρ∗, q`, p̄`) to the intermediate state (ρ∗, q`, 0) and one contact
wave connecting the intermediate state to the right state (ρr, qr, 0):

(ρ∗, q`, p̄`)
declust.−→ (ρ∗, q`, 0)

contact−→ (ρr, qr, 0).
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Proof 1. From proposition 3, the solution for small ε consists of two rarefaction
waves and it can be easily checked that the limit intermediate density is zero

(thanks to proposition 1, point 3,
√
ε[P (ρ)]` = O(ε

1
2γ )). Since ρ` tends to ρ∗,

we have limλε− = −∞ and lim λ̃ε− = u`. The limit of the 2-rarefaction wave is

a contact wave (since lim λ̃ε+ = limλε+ = ur). Let us look at the limit of the
1-rarefaction wave.

For each possible speed s ∈ [λε−, u`] of the rarefaction wave connecting the
left state to the intermediate state, we have:

s = λ−(ρ(s), q(s)) =
q(s)

ρ(s)
−
√
εp′(ρ(s)). (68)

The state (ρ(s), q(s)) belongs to the integral curve and then for ρ(s) < ρ`
and according to proposition 1, point 3, q(s)/ρ(s) tends to u`. If s 6= u`,
equation (68) implies that ρ(s) has to tend to ρ∗ and that lim εp(ρ(s)) = 0 since
lim εp′(ρ(s)) is finite. This yields the definition of a declustering wave, given in
definition 1.

2. We have limhε−(ρr) = ρru` > qr. According to proposition 3, in order to
have a solution which is the limit of two shock waves, we have to prescribe:

hε+(ρ`) = ρ`ur +
√
ε

√
ρ`
ρr

√
[ρ]`r[p(ρ)]`r < q` = ρ`u`,

and in the limit:

ur +

√
(ρ∗ − ρr)
ρrρ∗

√
p̄` ≤ u`.

If hε+(ρ`) > q`, the solution is the limit of a 1-rarefaction wave and a 2-shock
wave. According to this discussion, we have to consider two cases but we will
see that the limits of the two cases are the same.

The first case corresponds to the limit of two shock waves. The intermediate
density is then greater than the left one and so tends to ρ∗ too. Besides we
have:

ρ̃u` −

√
ρ̃

ρ`

√
[ρ]`[εp(ρ)]` = ρ̃ur +

√
ρ̃

ρr

√
[ρ]r[εp(ρ)]r, (69)

and then by dividing by ρ̃, we get:

u` −

√
[ρ]`[εp(ρ)]`

ρ̃ρ`
= ur +

√
[ρ]r[εp(ρ)]r

ρ̃ρr
< u`.

The last inequality implies that the limit of εp(ρ̃) is finite. We denote it by p̄.
Taking the limit in the equality (69), we obtain

u` = ur +

√
(ρ∗ − ρr)
ρ∗ρr

√
p̄.
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Hence we find the value of p̄ as in proposition 5. The propagation speeds are
easily deduced from the limit ε→ 0 in (67).

If the solution is the limit of a combination of a rarefaction wave and a shock
wave, then the intermediate states satisfies.

ρ̃u` − ρ̃
√
ε[P (ρ)]` = ρ̃ur +

√
ρ̃

ρr

√
[ρ]r[εp(ρ)]r.

If the intermediate density ρ̃ε did tend to ρ∗, then we would obtain u` = ur
(thanks to proposition 1), which is impossible. Thus the intermediate density
tends to ρ∗ and the previous expression tends to:

ρ∗u` = ρ∗ur +

√
ρ∗

ρr

√
(ρ∗ − ρr)p̄,

which yields the expected result. Since the pressure is positive, λ̃ε− tends to −∞
which implies that the rarefaction wave turns into a shock wave with infinite
propagation speed, i.e. a declustering wave.

3. From proposition 3, the solution is the limit of a combination of a 1-
rarefaction wave and a 2-shock wave. Using the fact that ρ̃u` = ρ̃ur, the inter-
mediate state (ρ̃, q̃) satisfies:

ρ̃ε[P (ρ)]` =

√
ρ

ρ`

√
[ρ]r[εp(ρ)]r.

So [ρ]r[εp(ρ)]r → 0 (since εP (ρ̃) < εP (ρ`) tends to zero) and either ρ̃ tends to
ρr or εp(ρ̃) tends to zero. Actually, whatever the limit value of the intermedi-
ate density, the intermediate state disappears. Indeed, let us consider all the
possible cases.

Either ρ̃ → ρr. Then the 2-shock wave disappears and the 1-rarefaction
wave tends to the sum of a declustering wave and a contact wave, which can be
proven as in the case 1 of this proof.

Or lim ρ̃ ∈]ρr, ρ
∗[. It is easy to check that the 2-shock wave becomes a

contact wave and the intermediate state disappears since λ̃ε+, λ̃
ε
− → u`. Like in

the case 1 of this proof, the 1-rarefaction wave leads to declustering wave and a
contact wave, which superimposes on the one coming from the 2-shock wave.

Or lim ρ̃ = ρ∗. Then we know that εp(ρ̃) tends to zero. Thus the 1-
rarefaction wave tends to a declustering wave and the 2-shock wave tends to
a contact wave.

In all the cases, the limit solution is the one given in proposition 5.

Finally, we consider the case where both the left and right asymptotic states
are congested: ρ` = ρr = ρ∗. Besides, we assume that p̄` and p̄r are finite.

Proposition 6 (case ρ` = ρ∗, ρr = ρ∗, ρε` > ρεr)

1. If u`−ur < 0, then the solution consists of one declustering wave connect-
ing the left state (ρ∗, q`, p̄`) to a congested and pressureless state (ρ∗, q`, 0),
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then two contact waves connecting (ρ∗, q`, 0) to vacuum and then vacuum
to (ρ∗, qr, 0) and another declustering wave connecting (ρ∗, qr, 0) to the
right state (ρr, qr, 0):

(ρ∗, q`, p̄`)
declust.−→ (ρ∗, q`, 0)

contact−→ (0, q`, 0)
vacuum−→ (0, qr, 0)

contact−→ (ρ∗, qr, 0)
declust.−→ (ρ∗, qr, p̄r).

2. If u` − ur > 0, then the solution consists of two shock waves with infinite
propagation speed connecting the left state (ρ∗, q`, p̄`) to an intermediate
congested state (ρ∗, q̃,+∞) with infinite pressure and then this intermedi-
ate state to the right state (ρ∗, qr, p̄r):

(ρ∗, q`, p̄`)
shock−→ (ρ∗, q̃,+∞)

shock−→ (ρ∗, qr, p̄r),

where q̃ is the unique solution of:

[q]`
[q]r

=

(
p̄r
p̄`

) 1
2γ

.

3. If u` = ur, then the solution consists of a uniform constant state (ρ∗, qr, p̄r).

Proof 1. The arguments are similar to those used in the proof of the first case
of the previous proposition.

2. From proposition 3, the solution is the limit of two shock waves if for
small ε, we have the following inequalities:

hε+(ρε`) = ρε`ur +
√
ε

√
ρε`
ρεr

√
[ρ]`r[p(ρ)]`r < q` = ρε`u`,

hε−(ρεr) = ρεru` +
√
ε

√
ρεr
ρε`

√
[ρ]`r[p(ρ)]`r > qr = ρεrur.

Here, these inequalities are always satisfied : their limit is ur < u` since ε[p(ρ)]`r
is bounded and [ρ]`r → 0. The intermediate density ρ̃ satisfies:

u` −

√
[ρ]`[εp(ρ)]`

ρ̃ρ`
= ur +

√
[ρ]r[εp(ρ)]r

ρ̃ρr
.

Therefore, εp(ρ̃) cannot be bounded (which would imply u` = ur since [ρ]` and
[ρ]r tends to zero). So εp(ρ̃) tends to +∞ as ε→ 0. From the Rankine-Hugoniot
relations, we have

[ρq + εp(ρ)]`[ρ]` = [q]2` ,

[ρq + εp(ρ)]r[ρ]r = [q]2r

Taking the limit of their quotient, we obtain:

lim
[εp(ρ)]`[ρ]`
[εp(ρ)]r[ρ]r

=

(
[q]`
[q]r

)2

, (70)
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Besides, we have:
[εp(ρ)]`[ρ]`
[εp(ρ)]r[ρ]r

∼
ε→0

[ρ]`
[ρ]r

∼
ε→0

ρ∗ − ρ`
ρ∗ − ρr

where the last equivalence results from the fact that (ρ∗ − ρ̃) = o(ε
1
γ ) and

(ρ∗ − ρ`,r) = O(ε
1
γ ). Finally, we have:

ρ∗ − ρ`
ρ∗ − ρr

=

(
εp(ρr)

εp(ρ`)

) 1
γ

→
ε→0

(
p̄r
p̄`

) 1
γ

This last result, combined with eq. (70), provides an equation for the interme-
diate momentum.

3. Let us suppose that ρε` > ρεr. The intermediate density satisfies ρεr <
ρ̃ε < ρε` and so tends to ρ∗. The intermediate momentum q̃ tends to ρ∗u`. The
1-rarefaction wave tends to a shock wave with infinite propagation speed (since
λ̃ε− and λε− tend to −∞), i.e. a declustering wave. We have now to determine
p̄. We have √

ρ̃

ρr

√
[ρ]r[εp(ρ)]r = −

√
ε[P (ρ)]`.

Since ρ̃− ρ` → 0, we have −[P (ρ)]` ∼ (ρ`− ρ̃)P ′(ρ`). We have P ′(ρ`) ∼ C(ρ∗−
ρ`)
− γ+1

2 . Then we have P ′(ρ`) ∼ C(ε
1
γ )−

γ+1
2 = Cε−

1
2−

1
2γ (since (ρ∗ − ρ`) =

O(ε
1
γ )). Besides (ρ` − ρ̃) ≤ (ρ∗ − ρr) = O(ε

1
γ ) and [ρ]r = O(ε

1
γ ) and , so we

have

[εp(ρ)]r =
ρr
ρ̃

(−
√
ε[P (ρ)]`)

2

[ρ]r
= O(ε

1
γ ).

So εp(ρ̃) tends to p̄r. The 2-shock wave disappears (since the intermediate and
the right state are identical). Then the limit solution consists of an instanta-
neous propagation of the right state.

A.2 The one-dimensional cluster collisions

The Riemann problem where both the left and right states are congested is
ill-posed since infinite pressure may appear to correct the discontinuity in the
pressure in the incompressible domain. Like in [17, 12, 8], we have to restrict to
the collision of finite congested domains. Consider two one dimensional clusters
which collides at a time tc. Before collision, the left (resp. right) cluster at time
t < tc extends between a`(t) and b`(t) (resp. ar(t) and br(t)) and moves with
speed:

u` = a′`(t) = b′`(t) (resp. ur = a′r(t) = b′r(t)).

After collision, the two clusters aggregate and form a new cluster at time t > tc
extending between a(t) and b(t) and moving with speed u = a′(t) = b′(t).
Therefore, ρ and u are given for t < tc by:

ρ = ρ∗1[a`(t),b`(t)] + ρ∗1[ar(t),br(t)], u = u`1[a`(t),b`(t)] + ur1[ar(t),br(t)],

47



and for t > tc by:
ρ = ρ∗1[a(t),b(t)], u = u1[a(t),b(t)].

where 1I denotes the indicator function of interval I. We denote by m =
b`(tc) = ar(tc) the collision point. We look for a pressure written as p̄(x, t) =
π(x)δ(t− tc). Conditions to have such kind of solution for the one-dimensional
version of (8)-(9)-(10) was obtained in [12]. We report them in the following
proposition.

Proposition 7 1- Supposing that p̄(x, t) = π(x)δ(t− tc) where π is continuous
and zero outside the clusters, then u and π have to satisfy

(u− u`)(m− a(tc)) + (u− ur)(b(tc)−m) = 0,

(71)

π(x) =

 ρ∗(u− u`)(m− x)
+ρ∗(u− ur)(b(tc)−m), if x ∈ [a(tc),m],

ρ∗(u− ur)(b(tc)− x), if x ∈ [m, b(tc)],
(72)

2 - Under conditions (71)-(72), (ρ, ρu, p̄) is a solution (in a distributional sense)
to the one-dimensional version of system (8)-(9)-(10).

Remark : We note that the solutions where the two clusters aggregate after the
collision is one among possibly multiple solutions. Another solution is given by
a bounce of the two clusters one against each other leading to a reflection of
the velocities. There are infinitely many such reflections which preserve total
momentum.

B Appendix : The two dimensional full time
and space discretization

The Direct method: We consider the 2D case with domain Ω = [0, 1] ×
[0, 1]. Denote (xi, yj) = (i∆x, j∆y), i = 0, · · · ,M1; j = 0, · · · ,M2, where M1 =
1/∆x,M2 = 1/∆y. Let U = (ρ, q)T , q = (q1, q2)T and Ui,j = U(xj , yj). To
simplify the notation, we define

F (U) =

(
q21
ρ + εp0(ρ)

q1q2
ρ

)
,G(U) =

(
q1q2
ρ

q22
ρ + εp0(ρ)

)
.

Then (1) and (2) can be written as

∂tρ+ ∂xq1 + ∂yq2 = 0,

∂tq + ∂xF (U) + ∂yG(U) +∇x(εp1(ρ)) = 0.

Denote

F n =

(
(qn1 )2

ρn + εp0(ρn)
qn1 q

n
2

ρn

)
, Gn =

(
qn1 q

n
2

ρn

(qn2 )2

ρn + εp0(ρn)

)
,
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∇i,j(εp1)n+1 =

(
Dx
i,j(εp1(ρ))n+1

Dy
i,j(εp1(ρ))n+1

)
=

(
Dx
i,j(εp1(ρn+1))

Dy
i,j(εp1(ρn+1))

)
,

where Dx
i,ju,D

y
i,ju are the centered difference operators for any scalar functions

u defined as follows

Dx
i,ju =

ui+1,j − ui−1,j

2∆x
, Dy

i,ju =
ui,j+1 − ui,j−1

2∆y
.

We also define the eigenvalues of the Jacobian matrix for two one-dimensional
hyperbolic system as follows:

λ(1) =
q1

ρ
,
q1

ρ
±
√
εp′0(ρ), λ(2) =

q2

ρ
,
q2

ρ
±
√
εp′0(ρ).

With the above notations, the full discretization of the scheme takes the follow-
ing form:

ρn+1
i,j − ρni,j

∆t
+

1

∆x

(
Q
n+ 1

2

i+ 1
2 ,j
−Qn+ 1

2

i− 1
2 ,j

)
+

1

∆y

(
Q̃
n+ 1

2

i,j+ 1
2

− Q̃n+ 1
2

i,j− 1
2

)
= 0,

qn+1
i,j − qni,j

∆t
+

1

∆x

(
F n
i+ 1

2 ,j
− F n

i− 1
2 ,j

)
+

1

∆y

(
Gn
i,j+ 1

2
−Gn

i,j− 1
2

)
+∇i,j(εp1)n+1 = 0,

where the fluxes are

Q
n+ 1

2

i+ 1
2 ,j

=
1

2

{
(q1)n+1

i+1,j + (q1)n+1
i,j

}
− 1

2
Ci+ 1

2 ,j
(ρni+1,j − ρni,j),

Q̃
n+ 1

2

i,j+ 1
2

=
1

2

{
(q2)n+1

i,j+1 + (q2)n+1
i,j

}
− 1

2
Ci,j+ 1

2
(ρni,j+1 − ρni,j),

F n
i+ 1

2 ,j
=

1

2

{
F n
i+1,j + F n

i,j

}
− 1

2
Ci+ 1

2 ,j
(qni+1,j − qni,j),

Gn
i,j+ 1

2
=

1

2

{
Gn
i,j+1 + Gn

i,j

}
− 1

2
Ci,j+ 1

2
(qni,j+1 − qni,j).

and

Ci+ 1
2 ,j

= max{|λ(1)
i,j |, |λ

(1)
i+1,j |, |λ

(2)
i,j |, |λ

(2)
i+1,j |},

Ci,j+ 1
2

= max{|λ(1)
i,j |, |λ

(1)
i,j+1|, |λ

(2)
i,j |, |λ

(2)
i,j+1|}.

Similar to the one-dimensional case, by inserting the momentum equation
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into the density equation, we can get the following elliptic equation

ρn+1
i,j −

∆t2

4

{
1

∆x2

[
εp1(ρn+1

i+2,j)− 2εp1(ρn+1
i,j ) + εp1(ρn+1

i−2,j)
]

+
1

∆y2

[
εp1(ρn+1

i,j+2)− 2εp1(ρn+1
i,j ) + εp1(ρn+1

i,j−2)
]}

= ρni,j −∆t(Dx
i,jq

n
1 +Dy

i,jq
n
2 )

+
∆t2

2

{
1

∆x2

[
(F n

i+3/2,j)
(1) − (F n

i+1/2,j)
(1) − (F n

i−1/2,j)
(1) + (F n

i−3/2,j)
(1)
]

+
1

∆x∆y

[
(Gn

i+1,j+1/2)(1) − (Gn
i+1,j−1/2)(1) − (Gn

i−1,j+1/2)(1) + (Gn
i−1,j−1/2)(1)

]
+

1

∆x∆y

[
(F n

i+1/2,j+1)(2) − (F n
i−1/2,j+1)(2) − (F n

i+1/2,j−1)(2) + (F n
i−1/2,j−1)(2)

]
+

1

∆y2

[
(Gn

i,j+3/2)(2) − (Gn
i,j+1/2)(2) − (Gn

i,j−1/2)(2) + (Gn
i,j−3/2)(2)

]}
+

∆t

2∆x

[
Ci+ 1

2 ,j
(ρni+1,j − ρni,j)− Ci− 1

2 ,j
(ρni,j − ρni−1,j)

]
+

∆t

2∆y

[
Ci,j+ 1

2
(ρni,j+1 − ρni,j)− Ci,j− 1

2
(ρni,j − ρni,j−1)

]
.

(73)

Here (F n
i+1/2,j)

(1) is the first component of the vector F n
i+1/2,j . Also similar to

the one-dimensional case, we solve the above elliptic equation to get first pn+1
1

then ρn+1. And once ρn+1 is derived, we can get qn+1 explicitly.

qn+1
i,j = qni,j −

∆t

∆x

(
F n
i+ 1

2 ,j
− F n

i− 1
2 ,j

)
− ∆t

∆y

(
Gn
i,j+ 1

2
−Gn

i,j− 1
2

)
−∆t∇i,j(εp1)n+1.

Gauge method: The Gauge method can be implemented in a similar way
as the 1D case. Indeed, we have the same elliptic equation for p1 (73) and the
following equations:

1

4∆x2

[
ϕn+1
i+2,j − 2ϕn+1

i,j + ϕn+1
i−2,j

]
+

1

4∆y2

[
ϕn+1
i,j+2 − 2ϕn+1

i,j + ϕn+1
i,j−2

]
=
ρn+1
i,j − ρni,j

∆t
− 1

2∆x

[
Ci+ 1

2 ,j
(ρni+1,j − ρni,j)− Ci− 1

2 ,j
(ρni,j − ρni−1,j)

]
− 1

2∆y

[
Ci,j+ 1

2
(ρni,j+1 − ρni,j)− Ci,j− 1

2
(ρni,j − ρni,j−1)

]
,

1

4∆x2

[
Pn+1
i+2,j − 2Pn+1

i,j + Pn+1
i−2,j

]
+

1

4∆y2

[
Pn+1
i,j+2 − 2Pn+1

i,j + Pn+1
i,j−2

]
= −1

2

{
1

∆x2

[
(F n

i+3/2,j)
(1) − (F n

i+1/2,j)
(1) − (F n

i−1/2,j)
(1) + (F n

i−3/2,j)
(1)
]
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+
1

∆x∆y

[
(Gn

i+1,j+1/2)(1) − (Gn
i+1,j−1/2)(1) − (Gn

i−1,j+1/2)(1) + (Gn
i−1,j−1/2)(1)

]
+

1

∆x∆y

[
(F n

i+1/2,j+1)(2) − (F n
i−1/2,j+1)(2) − (F n

i+1/2,j−1)(2) + (F n
i−1/2,j−1)(2)

]
+

1

∆y2

[
(Gn

i,j+3/2)(2) − (Gn
i,j+1/2)(2) − (Gn

i,j−1/2)(2) + (Gn
i,j−3/2)(2)

]}
,

an+1
i,j − ani,j

∆t
+

1

∆x

(
F n
i+ 1

2 ,j
− F n

i− 1
2 ,j

)
+

1

∆y

(
Gn
i,j+ 1

2
−Gn

i,j− 1
2

)
+∇i,jPn+1 = 0,

qn+1
i,j = an+1

i,j −∇i,jϕ
n+1.

This is the Gauge 2 method. And similar to the one dimensional case, we will
mainly test the Gauge 1 method with a smaller stencil in the Laplace equation
of ϕ and P :

1

∆x2

[
ϕn+1
i+1,j − 2ϕn+1

i,j + ϕn+1
i−1,j

]
+

1

∆y2

[
ϕn+1
i,j+1 − 2ϕn+1

i,j + ϕn+1
i,j−1

]
=
ρn+1
i,j − ρni,j

∆t
− 1

2∆x

[
Ci+ 1

2 ,j
(ρni+1,j − ρni,j)− Ci− 1

2 ,j
(ρni,j − ρni−1,j)

]
− 1

2∆y

[
Ci,j+ 1

2
(ρni,j+1 − ρni,j)− Ci,j− 1

2
(ρni,j − ρni,j−1)

]
,

1

∆x2

[
Pn+1
i+1,j − 2Pn+1

i,j + Pn+1
i−1,j

]
+

1

∆y2

[
Pn+1
i,j+1 − 2Pn+1

i,j + Pn+1
i,j−1

]
= −1

2

{
1

∆x2

[
(F n

i+3/2,j)
(1) − (F n

i+1/2,j)
(1) − (F n

i−1/2,j)
(1) + (F n

i−3/2,j)
(1)
]

+
1

∆x∆y

[
(Gn

i+1,j+1/2)(1) − (Gn
i+1,j−1/2)(1) − (Gn

i−1,j+1/2)(1) + (Gn
i−1,j−1/2)(1)

]
+

1

∆x∆y

[
(F n

i+1/2,j+1)(2) − (F n
i−1/2,j+1)(2) − (F n

i+1/2,j−1)(2) + (F n
i−1/2,j−1)(2)

]
+

1

∆y2

[
(Gn

i,j+3/2)(2) − (Gn
i,j+1/2)(2) − (Gn

i,j−1/2)(2) + (Gn
i,j−3/2)(2)

]}
.

Different from the one-dimensional case, now we are facing three elliptic
equations in each time step. In section 5.2, we will see some simulation results
and comparison for these two methods.
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