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ities and the efficient FC method in the rest of the computational domain, yield-
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solutions are smooth and problems for which solutions contain shock discontinuities;
in particular, in the latter case we compare the efficiency of the hybrid FC-WENO
method to that of a purely WENO-based approach. In a variety of examples, in-
cluding an Euler problem that governs the interaction of a strong shock with a very
small entropy wave, we show that the hybrid strategy is several times faster than
the pure WENO solver for a comparable level of accuracy.
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1 Introduction

Solutions of flow problems are often characterized by a challenging combina-
tion of sharp gradients, discontinuities and regions of complex but smooth flow
structures; an example of such situations is provided by the well known shock-
induced multi-material flow instabilities and the ensuing turbulent flows. To
accurately capture all regimes in such complicated flow structures it is nec-
essary to account adequately for both sharp shock discontinuities (without
introduction of oscillatory behavior near shocks) as well as complex smooth
flow structures. A well-known highly effective approach for the solution of the
compressible Navier-Stokes equations governing such flows is based on a high-
order weighted essentially non-oscillatory (WENO) finite difference method; in
particular, high-order WENO algorithms have been used to produce success-
ful simulations of the Rayleigh-Taylor instability [19] and Richtmyer-Meshkov
instability [20, 21] in two and three space dimensions.

Unfortunately, the WENO finite difference methods give rise to a much higher
computational cost than either the classical finite difference method or the
Fourier spectral method—owing, mainly, to certain costly WENO operations:
the characteristic decomposition of fluxes and the calculation of nonlinear
weights for smooth and non-smooth flux contributions. Given the overall com-
plexity required by WENO solutions of the unsteady Navier-Stokes equations
in three space dimensions, it is essential to strive for more efficient solution
strategies.

For the types of applications under consideration, the solution discontinuities
are mainly local phenomena in both space and time, which suggests that a
hybrid scheme could advantageously be used whereby the “expensive” WENO
procedure is only used in parts of the space-time domain containing discon-
tinuities, while a less costly, high-order numerical method is employed for
the portion of the domain containing complex but smooth features. Such an
approach requires use of a multi-domain formulation in which, at regular dis-
crete time intervals, a discontinuity-sensing procedure is used to identify the
sub-domains with either smooth or discontinuous content and adjust the com-
putational solution approach accordingly.

The development of such a hybrid approach can be based on use of an efficient
numerical method for smooth regions together with an effective “smoothness-
indicator” strategy for identification of areas of smoothness and discontinuity.
For the former, the classical central difference (upwind-biased or unbiased) and
the Chebyshev-based spectral methods are both natural choices. To accurately
identify discontinuities, on the other hand, the multi-resolution algorithm of
Harten [7], which is based on differences of the point-values of a function
and its high-order interpolated function on coarser grids has been shown to
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perform well [8, 9]. In fact, in the contributions [8, 9] a hybridization of spectral
Chebyshev and WENO methods for conservation laws in one and two space
dimensions is proposed and applied to a complex simulation of early-stage
two-dimensional Richtmyer-Meshkov instability. The preference of Chebyshev
spectral methods over the central difference methods lies in the possibility
of achieving higher order of accuracy near the non-periodic boundaries and
solutions free of dispersion error (also known as pollution error). Absence of
dispersion error is crucial for efficient simulation of problems with a wide range
of spatial and temporal scales including transitional and turbulent flows [23].

An unfortunate consequence of the use of the Chebyshev spectral method is the
presence of grid points that cluster near the boundaries of each such interval or
sub-domain. On the other hand, the WENO finite difference method is defined
on an equidistant grid, and thus the two underlying grids in a Chebyshev-
WENO hybrid do not conform in any natural manner. This implies that extra
interpolation operations are required for transfer of data at overlapping regions
between adjacent domains with two different discretization schemes, on one
hand, and for the purpose of multi-resolution analysis, on the other. Further,
for explicit time integration strategies, since the minimum grid spacing for the
Chebyshev-Gauss-Lobatto points is O(1/N2), where N is the number of grid
points along a one dimensional mesh, the hybrid Chebyshev-WENO methods
requires a much smaller (O(1/N2)) time step than a scheme based on an
equidistant grid.

In the present work we propose an alternative approach in which we hy-
bridize the WENO method with a recently proposed Fourier continuation
(FC) method [1, 4, 5]. (Here we restrict our considerations to one dimensional
problems. In view of the contributions [1, 4, 5], which concern FC methods for
PDEs in two and three spatial dimensions, however, we expect our FC-WENO
approach should be applicable and, indeed, highly competitive for systems of
conservation laws in both two- and three-dimensional space.) The FC approx-
imation is based on a high-order periodic continuation of a (possibly non-
periodic) function, yet being a Fourier method, the FC approximation retains
the equi-spaced grid points, has no dispersion (pollution) error, and, owing
to its reliance on the Fast Fourier Transform, it is highly efficient. Further,
in view of the FC method’s use of equi-spaced grids, the interface with the
WENO approach is much simpler and more effective than the one associated
with the Chebyshev-WENO approach.

The remainder of the paper is organized as follows. In Sec. 2 we describe the FC
method for approximation of functions, and in Sec. 3 we introduce our multi-
domain FC-WENO hybrid method for conservation laws in one-dimensional
space. In Sec. 4 we then present a variety of numerical results for problems
governed by the advection equation, the inviscid Burgers’ equation and the
Euler system in one space dimension. In this section we thus demonstrate the
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accuracy and stability of the FC method in the context of advection problems
with smooth solutions in both single-domain and multi-domain formulations,
and we assess the efficiency of our method, in terms of accuracy and speed, by
comparing it with the pure WENO method and other related methodologies,
in the context of challenging computational problems—including nonlinear
systems of conservation laws with discontinuous solutions. In Sec. 5, finally,
we present a few concluding remarks.

2 The Fourier Continuation approximation

Given a (typically non-periodic) function f over the interval [0, 1] and given
values of f at an N -point equi-spaced grid {xk}Nk=1 ⊆ [0, 1], the Fourier Contin-
uation (Extension) method seeks to produce, on the basis of the given values
{f(xk)}Nk=1, a periodic function f̃ defined over a larger domain [0, 1 + d] that
is defined by a finite number M of Fourier modes,

f̃(x) =
∑

j∈g(M)

âje
( 2πi

1+d
jx), (1)

and that matches closely the original function f throughout the original in-
terval [0, 1]. Here g(M) = {j ∈ N| −M/2 + 1 ≤ j ≤ M/2} for M even and
g(M) = {j ∈ N| − (M − 1)/2 ≤ j ≤ (M − 1)/2} for M odd. In general, N
should be chosen larger than M due to the intrinsic ill-conditioning of the re-
sulting linear system; as shown in [2, 3], the least-squares solution via singular
value decomposition of the overdetermined system

f̃(xk) =
∑

j∈g(M)

âje
( 2πi

1+d
jxk) ∀k = 1, · · · , N, (2)

for the coefficients âj leads to an effective Fourier Continuation strategy.

As an alternative method for eliminating the ill-conditioning without incurring
the high O(N3) computational cost that arises from the evaluation of the
singular value decomposition [6] mentioned above (which, in application to
solution of PDEs is prohibitively expensive), the contribution [4] proposes the
following strategy: at first the restriction of the function f to certain very small
subintervals of [0, 1] containing the endpoints 0 and 1 (boundary intervals) are
projected onto a space of discrete orthogonal polynomials (Gram polynomials
([25])) of small degree, and Fourier continuation of orthogonal bases of these
spaces are precomputed using fine submeshes. The continuation of the original
function then proceeds, at FFT speeds, using the projection coefficients of the
function at the boundary segments.

In detail, let the left and right boundary segments of the original interval [0, 1],
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of equal size ∆, be denoted by ∆left and ∆right. Moreover, let the corresponding
orthogonal (Gram) polynomial basis of degree ≤ p be based on a number γ
of equi-spaced grid points in ∆right and ∆left be φleft

l and φright
l , l = 0, · · · , p.

Using the boundary intervals ∆left and ∆right (instead of the entire interval)
we seek periodic extensions of the basis over the interval [1 −∆, 1 + ∆ + 2d]
(with periodicity of 2∆ + 2d) such that the extensions interpolate the basis
functions over ∆right and 1+d+∆ at a sufficiently large number of equi-spaced
grid points. In other words, we seek functions ψ̃`(x) of the form

ψ̃`(x) =
∑

j∈m(g)

â`
je

( πi
∆+d

jx), (3)

where the coefficients â`
j are found by requiring, in the least squares sense,

that
ψ̃`(yk) =

∑
j∈m(g)

â`
je

( πi
∆+d

jyk) = φright
` (yk) (4)

and
ψ̃`(yk + ∆ + d) =

∑
j∈m(g)

â`
je

( πi
∆+d

j(yk+∆+d)) = φleft
` (yk + ∆ + d) (5)

with

yk = 1−∆ +
k∆

γ − 1
k = 0, · · · , Q− 1 (6)

for an adequately large value of Q. Setting φright
` (yk) = φleft

` (yk + ∆ + d),
` = 0, · · · , p and k = 0, · · · , Q− 1, for periodicity of the function in [0, 1 + d],
along with the uniqueness of the continuation dictate that all odd modes be
zero. The Fourier extension of the basis functions then reduces to

ψ̃`(x) =
∑

j∈m(g)

â`
je

( πi
∆+d

jx), j even, (7)

where the coefficients âj are obtained by solving the overdetermined linear
system

ψ̃`(yk) =
∑

j∈m(g)

â`
je

( πi
∆+d

jyk) = φr
l (yk) j even (8)

(As noted in [4], this calculation should be performed in high-precision arith-
metic, and the small number of associated coefficients should be stored for use
as part of the any general domain PDE solver.) To include the odd modes in
the continuation of the basis function we consider functions ζ̃`(x) such that
they approximate, in the least squares sense, φ`(x) and −φ`(x + ∆ + d) in
∆right and 1 + d+ ∆left, respectively:

ζ̃`(yk) =
∑

j∈m(g)

b̂`je
( πi

∆+d
jyk) = φright

` (yk) (9)

and

ζ̃`(yk + ∆ + d) = −
∑

j∈m(g)

b̂`je
( πi

(∆+d)
j(yk+∆+d)) = −φleft

` (yk + ∆ + d). (10)

5



In this case all the even modes are zero and the Fourier extensions become

ζ̃`(x) =
∑

j∈m(g)

b̂`je
( πi

∆+d
jx), j odd, (11)

where the coefficients b̂`j are obtained by solving the linear system

ζ̃`(yk) =
∑

j∈m(g)

b̂`je
( πi

∆+d
jyk) = φright

` (yk) j odd. (12)

Having computed ψ` and ζ` through Eqs. (7), (8), (11) and (12), we can
now define the Fourier continuation approximation of the original function as
follows: using the discrete inner products

f̂ right
` = (f, φright

` ), (13a)

f̂ left
` = (f, φleft

` ), (13b)

over γ equi-spaced grid points in ∆right and ∆left, respectively, the periodic
extension f̃ of f is obtained as

f̃(x) = f(x) 0 ≤ x ≤ 1, (14a)

f̃(x) =
∑

`

(
f̂ right

` + f̂ left
`

2
)ψ`(x) +

∑
`

(
f̂ right

` − f̂ left
`

2
)ζ̃`(x) 1 < x ≤ 1 + d.

(14b)

Remark 1. For our numerical examples we have taken the maximum polyno-
mial degree as p = 5, the number of boundary points γ = p + 1 = 6, and
d/∆ = 25/5. The extensions ψ` and ζ` are computed using Q = 150 and
g = 63. Note that these functions are computed only once and their values are
stored at xk = 1 + k/26, k = 1, · · · , 25. These function values are then used
for the computation of the extension of a general function through Eq. (14b).

Remark 2. It is interesting to note that, while the polynomial projection of
the original function implies a finite order of convergence of the method, the
Fourier continuation still retains the desirable property of having no pollution
error (as demonstrated in Sec. 4): for a certain accuracy level, as the wave
number of the solution increases, the required number of points per wave
length remains constant.

3 Multi-domain Fourier-Continuation/WENO hybrid method

In the following we describe the three main elements of our multi-domain
hybrid FC-WENO method for solution of conservation laws. Our method is
based on use of the FC method for the smooth portions of the solutions, the
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WENO method for regions with steep gradients or discontinuous solutions,
and the smoothness indicator, which allows us to determine when to switch
between the two techniques. For the temporal discretization, we use a standard
third-order total total variation diminishing (TVD) Runge-Kutta method [24].

3.1 FC method for conservation laws with smooth solutions

For simplicity, in this section we consider smooth solutions of a nonlinear
conservation law of the form

∂u(t, x))

∂t
+
∂f(u(t, x))

∂x
= 0, (15)

defined on a one-dimensional spatial domain Ω = [a, b] in the time interval
[0, T ], subject to appropriate initial and boundary conditions. Given a set
of equi-spaced grid points, xk = k(b − a)/(N − 1), k = 0, · · ·N − 1, we
seek uh(t, xk), an approximation to u(t, xk), which satisfies the equation in
a collocation sense

∂uh(t, xk)

∂t
+
∂uh(t, xk)

∂x

f(uh(t, xk))

∂u
= 0 ∀k = 0, · · · , N − 1. (16)

Note that we have not expressed our equation in conservation form, since the
form (16) of the equation leads to a more efficient smooth-region algorithm.

The spatial derivative ∂uh(t,xk)
∂x

is computed using the Fourier continuation of
the numerical solution. In view of equation (2) we have the Fourier continua-
tion expansion of uh(t, xk),

uh(t, x) =
∑

j∈g(M)

âj(t)e
( 2πi
b+d−a jx), (17)

and the spatial derivative is computed as

∂uh(t, xk)

∂x
=

∑
j∈g(M)

2πij

(b+ d− a)
âj(t)e

( 2πi
b+d−a jxk). (18)

As we observe in Sec. 4, this approach may be weakly unstable when we
apply Dirichlet boundary conditions or domain splitting. To remedy this, we
use a very weak exponential filter to damp out high-frequency modes and
thus stabilize the numerical method with minimal adverse impact on accuracy
[16]. Specifically, after computing the Fourier coefficients âj(t) on the extended
domain, we compute the modified coefficients ãj(t), as

ãj(t) = exp(−β(|j|/N/2)2q)âj(t), (19)
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leading to a modified version of (18)

∂uh(t, xk)

∂x
=

∑
j∈g(M)

2πij

b+ d− a
ãj(t)e

( 2πi
b+d−axkj). (20)

In (19), we choose β such that the highest mode, ãN/2(t), vanishes that is,
β = −log(εM), where εM is the machine precision, typically 10−16. In this
work, the filter order, q, is typically chosen q ≈ N/2 for N < 200. For larger
N > 200, the order of the filter is required to be lowered, q < N/2, to maintain
stability. The impact of such a weak filter is minimal, as is demonstrated clearly
by the numerical examples discussed later in this text.

Remark 3. For nonlinear problems, the use of exponential filter serves the
additional purpose of removing energy accumulated at high frequencies, and
thus stabilizing the calculations by controlling aliasing errors.

Remark 4. Note that with p = 5 in the FC approximation, the derivative
computation is technically fifth-order accurate, i.e., our FC method for the
conservation law (15) with smooth solution is formally fifth-order accurate.

Remark 5. Regarding the implementation of the derivative calculations, the
Fourier coefficients in (17) are first computed using a fast Fourier transform
(FFT) and point-values of the derivatives in (20) are obtained using an inverse
FFT. Both steps, FFT and inverse FFT, can be computed with a complexity of
O(N log(N)). Alternatively, the derivative calculation can be performed using
a matrix-vector product with a cost of O(N2), where the matrix representing
the effect of differentiation and the vector being the collocation values of the
function [17]. For larger values N , the former is clearly preferred and that is
the approach we consider here.

Remark 6. Equation (16) is in non-conservative form. The equivalent conser-
vative form (for smooth problem) is

∂uh(t, xk)

∂t
+
∂f(uh(t, xk))

∂x
= 0 ∀k = 0, · · · , N − 1. (21)

In all our numerical tests, both conservative and non-conservative FC dis-
cretization of the conservation laws yield almost identical results. Our pref-
erence for the non-conservative form is guided by efficiency. While the non-
conservative form requires only the continuation of u and its filtering, the
conservative form requires continuation and filtering of both u and the flux,
f(u) and, thus, renders the scheme more expensive.

Remark 7. In the multi-domain formulation of the FC method, the stability is
achieved by considering overlapping domains. For the fifth-order FC method,
we found empirically that an overlap of three grid points is sufficient for sta-
bility.
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3.2 WENO Methods for conservation laws with discontinuous solutions

WENO finite difference methods are finite difference schemes tailored to con-
servation laws involving discontinuous solutions—or, more generally, solutions
which contain steep gradients. The details of the WENO schemes are well-
documented [12, 15], and we therefore give only a brief presentation of the
essential elements of these methods.

A classical spatial finite difference discretization of (15) seeks point-wise en-
forcement of the equation at a set of equi-spaced grid points xk = k(b −
a)/(N − 1), k = 0, · · ·N − 1, as

∂uh(t, xk))

∂t
+
f̂(t, xk+1/2)− f̂(t, xk−1/2)

∆x
= 0, (22)

where ∆x = xk − xk−1, uh(t, xk) is a numerical approximation of u(t, xk) and
where f̂(t, xk+1/2) is a numerical flux. The numerical flux (with shorthand

notation f̂k+1/2) is defined using a numerical solution at xk and r solutions to
the left and s solutions to the right of xk:

f̂k+1/2 = f̂(uk−r, · · · , uk+s). (23)

Here f̂ is required to be Lipschitz continuous in all arguments and consistent
with the physical flux f , that is, f̂(u, · · · , u) = f(u). Based on the Lax-
Wendroff theorem, the solution of this conservative scheme, if it converges,
converges to the weak solution of the original equation (15). The precise choice
of the numerical flux f̂i+1/2 is obtained using a high-order WENO reconstruc-
tion procedure outlined below.

To guarantee entropy dissipation, the solution flux is first split into positive
and negative parts using Lax-Friedrichs splitting as f(u) = f+(u) + f−(u),

with f+(u) = (f(u)+αu)/2, f−(u) = (f(u)−αu)/2, and α = maxu
df(u)
du

. The
reconstruction is then applied for each positive and negative fluxes separately,
before adding up to give the numerical flux.

A finite difference reconstruction of the flux, for instance for f+(uj+1/2), can
be computed using solutions in q different stencils,

Sr(k) = xk−r, · · · , xk−r+q−1 r = 0, · · · , q − 1, (24)

as

f̂+
r (uk+1/2) =

q−1∑
n=0

Cr,nf
+(uk−r+n). (25)

The constant coefficients Cr,n (given in [11] up to order seven) are chosen
such that the approximate solution is accurate with to order q in regions in
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which the exact solution is sufficiently smooth. On the other hand, if in a
stencil, the solution or one of its j-derivatives j ≤ q contains a discontinuity,
that stencil must be excluded from the flux approximation. This nonlinear
procedure is referred to as an essentially non-oscillatory (ENO) schemes [14].
A slightly modified approach, offering computational advantages (see [11]), is
to consider a convex combination of all computed fluxes f+

r (uj+1) in q stencils
as

f+(uk+1/2) =
p−1∑
r=0

wrf
+
r (uk+1/2), (26)

where wr is chosen such that the approximation is of order 2q − 1 accuracy
in cases where the solution is sufficiently smooth in all stencils. An explicit
expression for wr, based on a local smoothness indicator for orders q = 2, and
3, are given in [10] and for higher orders up to q = 6 in [13].

Remark 8. For system of conservation laws, such as the Euler equations, it is
essential to apply the WENO reconstruction to the fluxes in the eigenvector
space. This is performed through multiplication of the flux vectors with the
left eigensystem. The reconstructed fluxes are then transferred back to the
conservative fluxes through multiplication with the right eigensystem [10].

3.3 Detecting the discontinuities

Detecting discontinuities in the solution or its derivatives is crucial for the
hybrid strategy to be effective. For systems of nonlinear conservation laws
like the Euler system of gas dynamics, the location of the discontinuities,
e.g. shocks, are not known a priori and propagate as the solution advances.
We therefore need to extract smoothness information from the solution field
at regular intervals in the time integration procedure. To this end, the multi-
resolution (MR) analysis introduced by Harten [7] and later used in the context
of a hybrid spectral-WENO method by Costa and Don [8] has proven quite
effective. We present a brief description of this approach in what follows; a
detailed account can be found in [7, 8].

Using the solution values f 0
k at the set of equi-spaced grid points x0

k (k =
2, · · · , 2N + 1) at which the discretized governing equations are solved, we
construct the solution averages f 1

k at one level coarser grid points x1
k with

k = 1, · · · , N as

f 1
k =

f 0
2k + f 0

2k+1

2
∀k = 1, · · · , N. (27)

Let ps(x) denote the polynomial approximation of order s interpolating f 1
k at

the coarser grid points x1
k. The approximation differences, dk = f 0

k − ps(x
0
k),

have the property that if f(x) has r − 1 continuous derivatives and a jump
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discontinuity at rth derivative, then

dk =

 ∆xright[drightfk
dxright ] s ≥ r,

∆xs dsfk
dxs

s < r,
(28)

where ∆x denotes the coarse grid spacing and where [·] denotes jumps across a
discontinuity. This implies that the higher the smoothness of the solution, and
the higher the order of the polynomial approximation on the coarser grid (in
the case of smooth function) is, the smaller the approximation differences, dk.
We thus adopt a tolerance ε, below which the function is assumed to be smooth
and otherwise non-smooth. Once we have found the approximate locations of
shocks by this method, the domains containing smooth solutions are treated
by the FC method and those with non-smooth solutions are treated by the
WENO scheme.

Remark 9. Note that for low resolution (i.e., for representations of the solution
using a small number of spatial grid points) the multi-resolution analysis may
fail to distinguish between a discontinuity and a large smooth solution gra-
dient. An illustration of this fact is presented below in the case of the Euler
system. In such regions, the algorithm assumes the solution to be non-smooth
and it therefore evolves the solution by means of the WENO approach.

4 Numerical Examples

In this section we first present results produced by our FC algorithm for advec-
tion equations with smooth solutions, and we include comparisons with results
produced by means of central difference (CD) methods. We then consider a
number of results for the inviscid Burgers’ equation, and finally, we present
an extensive set of comparisons of our hybrid FC-WENO method with pure
WENO for shock-entropy-wave-interaction problems. In the below FC-WENO
hybrid calculations, for the multi-resolution analysis, we used the order of the
interpolating polynomial on the coarse grid s = 9, and the tolerence ε ≈ 1.0−4.

4.1 Advection equation

We consider the advection equation, Eq. (15) with f(u(t, x)) = u(t, x), in a
periodic spatial domain [0, 2π] with a sinusoidal initial condition u = sin(κx)
and we solve the problem using three different methods: a fifth-order Fourier
continuation (FC5) method, a fifth-order central difference (CD5) and a sixth-
order central difference (CD6) method [26].
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Fig. 1. Comparison of accuracies resulting from the fifth-order Fourier continuation
(FC5) method and the central difference methods of orders 5 and 6 (CD5 and CD6,
respectively) for the solution of the advection equation with a sinusoidal exact
solution. The figure displays the maximum percent error (over all time steps to
final time T = 100) as a function of the wave-number for 20, 15 and 10 points per
wavelength (PPW) for CD5, CD6 and FC5, respectively.

The results at the final time T = 100 are compared in Fig. 1, which shows
the maximum error over all time as a function of the wave number κ. For
the FC5 method we assume 10 points per wave length (PPW) and CD5 and
CD6 having 20 and 15 PPW, respectively. We observe that while error grows
linearly with increasing wave number for the central difference methods, the
situation is quite different for the FC method—for which the error remains
constant at around 1%. This illustrates the significant advantage provided by
the FC method over central difference methods for multi-scale problems with
wide frequency spectra. It is remarkable that due to the accumulation of phase
error, the pollution error of the central difference method cannot be entirely
eliminated by increasing the approximation order.

We next study the rate of convergence of the FC5 method for solving the
advection equation in the spatial domain [0, 1] with the low-frequency exact
solution u(t, x) = exp(cos(x− t)). In Fig. 2 the maximum error over all time
steps up to the total time T = 100 are plotted versus the grid spacing for
the FC5 method and, for comparison, for the CD5 and CD6 methods as well.
As expected, the FC5 method delivers approximately fifth-order accuracy.
The performance of the FC method for solving the advection equation in the
presence of Dirichlet boundary condition, with and without the use of the
exponential filter, is shown in Figs. 3(a) and (b). In Fig. 3(a), the maximum
error against time is plotted for filtered and unfiltered numerical solutions.
While the unfiltered solution exhibits numerical instabilities characterized by
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Fig. 2. Comparison of accuracies resulting from the fifth-order Fourier continua-
tion (FC5) method and the central difference methods of order 5 and 6 (CD5 and
CD6, respectively) for the solution of the advection equation with exact solution
u = exp(cos(x− t)). The figure displays the maximum percent error (over all time
steps to final time T = 100) as a function of the spatial grid size. For each data set,
the slope of the best curve fit is also shown.

rapid increase of the error, the filtered solution remains stable with small
oscillations in error. Moreover, as seen in Fig. 3 (b), the filter does not have
an adverse effect on the convergence rate, since the filtered solution exhibits a
sixth-order average convergence rate. We note that an alternative to filtering
that also achieves stability for the advection equation is the use of certain
modifications to the FC method that are introduced in [1]. However, since
we will be using the filter to control energy accumulation in the following
treatment of nonlinear problems in any case, we do not make use of these
modifications in the present work.

Finally, we demonstrate that the rate of convergence of the FC5 remains ap-
proximately unchanged for the multi-domain formulation. To this end, we solve
the advection equation in [0, 2π] with the exact solution u(t, x) = exp(6 cos(x−
t)) and periodic boundary condition using different numbers of domains ND =
4, 8, 16, and 32 and a fixed number of points per domains NP = 21. The re-
sults for the total time T = 100 are depicted in Figure 4, showing an average
rate of convergence of 5.6.
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Fig. 3. (a) Stability of the fifth-order Fourier continuation (FC5) as applied to the
solution of the Dirichlet problem for the advection equation considered in the text,
in the interval [0, 1], and with exact solution given by u = exp(6 cos(x− t)). For this
tests we have used NP = 21 and we show results with and without the use of an
exponential filter. (b) Convergence as a function of the grid size for the filtered FC5
method in the solution of the problem consider in the portion (a) of this figure. In
(b), the best line fit to data and its slope are also shown.

4.2 Burgers’ equation

We consider the inviscid Burgers’ equation obtained by setting f(u(t, x)) =
u2(t, x)/2 in (15). The computational domain is [−1, 1] with periodic boundary
conditions and the initial condition is taken to be u(0, x) = (1 + sin(πx))/2.
We first study the accuracy of the FC5 method for Burgers’ equation using
both single-domain and multi-domain formulations. In Fig. 5, the maximum
error is plotted versus the grid spacing for the final time T = 0.25, where
the solution remains smooth. For the single-domain method, the number of
points NP = 21, 41, 81, and 161, and for the multi-domain form NP = 21
and the number of domains are ND = 1, 2, 4, and 8. As is clear from the
figure, the single- and multi-domain variants leads to comparable accuracy
levels and convergence rates of 5.5 and 5.3, respectively. (An improved multi-
domain strategy, by which these slight differences in accuracy are avoided, is
presented in reference [1].)

We also consider Burgers’ equation at the later time T = 0.75, by which time
a discontinuity in the solution has appeared, as produced by two different
methods: the proposed hybrid FC-WENO method with fifth-order accuracy
for both the FC and the WENO parts (FC5-WENO5), and a pure fifth-order
WENO (WENO5) scheme. The computed solutions are shown in Figure 6(a),
while the convergence rates are depicted in Figure 6(b). As is evident from the
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u = exp(6 cos(x − t)) and periodic boundary condition. The final time is T = 100
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each. The best line fit to data and its slope are also shown.

figures, both the hybrid FC5-WENO5 and the pure WENO5 methods yield
almost identical solutions and convergence rates of 0.8 in the L1 error norm.

4.3 The Euler system

The Euler equations in one-dimensional space are given by

∂u

∂t
+
∂f(u)

∂x
= 0, (29)

where u = [ρ, ρv, ρE] and f(u) = [ρv, ρv2 + p, (ρE + p)v]. Here, ρ, v, E and
p, which represent, respectively, the density, the velocity, the total energy and
the pressure, are subjected to appropriate initial and boundary conditions.

We consider two test problems, both featuring the interaction of a Mach 3
shock with an entropy wave. The first problem (a shock/small-entropy-wave
interaction case), features a small amplitude entropy wave, and allows for
a quantitative comparison of our computed solutions with analytical results
obtained using a linear analysis of the Euler equations. The second problem,
(a shock/entropy-wave interaction configuration), involves an entropy wave
with finite amplitude. No exact solution is known for this case.
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Fig. 5. Convergence of the fifth-order Fourier continuation (FC5) method
for the solution of the Burgers’ equation in [−1, 1] with initial condition
u(0, x) = (1 + sin(πx))/2. Results are obtained at the final time T = 0.25 for
both multi-domain and single domain formulations. For single-domain method, the
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Fig. 6. (a) Discontinuous solution of Burgers’ equation at T = 0.75 computed using
the hybrid FC5-WENO5 method; (b) Convergence of the pure WENO5 and hybrid
FC5-WENO5 for the same test. In (b), the best curve fit to data and its slope are
also shown.
4.3.1 Shock/small-entropy-wave interaction test

In order to quantify the performance of the hybrid FC-WENO methods we
consider the interaction of a right-moving Mach 3 shock with a very small
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entropy wave. The spatial domain is [−10, 10] and the initial and boundary
conditions are given by

(ρ, v, p)(0, x) =


(3.857143, 2.629369, 10.33333) x ≤ −9.5,

(1.0, 0.0, 1.0) − 9.5 ≤ x ≤ −8.85,

(exp(−0.01 sin(13(x− 8.85))), 0, 1.0) x > −8.85,

(30)
The effect produced by a strong shock as it passes through a very small entropy
wave is characterized by a sudden rise in the wave frequency and a sudden
decline in the wave amplitude. These discontinuous changes in the frequency
and amplitude, which are functions of the mean flow Mach number, can be
obtained accurately, for sufficiently small entropy waves, through analysis of
the linearized Euler equations [18]—thus allowing a quantitative assessment
of the accuracy of our hybrid method.

We now present some quantitative results for solutions of the Euler system
with the above initial conditions at the final time T = 5.0, and for three
different settings. Considering first a high-resolution (fine) calculation using
the pure ninth-order WENO (WENO9) method with the total number of grid
points NP = 10241, we find that the computed entropy amplification for the
fine calculation is within 0.1% of the amplification factor of 0.841037 produced
by the linear analysis [18]. The fine result is thus considered exact up to this
error tolerance. We then compare these values to those obtained by means of
two low-resolution (coarse) calculations using the pure WENO5 method with
NP = 2561 and the hybrid FC5-WENO5 with NP = 33 and the number of
domains ND = 80, hence an equivalent of total grid points of 2561.

Figure 7 (a) depicts the computed entropies for the three methods and Fig.
7 (b) is a close-up view of the same data. As seen from Fig. 7 (b), right
behind the shock (x ≈ 8.0), both coarse calculations yields results very close
to that of the high-resolution computation. Away from the shock (x ≈ 4.0),
in contrast, the computed entropy using the WENO5 method displays much
larger dissipation as compared to that of the FC5-WENO5.

To overcome the excessive damping, we replaced the fifth-order WENO with
a ninth-order WENO discretization for the coarse calculations and repeated
the same test. The results are shown in Fig. 7 (c). Comparing the results
in Fig. 7 (c) with those in Fig. 7 (b) clearly indicates that increasing the
order of WENO scheme from five to nine yields more accurate entropy field
in particular for the pure WENO method and improved agreement with the
result of the hybrid scheme.

We next give a detailed quantitative comparison of the results produced by our
hybrid FC-WENO solver with those resulting from the pure WENO method
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Fig. 7. Entropy profiles for shock-small-entropy-wave-interaction test at the total
time T = 5.0; (a) The entropy profile computed using the pure WENO9 with 10241
grid points - treated as the exact solution, and two coarse results obtained using a
pure WENO5 with 2561 grid points and the hybrid FC5-WENO5 with NP = 33 and
ND = 80, and, hence, the same total number of grid points. (b) close-up view of the
same results, showing the inaccuracy of the WENO5 and FC5-WENO5 results; (c)
close-up view of the entropy profiles obtained using the same setting as in (a) except
for in the coarse calculations the fifth-order WENO is replaced by the ninth-order,
demonstrating improved accuracy and agreement with the fine WENO9 results.

for the entropy amplification at two different Mach numbers. Tables 1 and 2
presents results for Mach three and Table 3 for Mach six. In the upper half of
Table 1, the percent error in entropy amplification at two locations near to and
far from the shock (x ≈ 4.0 and x ≈ 8.0, respectively) and total CPU times
(seconds) are given for the WENO5 and FC5-WENO5 methods. In the lower
half the same quantities are listed for the WENO9 and FC5-WENO9 methods.
For the hybrid method we chose ND = 80 and NP = 33, and for the pure
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WENO methods we use the equivalent total number of points NP = 2561.
The error calculations are based on the analytical entropy amplification factors
obtained using linear analysis . These are 0.841037 and 0.68485 for Mach
numbers three and six, respectively (see [18], Eq. (7)).

Several points should be noted in connection with Table 1. First, the ninth-
order WENO method yields lower error than the fifth-order WENO version,
as expected. Second, the hybrid schemes are faster than the corresponding
pure WENO schemes, with a threefold advantage in the fifth-order case and a
sixfold in the ninth-order case. Finally, using WENO9 instead of WENO5 in
a hybrid scheme significantly improves the accuracy with a minor increase in
total cost. This confirms that, indeed, it is highly advantageous to exploit the
fact that only a small percentage of domains need to be treated by the WENO
method in the hybrid scheme, and, further, it shows that it is beneficial to
use WENO9 instead of WENO5 in the hybrid approach—since the increased
cost of the WENO9 compared to WENO5 (which is approximately twofold)
leads to a very small increase in the total cost of the hybrid algorithm. The
actual number of WENO domains averaged over all time steps in the hybrid
computations of this test problem is approximately two.

Table 2 reports data similar to that in Table 1, but with one level higher in the
resolution: ND = 160. As seen from the table, the increased resolution yields
increased accuracy. For instance, the errors in the WENO9 and FC-WENO9
results drop below one percent. Similar to the former case, the hybrid approach
appears several-fold faster than the pure WENO method.

Table 3, finally, presents data for a higher value of the Mach number, namely,
Mach six, demonstrating similar trends as for the lower Mach number data—
except for the fact that, in this case, the error values are uniformly larger than
those presented in Table 2. This is expected since higher Mach numbers give
rise to larger solution gradients, and hence require higher resolution for the
same level of accuracy.

We also considered a different version of hybrid schemes in which a six-order
central difference (CD6) method was combined with the WENO9 method.
For this problem we did observe that at a comparable level of accuracy, this
combination appears to be approximately twice as fast as the FC5-WENO9
hybrid. The recent contribution [1] presents a FC solver of twelfth order of
accuracy. Hybridization of that solver with a WENO method, which is left for
future work, is expected to give rise to higher efficiencies than the CD6-WENO
hybrid. But, in any case, owing to its superior control of pollution error (see
Figure 1) and general ability to handle complex, non-periodic domains at high
order (as discussed in detail in the introduction sections of references [4, 5]),
the FC5-WENO9 method is itself expected to be significantly more efficient
and flexible than CD6-WENO in applications involving general geometries
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Error in entropy amplification, Mach = 3.0, T = 5.0

ND = 80, NP = 33, ∆t = 6.8× 10−4

Method Error near shock Error far from shock CPU time(s)

WENO5 10.5% 22.6% 99.0

FC5-WENO5 10.4% 10.2% 32.0

WENO9 4.4% 4.0% 188.0

FC5-WENO9 4.4% 4.1% 35.0
Table 1

Error in entropy amplification, Mach = 3.0, T = 5.0

ND = 160, NP = 33, ∆t = 3.4× 10−4

Method Error near shock Error far from shock CPU time(s)

WENO5 3.1% 3.1% 396.0

FC5-WENO5 3.4% 3.3% 119.0

WENO9 0.7% 0.61% 753.0

FC5-WENO9 0.7% 0.6% 126.0
Table 2

Error in entropy amplification, Mach = 6.0, T = 2.5

ND = 160, NP = 33, ∆t = 2.1× 10−4

Method Error near shock Error far from shock CPU time(s)

WENO5 6.5% 7.7% 325.0

FC5-WENO5 7.3% 7.2% 98.0

WENO9 1.8% 1.7% 618.0

FC5-WENO9 1.8% 1.8% 106.0
Table 3

and high frequencies in two and three dimensions—and, thus, in particular,
in the treatment of general structures arising from science and engineering
practice.

4.3.2 Shock/entropy-wave interaction test

The shock/entropy-wave interaction problem is a popular test used to evaluate
the performance of high-order shock capturing schemes in the presence of
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both shocks and significant oscillatory smooth structures [14]. Owing to the
coexistence of the shock discontinuities and smooth structures, this problem
is also well suited for gauging the effectiveness of the multi-resolution strategy
and the hybrid scheme. The spatial domain is [−10, 10] and the initial and
boundary conditions correspond to a right-moving Mach 3 shock located at
−9.5 at time T = 0.0, and approaching a sinusoidal density wave in [−8.85, 10].
Specifically,

(ρ, v, p)(0, x) =


(3.857143, 2.629369, 10.33333) x ≤ −9.5,

(1.0, 0.0, 1.0) − 9.5 ≤ x ≤ −8.85,

(1.0 + 0.2 sin(5(x− 8.85)), 0, 1.0) x > −8.85.

(31)
We solve the Euler system using both WENO5 and FC5-WENO5 solvers and
we consider the density profiles obtained for a total number of 2561 grid points,
or 40 domains of 33 points each. In Figs. 8(a)-(d), we show the solution at
different times T = 0, 1.25, 2.5, and 3.75, respectively. As is clear from Fig.
8(a), on the onset (T = 0), the multi-resolution smoothness indicator correctly
identifies both the shock discontinuities at x = −9.5 and the discontinuities
in the density derivative at x = −8.85. Similarly, for the later times (Figs.
8(c)-(d)), the scheme successfully identifies all discontinuities.

As mentioned previously, the smoothness indicator may mistakenly identify
large but smooth gradients as discontinuities if insufficient resolution is used.
This is evident in the case of the shock/entropy-wave interaction for long
integration times, for instance at T = 5, (Fig. 9(a)). As shown in that figure,
the smooth structures in the interval [4.0, 6.0] are mistakenly identified as
nonsmooth and treated as WENO domains. On the other hand, as shown in
Fig. 9(b), increasing the resolution, from 40 domains to 80, yields a reliable
shock detection strategy. It is to be noted that such increase in resolution
may not be required solely for the reliable smoothness detection, but rather
it may be necessary if a high level of accuracy is required. As is evident from
Fig. 9(c) and (d), while the lower-resolution calculations fails to capture the
small discontinuities at x ≈ 4.5 and 5.5 (highlighted in Figures 9(c) and
(d) with blue squares), the higher-resolution does resolve these small scale
discontinuities.

5 Concluding remarks

We have presented a high-order method based on the hybridization of the
Fourier continuation method and a WENO finite difference discretization for
the solution of non-linear conservation laws. The hybrid strategy is based
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Fig. 8. Density profile for the shock-entropy wave interaction. (a) T = 0.0013; (b)
T = 1.25; (c) T = 2.5; (d) T = 3.75. Solid line representing WENO5 solution with
1281 grid points, the symbols showing FC5-WENO5 solution with 40 domains of 33
grid points; 4 for the WENO domains and � for the FC domains. The location of
the dotted lines signify domain boundaries in the hybrid method. The effectiveness
of the multi-resolution method is clear as the the WENO domains were used only
in the region of discontinuities.

on a multi-domain formulation with a smoothness detection procedure that
distinctively flags the domains containing discontinuities. The domains con-
taining discontinuities are treated by means of the WENO scheme and those
with smooth solutions are discretized using the Fourier continuation method.
For applications with isolated discontinuities in space and time, this strategy
offers significant advantages over the pure WENO methods, since in the hy-
brid method the majority of the domains are discretized using the FC method
which is less expensive than the WENO reconstruction, yet offers a highly effi-
cient and accurate procedure for complex but smooth portions of the solution.

22



(a)
X

D
en

si
ty

-10 -7.5 -5 -2.5 0 2.5 5 7.5 10

2.5

5

(b)
X

D
en

si
ty

-10 -7.5 -5 -2.5 0 2.5 5 7.5 10

2.5

5

(c)
X

D
en

si
ty

5 7.5

3.6

3.8

4

4.2

4.4

(d)
X

D
en

si
ty

5 7.5

3.6

3.8

4

4.2

4.4

Fig. 9. Density profile for shock-entropy wave interaction for the total time of
T = 5.0; the solid line representing pure WENO5 solution, the symbols the hybrid
FC5-WENO5 solution with 4 for the WENO domains and � for the FC domains.
(a) Total grid points of 1281 for the WENO5 solver, 40 domains of 33 points each
for the FC5-WENO5; (b) total grid points of 1601 for the WENO5 solver, 80 do-
mains of 33 points each for the FC5-WENO5; (c) close-up view of (a) in the region
of [3.5, 4.6]× [3, 7.5]; (d) close-up view of (b) of the the same region. The location of
the dotted lines signify domain boundaries. The low resolution calculations (Figs.
(a), (c)) fails to capture the small discontinuities (in the blue square regions, Figs.
(c)), and the multi-resolution method overestimates the number of WENO domains;
the high resolution solutions (Figs. (b) and (d)) captures the small discontinuities
and the multi-resolution method performs reliably.

Our hybrid FC-WENO method offers several advantages over alternative tech-
niques based on finite difference methods or Chebyshev spectral methods.
While the central difference methods suffer from the pollution error, the FC
methods are pollution-error-free as is characteristic of a Fourier method. Un-
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like previous hybrid methods based on Chebyshev spectral methods, the FC
method is based on an equi-spaced grid points. This not only avoids the sig-
nificant cost of the extra interpolations to transfer data from the Chebyshev-
Gauss-Lobatto points to the equi-spaced grids in the hybrid strategy, but also
yields less stringent stability constraint, and thus allows for use of larger time
step size in an explicit time marching scheme.

We verified the fifth-order accuracy of the FC method for smooth problems
and also demonstrated the effectiveness of the exponential filter in achieving
a stable FC method in the presence of the Dirichlet boundary conditions or in
the multi-domain formulation. By solving the Euler system for a shock/small-
entropy-wave interaction problem, we demonstrated that for a given accuracy
level of 1%, our hybrid strategy is several-fold faster than the pure WENO
scheme and that the hybrid approach is both accurate and robust for strongly
nonlinear problems. Based on these preliminary but nontrivial tests we ex-
pect that our approach will prove an enabling methodology for simulation of
challenging multi-dimensional multi-scale problems such as shocked-induced
transition, turbulence, and combustion—as we hope to demonstrate in future
work.
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