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Abstract

High-resolution images of the solar surface show a graiomgiattern of hot rising and cooler downward-sinking
material — the top of the deep-reaching solar convectioe z@onvection plays a role for the thermal structure of the
solar interior and the dynamo acting there, for the stratiiom of the photosphere, where most of the visible light is
emitted, as well as for the energy budget of the spectacutamegses in the chromosphere and corona. Convective
stellar atmospheres can be modeled by numerically solWiagbupled equations of (magneto)hydrodynamics and
non-local radiation transport in the presence of a gravaldfi The CO5BOLD code described in this article is
designed for so-called “realistic” simulations that takéiaccount the detailed microphysics under the conditions
in solar or stellar surface layers (equation-of-state gptital properties of the matter). These simulations indeed
deserve the label “realistic” because they reproduce thiewsobservables very well — with only minorfidirences
between dferent implementations. The agreement with observatioagaroved over time and the simulations are
now well-established and have been performed for a numbstacs. Still, severe challenges are encountered when
it comes to extending these simulations to include ideakyentire star or substellar object: the strong stratificati
leads to completely élierent conditions in the interior, the photosphere, and trera. Simulations have to cover
spatial scales frorthe sub-granular leved the stellar diameter and time scales from photosphenewavel times

to stellar rotation or dynamo cycfeeriods Various non-equilibrium processes have to be taken intowatt. Last

but not least, realistic simulations are based on detailedophysics and depend on the quality of the input data,
which can be the actual accuracy limiter. This article pegian overview of the physical problem and the numerical
solution and the capabilities of CO5BOLD, illustrated wétmumber of applications.
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1. Introduction

In the core of the Sun, fusion of hydrogen to helium releasesgy which is transported outward, first by radiation
only, butfurther outprimarily by convection in the outer 30 % of thadialdistance to the solar surface. Most of this
energy is emitted irthe form of radiation in the photosphere which is thettom layer of the solar atmosphere
Furthermorea small part of the energy is carried by waves bypdhagnetic fields, powering the dramatic phenomena
visible in the solar chromosphere and corona. In more massid further evolved stars, the internal structure is more
complex, with several shelisherenuclear burningakes placend multiple convection zones.

The relatively thin solar photosphere (about 0.1 % of tharsidius) therefore plays an important role for the
inner as well as for the outer layers of the Sun. The analysslar and stellar spectra can reveal surface properties
and the chemical compositioand allows ugo draw conclusions about the internal structure and eliaty status.
For this purpose, physical models of stellar atmospheithsa realistic treatment of both radiation and convection
are essential.
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The classical analysis relies one-dimensiongl1D) stationary model atmospheres (in most cases only the ph
tosphere plus the very top layers of the surface convectioe) where the average convective energy By IS
computed from the so-called local mixing-length thedﬂy [ﬁ] [E], a heuristic recipe which assumes tRatn, can
be determined from local propertiebthe stratificationIn the framework of this “theory”, the mean thermal struetu
of a convective stellar atmosphere is found by the requirgtinat the sum of radiative and convective flux equals the
total stellar flux,Fraq + Fcony = o-Tg‘ff, at all depths. State-of-the-art radiative-convectivaidarium models of solar
and stellar atmospheres have been constructed with theiadasmodel atmosphere codes ATLAS |ﬂ4 5], MARCS
[6,7], and PHOENIXI/[8 9], to name the most prominent exarsple

A severe drawback of these models is that tfieiency of the convective energy transport is controlled fnea
parameter, the mixing-length parametgsr, which is of the order unity bua priori unknown. Thereforegmit
must be calibrated against observations. Unfortunatéfferént observables requirefidrent values ofyyt [|E].

The best fit of the Balmer line profiles of solar-type starscsieved withayr ~ 0.5 ﬂJ._Jl], while continuum colors
are better reproduced withy. 1 in the range 1-2, depending on the considered Wavelenggje@ . The standard
stellar-evolution calibration based on matching the aursslar parameters calls fafyr ~ 2 [13], [14]. This
disparity indicates that the underlying theoretical dgitm is inadequateln fact, the solar photosphere is neither
homogenous nor static, since it is influenced by the very fapheconvection zone and shows a granular pattern of
bright upflow regions surrounded by darker intergranulaetaof downflowing material, with a spatial scale of about
1 Mm (10° m) and evolving on a time scale of minutes (see [Hig. 1 for snapshamtwo CO5BOLD simulation®f

the solar granulation). This motivated variodfoets to overcome the limitations of the 1D classical atmesps and

to develop instead self-consistent, parameter-free ldyaramical models of stellar surface convection, accogntin
for the fact that convection is a non-local, time-depengamd intrinsically three-dimensional phenomenon.

Early idealized numerical simulations of convection unstetlar-like conditions had to resort to severe simplifi-
cations (stationary 2D solutions on coarse grids) and coalg deliver qualitative results: Latour et ﬂ@ 16] and
Toomre et aI.@? used anelastic modal equations to studgeiconvection in A-type stars. Musman and Nelson
%} and Nelson[[19] investigated convection in the Sun amdes other stars with a similar methadhan and Wdt

] developed a code based on the alternating directiofiginpADI) method for the calculation of compressible
convection. Hurlburt et alml] carried out simulationsofmpressible solar convection extending over multipléesca
heights. Stfen et al.l[_2|2] took (non-local) radiation transfer into agebin their 2D simulations of compressible solar
convection.

The first realistic simulations of solar granulation wergpened by NordIundES] and includetree-dimensional
(3D) time-dependent hydrodynamics (but anelastic and mitkleratespatialresolution) and non-local radiative en-
ergy transferalready then witta simple treatment of the frequency-dependence of the tigdHand-in-hand came
the a posteriori detailed spectrum synthesis by Draving . Other 3D convection simulations relinquished the
treatment of radiation transféﬂdﬂ 27,28, XOlirrentradiation hydrodynamicodes of various groups use sim-
ilar basic techniques — in a significantly refined way (corspitde hydrodynamics, more grid points, moggacity
bins, larger computational domains, magnetic fieddshemical reaction network, dust, etc.). For examplenSted
Nordlund have carried out radiation hydrodynamics (RHD)dations with 2016< 2016x 500 grid points with a
spatial resolution of 24 km in the horizontal direction ar&d80 km in the vertical direction. Asplund et a[t@ 31]
have computed chemical abundances using high spatiattesoand accurate radiative transfer.

Just like classical stellar atmospheres, the non-maghgdimodynamical models are characterized by the average
total energy flux per unit area and timefgxtive temperaturels), surface gravityy, and chemical composition.
But, in contrast to the mixing-length models, there is noglemany free parameter to adjust thaency of the
convective energy transport. Similarly, the fudge para&mseticro- and macroturbulence, that have to be introduced
in 1D model atmospheres to match synthetic and observe@studigpectral lines, are replaced by the self-consistent
hydrodynamical velocity field of the 3D simulations. Howevene has to keep in mind that the simulations are
characterized by a large number of numerical parameteays,tee spatial resolution of the numerical grid, the size
of the computational domain, the formulation of boundargditons, and the parameters related to the numerical
schemes for solving the hydrodynamical and radiation prarisequations. Of course, the hope is that the simulation
results become essentially independent of the choice eséthamerical parameters, once &#isiently high spatial,
angular, and frequency resolution is achieved.

Hydrodynamical model atmospheres are not only computethédBun but also for other stars, and are comple-
menting and increasingly replacing classical 1D atmosphedels. Important applications of convection simulation
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Figure 1: Emergent continuum intensity at a wavelengtil ef 500 nm, synthesized fa snapshot from a high-resolution (4826400 x 300)
CO5BOLD RHD simulation (left, see Selci. 4.1) and for a (2&886x 266) CO5BOLD RMHD model (right, cf. Fig.14), each represggt small
patch of solar surface granulation. The imposed averagaetiaglux of the RMHD model i§B;) = 50 G.The arrows represent streamlines that
follow the horizontal velocity on the surface of optical ¢tepnity, i.e., at the bottom of the solar photosphere.

with CO5BOLD and its predecessor include the accurate spectroscogimueation of solar and stellar chemical
abundances and isotopic ratios [elg.] [32] 3B, 34], the ¢tieat calibration of the mixing-length parameterl[35f th
study of convective overshoot and mixing processes irestehvelopestﬂG], and the excitation of waves by turbulent
convective flowsﬂﬂﬁg].

The presence of magnetic fields results in a wide range ofiaddl complex 3D phenomena. Small-scale concen-
trations of magnetic flux lead to enhanced radiative lodset in the photosphere and in the chromosphere. On the
other hand, large-scale magnetic structures can inhibittmvective energy flux and produce the well-known dark
sunspots. The interaction of convection and magnetic fiedslsbe modeled in the framework of (ideal) magneto-
hydrodynamics (MHD).

In the purely hydrodynamical simulations described abdlve,resulting mean flow is determined only by the
prescribed physical quantitidgg, g, and the assumed chemical composition, and is largely evgnt of the for-
mulation of the boundary conditions and details of the ahitionfiguration. This is no longer true for the more
complex simulations of solar magnetoconvection. In thigeg¢téhe presence of a magnetic field implies more freedom
in setting up the problem: the initial configuration of thegnatic field and the magnetic boundary conditions have
to be designed for the particular problem under considaratin many studies, the magnetic field is assumed to be
vertical at the upper and lower boundaries, such that thedmally averaged magnetic flux is fixed at a prescribed
value. For example{B,) = 50 G for the CO5BOLD MHD simulation shown in Fig. which isrepresentative ahe
least magnetic solar-surface areas, the so-cajieet-Sun internetwork regions. The velocity arrows irstfigure
show that the flow converges towards the dark intergranafed, where cool gas returns into the solar convection
zone. This flow also leads to a concentration of magnetic fiuthé downflow lanes, where is is visible as bright
knots or elongated features (e.g., near 5.5 Mm, y = 1.5 Mm in Fig[d, right panel).

Early 2D MHD simulations of solar convection, which includaliative transfer were presented by Grossmann-
Doerth et aI.|Eb] based on a adaptive moving finite elemedecby Steiner et a%hl] with a finite-volume code
based on automatic adaptive mesh refinement for MHD, destiib Steiner et all [42], and by Atroshchenko and
SheminovaJEIS] who used a method of approximate Eddingtotiorfa for the radiative transfer.

To our knowledge, the first realistic three-dimensionalaaon magnetohydrodynamic (RMHD) simulation of
stellar magnetoconvection was presented by Nordilund [ANrdlund et al. |[[45] give a review on solar surface
convection including results on magnetoconvection. Eawly-dimensionaMHD simulations of stellar magneto-
convection, which dispense with detailed radiative trangficlude Galloway and Weisﬂ46], Deinzer et al.|[47],
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Hurlburt and Toomre (1988@8], Weiss et. al. (19@ [49lddox et al. (1991@0].

The pioneering work of Nordlund and collaborators was oelgently followed up by others, also working in
three spatial dimension€Examples includédansteen and Gudiksen [5ahd Gudiksen et aIEiSZMth the Bifrost
code, Schféienberger et aIlI$3] with Co5BOLBand Vogler et aI.|E4] with the MURaM codfeand more recently,
by Heinemann et aIlI$5] using the Pencil cBdzacoutot et aIJE6] with a code named SolarBox, developed.by
Wray, and Muthsam et aELB?] with the Antares code. Recepré@ssive large-scale 3D RMHD simulations include
the supergranulation-size magnetoconvection simulatignStein et aI.|E8], using a variant of the STAGGER code
of Nordlund and Gals aarﬂ59], the simulations of sunspotssolar active regions described in Cheung etal. [60]
and in Rempel et all_[61], both works using the MURaM code, el as the exploratory MHD models that span
the entire solar atmosphere from the upper convection zmtieet lower corona by Hansteen et [6@ [63], and
Martinez-Sykora et al._[64], based on Bifrost or an extehdgrsion of the STAGGER code.

Other three-dimensional simulations of stellar magneatgeotion use approximations to the radiation transfer,
like Abbett @], Abbett and Fish6], and Isobe et all][@mportant results of solar magnetoconvection in three
spatial dimensions were also obtained by simply repladiegadiation transfer with heat conduction, e.g., by Weiss
et al. @], Tobias et aI|__[ﬂ59], Cattandﬂ?O], Ossendrijgtal. ], or Cattaneo et aﬂ72]. For other applications,
radiative exchange or heat conduction is not as criticabasdnvection, e.g., for the rise of buoyant magnetic flux
tubes. Such simulations were carried out, e.g., by Arckaital. l[iB] with the STAGGER code [59] or by Cheung
etal. m] with the Flash codk.

Simulations of global stellar convective dynamos have Istared by Glatzmaie [75]. More recent global MHD
simulations of stellar convection include Browning et @6] with the ASH-code [77] and Dobler et dl. [78] with the
Pencil code. Zieglemg] applied tidirvanacod@ to the problem of core collapse and fragmentation of a mauzguet
protostellar cloud.

Further MHD codes for potential application to realistiglstr convection simulations, which have been developed
in an astrophysical context are the A-MAZE cdiithe Enzo codH,the VAC coddf or the Zeus cod@ for a non
exhaustive list.

[@For reviews on solar magnetoconvection see Nordlund é45J, Nordlund and Steiri [80], Carlssdn [81], Steiner

1.

2. Basics

2.1. Basic considerations about convective scales

Ideally, hydrodynamical models of stellar convection ddatomprise the entire convection zone in a spherical
shell with suficient spatial resolution, and should cover all relevanétsoales. In general, such a global approach is
not feasible, however, for the reasons outlined in the ¥ahg basic considerations.

2.1.1. Spatial scales

Presently, realistic models of stellar convection arerietsd to a small representative volume located near the
surface, including both the top layers of the convectiorezand the photosphere, where most of the stellar radiation
is emitted. In this context, it is important to realize thaheection is driven by entropy fluctuations generated near
the surface by radiative cooling. The deeper layers appraacadiabatic mean state and have little direct influence
on the small-scale granular flows at the surface. For thisorgat is possible to obtain physically consistent abaniti
models of stellar surface convection from local-box sirtiales that cover only a small fraction of the geometrical

1Se€ http/www.astro.uu.s8bf/co5bold main.html, http/www.co5bold.com
2Seé httpjwww.mps.mpg.d@rojectgsolar-mhdmuram site/code. html
3See http/www.nordita.orgsoftwargpencil-cod¢

4Se¢ httpyflash.uchicago.egwebsitghomé

5Se¢ http/nirvana-code.aip.de

6See http/www.the-a-maze.ngieoplgfolini/researcfa. mazga maze.htmil
"Se¢ httpjica.ucsd.ediportajsoftwargenza

8See http/grid.engin.umich.edtgtothyVAC/

9See httpylca.ucsd.edportajcodegzeusmp?2


http://www.astro.uu.se/~bf/co5bold_main.html
http://www.mps.mpg.de/projects/solar-mhd/muram_site/code.html
http://www.nordita.org/software/pencil-code/
http://flash.uchicago.edu/website/home/
http://nirvana-code.aip.de/
http://www.the-a-maze.net/people/folini/research/a_maze/a_maze.html
http://lca.ucsd.edu/portal/software/enzo
http://grid.engin.umich.edu/~gtoth/VAC/
http://lca.ucsd.edu/portal/codes/zeusmp2
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Figure 2: Reynolds number Re (leftgcording to Eq[{1)and Prandtl number Pr (rightpmputed from Eqd14) anf{110) wikh= ko = 10x/H),
as function of radius in the envelope and atmosphere of the®ing the solar model by Christensen-Dalsgaard ét 4l [A&ddition, the upper
(dashed}urve in the right panel refers to the Mach number, Ma:/cs. The vertical dashed line marks the bottom of the solar atioe zone.

depth of the whole convection zon®ince the lower boundary is thus located right inside thevection zone where
the total stellar luminosity is entirely carried by the ceative flow, it is essential to employ @penlower boundary
condition that impedes the flow as little as possible (detié given in Sedi.3.2.1).

As a typical example, let us consider a local-box simulatibthe solar granulation measurihg x L, = 10 Mm
x10 Mm in the horizontal directions with periodic lateral Imolary conditions inx andy. In the vertical direction,
open boundaries are imposed, and the extension of the besus®d to bé, = 4 Mm, withL; ~ 3Mm (AInP = 7)
below and.} ~ 1 Mm (AIn P ~ 8) above the optical surface, whekén P is the number of gas pressure e-foldings.
box of this size covers only.3% of the total depth of the solar convection zone, but isdagough to accommodate
several surface convection cells called granules (cfiggensuring that the periodic boundary conditions do nee¢ha
a critical influence on the resulting flow pattern. The minimspatial resolution of the numerical grid is set by the
requirement to cover one pressure scale height by at leagtid @ells. In the following, we assume that a typical
grid comprisedNy x N, x N, = 250x 250x 200 cells, where the horizontal cell size is constant £ Ay ~ 40 km),
while the vertical cell size increases with deith proportion to the local pressure scale heiglpt see belowfrom
about 10 km at the surface to about 50 km near the bottom ofdtmpuatational domain (for some actual examples
see Tablgll).

Itis well known that the convective envelope of the Sun igabgerized by very large flow Reynolds numbers, Re.
Based on the standard solar model of Christensen-DaIsgaamtI:k], we have evaluated this dimensionless number
locally as

Re= e (1)
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whereH, = —(dInP/d2)~! is the local pressure scale height (e-folding length of thegressur®), v is the charac-
teristic convective velocity according to classical mgdlength theory: 1L—_|2], and is the microscopic (atomic plus
radiative) kinematic viscosity, = (72 + nr)/p, With n, andn, calculated according to Spitz&[83] and Tho [84],
respectively. The depth dependence of Re in the solar ggwédadisplayed in the left panel of Fig. 2, showing that
Re> 10 in the entire convection zone. This implies that the flow ighty turbulent wherever convection occurs
(see howeve@S]). The turbulent kinetic energy is dissiganto heat at the Komolgorov microscaey H, R 3/4,
which varies between.05 and 10 cm from the top to the base of the solar convectioa.Z0learly, the spatial resolu-
tion of the numerical simulations sketched above isfiiisient by more than 6 orders of magnitude to properly resolve
the complete turbulent cascade. All realistic stellar @mtion simulations therefore follow the so-called largiehe
approach, where only the largest flow structures, incluthegiriving scales, are resolved, and the small-scaleikinet
energy is dissipated at the grid scale, either by the nu@mlestheme or by a subgrid-scale model. Consequently, the
effective numerical viscosity in such models is at least 8 @rdémagnitude larger than in reality.

In addition to the Reynolds number, the properties of the fhoevfurther characterized by the (dimensionless)
Prandtl number,

Pr=—-, (2)
X
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Figure 3: Left: Kelvin-Helmholtz time scatey (upper set of curves, computed from Eg$. @), (6)), convedtirnover time scaleymover(Middle
set of curves, computed according to Ek. (@), (8)), and fetine scalercg, (lower curve, EqLR)), as a function of radius in the solaretope,
based on the solar model by Christensen-Dalsgaard 2t &l.Th8 vertical dashed line in the left panel indicates thiedmo of the solar convection
zone. The right panel zooms into the upper 5% of the conveaiime, and shows in addition the radiative time segjgcalculated from Eq[{10)
with k = ko = 107r/H,, (dotted).

the ratio of the coicients describing the fiusion of momentum;, and heaty. In the stellar interior and atmosphere,
heat transfer is dominated by radiation, which in the ofitidhick layers can be described as dfdsion process.
The radiative dfusivity is given by

_160T®

- 3
X =370, 3)

(o: Stefan-Boltzmann constanf,: temperaturek: radiative opacity per unit masp; mass densityg,: specific
heat at constant volumelpr depends only on the thermodynamic state of the stellarlgake optically thin layers
(photosphere), radiative heat exchange cannot be dedatha difusion process, and hence the definition of Pr via
Egs.[2) and(3) is no longer meaningful. Instead, Pr can Beettmore generally as

Pr= trﬁj s (4)

tvis

the ratio of radiative time scalé,{y, see Eq[{10) below) to viscous time scatL;—?é (= vk?). However, the Prandtl
number then becomes a function of wavenumbésr optically thin conditions.In the solar convection zone and
atmosphere, Pr ranges betwddn* and 10° (see FiglR, right panel), indicating thihie radiative energy diusion
is much more ficient than the viscous flusion of momentum, in other words, the dynamical lifetimadfirbulent
vortex is much longer than its thermal relaxation time.

In large-eddy simulations, fiusion is provided by an explicit artificial viscosity adby the numerical advection
scheme, which leads to affiisive cutdt at the scale of the grid resolution. In general, tifedive viscosity depends
on the grid resolutior\x, and on the wavenumber (and amplitude) of the local velqutyurbation. For small-scale
structures close to the grid resolution, the fEi@éents characterizing theumericaldiffusion of momentumy,”and
heat,y; are of similar size, and hence the Prandtl number is of tHeramity, Pr= ¥/¥ ~ 1, as long as the radiative
diffusivity is much smaller than the numerical ogex ¥ ~ vc Ax. This condition always holds in the bulk of the
solar convection zone (assuming ~ Hp/10). On the other hand, thefective artificialnumerical dffusion can
be significantly smaller for well resolved smooth strucsyguch thay > ¥, and Pr= ¥/y < 1. This is especially
true for the near-surface layers where the radiatif®isivity is high. Large-eddy simulations of solar-type sod
convection can therefore achieve moderately low Prandtibers, in the sense that the physical radiative energy
transport dominates over numericaifdsion of heat. In the bulk of the convection zone, howeves, ridiative
diffusivity is too low, and hence numerically Rrl on all resolved scales.

2.1.2. Time scales

The time span covered by a numerical convection simulatiostroe séiciently long to ensure that the whole
structure contained in the computational box can reach ey relaxed state. Thermal relaxation by radiative
diffusion proceeds on the Kelvin-Helmholtz time scale, defireetha thermal energy content (per unit area) divided



by the total energy fluxtky = Ew/Frot. In Fig.[3, we show the depth-dependencegf in the solar convection zone
(upper curves), computed as

47Tr2pCpT Hp

() = — : (5)
O
and
ar (R
BO=1 [ peTrd. ©®)

respectively R, andL, denote the solar radius and luminosity). Both expressidresagsentially identical results,
indicating that at a depth af= —3 Mm below the solar surfacexy ~ 10° s or~ 280 h. Fortunately, it turns out
that relaxation is significantly faster than expected froim estimate. Since the energy flux is carried by convection,
a few convective turnover times areflscient to establish a self-consistent equilibrium statee bnvective turnover
time scales, calculated as

H
1 p
Tguznover(r) = U_c > (7)
and
Ro 1
2
Bhowlr) = [ o ®
r

respectively, are also shown in Hig. 3 (left, middle curv@$e plot shows thadymover 2000 s az = —3 Mm, a factor
500 smaller thanky. Roughly, the simulation needs to be advanced for aboutrb@ver timestsim ~ 107Twmover &
20000 s to obtain a relaxed model. This number has to be delatthe numerical time stept applicable to the
hydrodynamics scheme. The well-known Courant-Friedriolsy (CFL) condition for the stability o&n explicit
numerical method states that < rcg , wherercg, is given by the travel time of the fastest wave across a giid ce
For the present non-magnetic example we can use the ap@teim

Ax Hp
Cs+uc) 10(Cs+uwc)

wherecs is the adiabatic sound speed. Evaluation of Efy. (9) shovtsgra~ 1 s in the upper layers (see Hig. 3).

The numerical time step is not only limited by the CFL coratiti In addition,At must be smaller than the
characteristic radiative time scatgq that rules the decay of local temperature perturbationseasinallest possible
spatial scal¢wavenumbeky, = 1071/H;). To a good approximationaq can be calculated as

C P2 i 1 1 o
Tadl) = 75773 (“37) = (T k) (10)

which is valid in both optically thick and thin regior@,@]. As illustrated in FigB (right)zrad(ko) reaches a
sharp local minimum o% 0.2 sclose to the optical surface. The time step of the numerigallgtion is thus set by
the radiative time scalejt < 0.2 s and the total number of required time stepNis= tsm/At ~ 10°. Assuming
for reference a processor that can upddte= 10° grid cells per CPU second, the total CPU time required fa thi
standard simulation would b&{ x N, x N, x N;)/Nc ~ 10'?/10° s or about 12 days, which is well feasil#een
without a high degree of parallelizatioHowever, it is also clear that much larger models., 10 times better spatial
resolution in each direction) are out of reach without masparallelization.

As an example, consider the solar supergranulation whislatlgpical horizontal scale of 2030 Mm. Numerical
simulations of this phenomenon thus require a horizontsssection of at least 160100 Mn?. Since the spatial
resolution cannot be reduced much if the granular scalésstd be resolved, such a horizontally extended simulation
would take a factor 100 more CPU time than the standard cabeesiabove. In addition, the simulation box would
need to be extended to deeper layers for this kind of modefiegume that the lower boundary is moved from a depth
of z= -3 Mm toz = —-20 Mm, which means extending the model by about 6 more presmale heights. Adding
100 grid cells in the vertical direction could befBcient to cover the extra 17 Mm. In terms of computing timesthe
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TcrL(r) = (



extra cells are relatively cheap, because radiative teasin be treated by thefllision approximation in these deep
layers. Note, however, that keeping the horizontal reBmiuat Ax = Ay ~ 40 km to resolve the granulation at the
surface, the aspect ratio of the cells near the bottom of dhxéblecomes rather extrem@x/Az ~ 1/10. But the real
problem is that the turnover time increases by a factor 20cesit is set by the surface layers, the number of time
steps increases by the same factor. In summary, a supelatianisimulation will take roughly a factor 2000 more
time than a standard granulation model, alfiyears of CPU time. With massively parallel computers, suodets
are becoming marginally feasible (dﬂ58]).

2.1.3. Global convection simulations

Simulations of the entire solar convection zone are mucheregpensive: the turnover time increases by another
factor 100, while the surface area is about 600 times largarrespect to the above supergranulation model. In terms
of the numbers quoted above, such a global convection siionjavhich ideally should be carried out in a rotating
spherical coordinate system, would take of the order of Jianiyears of CPU time, but still would cover only one
year of solar time. In order to study the solar magnetic dymawction, it would certainly be desirable to run the
simulation over several 22-year cycles, say a period 104 gelars, which is equivalent #D0million CPU years.

Since the surface layers set the numerical time step andbkpegolution, the computational cost can be much
reduced by restricting the simulations to the deeper layktise convection zone: here the flow Mach number is small
(see FidgR), and the so-called anelastic approximatiorbeaemployed to avoid the time step limitation by the CFL
condition; moreover, the radiative time step is very largge(FigB) and does not impose any additional limitation.
This approach has been adopted in the global simulatiorfseo$dlar convection zone with the ASH-codeRxyn
et al. [88]. However, the direct link between model and observation égsgarily broken in such kind of modeling.

While realistic simulations of global solar convection m@mphantasmal, prospects can be better for other type of
stars: realistic global star-in-a-box simulations haveady been performed successfully for red supergiants;avhe
only a fewhugeconvection cells occupy the surface of the star (see [S&}t. 4.

2.1.4. From the upper convection zone to the lower corona

The essential physics necessary for realistic simulatidrsolar surface convection includes compressible hy-
drodynamics describing transonic flows of a partially i@tigyas in a gravitationally stratified atmosphere, coupled
with non-local, frequency-dependent radiative energynarge. In the subsurface layers, the flow becomes strongly
subsonic and can be described in the anelastic approximatidle the radiative transfer becomes local and can be
treated by the gray ffusion approximation. In contrast, physics becomes moreptioated when considering the
outer solar atmosphere.

Simulations comprising the chromosphere and lower corargt include magnetic fields. Since the magnetic field
tends to form localized flux concentrations in the intergitanlanes (cf. Fid1lsight pane), the spatial resolution of
MHD simulations needs to be better than that of non-magmgtaulation models. In addition, the time step is
dictated by the Alfvén speed

B
Viop

which can become much larger than the sound speed in placae Wie plasmg-is low, i.e.,wherethe magnetic
field B is large and the densigyis small. TypicallyAtynp ~ Atyp/100.

The low density of the outer atmosphere has also consegsiémcthe radiation transport. Since the collision
frequency is reduced, the simplifying assumption of lob&rinodynamic equilibrium (LTE) tends to break down,
and photon scattering becomes important. This impliesttfesource function is no longer a function of the local
temperature, but depends also on the angle-averagedioadiatd. In contrast to the photospheric absorption line
spectrum, the chromospheric spectroomtains strong emission lines, which dominate the eniesgetthe chromo-
sphere Under these circumstances, the solution of the radiatarster problem becomes very time consuming.

Heat transfer by thermal conduction becomes important@gas temperatures of a few*l i.e., in the transi-
tion region and in the corona above [see, @EQ 90]. Takranduction is usually modeled by means of the Spitzer
formula but can result in a significant increase of the comafpnal costs.

Further complications arise due to the fact that the iofrapadf hydrogen (and other elements) is no longer in
thermal equilibrium in the low density regions, and cannetabtained from precomputed look-up tables. Rather,

8
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the degree of hydrogen ionization, and hence the electrosityehas to be derived from the solution of the time-
dependent rate equations of a multi-level atom, which pseesre challenges.

For further discussion of these problems see §ectl4.5Mehsas Hansteen et aﬂ62ﬂ63], Martinez-Sykora
et al. [64], and Gudiksen et al. [52].

2.2. Equations
The hydrodynamics equations are expressed as conserkgations plus source terms for

Ps PUL,PV2, PU3, Eot (12)

the mass density, the three momentum densities, and thetatay density (per volume), respectively. The coordi-
nate axes are simply numbered, in this case and in the cadfe itssome sections, we use the more standard notation
X, y, andz, though.

The three-dimensionalydr odynamics equations, including source terms due to gravity, are thass conserva-
tion equation

(9_p dpvi Odpuva Odpus

+ + + 0, 13
ot 0X1 0% 0X3 ( )
themomentum equation
Pl PLL Pl pu1 V1 + P g pL1 U2 Pl pL1 U3 P g1
— | pv2 |+—=—1 pr2 01 +— | pr2v2+ P+ —| pv2vs =l pg2 |, (14)
ot 6X1 6X2 6X3
pL3 pL3 V1 pL3 U2 pL3 U3 + P P g3

and theenergy equation

Opeot 0 (p&ot+P) v1 + 0 (p&ot+P) v2 + 0 (p€ot+P) v3 + OF 1rad + O0F 2rad + 0F 3rad _
ot 0X1 %o 0X3 0X1 %o 0X3

0. (15)

HereFiraq, Foras Farag @re the components of the radiative energy flux (see belohg.das pressure is computed
from the density and the internal energgy:, via anequation of stateusually available to the program in tabulated
form,

P = P(p7 Qnt) . (16)
€t IS given by the equation for the total energy,
v2+ 03+ 03
2

wherevs, vp, v3 are the components of the velocity vector, ahds the gravitational potentialln CO5BOLD, a
prescribed, time-independent gravitational potentiabisd, so far. Self-gravity is not accounted fbine gravity field
is given by

PEot = Peint + P +pD , (17)

g1 X1
= — d

. L |0 (18)
d
g3 %

With CO5BOLD, Eqs.[(AB)E(D5) are solved with the hydrodymesmodule described in Selct. B.5.



The equations of ideal magnetohydrodynamics (MHD), including gravity and radiative energy exchanges ar
written in the more compact vector notation as

% + V- (ov) =0,

opv
ot
0B
ot
Op€ot
ot

Here,B is the magnetic field vector, where we have chosen the units that the magnetic permeabilityis equal
to one.l is the identity matrix an@ - b = ', akby the scalar product of the two vectasndb. The dyadic tensor
product of two vectora andb is the tensoab = C with elementsm, = anb, andthenth component othe divergence
of the tensoC is (V - C),, = Xm dCmn/dX%m. In this case, the total energy is given by

v-v B-B
PEoL = Peint + P~ T+p®, (20)

+V-(pVV+(P+B;ZB)|—BB) = pg ,
(19)
+ V- (vB-Bv) =0,

+ V-((petot+ P+ B;ZB)V—(V-B)B+Frad) =0.

whereey is again the internal energy per unit mass. The additioahsidality constraint,
V-B=0, (21)

must also be fulfilled. The equation of state and the equdtiothe gravitational field are given by Ef.{16) and
Eq. (I8), respectively. With CO5BOLD, the equation syst&ia, (I9), is solved with the MHD module described in
Sect[3V.

In addition, there are equations for then-local radiation transport solved with CO5BOLD with the modules
described in Sedi.3.6.3 and S&cf. 3.6.4. These moduleamtdon the frequency dependence of the opacities by the
multi-group technique described in S&ct. 3.6.2. In theofeihg equations, the subscriptrefers to the index of the
frequency group.

The variation of the intensitl, along a ray with directiom can be described by the radiative transfer equation

in-VIV+IV=SV . (22)
PKy
Thegroup-averagedpacitie, are typically given as a function of temperatdrand gas pressui
Kk, = k,(T,P) , (23)
and thegroup-integratedource functionS,(T), is normalized such that
> s, =BM=IT", (24)
T
whereB(T) is the frequency-integrated Planck functidmtroducing the optical depth, according to
dr, = px,n-dx , (25)
wheren - dx is the path increment along the ray, the radiative trangfeagon can be written as
di, +1,=S, . (26)
dr,

The frequency-integrated radiative energy flux vectorieationriis given by angular integration over the full sphere,
and summation over frequency groups

Frad = Z L L(Q)ndQ . (27)
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The energy change due to radiative transfer can then be dechfsom the flux divergence as
Qrad = -V - Frad - (28)

To include additional physics such as chemical reactiorst(8.8.1), dynamic hydrogen ionization (SEct.3.8.2)
or dust (Secf_3.813) the above equations are augmented by
an;
i) +V. (niv) = Si y (29)
ot
where the number densities represent the densities of chemical species, ionizatatest or dust particles. The
source terng; accounts for chemical reactions, ionization and reconttaingor dust formation.

2.3. Basic numerics

The numerical simulations described here are performed @@5BOLD (COnservative COde for the COmpu-
tation of COmpressible COnvection in a BOx of L Dimensions213). It uses operator splitting [91] to separate the
various (usually explicit) operators: the hydrodynami8edi[3.5) or magnetohydrodynamics (Jecl. 3.7), the tensor
viscosity (Secf.3.516), the radiation transp@lifferent for the two setups, see below; local models: SecB 6.
global models: Sedi.3.8.4and optional source steps (e.g., due to time-dependenfatusation or hydrogen ion-
ization, Secf.318). The tabulated equation of state adsdonthe partial ionization of hydrogen and heliand a
representative metéBect[3.4). The opacities can be either gragamaccount forthe frequency dependence via an
opacity-binning scheme (Selct. 316.2). Parallelizatiatoise with OpenMP.

CO5BOLD is used for two dierent types of model geometrieghich are characterized byfiierent gravitational
potentials, boundary conditions, and modules for the tamfigransport: in théocal-box (or box-in-a-staj setup
(Sect[3.Z11), used to model small patches of a stellar seirtae gravitation is constant, the lateral boundaries are
periodic, and the radiation transport module relies on aiffies scheme applied to a system of long réyect[3.6.R8)

In contrast, supergiant simulations employ tfi@bal or star-in-a-boxsetup (Seck_3.2. Zpr which the computational
domain is a cube, and the grid is equidistant in all directiolll outer boundaries are open for matter and radiation.
The prescribed gravitational potential is spheri€ar this setup, a dlierent radiation-transport module is used, which
implements a short-characteristics method (§ect.]3.6.4).

Some more technical informations can be found in the CO5B@Inline User Manuatd

3. Detailed numerics

In this section, we present some numerical details of the ¢oat are adapted to the conditions found in stellar
atmospheres.

3.1. Numerical gricand independent variables
Instead of the conserved quantities, Eq] (12), we chtuserimitive variables

ps 015 029 03’ ant(, Bls BZ’ B3) (30)

as independent quantities, using integer indices for tmepaments of a vectorSince the conserved variables are
purely algebraic combinations of the primitive variablés primitive variables can be directly updated using the
conservation laws Eqd,_(113)=(15) or E{sJ](19) without désimg conservation-law principles. This is explained in
more details in Sects_3.5.2 and 315.4.

The hydrodynamics variablgsvi, v, v3, andey, are cell centered with grid coordinateg X2, Xc3), whereas
B;, Bp, and B3 are cell-boundary centered with coordinat&s, (X2, Xp3). The grid is Cartesian. The grid spacing
may be non-equidistantdditional subscripts are used to describe the grid indices. The hydeodics variables
0,01, U2, 3, @andep; must be thought of as cell-averaged quantities, whileB,, and B; are mean magnetic flux den-
sities through cell interfaces.

10se¢ httpwww.astro. uu.sebf/co5bold main.html, http/www.co5bold.com
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3.2. Boundary conditions and setup

Global models, that simulate an entire star-in-a-box (glhy a red supergiant, Selct. #.7) fidr essentially in
boundary conditions and the gravitational poterftiain local box-in-a-star models, that simulate only a srpadtce
of a star close to the main sequence. The fundamental paesast the &ective temperaturél,o;, describing the
radiative flux per area in local models, or the luminosity labgl models, the surface gravity, and the chemical
composition of the stellar material.

3.2.1. Local models

Local box-in-a-star models are designed to simulate a gpaéth at the surface of a star, ignorieffects of the
spherical geometrgnd variations in gravity. The computational domain is a€aan box with constant, downwardly
directed gravitational acceleration given by

g = (0’ O’ _g) : (31)

Theside boundarieare usually periodic. Closed walls are a rarely used opéstthey tend to attract downdrafts.

The top boundaryis generally either hiinder some finit@ngle by an outgoing shock wave ibdets material
fall back into the computational domaifoften with supersonic velocities): there is not much pamntuning the
formulation for an optimum transmission of small-amleavesEQlZ]. Instead, a simple and stable prescription
that lets the shocks pass isflstient. It is implemented byssigning typically two or more layers of ghost cells
(the number depending on the order of the reconstructioarsef, with boundary values, for whighe velocity
components and the internal energy are kept constant. Timtylés assumed to decrease exponentiaith height
in the ghost layers, with a scale height set to a controll&aletion of the local hydrostatic pressure scale height.
The layers of ghost cells are located outside the computatiomain properThe control parameter allovier the
adjustment ofthe mean mass flux through the ogep boundary.

The bottom boundarnpf a standard solar model is located well inside the coneactbne, where the material
coming from below is assumed to have the entropy of the atliabthe deeper convective enveIo@[SS]. The
corresponding boundary condition prescribes the entrépglfepascending material, ensures a zero total mass flux,
and reduces pressure fluctuations for stability reasonsizétdal velocities are assumed to be constant with depth.
The values op, ey, and the vertical velocitys in the lowermost grid layer are actually modified during thplacation
of this boundary condition. Therefore, the conservatiavslare only valid in the volume above the bottom layer. For
each celin the bottom layethe following steps are performed:

The equation of state is solved,

Eosb’ ant) - Ss Ps T’ rls F3’ CS ) (32)

to gettheentropy, pressure, temperature, first and third adiabad#gicient, andhesound speed. Horizontal averages
of the density and pressur@)®, (P) over the entire bottom layer are computed, where the supets®, ...,®
here and in the following equations denote the sub step. Aackexistic time scale is estimated by

(tchan = AX3/{Cs + [v3]) . (33)
In cells with an upflow{z > 0), mass and energy are modified according to

At —p2 T[T3-1)

) = + C _— 3 — S 34
P P sChangT:h&lr PI, (Snflow ) s ( )
(1) _ At r3 - 1 .
€nt = Gt + CSChanget_charT ( - I (Sinflow — S) (35)

with the two external parametersdaange (~0.1) andsnow. The latter controls theffective temperatur@ey;. To
reduce deviations of the pressure from the horizontal mésenfollowing corrections are applied to all cells in the
bottom layer:

At 1
@ =p® 4+ C e (P-P, 36
14 P PChang charcg (< ) ) ( )
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At 1
€ = € + Cronangg—r— (P = P) (37)

adding another parametepgpange(~0.3). To keep the total mass in the model volume unaltereddémsity in the
bottom layer is corrected with

o = p@ 1 (YO _ (,@y (38)

Because of this step, this boundary condition acts as actlosendary for plane-parallel waves. Finally, the vertical
velocity is modified to ensure a zero-average vertical mass fl

(©)}
. (P v3) (39)
O
Now, the old values are replaced by the new ones,
2 1
P =p® =l =0 (40)

Later, during the hydrodynamics step, the ghost cells anglgifilled with constantly extrapolated values from the
bottom layer while keeping the gravitational potential stamt in these layers.

3.2.2. Global models

For global models, the gravitational potential depend$ienadiug only. The /r potential is a good approxima-
tion for the outer layers of supergiant stars, which have allsmassive core surrounded by an extended low-density
envelope. To avoid the central singularity the potentighimothed near the center. The potential can also be flattened
at large distances to artificially enlarge the pressure ¢@mdity) scale height preventing extremely low pressumnds a
densities in the corners of the simulation bdke potential is given by

o(r)=-G M*(ré +r4/ 1+ (r/ry)8 )71/4 , (41)

where M., is the mass of the star to be modeled apéndr; are smoothing parameters in the core and the outer
envelope, respectivelyithin the sphere < rg, a source term to the internal energy provides the steltamasity.
Motions in the core are damped by a drag force to supprestadipscillations.

All six surfaces of the computational box employ the samendp@undary condition, which is also used for the
top boundary in the local models (Séct. 312.1).

For global models the temperatypeessure range of the photospheric opacity tables igfingnt. It is therefore
merged at around 12 000K from high-temperature OPAL A8 low-temperature PHOENIX daE[94].

3.3. Initial conditions

Due to the chaotic nature of stellar convection [95] and timary interest in averageaf statisticaproperties, the
details of the initial conditions hardly matter, exceptifatial strong magnetic field configurations. On the othardha
the total mass within the computational domain is of mainantgnce. However, choosing a pressure and temperature
distributiontoo far off from the (usually close to hydrostatic) mean conditioeguiresan unnecessarily long time,
until plane-parallel pulsations have settled down and traiication is thermally relaxed. It is often advisable to
start with a standard 1D atmosphere model (e.g., producdRHOENIX as in|[96]), to expand it trivially into the
second and third dimension and to add small velocity fluainatto it as seed for convective motions. An even better
alternative is to use an existing 3D snapshot with similaapeeters — if available — and scale it to the desired model
properties.

Even with a careful construction of the start model, tramggane-parallel pulsations are commadiese pulsa-
tionsare generated by tiny deviations frdhre exact numerical hydrostatic equilibrium in the deeper tayeausing
larger amplitudesn the tenuous togayers. To damp them out, a vertical drag force acting onlyhenhorizontal
average of the vertical mass flux can be applied in the irptialse of a simulation.
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3.4. Equation of state

Under the conditions of cool stellar surfaces, a lot of ep&an go into the ionization of hydrogen and helium.
In CO5BOLD, the equation of state (EOS) accounts for theziation balance of HI, HIl, K, Hel, Hell, Helll, and
a representative metal. Pre-tabulated values as funatibdensity and internal energy are used @olpgen —
logP,logT,s). In fact, the cofficients for a bicubic interpolation of (IdglogT, s) are stored. Thermodynamic
derivatives are computed from the corresponding derigatdf the polynomials.

3.5. Hydrodynamics
In general, a hydrodynamics scheme should

1. beconsistentvith the original hydrodynamics equations,

2. bestable

3. solve the hydrodynamics equations in 3D with reasonabdeiracy i.e., be of high order whenever possible
and represent discontinuities with only a few grid points,

4. beconservativeéo handle shocks properly and give constant total fluxesiiostary cases, which is particularly
important for modeling convection,

5. include source terms due to gravity in a proper way to afitaticsolutions, so that especially the construction

of an exactly hydrostatic stratification in radiative eduilum is possible,

. handle general equation of statgrom a table),

. befast, e.g., easy to vectorize, to parallelize, and to make progeiof the various CPU caches,

. handlevarious geometrie@in this case 1D, 2D, and 3D models),

. be not too complex but stay fairimple

10. allow thecoupling with additional physicgespecially radiation transport).

© 0N

Solvers dffer in how close they get to the individual design goals. Fetance, total energy conservation might
get sacrificed to improve the code stability in cases of [Algeh numbers. And with detailed (read, time consum-
ing) radiation transport modules, the performance of tiseglly comparably fast) hydrodynamics modules becomes
unimportant.

The hydrodynamics scheme of CO5BOLD uses a finite-volumeogah. By means of operator (directional)
splitting [91], the 2D or 3D problem is reduced to one dimensiTo compute the fluxes across each cell boundary in
every 1D column ink; direction, an approximate 1D Riemann solver of Roe tﬁb i®@pplied, modified to account
for a realistic equation of state (Sdct. 315.5), a non-agtadt grid (Seci_3.511), and the presence of source terms
due to an external gravity field (Sdct. 3]5.3). The partialagaare reconstructed and advected with upwind-centered
fluxes. A slope limiter (MinMod, SuperBee, but usually varel'_)e{_9__$] or a reconstruction with monotonic parabolae
(Colella and Woodward [99]) is applied to decrease the coflfre scheme in the neighborhood of discontinuitars
keeping it stablevhile preserving higher-order accuracy in the case of shmibaws.

The standard Roe solver has been extended in several way#e fiiarticular problem of stellar surface convec-
tion as is explained in the following subsections.

3.5.1. Non-equidistant grid

The hydrodynamicscheméiandles Cartesian grigmly. Theymay be non-equidistant in any direction. Without
gravitation, the location of the cell centeqg has not much relevance as all quantities are either integhads within
a cell (for instancehe mass density) or located at the cell boundaxiggfor instancethe mass flux). In this simple
case, a hon-equidistant grid would only have fie@ on the reconstruction equations.

With the inclusion of gravity however, the potential enevgthin each cell is located at;. This means, that the
pressure should also be located there in order to allow forr@ct balance of acceleration due to the pressure gradient
and the gradient of the gravitational potential.

The relative position oK. ; within X,1i andXy1i+1 IS not set by the hydrodynamics scheme and can be chosen
within reasonable limits according to the requirements, ©f the radiation-transport scheme.
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3.5.2. Update of the mass density and the velocity
Given the update of the density in one coordinate directiorcélli in conservation-law form,

Moy =~ (e — i) -~ PV =pD 4 ap; (42)
wheref, ; is the mass flux in this direction between dell and celii, the update for the momentum in the 1-direction
can be reformulated in terms of the update for the velocitipbews. From the conservation-law form

(new) _ oy At
(ova); " = (ova); T Ax

wheref,, i is the 1-momentum flux in the considered direction &g ; the source term for the 1-momentum, we
obtain

(fpvl,iJrl - fpvl,i) + At Spul,i 5 (43)

1

(new) °
i

At
U]_i(new) = 01-(O|d) - [_ (fpvl,iJrl - fpul,i) — At Spu1,i + Api Uli(OId) (44)

! AX

Api andp(™* on the right hand side of Eq_{#4) are known from Eq] (42). Thiemmomentuny(p:); = p; v1; is, up to
the source term, a strictly conserved quantity. The fluyemndf,,, are defined at the cell interfaces and determined
by an approximate solution of the Riemann problem as exgthin Sect3)5 and Se€f. 3.6.5. The advantage of his
formulation becomes apparent when treating the gravitatipotential in the derivation of the discrete equation for

the internal energy. This is explained in Séct. 3.5.4.

3.5.3. Gravity

The gravitational source term i&q. {(I4) andEq. (I9) destroys the hyperbolic charactertioé corresponding
system of equationand inhibits the direct application of an (approximate)rRéan solver. On the other hand, the
separation via operator splitting is not a good idea in thise¢ because in stratified atmospheres the pressure dradien
and the gravity tend to cancel each other (nearly). Theiliggton in sequence — and not together in a single step
—would cause spurious unwanted accelerations back ard fort the other hand, the naive combination of the Roe
solverwith the source terms due to gravity into a single operhtosimple additionleads to problems because the
Roe solver interpretes the strong pressure gradient iratifetd atmosphere as indication of a shock wave, which is
then treated as such, causing spurious — possibly largeeityefields.

There is some freedom in the choice of the exact reconstruofiquantities inside the cells (Mellema et al. [100]),
which is used to amalgamate the hydrodynamics with the tyrapierator by reducing the pressure jump across a cell
boundary to the deviation from hydrostatic stratificatidie latter is subtracted from the actual pressure inside the
cells during the computation of the amplitudes of the pbawives. The idea is, that only pressure deviations from
hydrostatic equilibrium — and not just pressure gradiersiseuld give rise to fluxes of the partial waves. In the exact
hydrostatic case, the Roe solver should “see” no sound waves construction does netipersedéhe usual source
terms due to gravitation.

3.5.4. Update of the internal energy
The discrete form of E¢_(15) for the total energy is givenamservation law form by

2, .2 2 (new) 2 2 2 (old)
v + 5+ 05 v] + 5+ 05 At
pon+ pg—= 4 pc| = |pam +p=g 2+ p0c| = (T + fois) = (fei + fo). (45)

wheref,; is the 1D flux of the total energy without the potential endirgyn celli—1 into celli provided by the Roe

solver, fp ; is the flux of the potential energy adg} ; is the gravity potential in the center of the cell. Using E&R)(
and defining the flux of the potential energy as

foi =®p; Ti , (46)
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where®y, ; is the gravity potential at the interface between cell and celi, all terms containing the gravity potential
can be combined to yield

(0en)™ = (pen)@ +[p vf + 05+ 03 (O|d)_ v + 05+ 03 (nEW)_ A_t(f 1= o)
Eint); = €int); > i -5 | Ax Lleirl ~ e
At
~Ax [(‘Db,m - D) fyiv1— (Poi — Dci) fp,i] . (47)

The presence of the new kinetic energy at the right side of&f).does not make the scheme implicit, since the
velocity does not depend @y — it is known from Eq.[(4¥) and corresponding equations$anduvs. We note that
this update still conserves the total energy, Eql (17), tohime accuracy. The conservative inclusion of the radiativ
energy flux into the energy equation is treated in $ect.13.6.3

3.5.5. General equation of state including ionization

Several extensions of the Roe scheme for a general equétitat® have been proposed, see [101] and references
therein. The dterences compared to the case of an ideal gas with constaanifest themselves in the need of
additional Roe averages depending on which variables mteiusthe equation of state. For a general equation of

and ﬁ’ are required to build the

Roe matrix. Choosing the usual Roe averagesfgrand the average/oor for the densny, wherg, andpy is the
density on either side of the cell interface, the condition

Ap (48)

and 3 9B ’ whereAP, Ap andAep; are the jumps of the pressure, density,

and internal energy at the cell mterface £Eql (48) is nfit@ant to determine the averages of the pressure derivatives

Glaister [102] suggested formulas féﬂ and ' which meet Eq[{48) exactly. However, Glaister's formulae
€int

do not lead to the same averaged sound speed as the origimllé® of Roe in the simple case of constant
Furthermore, they may also produce unphysical averagessiafl]. In CO5BOLD, the averaging of the pressure
derivatives is avoided. Instead, the dimensionless qiesit; and %  are averaged with the usual Roe weights,

which ensures the consistency with the simple gas case.
The pressure derivatives in the Roe matrix lead to an additi@rm

oP
Pop

oP
Gint 6Qnt

1 1 .
= Sl (am - ) ®) = —§|vl|a‘6> , (49)

in the energy flux. This term, which vanishes in the perfestamse, is treated as a contribution from a sixth partial
waved®. The wave strength of the entropy wav® is given by
3 = ap- 2P (50)
cs

The term% in Eq. (49) can become small, possibly causing numericatgrtJsing thermodynamic relationg®”
nt{p
can be transformed into

Op€int
oP |s

which uses a better behaved derivative.

&(6) = A(Pant) -

AP . (51)
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3.5.6. Tensor viscosity

In addition to the stabilizing mechanism inherent in an ughdcheme with monotonic reconstruction, a 2D or
3D tensor viscosity can be activated. It eliminates certainrs of Godunov-type methods occurring in the case of
strong velocity fields aligned with the grimOS]. Other ggof problems can occur when e.g., a shock, which has
a strength that could easily be handled by the hydrodynascitsme alone, gives rise to so large opacity variations
that the radiation-transport routines might get unsta®éx{{ 3.5).

To overcome such (possible) problems, an additional tevisoosity sub step was included in the code, that can
add dissipation in a way the Roe solver by its own is not abfgdduce. The kinematic viscosity is

1 .
y = 3 (AXy + Ax2 + AX3) ClinearCs + MiN(AXy, AXz, AXz) max(Axz, AXz, AX3) (52)

Cgrtificial max(-Vv, 0)

Avi?  Avp?  Aug? 2 Avs Avs 2|
+C2 . 2 ﬂ + % + % + ﬂ + % + ﬂ + ﬂ + % + ﬂ
Smagorinsk AXq AXo AX3 AXo AXq AX3 AXq AX3 AXo

with the parameterSiinear, Cartiticial, @1dCsmagorinskyfOr the linear, artificial (von Neumann type) viscosity, andbu-
lent subgrid-scaleiscosity (Smagorinsk 4]), respectively. Typicalwas are (0, 0.5, 0.5), respectively. Models
of solar granulation and similar easy cases do not requiseitira viscosity. However, it is usually activated to avoi
the necessity to tune the numerical parameters indivigdiail each stellar model. For instance the models of the
more dynamic atmospheres of red supergiants (Sett. 4.d)sueee amount of extra dissipation provided by the ten-
sor viscosity.Note that the tensor viscosity should not be mistaken forehyiscosity. The task of hyperviscosities
is in CO5BOLD done by the reconstruction schemes (MinMoghe8Bee, van Leer, PP, etc.).

3.6. Radiation transport
3.6.1. Introduction

In dynamical simulations which take time dependence anglooybetween radiative energy transfer and hydro-
dynamics equations into account, the emitted intensityilg a by-product. Important is instead the energy change
per numerical grid cell due to theftBrence of radiative gains and losses. The requirement ve so¢ radiation-
transport equations for many grid points and many time stefls for severe simplifications as, e.g., the restriction
to gray opacities oto a few frequency groups (Selct. 316.2) or the treatment ofextiag as true absorption. Actually,
this can make code development easier. But still, theredd#ianal demands on the algorithm: the scheme should
conserve the total energy, i.e., internal sources and sihkaergy minus losses through the surface should exactly
sum up to zero. The scheme has to be stable enough to handiesostructures which may sometimes be poorly
resolved (e.g., chromospheric shocks, $eck. 4.5).

Some cases pose only low demands on the complexity of theithligo if the entire model is optically thick, a
diffusion approximation using onlyfiierences between neighbor cells is adequate to computediagiva flux. This
results in a stable scheme, if the time step is properly ¢ichitf the whole numerical domain is optically thin and the
radiation field is simple enough, a local cooling functiorghtibe stfficient to model radiative energy losses, calling
for a scheme that is stable if the time step is small enough.

However, stellar atmospheres are per definition at theitrandetween optically thick and thin region3he
main form of energy transport switches from convective padiative in the interior to mainly radiative in the outer
layers, where mechanical energy fluxes become very smaliodile low material density. Still, mechanical energy
fluxes might be sfiiciently large to &ect the temperature structure of the chromosphere (SBt.fér example.
While radiative energy transport in the stellar interion ¢ properly described by local physical quantities thioug
the difusion approximation, in the outer layers, radiative enengghange occurs non-locally. This means that the
local radiative flux depends on the physical state of the riziea the wider surroundings of a size depending on the
mean free path of the photonisarge opacity variations due to changes in the ionizatiatestof major constituents
or due to shock waves can cause changes in the source funatiemall spatial scales. In numerical models, these
two effects, amplified by fluctuations in heat capacity, can causen@ous jumps in the radiative relaxation time scale
from grid point to grid point.
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Even if a standard scheme is able to overcome all theéBeudiies and to compute accurate intensities for given
opacities and source function, there are still severalipitities how to derive the induced energy change per csll, a
detailed in the following:

The energy flux through the cell boundaries can be computed fhe intensity field, which then gives the di-
vergence of the flux for each cell, and hence the energy chaemgeell according to EJ.(28). This would guarantee
the conservativity of the scheme. But unfortunately, thieisstep requires an extreme numerical precision in opti-
cally very thin regions where the relative flux changes frath © cell are tiny. A high accuracy is also necessary
in optically very thick regions where only small deviatiosfsthe intensity from the local source function contribute
to the net flux. Calculating a discrete derivative naturatiyplifies noise and has centering problems, when e.g., the
intensity field is given at cell centers and the divergencedgiired at the same position.

Another possibility consists in deriving the energy chapgecell from the dierence of the angular mean of the
intensity,

1 1 (>
J, = — I, dQ:—f f I, sing do dey , (53)
7T Jan 4 Jo Jo
and the local source functid®,. Using Eqgs.[(2R)[(27), anf_(8), one obtains
Qo= Y 4mxp (3,-S,) . (54)

This scheme does not have an explicit conservation form mardci it will most likely not be conservative. This
happens because the distribution of the source functidrimiihe cellwhichis used in the integration process for the
intensity (where typically some high-order interpolataftthe source function with optical depth is performieot
exactly the same distribution as is usaccomputing the dterencel, — S, (where the source function is assumed
to be constant). Another problem of this scheme is the acguraoptically very thick regions, where numerical
cancellation may occur betwednandS,. A more indirect way is to derive from the intensity field sogemetrical
information about the radiation field in the form of Eddingfactors. These are inserted into the equations describing
the radiation transport via the Eddington moments (see, fagtwo dimensions Stone et 05] and for one
dimension Hofner et al6]7]). This method reqaieenon-trivial solver to get the radiation field in the first
place and later an algorithm to solve the huge system of Etlalinequations. This procedure might noffetfrom

the problems mentioned above. However, it seems somewdfitiant first to compute the intensity distribution of
the radiation field in some detail and then to throw away méshe information and retain the Eddington factors
only, which are used to solve the radiative transfer eqoaigain — just in a dierent form. The extraftort can be
justified by gains due to, e.g., an elegant handling of séati@rocesses or the achievement of large time steps with
an implicit operator[106], though.

In Sect[3.6.8 and SeEf. 3.6.4, we present two radiatiarsprart schemes implemented in CO5BOLD, that over-
come the aforementioned probleingdifferent ways.They compute the contribution to the energy change per cell
on-the-fly during the integration of the intensity for eadhedtion. For standardocal-boxmodels with periodic
boundaries (Se¢t.3.2.1), we use a long-characteristense, described in Selct. 36.3, while far-in-a-boxmod-
els with all-open boundaries (Sdct.3]2.2), we use a shatacteristics method, outlined in Séct. 3.6.4.

3.6.2. Opacity binning

The rate of the radiative energy exchange is highly varialste the relevant spectral range, since the absorption
codficient strongly varies with frequency due to the presenc@etial lines, on top of the more gradual change of
the continuous opacity. In cool stars like the Sun, spetitras count in the millions so that an exact treatment of
the frequency dependence in a complex multi-dimensioraingtry is beyond present computer capacities, and one
has to resort to an approximate treatment. An importantIdficgtion stems from the fact that one is not interested
in the detailed frequency dependence of the heat exchangedre stellar plasma and radiation field but only in its
frequency-integrated totaffect, Q,og. Nowadays, all multi-dimensional hydrodynamical stebémosphere codes
employ the so-calledpacity-binningechnique. The method was first laid out by Nordiund [23], mtelr refined in
works by Ludwig m], Ludwig et alm9], and ngléﬂl%t present, opacity sampling — a statistical technique
widely applied in standard 1D model atmospheres — is digtlias possible replacement of the opacity binning due
to its better controlled accuracy and greater flexibility.
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The basic idea of opacity binning is the classification ofjfrency points by the similarity of their associated
A-operator — the operator relating source func&rand mean intensity, of the radiation field:

J, =A, [Sv] . (55)

We added an index to the A-operator to emphasize that its form, written in geomektromrdinates, is dierent

for different frequencies due to opacity variations. However, sesavhere the operator happens to be similar, its
linearity allows to operate on the sum of the source funetimnobtain the integrated mean intensity, symbolically
expressed as

Ji2=d1+ X2 =A1[S1] + A2[S2] ® A[S1+S7] (56)

where A is some suitable mean @f; and A,. The problem now is to classify all frequencies into distisets

Q; grouping together as similar as possibleperators. The\-operator can be calculated from the monochromatic
optical depth scale, so that the classification can be equivalently done by grayfpequencies with a similar relation
between geometrical and optical depth scales. This is irtli@ovay how one proceeds in practice.

When trying to classify the frequencies, one is confrontét the problem that the optical depth scales depend
on the atmospheric model under consideration, i.e., itsng#y, the ensuing thermal conditions, and velocities. One
has to choose a reference model for which the classificagipeiformed. Naturally, this reference model is chosen
to be close to the stellar atmosphere to be simulated, inith@est case a 1D model of the atmosphere in question.
Other choices are possible, but in any case, the resultasgification is optimized for a particular set of atmospheri
parameters and has to be repeated when numerical simglatiother parameter regimes are conducted. Since even
for fixed atmospheric parameters a large variety @fedent thermodynamic conditions are met along variousdines
of-sight in a numerical model (with correspondinglytdrentr,), limits to the achievable accuracy by the opacity
binning have to be expected. Thus only a reasonable sityiamongr,-scales withiran opacity bins aimed at in
practice. Typically one is content if thg-scales of a group of frequencies share the property to neaith within a
given range of depth — usually defined via the frequencypeddent Rosseland optical depth. This emphasizes the
emergent radiation intensity as the primary quantity to dygured correctly, obviously an important quantity linked
to the overall flux properties of a stellar atmosphé&ach opacity bin defines a corresponding frequency group.

At present, typically between four and twelve frequencyupst); are used, depending on the desired precision.
An estimate of the precision is obtained by comparing thegral radiative heating (or cooling) rates obtained from
the binned opacities with the result obtained at high fregyeesolution, both as a function of depth in the reference
structure used for defining the opacity bins. The estimdtesr®n the assumption that the reference structure is
indeed representative of the conditions encountered ifldlesimulation. Some refinements to this basic scheme
are nowadays often added. For instance, it is sometimesty@ous to splian opacity binas defined before
into frequencysub-groupswith the idea to separate frequency points which systealtiheat or cool particular
atmospheric layers. This helps to improve the overall gnexghange budget.

An example is given in Fil4, illustrating the results obta for the 1D solar reference atmosphere. The basic
5-biry5-groupscheme is clearly superior to the gray approximation. Theersophisticate®-biry12-groupscheme,
in which threeopacity binsare split into twofrequency sub-groupperforms very satisfactory and almost perfectly
reproduces the “exact” heating rate.

The binned opacities are obtained from a suitable averagieeobpacities in a particular frequency group and
stored in look-up tables as a function of thermodynamicaldeis — in CO5BOLD as a function of gas pressure and
temperature. In addition, the Planck function (as sournetfan), integrated over the frequencies of a group, isestor
as a function of temperature. This approach only works ibiha&cities and the source function can be calculated from
the thermodynamic conditions alone, i.e., are thermodyoanuilibrium quantities. While this is often fulfilled to
good approximation, there are exceptions. For instaneefottmation of dust clouds in cool stellar atmospheres is a
non-equilibrium process (SeLi. 3.18.3), and actual parficbperties are only known after solving the governingtiine
equations, taking into account the history of the evolutiba particular mass element in the flow. In CO5BOLD,
we proceed by separating the equilibrium part (gas opatitiem the non-equilibrium part (dust opacities). The gas
opacities are binned infoequency groups the usual way, and the dust opacities are calculated glthieasimulation
on-the-fly and added to the gas opacities. Obviously, tltiseises the computational demands.

All'in all, opacity binning has been and still is working pegs better than one might expect from the numerous
approximations behind the construction of the scheme. iBphinning has proved to be arfieient way to include
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Figure 4: Performance of the opacity-binning scheme,tiiied for a 1D solar model atmosphere. The net radiativérfteeate per unit mass,
Qrad/p (top), and the bolometric radiative fluk,q/Fe (bottom), and are shown as a function of Rosseland optigahdén each panel, the results
from gray (dashed)5-biry5-group (dotted), and9-biry12-group(solid) radiative transfer are compared with the “exactlugon (diamonds),
obtained with very high frequency resolution.

the frequency dependence of the radiative transfer in rditiensional simulations. However, as alluded to already
before, the increased computing power might allow to reswer the approach trading greater computational costs
for higher physical fidelityThe path to largest gaimeeds to be identified yet.

3.6.3. Long-characteristics radiation transport

The purpose of this algorithm is to compute the net radidi®ating rate per unit volum&ad(xi, y;, z), at the
center of each cell of the hydrodynamical grid (HD grid). Hasic idea is to solve the equation of radiative transfer
on a system of straighong rays(long-characteristics, LQunning from the upper to the lower model boundary at
a number of dierent azimuthal angles and inclinations with respect to the vertical 06 < n/2). As a result,
we obtain for eactirequency group’ and for all bundles of rays with orientation, ¢) the quantityQaq, (6, ¢) =
ok, (u,(0,¢) — S,) at the mesh points along the rays, where the mean-inteliigtyariableu, (6, ¢) is the average of
incoming () and outgoing|I(*) intensity,u, = (17 +1.7)/2 (see Fid.b)S, is the group source function, ap#, is the
group opacity averaged over the neighboring mesh pointsgdtee ray (see EQ.63Rrad(X, v}, z) is then constructed
by interpolatingQrad,(6, ¢) from the ray system to the cell centers of the hydrodynagrick and appropriate angular
averaging and summation ovieequency groups.

Note that the technique described here basically eval@aigaccording to Eq[(34). It overcomes thefiulties
explained in the context of Eq.(54) by solving the transjggpdation for the dference between mean intensity and
source functionp, = u, — S, (see EJ.5I7), which gives accurate valuespf( S, ) for arbitrarily large optical depth.
Atthe same time, it allow8aq, to be computed such that energy conservation is enforcede@ech). The procedure
is very similar to that described in [23].
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Figure 5: Schematic illustration of thefflirent grids used with the long-characteristics radiatimagfer methodThe hydrodynamics equations
aresolved on a Cartesian grid (HD grid, black, dots represgra@ll centers), while the radiative transfer equation igexbon a system of inclined
rays (red, dots representing the mesh points used with thgtfier scheme). The HD grid can be refined in vertical divadby additionalz-planes
(thin, blue) to provide sflicient resolution for strongly inclined ray3.he cell centers of the refined HD grid have indice%)( the mesh points
along the rays have indicesy(k).

To simplify mattersg is restricted to (1/2)x, x, (3/2)r, i.e., we consider only 2D ray systems in vertical slices
along thex andy axis of the hydrodynamical grid. Theangles are given by Lobatto’s quadrature form@[lll];
typically, 2—4 non-zero inclination angles ardfstient, in addition to a set of vertical rays. All rays startfa cell
centers of the uppermost level of the HD grid and follow thecsjied direction, assuming periodic lateral boundary
conditions, until they reach the bottom of the computaticioanain.

As indicated in Fid. b, the mesh points along the rays are ei@fis the intersection points with th@lanes of the
HD grid. As this recipe would imply a rather coarse samplitang strongly inclined rays, we introduce additional
horizontal planes such that the geometrical separationeshrpoints along thimclinedrays remains comparable to
the vertical resolution of the original HD grid. The cooratias of the ray pointsxy, ), wherem is the ray index
andk is the depth index of the refined HD grid, are equidistant in

The main steps of the whole procedure may be summarizedawsoffirst, the source functios,, and the opac-
ity per unit volumep «,, are interpolated from the HD grid to the mesh points of thyesgesstem. Linear interpolation
of S, and logp «,) is adopted for the vertical direction (additiorrgblanes), while linear interpolation &, andp «,
is used in horizontal directiomNote that only a 1D interpolation along the Cartesian gniddiis requiredGivenp ,
on the mesh points along the rays, we represepbetween two mesh points by a monotonic cubic polyno 112
to obtain the optical depth increments, by analytical integration. Next, we solve the equation afiative transfer
along bundles of rays in the form of the second-ordéedéntial equation:

d’p, ~ d’s,
dr? dr2 °

wherer, is measured along the (inclined) rays. This modified Feaugguation is solved by the forward-elimination
and back-substitution formalism originally described hi;aEtrier] (see also Mihalas [3]), giving(Xmk z) at
the mesh points of the ray system.

At the lower boundary, where conditions are optically vérigk in general, we can choose between two basic
options: if the bottom layer is located in a radiative zome] ewe want to enforce a given radiative flBxq, through
the lower boundary, the condition is

§ Fradv dsv
dr, 4 dr,
If the bottom layer is located in a convective zone, whererdaiative flux through the lower boundary is negligible

compared to the energy flux carried by the flow, a reasonahiedary condition is to require the net radiative energy
exchange to vanish in each frequency group,

(57)

=Py p,=u,-S, ,

dp,

cosp) — (58)

V-Fraqy =0 or p,=0. (59)
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Note that this does not implyaq, = 0.
At the uppermost layer, the optical depth is computed as

Tyo = HTPO Ky0 » (60)

whereH, is the mean optical depth scale height at the top of the m@de);* = —(dIn(p «,)/d2)o ~ —(d Int,/d2)o.
The incident radiation is given by

(o) =(1-e™)S, o+l , (61)

whereS, o is the mean source function of the upper layer, §ndenotes the incident intensity due to an arbitrary
external source (usually zero). In termsmf the upper boundary condition for radiation can be formadats

d Py dSv

_ — —@ ™o * -
Py ar, 1-e™)S,0+1,-S, + gt (62)
Next, the quantityy, is computed at all mesh points of the ray system as
Ty 5 Z = Ty(Xmk-1, Zk-
Gmez) = cosg PUmeb B ZDl0men o) o o
Zi1 — Ze-1
= {m (uv - Sv)}mk . (63)

Finally, the partial heating rateg are interpolated back onto the HD grid in a conservative wagh that for all
height levelsk

20 0me2) = 3 6.2 - (64)

Qrad(Xi, yj, ) is then built up by adding the individual contributiongXxi, y;, z) of the diferent ray directionsg( )
with their appropriate integration weights, and summatieer all frequency groups

By virtue of the definition ofj according to Eq[{83), and the requirement of a conservatie interpolation as
expressed by Eq.(64), our long-characteristics radidtaesfer scheme conserves energy in the sense that for each
frequency group

ffF:gzvdxdy—ffFf’;ﬁdedyzfforadv(x,y,z)dxdydz. (65)
Xy XJy xJy Jz

Here,F:gzv and FP;’C{V are, respectively, the net radiative energy flux throughughyger and lower boundaries of the
model, computed directly from the ray system intensitiehatop and bottom level. Note that Hg.J65) holds only if
the volume integral includes th@..q, obtained at the additional horizontal sub-levels intragtifor grid refinement.
The final Qrag On the original HD grid must therefore be computed as a deitaberage over the neighborizg
sub-levels to ensure energy conservation.

A distinctadvantage of the long-ray approach is that it allows ficient solution of the transfer equation for
beams of parallel rays by means of the Feautrier schemehvidicery fast and elegardutomatically ensures the
correct asymptotic dliusion limit at large optical depth, amauld easily account for scattering along single rdgs
an early example of this approach see Cannon [114]). Inipf|nd¢he LC method can also be combined with integral-
operator techniques (e.g. [115], [116]), which, howeveg, mumerically lessfécient and stfer from interpolation
issues ([117],/[218]). In contrast to what is assumed in karemd Auer [119], the computing time of our LC scheme
scales linearly with the number of HD cells and the numberrefidiency groups, as for the short-characteristics
scheme. It scales in a non-linear way with the numbérarigles, since more-inclined rays are longer and have erlarg
number of mesh points. The computing time can be reducedfpating Q.4 from the difusion approximation in
the lower, optically very thick layers of the model. Comghte the ray-system solution, the computation of the
diffusion approximation comes almost for free.

A disadvantage of the LC method is the necessity of extenmsiggpolation from the HD grid onto the ray system
and back. This procedure is prone to problems with “leakofdieating or cooling to neighboring cells in the presence
of localized “hot spots”, as described in the following $edfB.6.4 (cf. Figlh). To some degree, such problems may
be abated, at the expense of higher computational costcbgaaing the number of rays per unit length in horizontal
direction.
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Figure 6: Initial run of the source function (t@orve), induced changed of energy per cell (certierve), and run of the source function after one
time step (bottonturve. The three quantities are plotted as function of opticalthléor a few grid cells whose boundaries are depicted byoatrt
dotted lines. The values ttecell centers are marked by squares. The two sub-intervaiadh cell can have filerent values of the energy change.
The lower curve shows the source function after one time fstep constant heat capacity per grid cell (thick line) anel tase where the heat
capacity in the left neighbor of the hot cell is smaller by etda 10.
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Figure 7: The sketch on the left illustrates the naming cotiwa used for the case of a linear dependence of sourceidar8ton optical depth
7 within a single interval as opposed to the case of a piecelivisar source function as in the plot on the right, where tterval fro, 71] is split
into two sub-intervals with widtiAro/2 andAr1 /2, respectively. The source function varies linearly inhesgh-interval. However, it is allowed to
have a jump at the transition.

3.6.4. Short-characteristics radiation transport

The LC scheme described in the previous section is part ofBtID since the very beginning. It is adapted to
the conditions of plane-parallel atmospheres in local ®aeg., it heavily makes use of periodic side boundary con-
ditions. The angular distribution of rays is chosen to ojérhe vertical radiative flux. The flusion approximation
used in the deeper layers can save some computational time.
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Figure 8: Short-characteristics step to get the intengithe target cell (bottom) from the values at the previoukptahe (top) in two dimensions:
left: standard integration with one short ray and interpotaof intensity and source function at the top grid planght: separate rays for each
neighbor cell with a summing up of the intensity in the bottgrid cell, the splitting of each ray gives the intensity openvithin each cell.
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While for local models there was no reason to spend time omré@xenting with another radiation-transport
scheme, this changed for global models where the condiaoagliferent: the vertical direction is not preferred
anymore. Instead, all sides of the computational domaiopea for radiation. The numerical resolutions is in general
worse than for local models and the violent flows and give taskarge local temperature and opacity fluctuations.
This means that errors caused by the interpolation in LCreelkavould become more apparent.

The short-characteristics (SC) scheme in CO5BOLD oversdimese stability problems at the possible expense
of the accuracy of the vertical radiative energy flux. Theibakea of not following rays through the entire volume
is the same as in Kunasz and Auer [119]. But @iedent way of interpolating the intensity and the source fignc
makes it better adapted to the use within an RHD code.

The main emphasis during the developmerthef SCscheme has been put on stability by preventing local peaks
of the source function from “leaking” into neighbor cellsterausing an unwanted smearing of the cooling or heating
term (see Figb) This requires a special reconstruction of the source fonaetithin optically thin cells in the 1D
radiation transport operator and a carefully chosen iolatpn within the SC scheme.

Instead of a Feautrier scheme as in $ect. B.6.3, the anabftition of the 1D version of the radiation transport
equation[(ZR) with linear source function (Hig). 7, left) smed as atomic operator,

I, = |oefAT + S1 — SoeiAT + %[
which guarantees the positivity of the source function ywéere.

The energy change has to be computed accurately in the Ihptieay thick (e.g., in the center of a toy stellar
model withAr > 10%) and in the optically very thin (e.g., in some regions far givam the surface of a red supergiant
model withAr < 1072%). Both cases pose no problem for the formal solution beciautse former case the intensity
is essentially given by the local source function. And in lditeer case, the changes to the radiation field due the
contribution of the extremely thin regions can be safelyig — or simply added to the much larger intensity along a
ray and therefore absorbed by the limited machine precisiowever, optically very thick or thin regions still inteta
with the radiation field and the local heating or cooling grngficant and has to be computed in a time-dependent code.
The SCscheme in CO5BOLD usesftirent arrangements of terms in optically thin and thickmess to account for
round-df errors, giving accurate values for optically very thickintregions — even running only in single precision.

Separate integration steps are employed for the interoat the cell center to the boundary and from the cell
boundary to the next cell center (Hig. 7, right) to get themsity change within each cell, from which the energy
change per cell is computed. In the optically thin regime,glope of the source function is reduced (Elg. 7, right) to
suppress leaking of cooling or heating from one cell to the (fig.[). Each ray inclination requires an integration of
the intensity in both directions. For inclined ray directiothere is one pair of intensity-integration steps fohgzair
of neighbor cells to avoid the leaking of cooling or heatisgaciated with the spatial interpolation of source functio
andor intensity (Figl8).That means, that in contrast to the well-known SC scheme makziand Auer [119], even
for a single direction there might be more than one ray cotimga cell with its neighbors.

The numerical schenmroceedss follows:

At the beginning of each radiation-transport sub step,ehgeraturd is computed from density and internal
energyent for every mesh point of an equidistedid Cartesian grid. For every frequengsoup(Sect[3.6.2) opacity
and source functioB are calculated by interpolating in precompiled tables. tNiex every ray inclination the optical
thicknessAt of each cell is calculated.

At the beginning of each integration step, the boundaryeslof the intensity have to be set.For theSC
scheme, only open boundary conditions (zero infallingrisiiy) are implemented (for simulations with periodic side
boundaries, theC scheme (Sedi. 3.8.3) is used, instead).

The integration proceeds then layer by layer along the hzis$ closest to the inclined ray direction. For each ray
direction, the intensity at each cell does not depend oreitghiors within a layer but only on cells in the previously
computed layer. That means, that the innermost loop in eadr lcan be ficiently vectorized. The next loop is
parallelized with OpenMP directives and the outermost Ipegorms the integration.

Each complete 3D radiation-transport step includes daestccording to the coordinates of the corners of regular
polyhedrons, which results in equal weights for all raysteAthe loop over all inclinations and the loop over all
frequency groups, the energy change per time is derived &lbrthe accumulated intensity changes and used to
update the internal energy: in each cell for given time stefit. Here, “conservation of intensity” translates into
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“conservation of energy” and ensures the conservativityefradiation-transport update step (except for the losses
through the outer boundaries).

From one sub time step to the next, the orientation of thelpalyon can change randomly to give some coverage
of the entire sphere. However, some simulations are réstrio rays aligned with axes or diagonals resulting in
a considerable speed-up while loosing some angular résoluhere are several radiative time steps per hydro-
dynamics time step possible to compensate for the shostreeltime scale compared to the hydrodynamic one.

In cool supergiants close to the Eddington limit, radiapo@ssure plays an important role in the stellar atmosphere
and the wind of asymptotic giant branch (AGB) stars is drivgnadiative pressure on dust. With the scheme presented
above, the three components of the radiative acceleratioeasily by computed from the intensity change per cell.

3.7. MHD

In CO5BOLD, the numerical scheme used for the solution ofafp@ations of magneto-hydrodynamics is quite
different from the one employed for the case of pure hydrodyradgscribed in Se¢t.3.3n the case of solar and
stellar magnetoconvection, the scheme must be able to diahighly stratified flows where the plasngai.e., the
ratio of the thermal to the magnetic energy density of thempks) varies over several orders of magnitude. A special
requirement of MHD calculations is the enforcement of thedjence-free conditio¥i - B = 0 for the magnetic field.
Violating this condition can lead to unphysical forces, @fhcan degrade the solutidEZO]. Several methods have
been developed to enforce this condition either to rotihelwor or approximately to the order of the scheme. One
method is to use the eight-wave formulation of the MHD ecpJEﬁiZ]. The additional wave is associated
with the propagation of magnetic monopoles. In the eighteMfarmulation, additional source terms proportional to
V - B appeatr, i.e., the equations are no longer conservativeth@nmethod uses a cleanup step at the end of each
time step, removing the errors M- B = 0. This requires the solution of a Poisson equation at eauh $tep. A
third possibility, which is used in the MHD module of CO5BOLB the constrained-transport method of Evans and
Hawley [123]. It uses a special finiteffirence discretization of the induction equation on a staghgrid such that a
discrete formulation of the divergence-free conditiontfae magnetic field is maintained to machine accuracy. All of
these methods can be treated as modifications of an undghgse scheme. A detailed comparison of these methods
can be found in TotH [124].

Another dificulty in MHD simulations is to keep the thermal gas presswsitive [125) 126]. Since the gas
pressure is a dependent variable when using the conserfatia of the MHD equations, itis computed by subtracting
the potential, the kinetic, and the magnetic energy frondted energyeo:.. When the magnetic energy is much larger
than the internal energy, i.e., for small values of the pgpsmall errors in the total energy can drive the gas pressure
to negative values. This can be a problem in the solar chrphese, where values gf~ 104 are common, whereas
the gas pressure dominates in the sub-photospheric layese® is huge. In the MHD module of CO5BOLD,
several provisions are made to avoid a negative gas presBukeep the magnetic field solenoidal, CO5BOLD uses
the constrained-transport method in combination with audod-type finite-volume scheme as the base scheme. In
the following, each component of the scheme is describediremetail.

3.7.1. Spatial and temporal discretization

The spatial discretization of the MHD equations is similartihe hydrodynamic case, i.e., the hydrodynamic
variables are cell centered. The magnetic fields are locatéuke cell interfacesThe cell-centered magnetic field
components, which are required by the Riemann solver of #se scheme, are computed from the magnetic field
components at the cell interfaces by linear interpolatidhen all cell-centered variables are updated by the base
scheme. The extension to second order in space is done lay lieeonstruction of the primitive variablpsv, B,
P, andpen;. Second order in time is achieved either by a Hancock prtmdiitlap[lm, Jor by a second-order
TVD-Runge-Kutta time-integration scherﬂ@]. In some situations, where the second-order scheme woulitt res
in negative gas pressure, the scheme is locally reducedtofiter.

3.7.2. The approximate Riemann solver

In the hydrodynamic scheme of CO5BOLD, a Roe solver is usedt(3.%). However, the Roe solver does not
guarantee positivity of the density and the pressure. Tiblpm, which is also present in the hydrodynamic case
gets worse for MHD. Whereas in the hydrodynamic case, redubie time step often helps to overcome the problem,
in MHD simulations, the problem remains, even if the timgsgereduced considerably.
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It can be shown that the HLL solv ] ensures positivity of the gas pressure and the density éthet solution
of the Riemann problem is positi 31]. For MHD, this is tase only if there is no jump in the normal component
of the magnetic field. In 1D, the divergence-free conditiofoeces the normal component of the magnetic field
to be constant. For multi-dimensional problems howevengusell-centered magnetic fields, jumps in the normal
component of the magnetic field occur even if the divergdnee-condition is fulfilled in a discrete sense. It was
shown by Janhunen [126] that allowing magnetic monopolég;iwarise from these jumps, and taking into account
their contribution to the Lorentz force, an additional smiterm occurs in the induction equation only. Using a
special discretization of this source term, Janhuhen [t28ponstrated numerically that the HLL solver for MHD
always provides positive gas pressures.

We use the method of Janhunen for the MHD module of CO5BOLDvéVer, it should be noted that this source
term is only used for the computation of the fluxes by the Hblver of the base scheme. For the update of the
magnetic field by the constrained-transport method, thiscgterm is not used so that the magnetic field stays
divergence-free.

3.7.3. The constrained-transport step

COS5BOLD uses the flux-interpolated constrained-transpethod of Balsara and Spicér [132]. First, the electric
field at the cell edges is computed from the fluxes at the cewnfethe cell interfaces, provided by the base scheme.
The magnetic field at the cell interfaces is then updated thithelectric field, applying Stokes theorem to every face
of a cell. The updated cell-centered magnetic field from #eelscheme is discarded. The new cell-centered magnetic
field is computed from the updated magnetic field at the c@dfaces by linear interpolation.

Since the new cell-centered magnetic field ifetent from the magnetic field provided by the base scheme, the
internal energyen:, must be modified after the constrained-transport steprdoapto

B"-B*-B-B
2p b

are the magnetic field and the internal energy provided bybtse scheme. If this correction

(see also Balsara and Spicer [132]) and the

&nt = € + (67)

whereB* ande;,

would result in negative gas pressure, it is not performed,&n; = €/,

total-energy conservation is sacrificed in favor of imprebvebustness.

3.7.4. Dual-energy method and Alfvén-speed reduction

Even if a scheme guarantees positivitytlhé gas pressure, this does not necessarily mean that the gasifEe
is computed accurately. In fact, by using the total energyatign for the computation of the internal energy, the
discretization errors in the total energy, the kinetic ggeand the magnetic energy of the scheme tend to be imposed
on the internal energy. One could use the entropy equatidhe equation for the thermal energy itself, instead.
Another possibility is to use the total energy equation imbmation with one of these equations. For example Balsara
and Spicer@S] use the entropy equation for the updatesoifiiernal energy in regions with strong magnetic fields.
For the MHD module of CO5BOLD, the so-called dual-energyhodt i.e., a combination of the equation for the
total energy and the equation for the thermal energy is usegtgions witha largep, the internal energy is updated
with the equation of the total energy. In turn, wheis small 3 < 10-3), the equation for the internal energy is used
at the expense of strict energy conservatiBimce typicallyg is small in very restricted regions of the computational
box only, conservation of total energy is still maintainadriost parts of the computational domain.

In order to avoid extremely small time steps due to the CFLd@@mn when the Alfvén speed is high, the Alfvén
speed can be limited by artificially reducing the strengtthefLorentz force by a factor

VA
max
f=ears (68)
U + vAmaX
whereu, is the actual Alfvén speed amgdnay is the desired upper limit of the Alfvén speed. The methasinslar
to that used by Rempel et 33]. Of course, caution isciaigid when using this method. Obviously, it can hardly
be used for the study of magnetoacoustic wave propagatiomelktr, it may be perfectly admissible in situations,
where the lows regime is merely included as afber region to the (upper) boundary of the physical domain.
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3.7.5. Ohmic dffusivity

While it is not necessary for stability, the MHD-scheme ofSBDLD can also handle explicit magnetididision.
Itis treated explicitly in the scheme by modifying the etextield in the constrained-transport-step. A constantmag
netic difusivity and the artificial magnetic fusivity according to Stone and PrindE[_i34] are currentiplemented
in CO5BOLD. The constant magnetidiisivity can be used to specify the magnetic Reynolds number

vl
n
wheren is the magnetic diusivity, L is a typical length scale andis a typical velocity of the flow. The artificial
magnetic difusivity is given by
2 .
n= c X7l
VP

whereAx is the grid spacing, = V x B is the current density, ard is a dimensionless parameter.

; (70)

3.7.6. Magnetic boundary conditions

The boundary conditions for the magnetic field can be spédifigependently from the hydrodynamic settings for
the topand the bottom boundariesnd for each of the horizontal directions. Typical horizdiboundary conditions
used for simulating magnetoconvection in a local box aréogér. Another boundary condition, mostly applied to
the bottom and the top of the box, consists in setting the ®etégfield tangential to the boundary to zero, so that the
magnetic field lines stay normal to the boundary. A genesiin of this boundary condition specifies the obliquity
of the magnetic field at the boundary. There is also a specrialition for the open lower boundary, which allows
upflows to advect horizontal magnetic field into the compatel box. Another boundary condition consists in setting
the electric field to zero at the boundary. This means thattheal component of the magnetic field at the boundary
does not change. In this case the magnetic field linesfeeetimely anchored at the boundary.

Conditions which keep the magnetic field vertical at the tog lottom boundaries are typically used for the sim-
ulation of intense, vertically directed magnetic flux tulrethe photosphere of the Sun as they occur in magnetically
active regions such as plages and enhanced network regioasdvection of weak horizontal field across the bottom
boundary is used for the simulation of magnetically inagtivery quiet regions on the Suwith this boundary con-
dition, it is assumed that convective updrafts transport magnetitsfiedbm deep layers of the convection zone to the
solar surface. Anchored fields may be useful for anchoringrdine sunspot at the bottom boundary or for anchoring
horizontal fields at the side boundaries for the simulatibimosizontally directed penumbral filaments.

3.8. Optional modules

The numerical treatment of the source ter§sn Eq. [29)dealing with diferent types of dust and chemical-
reaction networks is implemented as a separate step (sae)b&llowing the general concept of operator splitting.
The optional modules are called after the (magneto)hydradhjcs step for each computational time step. These
modules treat the mass or number densities of the dust leartic chemical species as additional quantities, which
are included in the in- and output of the simulation data.yp to one of these extra modules can be used at a time,
so far.

During the (magneto)hydrodynamics solver step, the aufdhtidensities are advected with the flow field anal-
ogously to the gas density. Their transport velocity acezssh cell boundary is computed from the gas mass flux
divided by the upwind density, in some cases modified to aticiou the gravitational settling of dust.

The contribution of the additional components to the totsaty can be added to the standard equilibrium gas
opacities (Sedi.3.6.2). The boundary conditions are madsistent with the hydrodynamics part of the code.

3.8.1. Chemical-reaction networks
Apart from advection across the cell boundaries, the nurdéesityn; of a chemical species in a grid cell can be
changed due to chemical reactions:

(Si)chem= —i Z kojj nj + ZZ ko njnp — 1y szs,ijl njn + ZZZ K3,jim Nj N N, (71)
i il il i1 m
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with the indexi for the included species. So far, the implementation igigtst to two- and three-body reactions,
which is a reasonable assumption for comparatively holastatmospheres. The losses (negative sign) and gains
(positive sign) due to two-body reactions are describedhbyitst and second right-hand terms with the corresponding
reaction ratesy;; andky j, respectively. Analogously, the third and fourth term dibscthe change due to three-
body reactions. Such an equation is imposed for each indlademical species, resulting in a system of ordinary
differential equations of first order. In CO5BOLD, the chemi@dations are handled locally for each grid cell
separately by solving the system offdrential equations. It starts with the calculation of thacten ratek, which
are functions of the local gas temperature and (for catatgtictions) also of the number density of a representative
metal. The influence of the radiation field has been neglestefdr. The functions are parametrized with prescribed
codficients that are provided in the form of a table [se€ 135, feaiti.

The chemical-reaction rates, the number densities of tha\viaed species, and thus their derivatives caffiedi
by many orders of magnitude, which can cause the system dftiegs to be sff. Thus, an implicit scheme is
used for the numerical solution. We based our solver on th© D& packag6] with an implicit BDF (backward
differentiation formula) method and an automatic internal sta@. The solution finally provides the number densities
of the involved species after the overall (global) compatet! time step. For the numerical simulation of carbon
monoxide, 7 chemical species and a representative metabastdered, which are connected through 27 chemical
reactions@S}.

Carbon monoxide is a non-negligible opacity source in tHarsmtmosphere, so that the opacity is in principle
affected by the deviations from equilibrium of the CO numbersitgn To account for thisféect, the back-coupling
to the radiative transfer was implement@lS?]. It follows #pproach by Sféen and Muchmor8], which uses
two frequency groups. The first comprises the gray Rosselpadityxr without the wavelength region around the
CO fundamental vibration-rotation band in the infrared ataazelengths around 4.6 um. This wavelength range is
simulated with the second band, which is constructed fraagitay Rosseland opaciky and an additional opacity
kco- The latter is directly connected to the CO number densigy i derived from the preceding solution of the
chemical-reaction network.

3.8.2. Time-dependent hydrogen ionization

A detailed treatment of the time-dependent ionization afrbgen is important for atmospheric layers, where
significant deviations from the ionization equilibrium acce.g., in the solar chromosphere (see $edt. 4.5). Current
applications for the Sun use a hydrogen model atom with 5 d@nergy levels and a level representing ionized
hydrogen. The number densities of the individual level pafonsn; enter as additional quantities in CO5BOLD.
The levels are connected by collisional transitions andatitative transitions (5 bound-bound and 5 bound-free). The
rate P;; of a transition between a levebnd a levelj is given byP;; = Cj; + R;j, whereCj; andR; are the rates due
to collisional and radiative transitions, respectivelytst these rates are calculated from the local gas densdy a
gas temperature, the imposed radiation field, and the lemllations and electron densities, that are available from
the previous time step. Apart from advection, the changé@pbpulation number densities and thus the ionization
degree of hydrogen in a grid cell is then described by a setna-tependent rate equations of the form

n n
(Sidnion = Z njPji —nj Z Pij , (72)
j#i j#i
where the terms on the right-hand side are the rates into andfdeveli. In CO5BOLD, the set of rate equations
for all considered energy levels is solved with the DVODEKzaye like that for the chemical-reaction networks (see
Sect[3.811).

An important simplification concerns the usage of fixed réaBarates. In principle, the radiation field and the
radiative transitions for hydrogen (both bound-bound aadri-free) are connected in such a way that a detailed
solution has to be found by iteration, which makes it comjponally expensive. For the implementation in a multi-
dimensional radiation MHD code, the rates are fixed and kol so that they reproduce the full solution as it is
implemented in time-dependent 1D simulatidﬁ@] 140Ere€ is no back-coupling to the equation of state and the
opacities in the current implementation in CO5BOLD, a poivitich will be worked on in the future. More details
are given in Leenaarts and Wedemeyer-Bohml[141].
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3.8.3. Dust

If the atmospheric temperatures are low enough, not onlgoubés but larger particles — dust — can form. In the
Earth’s atmosphere, possible typdsuch particlesre for instance aerosols offiéirent compositions, rain, snow, or
hail, mostly made of water, or particles from volcanic asiany cool stars or substellar objects may contain dust in
their atmospheres, too (see gl 11). In the hotter objdutsiiust will mostly be made of minerals (e.g., forsterite).
At lower temperatures (e.g., on the Earth) water plays ammtapt role. For the dust chemisiofthe warmer objects
it is crucial whether oxygen or carbon is more abundant, beethese two elements first form carbon monoxide gas
(CO) and only the remainder participates in dust formatibme formation, interaction, and destruction of grains of
different chemical composition, size, and shapefiscdit to model3]. Compared to the possible compjexit
of the processes occurring in real objects, the variousmosiules in CO5BOLD are simple. They are permanently
under development. Two examples will be outlined in thedfelhg:

Stars at the tip of the asymptotic giant branch lose part eif thass in form of a stellar wind, likely driven
by radiation pressure on dust. The formation of carbon-dakt around such stars was investigated by Freytag
and Hbfnerﬁm] with CO5BOLD and with the 1D-RHD code offHér et al. [1077]. The CO5BOLD dust model
includes a time-dependent description of dust grain gramith evaporation using a method developed by Gail and
Sedlmayr@S] and Gauger et 46]. In this approachdiiet component is described in terms of four moments
K; of the grain-size distribution function, weighted with aws j of the grain radius. The momeHy represents
the total number density of grains (integral of the sizerifigtion function over all grain sizes), while the ratio
K3/Ko is proportional to the average volume of the grains. The &gps, which determine the evolution of the dust
components, are solved considering spherical grains stimgiof amorphous carbon. The nucleation, growth, and
evaporation of grains is assumed to proceed by reaction$ving C, G, C;H, and GH,. The four moment&; are
number densities and are advected with the gas as descnil®=t{38. The gas and dust opacities in this case are
gray. Some results are shown in Secil 4.7 and Fig. 15.

In contrast to the cool giants, the conditions for the foioradf (oxygen-rich) dust in Miwarfsand brown dwarfs
are fulfilled even in standard 1D atmosphere models. How#wecomparatively heavy dust grains should sink under
the influence of gravity and vanish from the visible photaghleaving no direct trace in emergent spectra, which
is at variance wittobservations. The scheme use [96] to investigate thstigmewhy the dust does not settle or
how the material comes back up is based on a simplified vedditire dust model used iﬁb?], adapted to forsterite
(Mg2SiOy, 3.3gcm?). In this method, there are only two density fields, one islusespecify the mass density of dust
particles and the other to describe the monomers (the daostitients), instead of four density fields for the dust and
none for the monomers as in [107] ahd [144]. Therefore, ttie o the sum of dust and monomer densities to the
gas density is allowed to change, in contrast to the dusriggisn in ﬂ@] used for the AGB simulations mentioned
above. Instead of modeling the nucleation and the detailetigon of the number of grains, a constant ratio of
the number of seeds (dust nuclei) to the total number of memsifin grains or free) per ca assumedIf all the
material in a grid cell were to be condensed into dust, thingnaould have the maximum radiugmax, Whichis set
to a typical value of m. This is close to the typical particle sizes found for théagdly thick part of the cloud deck
in solar-metallicity brown dwarfs according to thRIFT-PHOENIX models of Witte et aI7].

Condensation and evaporation are modeled as i [M@®, parameters and saturation vapor curve adapted to
forsterite. In the hydrodynamics module, monomers and dessities are advected with the gas density, with the
terminal velocities given by the low-Reynolds-number cak&q. (19) in Rossovd_L_lé8] as settling speed added to
the vertical advection velocity of dust grains. In conttasthe sophisticated treatment of the gas opacities, a simpl
formula for the dust opacities is used, which assumes tledatige-particle limit is valid for all grain sizes and treat
scattering as true absorption. The dust opacity in eaclo€étle simulated atmosphere is added to the gas opacity
(Sect[3.6.R). Experiments have been made with anothenaog!, that uses in addition to one density field for the
monomers a number of further fields, one for each possibla gize.

4. Reaults

4.1. Code comparison: the solar benchmark

The natural benchmark for the comparison df@tient codes is of course the solar atmosphere. On the one
hand, its mean thermal stratification is well known empihgand its velocity field and associated temperature
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Table 1: Setup and emergent radiation of solar models cardpwuith diferent codes.

STAGGER MURaM CO5BOLD CO5BOLD
standard high resolution

Box size [Mn?] (X x y x 2) 6.0x6.0x3.6 9.0x9.0x3.0 5.6x5.6x2.3 5.6x5.6x2.3
Grid dimension 240x240x230 51%512x300 140<140x150 400<400<300
Cell size [kn?] (AX x Ay x AZ) 251x251xAz"  17.6x17.6x100  400x400x151  140x14.0x7.5
Height range [Mm]£=0at(ry=1) | -2.72...+088 -200...+100 -1.38...+0.88 -138...+0.88
upper boundary condition transmitting closed transmitting transmitting
lower boundary condition open open open open
# snapshots used 19 19 19 60
# frequency groups used 12 4 12 12
Effective temperature [K] 5762 5768 5781 5763
Bol. intensity contrastu=1) [%] 149 154 144 141

* The STAGGER code uses a non-equidistant grid in the vedicettion, with spacings ranging fronz = 7 km
near the optical surface tiz = 32 km in the deepest layers.

fluctuations have been studied in great detail based onalady of observations. On the other hand, many numerical
simulations have been carried out to study solar surfaceemion with a variety of dferent computer codes. Here,
we compare some basic quantities obtained from numeritailations of the solar surface layers with thre@etient
codes: STAGGER, MURaM, and CO5BOLD. All three codes sohettimne-dependent equations of compressible
(magneto)hydrodynamics for a gravitationally stratifiealiating fluid in a Cartesian box in 3 spatial dimensions,
taking into account partial ionization and non-gray radégenergy exchange, the latter treated with the opacity-
binning scheme (see Sdct. 316.2).

The codes have been developed independently and fiseedit numerical methodsSTAGGER and MURaM
are similar in that both use a method of lines for the hydradyits part as well as artificial (hyperdisivities to
stabilize the numerical solutioithe STAGGER codéBQ] 9] (see also SELt. 1) uses a sixtardinite-diference
method to determine the spatial derivatives on a staggeesti riwvhile the equations are stepped forward in time using
an explicit third-order predictor-corrector procedurenserving mass, momentum, energy, and magnetic-field-diver
gence. Radiative energy exchange is found by the formatiealof the Feautrier equations on long ragmilarly,
MURaM @], @] uses dourth-ordercentral-diference scheme in space, and a fourth-order Runge-Kutta time
stepping; radiation transport is computed with a short-atieristics methodOn the other hand;O5BOLD is based
on a finite-volume approach and employs an approximate Riarsalver of Roe typ& advance the hydrodynamics
in time, relying on second-order monotonic reconstructiohemes to achieve numerical stability without the need
to invoke artificial viscosities. Directional splittingdaces the 3D problem to one dimensional sub-steps. Similar t
STAGGER radiative transfer is treated with a Feautrier method oy lcimaracteristicésee Seci. 3.6.3).

The basic setup of theffiérent solar simulation runs is summarized in Table 1. TheG@5BOLD models dfer
only in their spatial resolution. Since the models of thi#éedent groups have not been constructed for the purpose of
this comparison, they ffer in many aspects, such as horizontal box size, verticahgxépatial resolution, boundary
conditions, opacity tables, numberfodquency groupsnd equation of state (EOS), apart from thigetent numerical
methods used to solve the equations of hydrodynamics anatixadtransfer. Despite these substantidletences,
the mean vertical structure, obtained from the various Etians by horizontal and temporal averaging, turns out to
be remarkably similar, as demonstrated in Eig, 9. Obviqukl mean thermal structure is the most robust quantity.
Ignoring the layers influenced by the top boundary, the teatpee diferences are everywhere below 2%; deviations
seen in the deeper layers are probably related fteréinces in the EOS. Except for the photospheric layers above
~ 300 km, where the details of the opacity-binning recipe playajor role, the predicted amplitude of the horizontal
temperature fluctuations is also amazingly similar. As asegumence, the predicted continuume-intensity contrast (se
Sect[4.P) is found to be in very good agreement (last row bfel#).

The depth-dependence of the mean vertical velocity obddimen the three dferent simulations agrees closely
(lower set of curves in lower right panel of Hig, 9). As thearally expected(V,) is positive in the convectively
unstable layers below the surface, and negative in the lowetgegion. Somewhat larger deviations among the
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Figure 9: Comparison of the average vertical temperatutetsires,(T)(2) (left panels), the rms horizontal temperature fluctu&ion;ms =

V(T2)(2) — (T)2(2) (top right), and the mean and rms vertical veloeity)(2), and /(VZ)(2), respectively (lower and upper set of curves in bottom
right panel, respectively), as obtained witlfeiient codes for the solar simulations described in TableTAGEER (dashed), MURaM (dotted),
CO5BOLD standard (solid). Heke) denotes averaging over horizontal planes of the numeri@h{gpnstant geometric heigktand over selected
shapshots in time.

different models are found in the velocity dispersiqﬁ,\/zzxz) (upper curves). Is seems that both the location of the
lower boundary and the spatial resolution have some infeienahe resulting velocity amplitude. Nevertheless, the
overall agreement is very satisfactory.

We have to keep in mind that thefidirent codes are largely based on the same physical assamatid approx-
imations. It may therefore not be too surprising that theltes) atmospheric structures are similar. And it does not
prove that all details of the models are physically correct.

The role of the spatial resolution is illustrated in [Eig. Where we compare two CO5BOLD models thafeli
only in spatial resolution: in the high-resolution mogefl Fig.[l),the horizontal cell size is reduced by a factoy/2
with respect to the standard CO5BOLD model, while the vattiell size is reduced by a factor of 2. The mean
thermal structure is practically unchanged, as is the dogsdiof the T-fluctuations up to the mid photosphere. As a
consequence, the intensity contrast is not significarffbcged by the increased grid resolution (see Table 1). How-
ever, in the upper photosphere abave 300 km, the amplitude of both the temperature and velociwtdlations
increases somewhat with increasing spatial resolutiore guestion whether the moderate spatial resolution of the
standard hydrodynamical models is fullyfcient to account for the “turbulent” character of the solaofpsphere,
and hence for correctly capturing the non-thermal Doppleatiening of spectral lines, is currently under investiga-
tion. Obviously, this is an important issue in the contexaodurate chemical abundance determinations based on 3D
model atmospheres (cf. Sdctl4.3).
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Figure 10: Comparison of the same quantities as in[fFig. 9,fdnutwo CO5BOLD solar simulations which fiiér only in spatial resolution:
CO5BOLDstandard(solid) and CO5BOLhigh resolution(dashed). The thin curves in the upper left panel reféigz) + 6Tims(2).

4.2. Granular intensity contrast

The granulation pattern visible at the solar surface is aif@station of convection in the sub-photospheric layers:
bright granules correspond to hot rising gas, while the daekrgranular lanes consist of cooler downward-sinking
material. The relative continuum-intensity contrast,

\/<| (% 5. )2y — (1 (X Y. )2,
Olms = < > ’ (73)
t

A%y, )y

of this granulation pattern and its variation from the ceifthe solar disk to its limb are important tests for the degr
of realism of numerical models. For many years, the valuesettfrom observations were significantly lower than
those calculated on the basis of numerical simulations,[&51]. Recently, it was shown that synthetic continuum-
intensity maps based on CO5BOLD [152] and also the code byliNiod and Stein [149] can indeed reproduce the
empirical values quite well, if the instrumental image detation is taken into account propetly [153]. The necessary
image reconstruction is a very demanding task, which on therdiand turns out to be crucial, as was shown for
observations obtained with the Solar Optical TelescopeTjSDboard the Hinode satellite [154]. Hirzberger et al.
[155] find very good agreement between the rms contrast af gphnulation obtained from measurements with a
balloon-borne 1-m solar telescope and simulations at wagths of 388 nm and 312 nm. At shorter wavelengths,
discrepancies between observations and simulations sependist.

By analogy, the surface of cool stars must be covered by dssiattern, thestellar granulation lIts intensity
contrast cannot be measured directly. Numerical simulatioe necessary to infer how the intensity contrast depends
on the stellar parameters: thextive temperaturéys, the surface gravity log, and the chemical composition.
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Figure 11: Top: grid of CO5BOLD models in the 1@gy-logg diagram. Bottom: logarithm of rms bolometric intensity trast versus 107 e
The squares mark 3D local models, the triangles 2D local fsodée stars indicate global models (with very low surfa@riy). Larger symbols
indicate lower gravity. The Sun has its ostandard symbab with yellow backgroundA red symbol (at lower #ective temperatures) shows that
some treatment of dust is included in the simulation.

The top panel in Fig. 11 shows the CO5BOLD models on the majnesgce and above it (i.e., with gravities
around logy 4 to 5 and lower: white dwarf models are not plotted) in aTgg— log g diagram. The displayed models
comprise the solar-metallicity part of the CIFIST grid ofaelike 3D models|[156], 3D M-dwarf models [157], local
2D “dusty” brown dwarf modeléI%], global 3D red supergi@,@ ] and AGB star mode|ELi44], as well
as more experimental models of e.g., A-type stars (in 2D 9gr&idl cepheids (in 2D). Larger symbols mean lower
gravity (and usually a larger stellar radius). Squaresade}id models, triangles 2D models. Solar models have the
© symbol. Global 3D models of red supergiants and AGB starsramked astar symbolst the top. Red symbols
indicate that the simulations have accounted for dust iresimmm. Models with non-solar metallicities are not shown.

The bottom panel shows the (bolometric) relative intensitytrast according to Eq.([73) verslig for the same
models and with the same symbols as in the top panel. On the seajuence (smallest symbols), the contrast
decreases for stars cooler than the Sun since the stellegyefiex decreases and convection can transport it with
smaller temperature fluctuations. The contrast does no¢asefurtherbut has a plateau for stars a bit hotter than
the Sun because convection does not carry the entire dlaekaanymore. Below a minimum at around 2600K, the
contrast increases again because fluctuating dust cloadsdsiminating the surface contrast (see $edt.4.6). The
contrast decreases at the very cool end due to the decreagral! flux.
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In general, lowering the gravity has a simildfext as increasing thdtective temperature, but ressih slightly
more vigorous convective flows. The largest surface conisagen in the global AGB-star models, followed by the
global red-supergiant models. 2D models have a larger asintinan 3D models. Other types of dust (@ndiust
schemes) as well as global fluctuations might change thergiébr the cooler models.

4.3. Solar and stellar abundances

One important application ahulti-dimensional (multi-Dyadiation-(magneto)hydrodynamics models is the de-
termination of chemical abundances in late-type stars. ednubst circumstances, information about the thermal
and kinematic structure of a stellar atmosphere is necetsanterpret measured strengths of spectral lines in terms
of chemical abundances. To this end, simulated time sefidisecevolution of the stellar photospheric flow field
are serving as input for detailed spectral-synthesis ions. The result of these calculations are time series of
spatially resolved synthetic spectra which, after suéableraging in space and time, can be compared to the obser-
vations. For CO5BOLD, we developed the spectral-syntreexie Linfor3D |L1_5_|1] which is on the one side adapted
to the particular data formats and structures of CO5BOLIA,@mnthe other side designed to facilitate the abundance
analysis.

Historically, the application of multi-D models for demg abundances started out on the Sun already early on.
However, in the beginning mainly structural propertiesuface convection and associated magnetic fields were in
the modeling focus so that abundance analyses with multeDets remained sparse. A turning point came with the
work of Asplund and collaborato@dﬂGS] suggesting thalti-D effects are important in the Sun and metal-poor
stars if one wishes to obtain high-fidelity abundances. &then &orts are directed towards improving multi-D
modeling aspects specific to abundance analysis work, aletidirg the model basis covering successively larger
regions of the Hertzsprung-Russell diagram [156].

Hitherto, CO5BOLD models were applied to derive abundantéselve elements in the Sun (seeftaa et al.

[@] and references therein) including the CNO elementschvare important for the overall solar metallicity; work
on further elements is in progress. In the field of metal-tars, CO5BOLD models were used to derive abundances
from atomic (e.g.,5]) as well as molecular Iine:g.(e@,li@l?]). An element of particular interest in
metal-poor stars is lithium due to its connection to nugj@tisetic processes in theg bang and early univers&he
lithium abundance is commonly derived from the Lil resoretice at 6707 A. Since lithium is mostly ionized in
the stars of interest, the formation of the line is highly pamature sensitive, which makes the resulting abundances
strongly model-dependent. Hoping for lithium abundanddggher fidelity, multi-D models were rather extensively
applied. CO5BOLD models were used to obtain lithium abudartin the most metal-poor dwarf stars knom168],
to investigate the structure of the so-called “Spite plated lowest metallicitieleQ], and to study the evolutiain
lithium in the globular cluster NGC 639|7__[;|70]. A related aspis the abundance ratio between the lithium isotopes
SLi/’Li in metal-poor stars. CO5BOLD models were applied to arggainst claims of a non-zero isotopic ratio
[@, @]. The aforementioned investigations focused oaréler subgiant stars. There are also ongoifigrés to
extend the application of CO5BOLD simulations to giantsiacluding studies of their abundanda 173 174].

Besides conducting actual abundance analyses, CO5BOLBIswedre instrumental in a number of studies more
indirectly linked to the derivation of stellar abundances spectroscopy: the long-lasting issue of how smallescal
velocity fields in stellar atmospheres give rise to the spscbpically derived microturbulen J151157], and the
influence of thermal inhomogeneities offiextive temperatures derived from Balmer-line profiles[176

The application of multi-D models to stellar-abundancelisi is in its early stages and modeling challenges still
exist: the need for a precise thermal structure of the dptitian, line-forming regions demands for a detailed rep-
resentation of the radiation field. Sigcient wavelength resolution (Selct._316.2), and inclusibscattering processes
are current challenges in the simulations proper. In thé-pagessing, line-formation calculations including dep
tures from LTE are necessary to fully exploit the model ptigdities but are demanding in terms of computational
resources and amount of necessary atomic input data.

4.4, The magnetic Sun

4.4.1. Current status
Figurd 12 exemplifies the type of MHD applications that aneently performed with CO5BOLD. Itillustrates the
magnetic field structure at the interface between the cdiorezone and the overlying atmosphere of the Sun. The top
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Figure 12: Flux expulsion in a close-up from a simulation ofas magnetoconvection: Logarithmic magnetic field sttbrig a vertical cross
section (top) and in three horizontal cross sections (bhot@at heights of 0 km, 250 km, and 500 km. The emergent inteisidisplayed in the
rightmost panel. The arrows represent the velocity fieldgoted in the respective coordinate planes. Yakow/white curve in the top panel
marks the height of visible optical depth unity, i.e., thelss surface”. From Wedemeyer-Bohm et &l [177].

panel shows close-up of vertical cross section through the three-dimensionajpeaational domain, where colors
represent the magnetic field strength and arrows the vgliel. The dashed yelloiwhite curve indicates optical
depth unity, i.e., the “solar surface” as seen in the vigitae of the spectrum. Below this surface, the atmosphere is
convectively unstable and energy is transported mainlydmyection. Above this surface adjoins the stably stratified
photosphere, where energy is mainly transported by radiatnhd where convective overshoot motions are rapidly
damped. The panels in the bottom row show horizontal craggssof corresponding sizat three selected height
levels and the emerging bolometric intensity in the righstpanel (intensity map). The location of the vertical cross
section is indicated by the dashed horizontal line in thédmopanels.

We can see a strong central updraftin the vertical cros#oseaf Fig [T2, which corresponds to the central granule
visible in the intensity map. This granule is a typical regengtative for real solar granulation with respect to initgns
contrast and size. Since thdfdision length scale of the magnetic field is small compareldsize of a granule, it is
useful to think of the magnetic field to be “frozen into thegute” so that the flow field transports the magnetic field
from the granule center to its boundaries where it gets atnated. This process is called the flux expulsion process,
as magnetic flux is expelled from the granule interior to sitdaries. Correspondingly, the magnetic field in the
central part of the granule is weak (dark blue) and it getxentrated in the intergranular lanes (red), where plasma
flows back into the convection zone again.

As the updraft runs into the stable stratification of the pbpheric layer, it loses the driving buoyancy force and
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Figure 13: Logarithmic current density, ltj¢y in a vertical cross section (top panel) and in four horiabotoss sections (bottom panels) in a depth
of 1180 km below, and at heights of 90 km, 610 km, and 1310 kmrellte mean surface of optical depth unity from left to rigaspectively. The
arrows in the top panel indicate the magnetic field strengthdirection. The dashed line in the bottom row indicatesptbstion of the vertical
section. j is given in units of 3x 10° A/m?2. From Schéienberger et al[[183].

buoyancy starts to act in the opposite direction. Conseityj@amd also because of the strong density stratificatiun,
flow must deviate inthe horizontal direction and it drags the magnetic field withsteaconsequence of the frozen-in
condition. Hence, the magnetic field assumes a predomyjnhatizontal direction in the upper part of the photo-
sphere, above the mushroom shaped void in[Eig. 12 (top pawéi)le MHD simulation have since long predicted
the existence of this prevalently horizontal fielﬁ_gﬂl78]jsitonly very recently that it got observationally detected
with polarimetric measurements from the Hinode space ebsany ]. More details about MHD simulations with
regard to this horizontal field can be found in Schiissleraigler ], Steiner et alml], and Steiner et EMSZ]
Figurd I3 shows the electric current densjtys V x B, that forms as a consequence of the process discussed
above, in a similar but larger domain than that of Eig. 12. iAgéhe top panel is a vertical cross section through
the simulation domain, and the bottom row shows four hottalocross sections at various heights. The magnetic
flux concentrations in the intergranular lanes, which fosraaconsequence of the flux expulsion process, give rise
to the conspicuous pairs of current sheets, visible in threzbiotal cross section &= 90 km. Another system of
current sheets forms in the region of predominantly hotiabmagnetic fields above granules, in a height range from
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approximately 400-900 km, as can be seen from the vertioab@ection. Higher up in the atmosphere, shock waves
form where the supersonic plasma flow sweeps magnetic fitddlie compression zone downstream of and along
the shock front. There again, current sheets form, e.g.otigeextending fronx = 1.1 to x = 1.5 Mm in the top
part of the vertical cross section, which is also visible #isiafilament atx = 1.4 Mm in the rightmost panel which
corresponds ta = 1310 km. More details about MHD simulations with CO5BOLD lwitgard to chromospheric
shock waves can be found in Séfemberger et al@3] and Sdfienberger et aI@S]

Interestingly, the mean vertical Poynting fl$s), whereS = B x (v x B) = B%v — (v - B)B is all of the magnetic
contribution to the total energy flux (see Eql(19)), changjga near optical depth unity. Below this depth, in the
convection zone, the intense downdrafts in the intergeariahes pump magnetic fields in the downward direction—
cool and dense plumes compress and drag the magnetic fidldheitm. This leads to a net Poynting flux in the
downward direction. Above; = 1, the Poynting flux that is connected to the magnetic fieldeadby the convective
overshoot prevails, leading to a net Poynting flux in the uphdirection. We expect that at least a part of this flux
is turned into heat via ohmic dissipation by the current shté®at form on top of the overshoot in the chromospheric
layers (see Fi§.13).

One purpose of performimgalistic simulations is thesynthesiof observable quantities from the simulation data,
which then become directly comparable to actual obsemsatibthe Sun. This typically involves the integration of the
radiation transfer equation along lines of sight acrosstmputational domain in order to obtain (two-dimensional)
synthetic intensity mapsThis analysis step is performed post factum, after conguetif the simulation.In case
of magnetohydrodynamics, it requires the integration ef thnno-Rachkovsky equation for polarized radiation for
obtaining intensity maps of the Stokes parameters. Foctdage@mparison with observations from space-based or
ground-based observatories, application of the corredipgrinstrumental point spread-function is necessary ér d
grading the synthetic intensity maps to the spatial regmidimits of the actual observation. Degradation in fregeye
space and addition of noise may be required for taking intmaet the frequency resolution of the spectrometer and
the photon noise of the recording device, respectively. miitaive comparisons of synthesized spectropolariroetri
maps from CO5BOLD simulation data with corresponding istgnmaps from the Hinode space observatory were
performed by Steiner et amm] who focus on the above dsed horizontal magnetic fields and by Rezaei et al.
[@] with respect to intergranular magnetic flux concetires.

MHD simulations with CO5BOLD are also performed for studythe excitation and propagation of magneto-
acoustic waves in the magnetically structured solar atimesp Hfects of mode conversion, refraction, and transmis-
sion are studied for application in solar atmospheric selsgy [185] 186/ 187, 188].

4.4.2. Next steps

Most if not all simulations of stellar magnetoconvectiolyren the MHD approximation. But the plasma in the
photosphere of the Sun is weakly ionized so that the fromezendition may not really apply after all, despite the
large scales of the magnetoconvective processes undedematon [see, e.dﬁHﬂQO]. In the tenuous plasma of the
chromosphere and corondfects become important which are not included in the singlie-fhodel of the standard
MHD equations, and a multi-fluid model or even a kinetic diggimm of the plasma may become necessary.

Two consequences of a multi-fluid description are the Hédlat and the ambipolar flusion. Since the electrons
and ions are moving on curved trajectories between caligsithe current density vector is no longer colinear with the
electric field vector, i.e., the electric conductivity issm$or. Ambipolar dfusion occurs in partially ionized plasmas,
where collisions between charged and neutral particledym® new diusion mechanisms. Since only the charged
particles are coupled to the magnetic field, itveesacting on the dterent particles are fierent. This leads to a drift
between charged and neutral particles modifying the trms magnetic flux in the plasma.

In the limit of a weakly ionized plasma consisting of eleaspions, and neutrals, the single fluid description
can still be applied along with an appropriate modificatibthe induction equation. This modification includes a
term representing the Halffect and a term representing the ambipoldiudion. We plan to implement an optional
inclusion of these terms in the computation of the numefloaks for the induction equation of CO5BOLD.

Ohmic dissipation of electric currents is probably the mogtortant process in the heating of the outer solar
atmosphere. In the present version of the MHD module of COGBQhere is only an explicit implementation of a
turbulent subgrid-scale magnetididision(see Secf._3.7.5However, for taking a significant resistivity into account
an implicit treatment must be implemented. Also the ocawesof anomalous resistivity should be accounted for.
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Currently, a much discussed topic in solar physics is thgimf the ubiquitous weak magnetic field outside
sunspots. It is thought to be generated through inductientduhe turbulent motion of the plasma near the solar
surface, viz., by the turbulent dynamo [191]. On the otherhaurbulent pumping transports this magnetic field in
the downward direction, away from the surface into the desgs, turbulent layers of the convection z 192]. Itis
unclear, which #ect prevails.First MHD simulations have been designed and carried ot thié aim to improve
our understanding of this riddle (Vogler and Schuissl@&[1Moll et al. [194]). For a review see Stein [195] who
argues that the solar dynamo has no preferred scale but eattsethroughout the convection zone over a wide range
of scales.

Regarding global models of solar magnetohydrodynamiedoting term goal should be the global, three-dimensional,
numerical simulation of the entire solar convection zorauding at least the overshoot layers and a proper radia-
tive transfer at its boundaries, but ideally also photosphehromosphere (see below), and corona. Thus, we seek a
“Sun simulator” as a laboratory for the holistic simulation of the Sun onesdfom the stellar radius to the size of
granules of about 1000 km. The outcome should be a virtualfyceonsistent simulation of the ftierentially rotating
convection zone including the self-exciting dynamo, whietthought to be at therigin of solar magnetic activity.
Simulations should shed light on the functioning of the dypathe solar rotation law, the torsional oscillation, the
luminosity variability, the sunspot cycle, and the glolidas oscillation. Despite the apparent sphericity of stéisse
processes are truly three-dimensional and therefore rédwpyire a three-dimensional treatment unlike the traui#tio
one-dimensional approach in stellar-evolution modeling.

The development of such a simulation tool is a formidablk (ase Se¢t2]1). The main challenge at the beginning
consists in the recognition of the relevant physics to beiged and in finding the proper physical approximations,
numerical scheme, and adaptive meshing for achievifigcgnt spatial resolution. So far, global MHD simulations
have not been carried out with CO5BOLD. However, with CO5B0tshould be possible to collect first experiences
on the way to a true “Sun simulator”.

4.5. Solar chromosphere

The chromosphere is the thin atmospheric layer betweenhbtogphere and the transition region and corona
above. Although these layers are coupled by magnetic fields\aves, the properties of the atmospheric géedi
significantly. Compared to the photosphere below, the chepheric gas is relatively thin, which has a number of
important implications for the modeling (see SEct. 4.5l also for observations. There are only a few diagnostics
suitable for probing the chromosphere, which makes it hmdgtive constraints and viable reality checks for numeri-
cal models. Even worse, the interpretation of most of thésgbstics is complicated by the fact that non-equilibrium
effects must be taken into account. Advances in instrumenthtith for ground-based and space-borne observations
during the recent years made it nevertheless possible &sad¢he dynamic and intermittent fine structure at small
spatial scales like it is seen in current chromosphere sitinls (see, e.g., the review by Wedemeyer-Bohm et al.

1). The coexistence of magnetic fields and propagatianps and interaction of these makes the modeling of the
chromosphere a challenging task and a true hardness teékefstability of the code.

4.5.1. Challenges in chromospheric modeling

Radiative transferThe gas becomes optically thin (i.e., essentially traremain a substantial wavelength range,
leading to a strongly non-local coupling of regions withiistlayer and also with the layers below and above. How-
ever, the chromosphere is neither completely optically tiar completely optically thick. The often used simplifgin
assumption of local thermodynamic equilibrium (LTE) brealown in the chromosphere anfieets like scattering
become important. All this makes the numerical treatmemédiation challenging. Detailed (non-LTE) calculations
are today usually done for (a number of) single simulaticapshots but are still computationally too expensive to be
included in 3D radiation magnetohydrodynamic simulatidgisplifications are unavoidable, so far.

Non-equilibrium gfects: Many more processes depart from equilibrium condition&@thin chromosphere. For
instance, the ionization degree of hydrogen can no longanbdeled under the assumption of an instantaneous
equilibrium (see Seck_3.8.2). Some processes become wats the detailed time evolution must be followed.
A detailed treatment, however, is computationally expensiCurrent approaches [140, 141, 1196] use a hydrogen
model atom with 6 energy levels and 10 radiative transitiolfe corresponding rate matrix can befstind is
solved implicitly for each grid cell in the model chromospieAnother example for non-equilibrium modeling is the
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application of chemical-reaction networks for carbon made @@E?}. See SdctB.8 for a short description
of the implementation of chemical-reaction networks andrbgen ionization in CO5BOLD.

Computational time stepthe thermal pressure is so low that the magnetic pressureezaime larger already at
relatively low magnetic field strengths. The plaspavhich is defined as the ratio of thermal to magnetic presssire
consequently less than one above heights 8000 km above the bottom of the photosphere. Under thesatmmny]
the magnetic field is no longer advected passively and magwaize modes become important. A full magneto-
hydrodynamic approach is therefore necessary. The comiqmahtime step is then determined by the Alfvén speed,
which easily can result in steps of the order of millisecotidssimulations that cover a few hours), depending on
the magnetic configuration in the chromosphere. This is aatimh by one to two orders of magnitude compared
to purely hydrodynamic simulations. Under certain circtanses, an atrtificial reduction of the Alfvén speed can be
used, as is discussed in SEct. 3.7.4.

Numerical stability: Acoustic waves, which are continuously excited by the natienary surface convection
below, grow in amplitude while propagating into the thinneromosphere. There, they develop (MHD) shocks with
high peak temperatures of the order of 7000K or more, and yhardical pressure exceeds the gas pressure. The
physical conditions in a grid cell can change drasticallyirttyuthe passage of a shock wave, which requires a high
degree of stability of the numerical scheme. In the MHD célse pccurrenceof strong gradients in thermal and
magnetic properties can lead to exceptional situationsilparts of the computational domain. In this respect, the
HLL solver (see Sedi.3.7) has been proven a good choice.

4.5.2. Chromospheric modeling in the recent years

The many complications in modeling the chromosphere mathevitable to begin with simplified models and
increase the degree of realism step by step. A very promaample is the pioneering study by Carlsson and Stein
[@,@]. They restricted the simulations to one spatidethsion but implemented a detailed radiative transfer
treatment [cfj:)]. Skartlien et amm] succeeded tapoe a 3D hydrodynamic model with a relatively coarse
spatial resolution by using a simplified description of thdiative transfer, which nevertheless included scatjerin
The 3D hydrodynamic simulations by Wedemeyer et al. [92]ctviwere carried out with COSBOLD, did not include
scattering but used a higher spatial resolution. This tyfgeaal 3D models is restricted to a relatively small part of
the atmospheric layers extending from the chromospheogl& upper convection zone. The latter is important as
it provides an intrinsic driver for the atmospheric dynasrémd thus avoids the need for an artificial driver like it is
necessary in 1D simulations.

The step to multi-dimensional magnetohydrodynamic sitiria of the chromosphere has been performed only
a few years ago. The (non-local) radiative transfer is atilimiting factor. Consequently, simplifications of the
radiative transfer are still necessary for 3D MHD simulati®f the solar chromosphere. Sfteaberger et al@3]
therefore used a frequency-independent (“gray”) radédtignsport and a weak initial magnetic field for the first 3D
MHD simulations with CO5BOLD (see also Sdfenberger et al[ [183]). Further 2D numerical experimenfg]2
combined higher magnetic field strengtli = 100 G) with the treatment of chemical-reaction networkduding
carbon monoxide and the methylidyne radical CH in view ofrtde&gnostic potential.

The models mentioned above focus on the small-scale steuahd dynamics of the solar chromosphere, while
another class of models also includes the corona a@b@@@ﬁéﬂﬂ. These models have a larger spatial
extent so that the large-scale magnetic field structure edittbd into the computational box. In order to keep the
simulations feasible, compromises such as a lower spasalution were unavoidable for the earlier models. How-
ever, the progress in computational performance dficient numerical methods allows for higher spatial resohuti
and at the same time a larger number of implemented physiceépses, producing models with a increasing degree
of realism.

The chromospheric layer of the hydrodynamic CO5BOLD modbgl8Vedemeyer et aI|.__[_§2] exhibits a very dy-
namic and intermittent pattern made of propagating hotlslronts and cool post-shock regions (cf. FFigl 14b). The
resulting fluctuations of the gas properties are substdikédt was found already from 1D simulations. As the shock
fronts are very narrow, the peak temperatures of 7000—8000EO5BOLD simulations depend to some degree on
the resolution of the computational grid. Adiabatic expan®f the post-shock regions produces gas temperatures
down to~ 2000 K. A similar shock pattern can already be perceived eéngs-temperature maps by Skartlien et al.
[IEI] but much less clearly due to the lower spatial resofutiMartinez-Sykora et aI:[_b4], who employed the Oslo
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Figure 14: Vertical cross sections through the upper lageas3D MHD model by Wedemeyer-Bohin [206]) logarithmic magnetic field strength
(color range 0.2 - 3.5 [G])) gas temperature (color range 2500 - 12000 K). The salitesin both panels represent (projected) magnetic field
lines (thin blackcurveg, the contour for plasmg- = 1 (thick yellow contour) and the height where the optical depth is uiffigrizontally running
black curve around = 0). The latter defines the bottom of the photosphere.

Staggered Code for 3D simulations of magnetic-flux emerggefied a shock-induced pattern in their model chro-
mosphere, too. The range in chromospheric gas temperatgimilar to the CO5BOLD results, whereas there are
differences in the temperature amplitudes. This is presumabled by the dierent numerical treatment of the ra-
diative transfer in the upper layers. The existence of arolbspheric small-scale pattern in quiet regions of the Sun
is now supported by recent observations [@l 207, 208].

Also the MHD simulations carried out with CO5BOLD exhibit@tg shock fronts in the chromosphere (see
Fig.[14b). Compared to the photosphere below, the magnetitifi the model chromospheres is less concentrated
and reaches a higher filling factor; it has a lower averagd f&kength and evolves fast@[@lSS]. See $edt. 4.4
for a description of the photosphere in this type of modelse ®pology of the chromospheric magnetic field is yet
complex and features shock-induced compression and acatilifin into magnetic field filaments. Figl14a, shows the
upper layers of a current 3D simulation. The vertical cr@sgien is intersecting a magnetic flux concentration. The
magnetic field lines (thin solid lines, projected into thewiplane) show that the field is highly concentrated in the
photosphere and expands in the chromosphere abovethithkeyellow curve represents the surface where plasma-
B = 1. Although the height of this surface varies strongly, ityigically found around ~ 1000 km outside strong
magnetic flux concentrations. For plaspa= 1, sound speed and Alfvén speed amilar, which has important
implications for the occurrence, conversion, and propeagatf different wave modes [e.@@@ 185 187].
The simulations indeed show &f#irent behavior in the domains wigh< 1 andB > 1, resulting in a slowly evolving
lower part and a highly dynamic upper part. Current shedt below and above the = 1 surface but dfer in
their orientation (see Fig13). They are stacked with pmeéidantly horizontal orientation in the lower atmosphere
(see Seck.414) but are aligned with shock fronts in thefawgime in the chromosphere, resulting in oblique or even
vertical orientation.

4.5.3. Next steps

The next steps towards realistic models of the solar chrphere concern an improvement of the radiative transfer
under chromospheric conditions and the detailed treatoferdn-equilibrium processes that have a significant impact
on the equation of state and the opacities. However, théettmodeling of non-equilibriumféects might increase
the computational costs to a degree that it can become itigatad-or instance, important opacity sources that deviat
from their equilibrium state can prevent the usage of nucadlyi efficient opacity look-up tables (Se€f._316.2) and
require a costly detailed line-by-line treatment of theia#idn transfer. The inclusion of large-scale magneticifas
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another important point as most of the models discussedsaiegemble rather quiet Sun internetwork conditions with
comparatively weak magnetic fields and thus cannot be apfdienore active regions on the Su@hromospheric
simulations with CO5BOLD have been restricted to heightewehe transition region, where thermal conduction
can still be neglected. Simulations that include the ttéorsiregion and low corona have not been performed so far
because it would require the implementation of the compartatly expensive treatment of thermal conduction.

4.6. Local models of other stars

Surface-intensity snapshots from the hot A-type star redabout 8500 K) over solar-type stalgd su=5775K)
to brown dwarfs (about 1500 K) are shown in [Figl. 26type starS[m,B_:LB ] have only thin surface convection
zones, where convection carries only a small fraction otale energy flux. Of interest in these stars is the amount
of overshootbelowthe convection zone, that causes a mixing of elements caatieg the separatingffect of
gravitational settling and radiative acceleratior [38heBhapes of spectral linediéir from solar counterpar@lq,
suggesting dferent atmospheric flow patterns or deviating correlatieta/ben temperature fluctuations and velocity
fields. Due to the shorter radiative time scales, causedtzyent radiative energy exchange, the steeper and stronger
subphotospheric temperature jump, and the larger conesmils, the simulations are numerically more challenging
than those of solar-type stars, requiring more numeriddlaglls and many more time steps. Therefore, the required
CPU time per model goes up by a factor of 100 or more — deperatinipe stellar parameters — and an implicit
treatment (at least of the radiation transport) seems apiate @]. The transition from a thin, iffecient convection
zone to a deeper zone, where the convection carries in sy@s laimost all the energy flux, occurs in a similar way
in the temperature sequence of 2D cepheid models gtdadn Fig[16. Remarkable is the extended overshoot region
with significantnegativeconvective flux.

F, G, and K dwarfdorm a temperature sequence, in which the convection zotsedgeper, the Mach number
of the convective velocity declines, the relativi@ency of convection compared to radiation increases, hed t
granular contrast decreases (Eig. 11). While the amplicdgeessure waves drops rapidly, the amplitude of gravity
waves decreases more slowly: in solar models they are méieuttito detect than pressure waves|[39], but they
dominate in brown dwarfi?[;%] and influence the shape of the douds (coolest models in Figl15). The change in
the amount of photospheric overshoot and the optical daftie top of the convection zondfect the appearance
of granules in Fid. I5. The scale of the granules seems defatthe surface — or rather the sub-surface — pressure
scale heigh@6]. Both are indicated by the horizontaslaFig 1%, which have lengths of H),, measured at two
different heights.

The first multi-D radiation-hydrodynamical model atmosgssfor M-type starswere calculated by Ludwig and
collaborators([217, 218] using the simulation code of Nondl and Stein [219]. An important issue, that needed
to be settled in the model construction, was the handling@g&oular opacities in the opacity-binning scheme (see
Sect[3.6.R). It turned out that no particular treatmenteisassary, as long as the molecular opacities dominate the
atmospheric opacities. Subsequently, Wende étall [1=d GO5BOLD with the previously developed opacity set-up
to calculate a sequence of models covering the main-sequetice temperature range 2600KT¢; < 4000K, and
probing surface gravities.@ < log(g) < 5.0 at fixed dfective temperature of 3300 K. Motivated by observational
demands, the authors investigated the impact of the vglfieitl and thermal structure on properties of FeH lines.

While the 2616 K model of an M-dwarf in Fig, L5 does not showhtesamounts of dust, ibrown dwarfsat even
lower temperatures, dust clouds begin to form in the atnmxsﬁ{[__%], that show up as small dark patches (shaped
by gravity waves) above the low-contrast granules in the9Z2#odel in Fig[Ib. The coolest model in AHigl15 has
completely opaque dust clouds, that hide the underlyinggagection zone. A long-wavelength and high-amplitude
gravity wave creates the large-scale pattern in the ploigvelonvection within the dust clouds causes the thin bright
filaments. The numerical challenges in these simulatiomsecrom the — hardly known — non-equilibrium dust
chemistry, the long relaxation times of dust settling anging, and the need to account for the likely interaction of
small “cloud” scales, covered by the local models in Freybal. @], and global “weather front” scales, far beyond
the size of the computational domain of the local models.

Cool hydrogen-rictwhite dwarfsare old stars, that have used up their nuclear fuel and cawh dtowly. The
large surface gravity causes high atmospheric pressuredl, sonvective scales, and a settling of elements heavier
than hydrogen from the atmosphere into subsurface layegserRly, first models for those objects were computed
with CO5BOLD @]. The work follows up on earlier investigans by some of the authors (HGL, BF, MS) and
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Figure 15: Frequency-integrated-intensity snapshotdafifad models of a red supergiant and an AGB star with low serfgravity (top row) and
local models of stars near the main sequence with largeitigsv The title lines show theflective temperaturethe decadidogarithm ofthe
surface gravityin cm &, andtherelative gray intensity contrast — averaged over a reptates time span. The length of the upper bar in the top
right of each frame is 10 times the surface pressure scaj@thdihe bar below is 10 times the pressure scale height basuned 3 pressure scale
heights below the other level.

coIIaborator@@DlZZ] using a code which was a psecwf CO5BOLD. Similar to the case of M-type models,
the intention is to study the influence of multi-Eects on the formation of Balmer lines.

4.7. Global models of supergiants and AGB stars

Early explanations of the irregular light curvesrefl supergiantss due to giant convection cells by Stothers
and Leungl[223] and Schwarzschi@%] got more recentbpsut by interferometric detections of spatial inhomo-
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geneities on the surface of Betelgeuse (dﬂ [225]). Wbemective scales are not very small compared to the stellar
diameter, global star-in-a-box simulations are possiBlc{[3.2.2) making these stars the easiest targets foalglob
models, that include a major part of the convective envedspeell as the near environment of the star. The top row
of Fig.[I3 shows snapshots of the emergent intensity of sumitets: on the left from a red—supergi58] and on
the right from an AGB-star simulatioh [144]. The supergiamtdel confirms that convective scales are indeed huge,
with a few very large, deep, long-lived envelope cells anaiyremall, short-lived surface cells. The surface contrast
is enormous (see Fig.111), due to violent convective flowsiamaddition waves, that have already in the lower photo-
sphere a large amplitude, in contrast to the solar caseelsm@es and contrast values render the features observable
with current interferometers: the models compare favgralith VLTI observationsO] indicating that
these global models start to become “realistic”, too.

RHD simulations of al\GB star(Fig.[13, top right@]) demonstrate that convection catite pressure waves
with amplitudes sfiicient to turn them into shocks, which then push out dense riahiato layers cool enough
that dust can form (included in the 3D models, see §ect)3.818s allows radiation pressure on dust to accelerate
the material outward causing a stellar wind (not includetdiy¢he 3D models of Freytag and Hbfn@M] but in
the 1D simulations of Hofner et aL_[;|O|Ei07]). Major clealyes for the simulations are posed by the molecular
opacities varying strongly with frequency, that cause -etbgr with large dust opacities — very small radiative time
steps during the time-explicit treatment of the radiatisergy exchange. So far, only 1D RHD models (elI.J[lO?])
include important ingredients like scattering, radiatmmessure, and a fiiciently large computational volume to
account for the extended wind acceleration region. Whigepttoperties of the simulated surface granulation seem
already quite realistic, there are discrepancies furtiier ®he models have a too steep density drop and show no
“molsphere”, chromosphere, or wind. Future generationsioflels will help to investigate the role of radiation
pressure on molecular lines and dust, magnetic fields, aatiao for these outer layers.

5. Conclusions

For stellarparameters close to the solar values, the transition froratafic stellar-atmosphere models to 3D dy-
namic local stellar-atmosphere simulations is in full sgviRHD simulations of surface convection of such stars are
routinely performed by codes like CO5BOLD, as presentetisgaper. There is a good consistency between the re-
sults of similar codeand with solar observation¥he simulationgrovide insight into processes related to stellar sur-
face convection, and deliver high-accuracy model atmagsfer spectrum-synthesis and abundance-determination
work for a variety of stellar parameters.

However, many physical®cts are not properly incorporated by the current modelailssoale convective struc-
tures, covered by local-box simulations, interact withrtkavironment via, for instance, large-scale convectiow§,
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magnetic fields, waves, or global dust flows (the latter in sabstellar objects). The inclusion thfechromosphere,

the corona,the wind-formation zone, etc., requires to cover an even widage of densities and temperatures than
the previous models. At lower densities, the detailed mneat of non-equilibrium processes (molecule formation,
radiation transport not in local thermal equilibrium) anmajor challenge, requiring algorithms with a complexity fa
beyond the current treatment. The modeling of magnetic pimema needs appropriate MHD or plasma-physics sim-
ulations. Obijects significantly cooler than the Sun reqaidetailed non-equilibrium treatment of dust and “weather
phenomena”. Varyingf&ciency ratios between radiation and convectisna function oktellar parameters have to
be considered: the extremely small radiative relaxatioretscale in hotter stars causes small numerical time steps
and slows down simulations significantly. Cool objects amather hand need extended simulation runs because of
their long thermal relaxation time scales. Low-gravityeatis have extended atmospheres and can produce winds.
Magnetic-field phenomena exist on very large and very srealks and couple the stellar intertorthephotosphere
andtheenvelope. In stars more active than the Sun, the fields anegstr and can form very fierent configurations.

In the future, we will see a refinement of local simulationd amre and more extended model grids, providing
reliable stellar model atmospheres. However, the mainleigés arise from the need to extend the simulations
in terms of stellar parameters (from A-type stars to platyetdjects and from supergiants to white dwarfspm
physical €fects, androm the extension afpatial and temporal scales towards 3D large-scale or debalglynamic
models. Thesmodelsshould not only include the photosphere but the stellarimtand the outer atmospheric layers
as well covering short and long time scales (many rotation peridgisamo cycles, stellar oscillation periods, climate
cycles).

Realistic global 3D MHD simulations for cool stars will rema dreanfor the foreseeable future. Nevertheless,
numerical simulations will continue to ledispensable tool®r the understandingf the various complex dynamical
processes in stars.
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