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Abstract

High-resolution images of the solar surface show a granulation pattern of hot rising and cooler downward-sinking
material – the top of the deep-reaching solar convection zone. Convection plays a role for the thermal structure of the
solar interior and the dynamo acting there, for the stratification of the photosphere, where most of the visible light is
emitted, as well as for the energy budget of the spectacular processes in the chromosphere and corona. Convective
stellar atmospheres can be modeled by numerically solving the coupled equations of (magneto)hydrodynamics and
non-local radiation transport in the presence of a gravity field. The CO5BOLD code described in this article is
designed for so-called “realistic” simulations that take into account the detailed microphysics under the conditions
in solar or stellar surface layers (equation-of-state and optical properties of the matter). These simulations indeed
deserve the label “realistic” because they reproduce the various observables very well – with only minor differences
between different implementations. The agreement with observations has improved over time and the simulations are
now well-established and have been performed for a number ofstars. Still, severe challenges are encountered when
it comes to extending these simulations to include ideally the entire star or substellar object: the strong stratification
leads to completely different conditions in the interior, the photosphere, and the corona. Simulations have to cover
spatial scales fromthe sub-granular levelto the stellar diameter and time scales from photospheric wave travel times
to stellar rotation or dynamo cycleperiods. Various non-equilibrium processes have to be taken into account. Last
but not least, realistic simulations are based on detailed microphysics and depend on the quality of the input data,
which can be the actual accuracy limiter. This article provides an overview of the physical problem and the numerical
solution and the capabilities of CO5BOLD, illustrated witha number of applications.

Keywords: numerical simulations, radiation (magneto)hydrodynamics, stellar surface convection

1. Introduction

In the core of the Sun, fusion of hydrogen to helium releases energy which is transported outward, first by radiation
only, butfurther outprimarily by convection in the outer 30 % of theradialdistance to the solar surface. Most of this
energy is emitted inthe form of radiation in the photosphere which is thebottom layer of the solar atmosphere.
Furthermore, a small part of the energy is carried by waves andby magnetic fields, powering the dramatic phenomena
visible in the solar chromosphere and corona. In more massive and further evolved stars, the internal structure is more
complex, with several shellswherenuclear burningtakes placeand multiple convection zones.

The relatively thin solar photosphere (about 0.1 % of the solar radius) therefore plays an important role for the
inner as well as for the outer layers of the Sun. The analysis of solar and stellar spectra can reveal surface properties
and the chemical composition,and allows usto draw conclusions about the internal structure and evolutionary status.
For this purpose, physical models of stellar atmosphereswith a realistic treatment of both radiation and convection
are essential.
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The classical analysis relies onone-dimensional(1D) stationary model atmospheres (in most cases only the pho-
tosphere plus the very top layers of the surface convection zone), where the average convective energy fluxFconv is
computed from the so-called local mixing-length theory [1], [2], [3], a heuristic recipe which assumes thatFconv can
be determined from local propertiesof the stratification. In the framework of this “theory”, the mean thermal structure
of a convective stellar atmosphere is found by the requirement that the sum of radiative and convective flux equals the
total stellar flux,Frad+ Fconv = σT4

eff , at all depths. State-of-the-art radiative-convective equilibrium models of solar
and stellar atmospheres have been constructed with the classical model atmosphere codes ATLAS [4, 5], MARCS
[6, 7], and PHOENIX [8, 9], to name the most prominent examples.

A severe drawback of these models is that the efficiency of the convective energy transport is controlled by afree
parameter, the mixing-length parameterαMLT , which is of the order unity buta priori unknown. Therefore,αMLT

must be calibrated against observations. Unfortunately, different observables require different values ofαMLT [10].
The best fit of the Balmer line profiles of solar-type stars is achieved withαMLT ≈ 0.5 [11], while continuum colors
are better reproduced withαMLT in the range 1–2, depending on the considered wavelength range [12]. The standard
stellar-evolution calibration based on matching the current solar parameters calls forαMLT ≈ 2 [13], [14]. This
disparity indicates that the underlying theoretical description is inadequate.In fact, the solar photosphere is neither
homogenous nor static, since it is influenced by the very top of the convection zone and shows a granular pattern of
bright upflow regions surrounded by darker intergranular lanes of downflowing material, with a spatial scale of about
1 Mm (106 m) and evolving on a time scale of minutes (see Fig. 1 for snapshots fromtwo CO5BOLD simulationsof
the solar granulation). This motivated various efforts to overcome the limitations of the 1D classical atmospheres and
to develop instead self-consistent, parameter-free hydrodynamical models of stellar surface convection, accounting
for the fact that convection is a non-local, time-dependent, and intrinsically three-dimensional phenomenon.

Early idealized numerical simulations of convection understellar-like conditions had to resort to severe simplifi-
cations (stationary 2D solutions on coarse grids) and couldonly deliver qualitative results: Latour et al. [15, 16] and
Toomre et al. [17] used anelastic modal equations to study surface convection in A-type stars. Musman and Nelson
[18] and Nelson [19] investigated convection in the Sun and some other stars with a similar method.Chan and Wolff
[20] developed a code based on the alternating direction implicit (ADI) method for the calculation of compressible
convection. Hurlburt et al. [21] carried out simulations ofcompressible solar convection extending over multiple scale
heights. Steffen et al. [22] took (non-local) radiation transfer into account in their 2D simulations of compressible solar
convection.

The first realistic simulations of solar granulation were performed by Nordlund [23] and includedthree-dimensional
(3D) time-dependent hydrodynamics (but anelastic and withmoderatespatialresolution) and non-local radiative en-
ergy transfer,already then witha simple treatment of the frequency-dependence of the opacities. Hand-in-hand came
the a posteriori detailed spectrum synthesis by Dravins et al. [24]. Other 3D convection simulations relinquished the
treatment of radiation transfer [25, 26, 27, 28, 29].Currentradiation hydrodynamiccodes of various groups use sim-
ilar basic techniques – in a significantly refined way (compressible hydrodynamics, more grid points, moreopacity
bins, larger computational domains, magnetic fields,a chemical reaction network, dust, etc.). For example, Stein and
Nordlund have carried out radiation hydrodynamics (RHD) simulations with 2016× 2016× 500 grid points with a
spatial resolution of 24 km in the horizontal direction and 12-80 km in the vertical direction. Asplund et al. [30, 31]
have computed chemical abundances using high spatial resolution and accurate radiative transfer.

Just like classical stellar atmospheres, the non-magnetichydrodynamical models are characterized by the average
total energy flux per unit area and time (effective temperature,Teff), surface gravityg, and chemical composition.
But, in contrast to the mixing-length models, there is no longer any free parameter to adjust the efficiency of the
convective energy transport. Similarly, the fudge parameters micro- and macroturbulence, that have to be introduced
in 1D model atmospheres to match synthetic and observed shapes of spectral lines, are replaced by the self-consistent
hydrodynamical velocity field of the 3D simulations. However, one has to keep in mind that the simulations are
characterized by a large number of numerical parameters, e.g., the spatial resolution of the numerical grid, the size
of the computational domain, the formulation of boundary conditions, and the parameters related to the numerical
schemes for solving the hydrodynamical and radiation transport equations. Of course, the hope is that the simulation
results become essentially independent of the choice of these numerical parameters, once a sufficiently high spatial,
angular, and frequency resolution is achieved.

Hydrodynamical model atmospheres are not only computed forthe Sun but also for other stars, and are comple-
menting and increasingly replacing classical 1D atmosphere models. Important applications of convection simulations
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Figure 1: Emergent continuum intensity at a wavelength ofλ = 500 nm, synthesized fora snapshot from a high-resolution (400× 400× 300)
CO5BOLD RHD simulation (left, see Sect. 4.1) and for a (286×286×266) CO5BOLD RMHD model (right, cf. Fig. 14), each representing a small
patch of solar surface granulation. The imposed average magnetic flux of the RMHD model is〈Bz〉 = 50 G.The arrows represent streamlines that
follow the horizontal velocity on the surface of optical depth unity, i.e., at the bottom of the solar photosphere.

with CO5BOLD and its predecessor include the accurate spectroscopic determination of solar and stellar chemical
abundances and isotopic ratios [e.g., 32, 33, 34], the theoretical calibration of the mixing-length parameter [35], the
study of convective overshoot and mixing processes in stellar envelopes [36], and the excitation of waves by turbulent
convective flows [37, 38, 39].

The presence of magnetic fields results in a wide range of additional complex 3D phenomena. Small-scale concen-
trations of magnetic flux lead to enhanced radiative losses,both in the photosphere and in the chromosphere. On the
other hand, large-scale magnetic structures can inhibit the convective energy flux and produce the well-known dark
sunspots. The interaction of convection and magnetic fieldscan be modeled in the framework of (ideal) magneto-
hydrodynamics (MHD).

In the purely hydrodynamical simulations described above,the resulting mean flow is determined only by the
prescribed physical quantitiesTeff, g, and the assumed chemical composition, and is largely independent of the for-
mulation of the boundary conditions and details of the initial configuration. This is no longer true for the more
complex simulations of solar magnetoconvection. In this case, the presence of a magnetic field implies more freedom
in setting up the problem: the initial configuration of the magnetic field and the magnetic boundary conditions have
to be designed for the particular problem under consideration. In many studies, the magnetic field is assumed to be
vertical at the upper and lower boundaries, such that the horizontally averaged magnetic flux is fixed at a prescribed
value.For example,〈Bz〉 = 50 G for the CO5BOLD MHD simulation shown in Fig. 1,which isrepresentative ofthe
least magnetic solar-surface areas, the so-calledquiet-Sun internetwork regions. The velocity arrows in this figure
show that the flow converges towards the dark intergranular lanes, where cool gas returns into the solar convection
zone. This flow also leads to a concentration of magnetic flux in the downflow lanes, where is is visible as bright
knots or elongated features (e.g., nearx = 5.5 Mm, y = 1.5 Mm in Fig. 1, right panel).

Early 2D MHD simulations of solar convection, which includeradiative transfer were presented by Grossmann-
Doerth et al. [40] based on a adaptive moving finite element code, by Steiner et al. [41] with a finite-volume code
based on automatic adaptive mesh refinement for MHD, described in Steiner et al. [42], and by Atroshchenko and
Sheminova [43] who used a method of approximate Eddington factors for the radiative transfer.

To our knowledge, the first realistic three-dimensional radiation magnetohydrodynamic (RMHD) simulation of
stellar magnetoconvection was presented by Nordlund [44].Nordlund et al. [45] give a review on solar surface
convection including results on magnetoconvection. Earlytwo-dimensionalMHD simulations of stellar magneto-
convection, which dispense with detailed radiative transfer include Galloway and Weiss [46], Deinzer et al. [47],
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Hurlburt and Toomre (1988) [48], Weiss et. al. (1990) [49], and Fox et al. (1991) [50].
The pioneering work of Nordlund and collaborators was only recently followed up by others, also working in

three spatial dimensions.Examples includeHansteen and Gudiksen [51]and Gudiksen et al. [52]with the Bifrost
code, Schaffenberger et al. [53] with CO5BOLD,1 and Vögler et al. [54] with the MURaM code,2 and more recently,
by Heinemann et al. [55] using the Pencil code,3 Jacoutot et al. [56] with a code named SolarBox, developed byA.
Wray, and Muthsam et al. [57] with the Antares code. Recent impressive large-scale 3D RMHD simulations include
the supergranulation-size magnetoconvection simulations by Stein et al. [58], using a variant of the STAGGER code
of Nordlund and Galsgaard [59], the simulations of sunspotsand solar active regions described in Cheung et al. [60]
and in Rempel et al. [61], both works using the MURaM code, as well as the exploratory MHD models that span
the entire solar atmosphere from the upper convection zone to the lower corona by Hansteen et al. [62], [63], and
Martı́nez-Sykora et al. [64], based on Bifrost or an extended version of the STAGGER code.

Other three-dimensional simulations of stellar magnetoconvection use approximations to the radiation transfer,
like Abbett [65], Abbett and Fisher [66], and Isobe et al. [67]. Important results of solar magnetoconvection in three
spatial dimensions were also obtained by simply replacing the radiation transfer with heat conduction, e.g., by Weiss
et al. [68], Tobias et al. [69], Cattaneo [70], Ossendrijveret al. [71], or Cattaneo et al. [72]. For other applications,
radiative exchange or heat conduction is not as critical as for convection, e.g., for the rise of buoyant magnetic flux
tubes. Such simulations were carried out, e.g., by Archontis et al. [73] with the STAGGER code [59] or by Cheung
et al. [74] with the Flash code.4

Simulations of global stellar convective dynamos have beenstarted by Glatzmaier [75]. More recent global MHD
simulations of stellar convection include Browning et al. [76] with the ASH-code [77] and Dobler et al. [78] with the
Pencil code. Ziegler [79] applied theNirvanacode5 to the problem of core collapse and fragmentation of a magnetized
protostellar cloud.

Further MHD codes for potential application to realistic stellar convection simulations, which have been developed
in an astrophysical context are the A-MAZE code,6 the Enzo code,7 the VAC code,8 or the Zeus code,9 for a non
exhaustive list.

For reviews on solar magnetoconvection see Nordlund et al. [45], Nordlund and Stein [80], Carlsson [81], Steiner
[82].

2. Basics

2.1. Basic considerations about convective scales

Ideally, hydrodynamical models of stellar convection should comprise the entire convection zone in a spherical
shell with sufficient spatial resolution, and should cover all relevant time scales. In general, such a global approach is
not feasible, however, for the reasons outlined in the following basic considerations.

2.1.1. Spatial scales
Presently, realistic models of stellar convection are restricted to a small representative volume located near the

surface, including both the top layers of the convection zone and the photosphere, where most of the stellar radiation
is emitted. In this context, it is important to realize that convection is driven by entropy fluctuations generated near
the surface by radiative cooling. The deeper layers approach an adiabatic mean state and have little direct influence
on the small-scale granular flows at the surface. For this reason, it is possible to obtain physically consistent ab initio
models of stellar surface convection from local-box simulations that cover only a small fraction of the geometrical

1See http://www.astro.uu.se/˜bf/co5bold main.html, http://www.co5bold.com
2See http://www.mps.mpg.de/projects/solar-mhd/muram site/code.html
3See http://www.nordita.org/software/pencil-code/
4See http://flash.uchicago.edu/website/home/
5See http://nirvana-code.aip.de/
6See http://www.the-a-maze.net/people/folini /research/a maze/a maze.html
7See http://lca.ucsd.edu/portal/software/enzo
8See http://grid.engin.umich.edu/˜gtoth/VAC/
9See http://lca.ucsd.edu/portal/codes/zeusmp2
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Figure 2: Reynolds number Re (left)according to Eq. (1),and Prandtl number Pr (right)computed from Eqs. (4) and (10) withk = k0 = 10π/Hp,
as function of radius in the envelope and atmosphere of the Sun, using the solar model by Christensen-Dalsgaard et al. [13]. In addition, the upper
(dashed)curve in the right panel refers to the Mach number, Ma= vc/cs. The vertical dashed line marks the bottom of the solar convection zone.

depth of the whole convection zone.Since the lower boundary is thus located right inside the convection zone where
the total stellar luminosity is entirely carried by the convective flow, it is essential to employ anopenlower boundary
condition that impedes the flow as little as possible (details are given in Sect. 3.2.1).

As a typical example, let us consider a local-box simulationof the solar granulation measuringLx × Ly = 10 Mm
×10 Mm in the horizontal directions with periodic lateral boundary conditions inx andy. In the vertical direction,
open boundaries are imposed, and the extension of the box is assumed to beLz = 4 Mm, with L−z ≈ 3 Mm (∆ ln P ≈ 7)
below andL+z ≈ 1 Mm (∆ ln P ≈ 8) above the optical surface, where∆ ln P is the number of gas pressure e-foldings.A
box of this size covers only 1.5% of the total depth of the solar convection zone, but is large enough to accommodate
several surface convection cells called granules (cf. Fig.1), ensuring that the periodic boundary conditions do not have
a critical influence on the resulting flow pattern. The minimum spatial resolution of the numerical grid is set by the
requirement to cover one pressure scale height by at least 10grid cells. In the following, we assume that a typical
grid comprisesNx × Ny × Nz = 250× 250× 200 cells, where the horizontal cell size is constant (∆x = ∆y ≈ 40 km),
while the vertical cell size increases with depth(in proportion to the local pressure scale heightHp, see below)from
about 10 km at the surface to about 50 km near the bottom of the computational domain (for some actual examples
see Table 1).

It is well known that the convective envelope of the Sun is characterized by very large flow Reynolds numbers, Re.
Based on the standard solar model of Christensen-Dalsgaardet al. [13], we have evaluated this dimensionless number
locally as

Re=
vc Hp

ν
, (1)

whereHp = −(d lnP/dz)−1 is the local pressure scale height (e-folding length of the gas pressureP), vc is the charac-
teristic convective velocity according to classical mixing-length theory [1, 2], andν is the microscopic (atomic plus
radiative) kinematic viscosity,ν = (ηa + ηr )/ρ, with ηa andηr calculated according to Spitzer [83] and Thomas [84],
respectively. The depth dependence of Re in the solar envelope is displayed in the left panel of Fig. 2, showing that
Re> 1010 in the entire convection zone. This implies that the flow is highly turbulent wherever convection occurs
(see however [85]). The turbulent kinetic energy is dissipated into heat at the Komolgorov microscale,ℓ ≈ Hp Re−3/4,
which varies between 0.05 and 10 cm from the top to the base of the solar convection zone. Clearly, the spatial resolu-
tion of the numerical simulations sketched above is insufficient by more than 6 orders of magnitude to properly resolve
the complete turbulent cascade. All realistic stellar convection simulations therefore follow the so-called large-eddy
approach, where only the largest flow structures, includingthe driving scales, are resolved, and the small-scale kinetic
energy is dissipated at the grid scale, either by the numerical scheme or by a subgrid-scale model. Consequently, the
effective numerical viscosity in such models is at least 8 orders of magnitude larger than in reality.

In addition to the Reynolds number, the properties of the floware further characterized by the (dimensionless)
Prandtl number,

Pr=
ν

χ
, (2)
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Figure 3: Left: Kelvin-Helmholtz time scaleτKH (upper set of curves, computed from Eqs. (5), (6)), convective turnover time scaleτturnover(middle
set of curves, computed according to Eqs. (7), (8)), and the CFL time scaleτCFL (lower curve, Eq. (9)), as a function of radius in the solar envelope,
based on the solar model by Christensen-Dalsgaard et al. [13]. The vertical dashed line in the left panel indicates the bottom of the solar convection
zone. The right panel zooms into the upper 5% of the convection zone, and shows in addition the radiative time scaleτrad calculated from Eq. (10)
with k = k0 = 10π/Hp (dotted).

the ratio of the coefficients describing the diffusion of momentum,ν, and heat,χ. In the stellar interior and atmosphere,
heat transfer is dominated by radiation, which in the optically thick layers can be described as a diffusion process.
The radiative diffusivity is given by

χ =
16σT3

3κ ρ2 cv
(3)

(σ: Stefan-Boltzmann constant,T: temperature,κ: radiative opacity per unit mass,ρ: mass density,cv: specific
heat at constant volume).Pr depends only on the thermodynamic state of the stellar gas. In the optically thin layers
(photosphere), radiative heat exchange cannot be described as a diffusion process, and hence the definition of Pr via
Eqs. (2) and (3) is no longer meaningful. Instead, Pr can be defined more generally as

Pr=
trad

tvis
, (4)

the ratio of radiative time scale (trad, see Eq. (10) below) to viscous time scale (t−1
vis = ν k2). However, the Prandtl

number then becomes a function of wavenumberk for optically thin conditions.In the solar convection zone and
atmosphere, Pr ranges between10−4 and 10−10 (see Fig. 2, right panel), indicating thattheradiative energy diffusion
is much more efficient than the viscous diffusion of momentum, in other words, the dynamical lifetime ofa turbulent
vortex is much longer than its thermal relaxation time.

In large-eddy simulations, diffusion is provided by an explicit artificial viscosity and/or by the numerical advection
scheme, which leads to a diffusive cutoff at the scale of the grid resolution. In general, the effective viscosity depends
on the grid resolution∆x, and on the wavenumber (and amplitude) of the local velocityperturbation. For small-scale
structures close to the grid resolution, the coefficients characterizing thenumericaldiffusion of momentum, ˜ν, and
heat,χ̃, are of similar size, and hence the Prandtl number is of the order unity, Pr= ν̃/χ̃ ≈ 1, as long as the radiative
diffusivity is much smaller than the numerical one,χ ≪ χ̃ ≈ vc∆x. This condition always holds in the bulk of the
solar convection zone (assuming∆x ≈ Hp/10). On the other hand, the effective artificial/numerical diffusion can
be significantly smaller for well resolved smooth structures, such thatχ > χ̃, and Pr≈ ν̃/χ < 1. This is especially
true for the near-surface layers where the radiative diffusivity is high. Large-eddy simulations of solar-type surface
convection can therefore achieve moderately low Prandtl numbers, in the sense that the physical radiative energy
transport dominates over numerical diffusion of heat. In the bulk of the convection zone, however, the radiative
diffusivity is too low, and hence numerically Pr≈ 1 on all resolved scales.

2.1.2. Time scales
The time span covered by a numerical convection simulation must be sufficiently long to ensure that the whole

structure contained in the computational box can reach a thermally relaxed state. Thermal relaxation by radiative
diffusion proceeds on the Kelvin-Helmholtz time scale, defined as the thermal energy content (per unit area) divided
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by the total energy flux:τKH = Eth/Ftot. In Fig. 3, we show the depth-dependence ofτKH in the solar convection zone
(upper curves), computed as

τ
(1)
KH(r) =

4π r2 ρ cp T Hp

L⊙
, (5)

and

τ
(2)
KH(r) =

4π
L⊙

∫ R⊙

r
ρ cp T r2 dr , (6)

respectively (R⊙ andL⊙ denote the solar radius and luminosity). Both expressions give essentially identical results,
indicating that at a depth ofz = −3 Mm below the solar surface,τKH ≈ 106 s or≈ 280 h. Fortunately, it turns out
that relaxation is significantly faster than expected from this estimate. Since the energy flux is carried by convection,
a few convective turnover times are sufficient to establish a self-consistent equilibrium state. The convective turnover
time scales, calculated as

τ
(1)
turnover(r) =

Hp

vc
, (7)

and

τ(2)
turnover(r) =

∫ R⊙

r

1
vc

dr , (8)

respectively, are also shown in Fig. 3 (left, middle curves). The plot shows thatτturnover≈ 2000 s atz= −3 Mm, a factor
500 smaller thanτKH . Roughly, the simulation needs to be advanced for about 10 turnover times,tsim ≈ 10τturnover≈
20 000 s to obtain a relaxed model. This number has to be related to the numerical time step∆t applicable to the
hydrodynamics scheme. The well-known Courant-Friedrichs-Lewy (CFL) condition for the stability ofan explicit
numerical method states that∆t < τCFL, whereτCFL is given by the travel time of the fastest wave across a grid cell.
For the present non-magnetic example we can use the approximation

τCFL(r) =
∆x

(cs+ vc)
≈

Hp

10 (cs+ vc)
, (9)

wherecs is the adiabatic sound speed. Evaluation of Eq. (9) shows that τCFL ≈ 1 s in the upper layers (see Fig. 3).
The numerical time step is not only limited by the CFL condition. In addition,∆t must be smaller than the

characteristic radiative time scaleτrad that rules the decay of local temperature perturbations at the smallest possible
spatial scale(wavenumberk0 = 10π/Hp). To a good approximation,τrad can be calculated as

τrad(r) =
cv

16σκT3

(

1+ 3
ρ2 κ2

k2

)

=
1
χ

(

1
3ρ2 κ2

+ k−2

)

, (10)

which is valid in both optically thick and thin regions[86, 87]. As illustrated in Fig. 3 (right),τrad(k0) reaches a
sharp local minimum of≈ 0.2 sclose to the optical surface. The time step of the numerical simulation is thus set by
the radiative time scale,∆t < 0.2 s, and the total number of required time steps isNt = tsim/∆t ≈ 105. Assuming
for reference a processor that can updateNc = 106 grid cells per CPU second, the total CPU time required for this
standard simulation would be (Nx × Ny × Nz × Nt)/Nc ≈ 1012/106 s or about 12 days, which is well feasibleeven
without a high degree of parallelization. However, it is also clear that much larger models(e.g., 10 times better spatial
resolution in each direction) are out of reach without massive parallelization.

As an example, consider the solar supergranulation which has a typical horizontal scale of 20–30 Mm. Numerical
simulations of this phenomenon thus require a horizontal cross section of at least 100× 100 Mm2. Since the spatial
resolution cannot be reduced much if the granular scale still is to be resolved, such a horizontally extended simulation
would take a factor 100 more CPU time than the standard case outlined above. In addition, the simulation box would
need to be extended to deeper layers for this kind of modeling. Assume that the lower boundary is moved from a depth
of z = −3 Mm to z = −20 Mm, which means extending the model by about 6 more pressure scale heights. Adding
100 grid cells in the vertical direction could be sufficient to cover the extra 17 Mm. In terms of computing time, these

7



extra cells are relatively cheap, because radiative transfer can be treated by the diffusion approximation in these deep
layers. Note, however, that keeping the horizontal resolution at∆x = ∆y ≈ 40 km to resolve the granulation at the
surface, the aspect ratio of the cells near the bottom of the box becomes rather extreme,∆x/∆z ≈ 1/10. But the real
problem is that the turnover time increases by a factor 20. Since∆t is set by the surface layers, the number of time
steps increases by the same factor. In summary, a supergranulation simulation will take roughly a factor 2000 more
time than a standard granulation model, about65years of CPU time. With massively parallel computers, such models
are becoming marginally feasible (cf. [58]).

2.1.3. Global convection simulations
Simulations of the entire solar convection zone are much more expensive: the turnover time increases by another

factor 100, while the surface area is about 600 times larger with respect to the above supergranulation model. In terms
of the numbers quoted above, such a global convection simulation, which ideally should be carried out in a rotating
spherical coordinate system, would take of the order of 4 million years of CPU time, but still would cover only one
year of solar time. In order to study the solar magnetic dynamo action, it would certainly be desirable to run the
simulation over several 22-year cycles, say a period 100 solar years, which is equivalent to400million CPU years.

Since the surface layers set the numerical time step and spatial resolution, the computational cost can be much
reduced by restricting the simulations to the deeper layersof the convection zone: here the flow Mach number is small
(see Fig. 2), and the so-called anelastic approximation canbe employed to avoid the time step limitation by the CFL
condition; moreover, the radiative time step is very large (see Fig. 3) and does not impose any additional limitation.
This approach has been adopted in the global simulations of the solar convection zone with the ASH-code byBrun
et al. [88].However, the direct link between model and observation is necessarily broken in such kind of modeling.

While realistic simulations of global solar convection remain phantasmal, prospects can be better for other type of
stars: realistic global star-in-a-box simulations have already been performed successfully for red supergiants, where
only a fewhugeconvection cells occupy the surface of the star (see Sect. 4.7).

2.1.4. From the upper convection zone to the lower corona
The essential physics necessary for realistic simulationsof solar surface convection includes compressible hy-

drodynamics describing transonic flows of a partially ionized gas in a gravitationally stratified atmosphere, coupled
with non-local, frequency-dependent radiative energy exchange. In the subsurface layers, the flow becomes strongly
subsonic and can be described in the anelastic approximation, while the radiative transfer becomes local and can be
treated by the gray diffusion approximation. In contrast, physics becomes more complicated when considering the
outer solar atmosphere.

Simulations comprising the chromosphere and lower corona must include magnetic fields. Since the magnetic field
tends to form localized flux concentrations in the intergranular lanes (cf. Fig. 1,right panel), the spatial resolution of
MHD simulations needs to be better than that of non-magneticgranulation models. In addition, the time step is
dictated by the Alfvén speed

vA =
B
√
µ0 ρ

, (11)

which can become much larger than the sound speed in places where the plasma-β is low, i.e.,wherethe magnetic
field B is large and the densityρ is small. Typically,∆tMHD ≈ ∆tHD/100.

The low density of the outer atmosphere has also consequences for the radiation transport. Since the collision
frequency is reduced, the simplifying assumption of local thermodynamic equilibrium (LTE) tends to break down,
and photon scattering becomes important. This implies thatthe source function is no longer a function of the local
temperature, but depends also on the angle-averaged radiation field. In contrast to the photospheric absorption line
spectrum, the chromospheric spectrumcontains strong emission lines, which dominate the energetics in the chromo-
sphere. Under these circumstances, the solution of the radiation transfer problem becomes very time consuming.

Heat transfer by thermal conduction becomes important above gas temperatures of a few 104 K, i.e., in the transi-
tion region and in the corona above [see, e.g., 89, 90]. Thermal conduction is usually modeled by means of the Spitzer
formula but can result in a significant increase of the computational costs.

Further complications arise due to the fact that the ionization of hydrogen (and other elements) is no longer in
thermal equilibrium in the low density regions, and cannot be obtained from precomputed look-up tables. Rather,
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the degree of hydrogen ionization, and hence the electron density, has to be derived from the solution of the time-
dependent rate equations of a multi-level atom, which posessevere challenges.

For further discussion of these problems see Sect. 4.5.1, aswell as Hansteen et al. [62], [63], Martı́nez-Sykora
et al. [64], and Gudiksen et al. [52].

2.2. Equations

The hydrodynamics equations are expressed as conservationrelations plus source terms for

ρ, ρv1, ρv2, ρv3, etot , (12)

the mass density, the three momentum densities, and the total energy density (per volume), respectively. The coordi-
nate axes are simply numbered, in this case and in the code itself. In some sections, we use the more standard notation
x, y, andz, though.

The three-dimensionalhydrodynamics equations, including source terms due to gravity, are themass conserva-
tion equation

∂ρ

∂t
+
∂ ρ v1

∂x1
+
∂ ρ v2

∂x2
+
∂ ρ v3

∂x3
= 0 , (13)

themomentum equation

∂

∂t





















ρv1
ρv2
ρv3





















+
∂

∂x1





















ρv1 v1 + P
ρv2 v1
ρv3 v1





















+
∂

∂x2





















ρv1 v2
ρv2 v2 + P
ρv3 v2





















+
∂

∂x3





















ρv1 v3
ρv2 v3
ρv3 v3 + P





















=





















ρ g1

ρ g2

ρ g3





















, (14)

and theenergy equation

∂ρetot

∂t
+
∂ (ρetot+P) v1

∂x1
+
∂ (ρetot+P) v2

∂x2
+
∂ (ρetot+P) v3

∂x3
+
∂F1rad

∂x1
+
∂F2rad

∂x2
+
∂F3rad

∂x3
= 0 . (15)

HereF1rad, F2rad, F3rad are the components of the radiative energy flux (see below). The gas pressureP is computed
from the densityρ and the internal energy,eint, via anequation of state, usually available to the program in tabulated
form,

P = P(ρ, eint) . (16)

etot is given by the equation for the total energy,

ρetot = ρeint + ρ
v21 + v

2
2 + v

2
3

2
+ ρΦ , (17)

wherev1, v2, v3 are the components of the velocity vector, andΦ is the gravitational potential.In CO5BOLD, a
prescribed, time-independent gravitational potential isused, so far. Self-gravity is not accounted for.The gravity field
is given by



































g1

g2

g3



































= −





































∂
∂x1

∂
∂x2

∂
∂x3





































Φ . (18)

With CO5BOLD, Eqs. (13)-(15) are solved with the hydrodynamics module described in Sect. 3.5.

9



The equations of ideal magnetohydrodynamics (MHD), including gravity and radiative energy exchange, are
written in the more compact vector notation as

∂ρ

∂t
+ ∇ · (ρv) = 0 ,

∂ρv
∂t

+ ∇ ·
(

ρvv +
(

P+
B · B

2

)

I − BB
)

= ρg ,

∂B
∂t

+ ∇ · (vB − Bv) = 0 ,

∂ρetot

∂t
+ ∇ ·

((

ρetot + P+
B · B

2

)

v − (v · B) B + Frad

)

= 0 .

(19)

Here,B is the magnetic field vector, where we have chosen the units such that the magnetic permeabilityµ is equal
to one.I is the identity matrix anda · b =

∑

k akbk the scalar product of the two vectorsa andb. The dyadic tensor
product of two vectorsa andb is the tensorab = C with elementscmn = ambn andthenth component ofthe divergence
of the tensorC is (∇ · C)n =

∑

m∂cmn/∂xm. In this case, the total energy is given by

ρetot = ρeint + ρ
v · v

2
+

B · B
2
+ ρΦ , (20)

whereeint is again the internal energy per unit mass. The additional solenoidality constraint,

∇ · B = 0 , (21)

must also be fulfilled. The equation of state and the equationfor the gravitational field are given by Eq. (16) and
Eq. (18), respectively. With CO5BOLD, the equation system,Eq. (19), is solved with the MHD module described in
Sect. 3.7.

In addition, there are equations for thenon-local radiation transport solved with CO5BOLD with the modules
described in Sect. 3.6.3 and Sect. 3.6.4. These modules account for the frequency dependence of the opacities by the
multi-group technique described in Sect. 3.6.2. In the following equations, the subscriptν refers to the index of the
frequency group.

The variation of the intensityIν along a ray with directionn can be described by the radiative transfer equation

1
ρκν

n · ∇Iν + Iν = Sν . (22)

Thegroup-averagedopacitiesκν are typically given as a function of temperatureT and gas pressureP,

κν = κν(T,P) , (23)

and thegroup-integratedsource function,Sν(T), is normalized such that
∑

ν

Sν = B(T) =
σ

π
T4 , (24)

whereB(T) is the frequency-integrated Planck function.Introducing the optical depthτν according to

dτν = ρκν n · dx , (25)

wheren · dx is the path increment along the ray, the radiative transfer equation can be written as

dIν
dτν
+ Iν = Sν . (26)

The frequency-integrated radiative energy flux vector in direction~n is given by angular integration over the full sphere,
and summation over frequency groups

Frad =
∑

ν

∫

4π
Iν(Ω) n dΩ . (27)
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The energy change due to radiative transfer can then be computed from the flux divergence as

Qrad = −∇ · Frad . (28)

To include additional physics such as chemical reactions (Sect. 3.8.1), dynamic hydrogen ionization (Sect. 3.8.2)
or dust (Sect. 3.8.3) the above equations are augmented by

∂ni

∂t
+ ∇ · (niv) = Si , (29)

where the number densitiesni represent the densities of chemical species, ionization states, or dust particles. The
source termSi accounts for chemical reactions, ionization and recombination, or dust formation.

2.3. Basic numerics

The numerical simulations described here are performed with CO5BOLD (COnservative COde for the COmpu-
tation of COmpressible COnvection in a BOx of L Dimensions, L=2,3). It uses operator splitting [91] to separate the
various (usually explicit) operators: the hydrodynamics (Sect. 3.5) or magnetohydrodynamics (Sect. 3.7), the tensor
viscosity (Sect. 3.5.6), the radiation transport(different for the two setups, see below; local models: Sect. 3.6.3 or
global models: Sect. 3.6.4),and optional source steps (e.g., due to time-dependent dustformation or hydrogen ion-
ization, Sect. 3.8). The tabulated equation of state accounts for the partial ionization of hydrogen and heliumand a
representative metal(Sect. 3.4). The opacities can be either gray orcanaccount forthefrequency dependence via an
opacity-binning scheme (Sect. 3.6.2). Parallelization isdone with OpenMP.

CO5BOLD is used for two different types of model geometries,whichare characterized by different gravitational
potentials, boundary conditions, and modules for the radiation transport: in thelocal-box (or box-in-a-star) setup
(Sect. 3.2.1), used to model small patches of a stellar surface, the gravitation is constant, the lateral boundaries are
periodic, and the radiation transport module relies on a Feautrier scheme applied to a system of long rays(Sect. 3.6.3).
In contrast, supergiant simulations employ theglobalor star-in-a-boxsetup (Sect. 3.2.2)for which the computational
domain is a cube, and the grid is equidistant in all directions. All outer boundaries are open for matter and radiation.
The prescribed gravitational potential is spherical.For this setup, a different radiation-transport module is used, which
implements a short-characteristics method (Sect. 3.6.4).

Some more technical informations can be found in the CO5BOLDOnline User Manual.10

3. Detailed numerics

In this section, we present some numerical details of the code that are adapted to the conditions found in stellar
atmospheres.

3.1. Numerical gridand independent variables

Instead of the conserved quantities, Eq. (12), we choosethe primitive variables

ρ, v1, v2, v3, eint(, B1, B2, B3) (30)

as independent quantities, using integer indices for the components of a vector.Since the conserved variables are
purely algebraic combinations of the primitive variables,the primitive variables can be directly updated using the
conservation laws Eqs. (13)-(15) or Eqs. (19) without dismissing conservation-law principles. This is explained in
more details in Sects. 3.5.2 and 3.5.4.

The hydrodynamics variablesρ, v1, v2, v3, andeint, are cell centered with grid coordinates (xc1, xc2, xc3), whereas
B1, B2, andB3 are cell-boundary centered with coordinates (xb1, xb2, xb3). The grid is Cartesian. The grid spacing
may be non-equidistant.Additional subscripts are used to describe the grid indices. The hydrodynamics variables
ρ, v1, v2, v3, andeint must be thought of as cell-averaged quantities, whileB1, B2, andB3 are mean magnetic flux den-
sities through cell interfaces.

10See http://www.astro.uu.se/˜bf/co5bold main.html, http://www.co5bold.com
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3.2. Boundary conditions and setup

Global models, that simulate an entire star-in-a-box (typically a red supergiant, Sect. 4.7), differ essentially in
boundary conditions and the gravitational potentialfrom local box-in-a-star models, that simulate only a smallpiece
of a star close to the main sequence. The fundamental parametersare the effective temperature,Teff, describing the
radiative flux per area in local models, or the luminosity in global models, the surface gravity,g, and the chemical
composition of the stellar material.

3.2.1. Local models
Local box-in-a-star models are designed to simulate a smallpatch at the surface of a star, ignoringeffects of the

spherical geometryand variations in gravity. The computational domain is a Cartesian box with constant, downwardly
directed gravitational acceleration given by

g = (0, 0,−g) . (31)

Theside boundariesare usually periodic. Closed walls are a rarely used option,as they tend to attract downdrafts.
The top boundaryis generally either hitunder some finiteangle by an outgoing shock wave orit lets material

fall back into the computational domain(often with supersonic velocities): there is not much pointin tuning the
formulation for an optimum transmission of small-amplitude waves [92]. Instead, a simple and stable prescription
that lets the shocks pass is sufficient. It is implemented byassigning typically two or more layers of ghost cells
(the number depending on the order of the reconstruction scheme), with boundary values, for whichthe velocity
components and the internal energy are kept constant. The density is assumed to decrease exponentiallywith height
in the ghost layers, with a scale height set to a controllablefraction of the local hydrostatic pressure scale height.
The layers of ghost cells are located outside the computational domain proper.The control parameter allowsfor the
adjustment ofthe mean mass flux through the opentopboundary.

The bottom boundaryof a standard solar model is located well inside the convection zone, where the material
coming from below is assumed to have the entropy of the adiabat of the deeper convective envelope [35]. The
corresponding boundary condition prescribes the entropy of the ascending material, ensures a zero total mass flux,
and reduces pressure fluctuations for stability reasons. Horizontal velocities are assumed to be constant with depth.
The values ofρ, eint, and the vertical velocityv3 in the lowermost grid layer are actually modified during the application
of this boundary condition. Therefore, the conservation laws are only valid in the volume above the bottom layer. For
each cellin the bottom layerthe following steps are performed:
The equation of state is solved,

EOS(ρ, eint) → s, P, T, Γ1, Γ3, cs , (32)

to gettheentropy, pressure, temperature, first and third adiabatic coefficient, andthesound speed. Horizontal averages
of the density and pressure〈ρ〉(0), 〈P〉 over the entire bottom layer are computed, where the superscripts (0), . . . ,(3)

here and in the following equations denote the sub step. A characteristic time scale is estimated by

〈tchar〉 = ∆x3/〈cs+ |v3|〉 . (33)

In cells with an upflow (v3 > 0), mass and energy are modified according to

ρ(1) = ρ + CsChange
∆t

tchar

−ρ2 T (Γ3 − 1)
P Γ1

(sinflow − s) , (34)

e(1)
int = eint + CsChange

∆t
tchar

T

(

1− Γ3 − 1
Γ1

)

(sinflow − s) (35)

with the two external parameters CsChange(∼0.1) andsinflow. The latter controls the effective temperatureTeff. To
reduce deviations of the pressure from the horizontal mean,the following corrections are applied to all cells in the
bottom layer:

ρ(2) = ρ(1) + CPChange
∆t

tchar

1

c2
s

(〈P〉 − P) , (36)
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e(2)
int = e(1)

int + CPChange
∆t

tchar

1
Γ1 ρ

(〈P〉 − P) , (37)

adding another parameter CPChange(∼0.3). To keep the total mass in the model volume unaltered, the density in the
bottom layer is corrected with

ρ(3) = ρ(2) + 〈ρ〉(0) − 〈ρ(2)〉 . (38)

Because of this step, this boundary condition acts as a closed boundary for plane-parallel waves. Finally, the vertical
velocity is modified to ensure a zero-average vertical mass flux,

v
(1)
3 = v3 −

〈ρ(3) v3〉
〈ρ〉(0)

. (39)

Now, the old values are replaced by the new ones,

ρ(new) = ρ(3) , e(new)
int = e(2)

int , v
(new)
3 = v(1)

3 . (40)

Later, during the hydrodynamics step, the ghost cells are simply filled with constantly extrapolated values from the
bottom layer while keeping the gravitational potential constant in these layers.

3.2.2. Global models
For global models, the gravitational potential depends on the radiusr only. The 1/r potential is a good approxima-

tion for the outer layers of supergiant stars, which have a small massive core surrounded by an extended low-density
envelope. To avoid the central singularity the potential issmoothed near the center. The potential can also be flattened
at large distances to artificially enlarge the pressure (anddensity) scale height preventing extremely low pressures and
densities in the corners of the simulation box.The potential is given by

Φ (r) = −G M∗
(

r4
0 + r4/

√

1+ (r/r1)8
)−1/4

, (41)

whereM∗ is the mass of the star to be modeled andr0 and r1 are smoothing parameters in the core and the outer
envelope, respectively.Within the spherer < r0, a source term to the internal energy provides the stellar luminosity.
Motions in the core are damped by a drag force to suppress dipolar oscillations.

All six surfaces of the computational box employ the same open boundary condition, which is also used for the
top boundary in the local models (Sect. 3.2.1).

For global models the temperature/pressure range of the photospheric opacity tables is insufficient. It is therefore
merged at around 12 000 K from high-temperature OPAL data [93] and low-temperature PHOENIX data [94].

3.3. Initial conditions

Due to the chaotic nature of stellar convection [95] and the primary interest in averagedor statisticalproperties, the
details of the initial conditions hardly matter, except forinitial strong magnetic field configurations. On the other hand,
the total mass within the computational domain is of main importance. However, choosing a pressure and temperature
distributiontoo faroff from the (usually close to hydrostatic) mean conditionsrequiresan unnecessarily long time,
until plane-parallel pulsations have settled down and the stratification is thermally relaxed. It is often advisable to
start with a standard 1D atmosphere model (e.g., produced with PHOENIX as in [96]), to expand it trivially into the
second and third dimension and to add small velocity fluctuations to it as seed for convective motions. An even better
alternative is to use an existing 3D snapshot with similar parameters – if available – and scale it to the desired model
properties.

Even with a careful construction of the start model, transient plane-parallel pulsations are common.These pulsa-
tionsare generated by tiny deviations fromtheexact numerical hydrostatic equilibrium in the deeper layers,causing
larger amplitudesin the tenuous toplayers. To damp them out, a vertical drag force acting only onthe horizontal
average of the vertical mass flux can be applied in the initialphase of a simulation.
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3.4. Equation of state

Under the conditions of cool stellar surfaces, a lot of energy can go into the ionization of hydrogen and helium.
In CO5BOLD, the equation of state (EOS) accounts for the ionization balance of HI, HII, H2, HeI, HeII, HeIII, and
a representative metal. Pre-tabulated values as functionsof density and internal energy are used (logρ, logeint →
logP, logT, s). In fact, the coefficients for a bicubic interpolation of (logP, logT, s) are stored. Thermodynamic
derivatives are computed from the corresponding derivatives of the polynomials.

3.5. Hydrodynamics

In general, a hydrodynamics scheme should

1. beconsistentwith the original hydrodynamics equations,
2. bestable,
3. solve the hydrodynamics equations in 3D with reasonableaccuracy, i.e., be of high order whenever possible

and represent discontinuities with only a few grid points,
4. beconservativeto handle shocks properly and give constant total fluxes in stationary cases, which is particularly

important for modeling convection,
5. include source terms due to gravity in a proper way to allowstaticsolutions, so that especially the construction

of an exactly hydrostatic stratification in radiative equilibrium is possible,
6. handle ageneral equation of state(from a table),
7. befast, e.g., easy to vectorize, to parallelize, and to make properuse of the various CPU caches,
8. handlevarious geometries(in this case 1D, 2D, and 3D models),
9. be not too complex but stay fairlysimple,

10. allow thecoupling with additional physics(especially radiation transport).

Solvers differ in how close they get to the individual design goals. For instance, total energy conservation might
get sacrificed to improve the code stability in cases of largeMach numbers. And with detailed (read, time consum-
ing) radiation transport modules, the performance of the (usually comparably fast) hydrodynamics modules becomes
unimportant.

The hydrodynamics scheme of CO5BOLD uses a finite-volume approach. By means of operator (directional)
splitting [91], the 2D or 3D problem is reduced to one dimension. To compute the fluxes across each cell boundary in
every 1D column inxc1 direction, an approximate 1D Riemann solver of Roe type [97]is applied, modified to account
for a realistic equation of state (Sect. 3.5.5), a non-equidistant grid (Sect. 3.5.1), and the presence of source terms
due to an external gravity field (Sect. 3.5.3). The partial waves are reconstructed and advected with upwind-centered
fluxes. A slope limiter (MinMod, SuperBee, but usually van Leer) [98] or a reconstruction with monotonic parabolae
(Colella and Woodward [99]) is applied to decrease the orderof the scheme in the neighborhood of discontinuitiesfor
keeping it stablewhile preserving higher-order accuracy in the case of smooth flows.

The standard Roe solver has been extended in several ways to fit the particular problem of stellar surface convec-
tion as is explained in the following subsections.

3.5.1. Non-equidistant grid
The hydrodynamicsschemehandles Cartesian gridsonly. Theymay be non-equidistant in any direction. Without

gravitation, the location of the cell centersxc1 has not much relevance as all quantities are either integralvalues within
a cell (for instancethemass density) or located at the cell boundariesxb1 (for instancethemass flux). In this simple
case, a non-equidistant grid would only have an effect on the reconstruction equations.

With the inclusion of gravity however, the potential energywithin each cell is located atxc1. This means, that the
pressure should also be located there in order to allow for a correct balance of acceleration due to the pressure gradient
and the gradient of the gravitational potential.

The relative position ofxc1, i within xb1, i andxb1, i+1 is not set by the hydrodynamics scheme and can be chosen
within reasonable limits according to the requirements, e.g., of the radiation-transport scheme.
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3.5.2. Update of the mass density and the velocity
Given the update of the density in one coordinate direction for cell i in conservation-law form,

∆ρi = −
∆t
∆x

(

fρ, i+1 − fρ, i
)

, ρ
(new)
i = ρ

(old)
i + ∆ρi , (42)

wherefρ, i is the mass flux in this direction between celli−1 and celli, the update for the momentum in the 1-direction
can be reformulated in terms of the update for the velocity asfollows. From the conservation-law form

(ρv1)(new)
i = (ρv1)

(old)
i − ∆t

∆x

(

fρv1, i+1 − fρv1, i
)

+ ∆t Sρv1, i , (43)

where fρv1, i is the 1-momentum flux in the considered direction andSρv1, i the source term for the 1-momentum, we
obtain

v1
(new)
i = v1

(old)
i −

[

∆t
∆x

(

fρv1, i+1 − fρv1, i
)

− ∆t Sρv1, i + ∆ρi v1
(old)
i

] 1

ρ
(new)
i

. (44)

∆ρi andρ(new)
i on the right hand side of Eq. (44) are known from Eq. (42). Then, the momentum (ρv1)i = ρi v1i is, up to

the source term, a strictly conserved quantity. The fluxesfρ and fρv1 are defined at the cell interfaces and determined
by an approximate solution of the Riemann problem as explained in Sect. 3.5 and Sect. 3.5.5. The advantage of his
formulation becomes apparent when treating the gravitational potential in the derivation of the discrete equation for
the internal energy. This is explained in Sect. 3.5.4.

3.5.3. Gravity
The gravitational source term inEq. (14) andEq. (19) destroys the hyperbolic character ofthe corresponding

system of equationsand inhibits the direct application of an (approximate) Riemann solver. On the other hand, the
separation via operator splitting is not a good idea in this case, because in stratified atmospheres the pressure gradient
and the gravity tend to cancel each other (nearly). Their application in sequence – and not together in a single step
– would cause spurious unwanted accelerations back and forth. On the other hand, the naive combination of the Roe
solverwith the source terms due to gravity into a single operatorby simple addition, leads to problems because the
Roe solver interpretes the strong pressure gradient in a stratified atmosphere as indication of a shock wave, which is
then treated as such, causing spurious – possibly large – velocity fields.

There is some freedom in the choice of the exact reconstruction of quantities inside the cells (Mellema et al. [100]),
which is used to amalgamate the hydrodynamics with the gravity operator by reducing the pressure jump across a cell
boundary to the deviation from hydrostatic stratification.The latter is subtracted from the actual pressure inside the
cells during the computation of the amplitudes of the partial waves. The idea is, that only pressure deviations from
hydrostatic equilibrium – and not just pressure gradients –should give rise to fluxes of the partial waves. In the exact
hydrostatic case, the Roe solver should “see” no sound waves. This construction does notsupersedethe usual source
terms due to gravitation.

3.5.4. Update of the internal energy
The discrete form of Eq. (15) for the total energy is given in conservation law form by
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, (45)

where fe, i is the 1D flux of the total energy without the potential energyfrom cell i−1 into cell i provided by the Roe
solver, fΦ, i is the flux of the potential energy andΦc, i is the gravity potential in the center of the cell. Using Eq. (42)
and defining the flux of the potential energy as

fΦ, i = Φb, i fρ, i , (46)
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whereΦb, i is the gravity potential at the interface between celli−1 and celli, all terms containing the gravity potential
can be combined to yield
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. (47)

The presence of the new kinetic energy at the right side of Eq.(47) does not make the scheme implicit, since the
velocity does not depend oneint – it is known from Eq. (44) and corresponding equations forv2 andv3. We note that
this update still conserves the total energy, Eq. (17), to machine accuracy. The conservative inclusion of the radiative
energy flux into the energy equation is treated in Sect. 3.6.3.

3.5.5. General equation of state including ionization
Several extensions of the Roe scheme for a general equation of state have been proposed, see [101] and references

therein. The differences compared to the case of an ideal gas with constantγ manifest themselves in the need of
additional Roe averages depending on which variables are used in the equation of state. For a general equation of

state of the form Eq. (16), averages ofρ, eint and of the pressure derivatives∂P
∂ρ
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must be fulfilled by the averages of∂P
∂ρ
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where∆P, ∆ρ and∆eint are the jumps of the pressure, density,

and internal energy at the cell interface. Eq. (48) is not sufficient to determine the averages of the pressure derivatives.

Glaister [102] suggested formulas for∂P
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which meet Eq. (48) exactly. However, Glaister’s formulae

do not lead to the same averaged sound speed as the original formulae of Roe in the simple case of constantγ.
Furthermore, they may also produce unphysical average states [101]. In CO5BOLD, the averaging of the pressure

derivatives is avoided. Instead, the dimensionless quantitiesΓ1 and ∂ρeint
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are averaged with the usual Roe weights,

which ensures the consistency with the simple gas case.
The pressure derivatives in the Roe matrix lead to an additional term
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in the energy flux. This term, which vanishes in the perfect gas case, is treated as a contribution from a sixth partial
waveα̃(6). The wave strength of the entropy wave ˜α(5) is given by

α̃(5) = ∆ρ − ∆P

c2
s
. (50)

The term ∂P
∂eint
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ρ
in Eq. (49) can become small, possibly causing numerical errors. Using thermodynamic relations, ˜α(6)

can be transformed into
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which uses a better behaved derivative.
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3.5.6. Tensor viscosity
In addition to the stabilizing mechanism inherent in an upwind scheme with monotonic reconstruction, a 2D or

3D tensor viscosity can be activated. It eliminates certainerrors of Godunov-type methods occurring in the case of
strong velocity fields aligned with the grid [103]. Other types of problems can occur when e.g., a shock, which has
a strength that could easily be handled by the hydrodynamicsscheme alone, gives rise to so large opacity variations
that the radiation-transport routines might get unstable (Sect. 3.6).

To overcome such (possible) problems, an additional tensor-viscosity sub step was included in the code, that can
add dissipation in a way the Roe solver by its own is not able toproduce. The kinematic viscosity is

ν =
1
3
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with the parametersClinear, Cartificial, andCSmagorinskyfor the linear, artificial (von Neumann type) viscosity, andturbu-
lent subgrid-scaleviscosity (Smagorinsky [104]), respectively. Typical values are (0, 0.5, 0.5), respectively. Models
of solar granulation and similar easy cases do not require this extra viscosity. However, it is usually activated to avoid
the necessity to tune the numerical parameters individually for each stellar model. For instance the models of the
more dynamic atmospheres of red supergiants (Sect. 4.7) need some amount of extra dissipation provided by the ten-
sor viscosity.Note that the tensor viscosity should not be mistaken for a hyperviscosity. The task of hyperviscosities
is in CO5BOLD done by the reconstruction schemes (MinMod, SuperBee, van Leer, PP, etc.).

3.6. Radiation transport

3.6.1. Introduction
In dynamical simulations which take time dependence and coupling between radiative energy transfer and hydro-

dynamics equations into account, the emitted intensity is only a by-product. Important is instead the energy change
per numerical grid cell due to the difference of radiative gains and losses. The requirement to solve the radiation-
transport equations for many grid points and many time stepscalls for severe simplifications as, e.g., the restriction
to gray opacities orto a few frequency groups (Sect. 3.6.2) or the treatment of scattering as true absorption. Actually,
this can make code development easier. But still, there are additional demands on the algorithm: the scheme should
conserve the total energy, i.e., internal sources and sinksof energy minus losses through the surface should exactly
sum up to zero. The scheme has to be stable enough to handle complex structures which may sometimes be poorly
resolved (e.g., chromospheric shocks, Sect. 4.5).

Some cases pose only low demands on the complexity of the algorithm: if the entire model is optically thick, a
diffusion approximation using only differences between neighbor cells is adequate to compute the radiative flux. This
results in a stable scheme, if the time step is properly limited. If the whole numerical domain is optically thin and the
radiation field is simple enough, a local cooling function might be sufficient to model radiative energy losses, calling
for a scheme that is stable if the time step is small enough.

However, stellar atmospheres are per definition at the transition between optically thick and thin regions.The
main form of energy transport switches from convective plusradiative in the interior to mainly radiative in the outer
layers, where mechanical energy fluxes become very small dueto the low material density. Still, mechanical energy
fluxes might be sufficiently large to affect the temperature structure of the chromosphere (Sect. 4.5), for example.
While radiative energy transport in the stellar interior can be properly described by local physical quantities through
the diffusion approximation, in the outer layers, radiative energyexchange occurs non-locally. This means that the
local radiative flux depends on the physical state of the material in the wider surroundings of a size depending on the
mean free path of the photons.Large opacity variations due to changes in the ionization states of major constituents
or due to shock waves can cause changes in the source functionon small spatial scales. In numerical models, these
two effects, amplified by fluctuations in heat capacity, can cause enormous jumps in the radiative relaxation time scale
from grid point to grid point.
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Even if a standard scheme is able to overcome all these difficulties and to compute accurate intensities for given
opacities and source function, there are still several possibilities how to derive the induced energy change per cell, as
detailed in the following:

The energy flux through the cell boundaries can be computed from the intensity field, which then gives the di-
vergence of the flux for each cell, and hence the energy changeper cell according to Eq. (28). This would guarantee
the conservativity of the scheme. But unfortunately, the latter step requires an extreme numerical precision in opti-
cally very thin regions where the relative flux changes from cell to cell are tiny. A high accuracy is also necessary
in optically very thick regions where only small deviationsof the intensity from the local source function contribute
to the net flux. Calculating a discrete derivative naturallyamplifies noise and has centering problems, when e.g., the
intensity field is given at cell centers and the divergence isrequired at the same position.

Another possibility consists in deriving the energy changeper cell from the difference of the angular mean of the
intensity,

Jν =
1
4π

∫

4π
Iν dΩ =

1
4π

∫ 2π

0

∫ π

0
Iν sinθ dθ dϕ , (53)

and the local source functionSν. Using Eqs. (22), (27), and (28), one obtains

Qrad =
∑

ν

4πκνρ (Jν − Sν) . (54)

This scheme does not have an explicit conservation form and in fact it will most likely not be conservative. This
happens because the distribution of the source function within the cellwhich is used in the integration process for the
intensity (where typically some high-order interpolationof the source function with optical depth is performed)is not
exactly the same distribution as is usedin computing the differenceJν − Sν (where the source function is assumed
to be constant). Another problem of this scheme is the accuracy in optically very thick regions, where numerical
cancellation may occur betweenJν andSν. A more indirect way is to derive from the intensity field somegeometrical
information about the radiation field in the form of Eddington factors. These are inserted into the equations describing
the radiation transport via the Eddington moments (see, e.g., for two dimensions Stone et al. [105] and for one
dimension Höfner et al. [106], [107]). This method requires a non-trivial solver to get the radiation field in the first
place and later an algorithm to solve the huge system of Eddington equations. This procedure might not suffer from
the problems mentioned above. However, it seems somewhat inefficient first to compute the intensity distribution of
the radiation field in some detail and then to throw away most of the information and retain the Eddington factors
only, which are used to solve the radiative transfer equation again – just in a different form. The extra effort can be
justified by gains due to, e.g., an elegant handling of scattering processes or the achievement of large time steps with
an implicit operator [106], though.

In Sect. 3.6.3 and Sect. 3.6.4, we present two radiation-transport schemes implemented in CO5BOLD, that over-
come the aforementioned problemsin different ways.They compute the contribution to the energy change per cell
on-the-fly during the integration of the intensity for each direction. For standardlocal-boxmodels with periodic
boundaries (Sect. 3.2.1), we use a long-characteristics scheme, described in Sect. 3.6.3, while forstar-in-a-boxmod-
els with all-open boundaries (Sect. 3.2.2), we use a short-characteristics method, outlined in Sect. 3.6.4.

3.6.2. Opacity binning
The rate of the radiative energy exchange is highly variableover the relevant spectral range, since the absorption

coefficient strongly varies with frequency due to the presence of spectral lines, on top of the more gradual change of
the continuous opacity. In cool stars like the Sun, spectrallines count in the millions so that an exact treatment of
the frequency dependence in a complex multi-dimensional geometry is beyond present computer capacities, and one
has to resort to an approximate treatment. An important simplification stems from the fact that one is not interested
in the detailed frequency dependence of the heat exchange between stellar plasma and radiation field but only in its
frequency-integrated total effect, Qrad. Nowadays, all multi-dimensional hydrodynamical stellaratmosphere codes
employ the so-calledopacity-binningtechnique. The method was first laid out by Nordlund [23], andlater refined in
works by Ludwig [108], Ludwig et al. [109], and Vögler [110]. At present, opacity sampling – a statistical technique
widely applied in standard 1D model atmospheres – is discussed as possible replacement of the opacity binning due
to its better controlled accuracy and greater flexibility.
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The basic idea of opacity binning is the classification of frequency points by the similarity of their associated
Λ-operator – the operator relating source functionSν and mean intensityJν of the radiation field:

Jν = Λν [Sν] . (55)

We added an indexν to theΛ-operator to emphasize that its form, written in geometrical coordinates, is different
for different frequencies due to opacity variations. However, in cases where the operator happens to be similar, its
linearity allows to operate on the sum of the source functions to obtain the integrated mean intensity, symbolically
expressed as

J1+2 ≡ J1 + J2 = Λ1 [S1] + Λ2 [S2] ≈ Λ [S1 + S2] , (56)

whereΛ is some suitable mean ofΛ1 andΛ2. The problem now is to classify all frequencies into distinct sets
Ωi grouping together as similar as possibleΛ-operators. TheΛ-operator can be calculated from the monochromatic
optical depth scaleτν so that the classification can be equivalently done by grouping frequencies with a similar relation
between geometrical and optical depth scales. This is in fact the way how one proceeds in practice.

When trying to classify the frequencies, one is confronted with the problem that the optical depth scales depend
on the atmospheric model under consideration, i.e., its geometry, the ensuing thermal conditions, and velocities. One
has to choose a reference model for which the classification is performed. Naturally, this reference model is chosen
to be close to the stellar atmosphere to be simulated, in the simplest case a 1D model of the atmosphere in question.
Other choices are possible, but in any case, the resulting classification is optimized for a particular set of atmospheric
parameters and has to be repeated when numerical simulations in other parameter regimes are conducted. Since even
for fixed atmospheric parameters a large variety of different thermodynamic conditions are met along various lines-
of-sight in a numerical model (with correspondingly differentτν), limits to the achievable accuracy by the opacity
binning have to be expected. Thus only a reasonable similarity amongτν-scales withinan opacity binis aimed at in
practice. Typically one is content if theτν-scales of a group of frequencies share the property to reachunity within a
given range of depth – usually defined via the frequency-independent Rosseland optical depth. This emphasizes the
emergent radiation intensity as the primary quantity to be captured correctly, obviously an important quantity linked
to the overall flux properties of a stellar atmosphere.Each opacity bin defines a corresponding frequency group.

At present, typically between four and twelve frequency groupsΩi are used, depending on the desired precision.
An estimate of the precision is obtained by comparing the integral radiative heating (or cooling) rates obtained from
the binned opacities with the result obtained at high frequency resolution, both as a function of depth in the reference
structure used for defining the opacity bins. The estimate relies on the assumption that the reference structure is
indeed representative of the conditions encountered in theflow simulation. Some refinements to this basic scheme
are nowadays often added. For instance, it is sometimes advantageous to splitan opacity binas defined before
into frequencysub-groups, with the idea to separate frequency points which systematically heat or cool particular
atmospheric layers. This helps to improve the overall energy exchange budget.

An example is given in Fig. 4, illustrating the results obtained for the 1D solar reference atmosphere. The basic
5-bin/5-groupscheme is clearly superior to the gray approximation. The more sophisticated9-bin/12-groupscheme,
in which threeopacity binsare split into twofrequency sub-groups, performs very satisfactory and almost perfectly
reproduces the “exact” heating rate.

The binned opacities are obtained from a suitable average ofthe opacities in a particular frequency group and
stored in look-up tables as a function of thermodynamic variables – in CO5BOLD as a function of gas pressure and
temperature. In addition, the Planck function (as source function), integrated over the frequencies of a group, is stored
as a function of temperature. This approach only works if theopacities and the source function can be calculated from
the thermodynamic conditions alone, i.e., are thermodynamic equilibrium quantities. While this is often fulfilled to
good approximation, there are exceptions. For instance, the formation of dust clouds in cool stellar atmospheres is a
non-equilibrium process (Sect. 3.8.3), and actual particle properties are only known after solving the governing kinetic
equations, taking into account the history of the evolutionof a particular mass element in the flow. In CO5BOLD,
we proceed by separating the equilibrium part (gas opacities) from the non-equilibrium part (dust opacities). The gas
opacities are binned intofrequency groupsin the usual way, and the dust opacities are calculated during the simulation
on-the-fly and added to the gas opacities. Obviously, this increases the computational demands.

All in all, opacity binning has been and still is working perhaps better than one might expect from the numerous
approximations behind the construction of the scheme. Opacity binning has proved to be an efficient way to include
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Figure 4: Performance of the opacity-binning scheme, illustrated for a 1D solar model atmosphere. The net radiative heating rate per unit mass,
Qrad/ρ (top), and the bolometric radiative flux,Frad/F⊙ (bottom), and are shown as a function of Rosseland optical depth. In each panel, the results
from gray (dashed),5-bin/5-group (dotted), and9-bin/12-group(solid) radiative transfer are compared with the “exact” solution (diamonds),
obtained with very high frequency resolution.

the frequency dependence of the radiative transfer in multi-dimensional simulations. However, as alluded to already
before, the increased computing power might allow to re-consider the approach trading greater computational costs
for higher physical fidelity.The path to largest gainsneeds to be identified yet.

3.6.3. Long-characteristics radiation transport
The purpose of this algorithm is to compute the net radiativeheating rate per unit volume,Qrad(xi, y j , zk), at the

center of each cell of the hydrodynamical grid (HD grid). Thebasic idea is to solve the equation of radiative transfer
on a system of straightlong rays(long-characteristics, LC)running from the upper to the lower model boundary at
a number of different azimuthal anglesφ and inclinations with respect to the vertical (0≤ θ < π/2). As a result,
we obtain for eachfrequency groupν and for all bundles of rays with orientation (θ, φ) the quantityQrad,ν(θ, φ) =
ρκν (uν(θ, φ) − Sν) at the mesh points along the rays, where the mean-intensity-like variableuν(θ, φ) is the average of
incoming (I−ν ) and outgoing (I+ν ) intensity,uν = (I+ν + I−ν )/2 (see Fig. 5),Sν is the group source function, andρκν is the
group opacity averaged over the neighboring mesh points along the ray (see Eq. 63).Qrad(xi , y j, zk) is then constructed
by interpolatingQrad,ν(θ, φ) from the ray system to the cell centers of the hydrodynamicsgrid, and appropriate angular
averaging and summation overfrequency groups.

Note that the technique described here basically evaluatesQrad according to Eq. (54). It overcomes the difficulties
explained in the context of Eq. (54) by solving the transportequation for the difference between mean intensity and
source function,pν ≡ uν − Sν (see Eq. 57), which gives accurate values of (uν − Sν) for arbitrarily large optical depth.
At the same time, it allowsQrad,ν to be computed such that energy conservation is enforced (see Eq. 65). The procedure
is very similar to that described in [23].
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Figure 5: Schematic illustration of the different grids used with the long-characteristics radiative transfer method.The hydrodynamics equations
aresolved on a Cartesian grid (HD grid, black, dots representing cell centers), while the radiative transfer equation is solved on a system of inclined
rays (red, dots representing the mesh points used with the Feautrier scheme). The HD grid can be refined in vertical direction by additionalz-planes
(thin, blue) to provide sufficient resolution for strongly inclined rays.The cell centers of the refined HD grid have indices (i, k), the mesh points
along the rays have indices (m, k).

To simplify matters,φ is restricted to 0, (1/2)π, π, (3/2)π, i.e., we consider only 2D ray systems in vertical slices
along thex andy axis of the hydrodynamical grid. Theθ angles are given by Lobatto’s quadrature formula [111];
typically, 2–4 non-zero inclination angles are sufficient, in addition to a set of vertical rays. All rays start atthe cell
centers of the uppermost level of the HD grid and follow the specified direction, assuming periodic lateral boundary
conditions, until they reach the bottom of the computational domain.

As indicated in Fig. 5, the mesh points along the rays are defined as the intersection points with thez-planes of the
HD grid. As this recipe would imply a rather coarse sampling along strongly inclined rays, we introduce additional
horizontal planes such that the geometrical separation of mesh points along theinclinedrays remains comparable to
the vertical resolution of the original HD grid. The coordinates of the ray points, (xmk, zk), wherem is the ray index
andk is the depth index of the refined HD grid, are equidistant inx.

The main steps of the whole procedure may be summarized as follows: first, the source function,Sν, and the opac-
ity per unit volume,ρ κν, are interpolated from the HD grid to the mesh points of the ray system. Linear interpolation
of Sν and log(ρ κν) is adopted for the vertical direction (additionalz-planes), while linear interpolation ofSν andρ κν
is used in horizontal direction.Note that only a 1D interpolation along the Cartesian grid lines is required.Givenρ κν
on the mesh points along the rays, we representρ κν between two mesh points by a monotonic cubic polynomial [112]
to obtain the optical depth increments∆τν by analytical integration. Next, we solve the equation of radiative transfer
along bundles of rays in the form of the second-order differential equation:

d2pν
dτ2ν

= pν −
d2Sν
dτ2ν

, pν ≡ uν − Sν , (57)

whereτν is measured along the (inclined) rays. This modified Feautrier equation is solved by the forward-elimination
and back-substitution formalism originally described by Feautrier [113] (see also Mihalas [3]), givingpν(xmk, zk) at
the mesh points of the ray system.

At the lower boundary, where conditions are optically very thick in general, we can choose between two basic
options: if the bottom layer is located in a radiative zone, and we want to enforce a given radiative fluxFrad,ν through
the lower boundary, the condition is

dpν
dτν
=

3
4

Frad,ν

π
cos(θ) − dSν

dτν
. (58)

If the bottom layer is located in a convective zone, where theradiative flux through the lower boundary is negligible
compared to the energy flux carried by the flow, a reasonable boundary condition is to require the net radiative energy
exchange to vanish in each frequency group,

∇ · Frad,ν = 0 or pν = 0 . (59)
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Note that this does not implyFrad,ν = 0.
At the uppermost layer, the optical depth is computed as

τν,0 = Hτ ρ0 κν,0 , (60)

whereHτ is the mean optical depth scale height at the top of the model,(Hτ)−1 = −(d ln(ρ κν)/dz)0 ≈ −(d lnτν/dz)0.
The incident radiation is given by

I−ν (τν,0) = (1− e−τν,0) Sν,0 + I ∗ν , (61)

whereSν,0 is the mean source function of the upper layer, andI ∗ν denotes the incident intensity due to an arbitrary
external source (usually zero). In terms ofpν, the upper boundary condition for radiation can be formulated as

pν −
dpν
dτν
= (1− e−τν,0) Sν,0 + I ∗ν − Sν +

dSν
dτν

. (62)

Next, the quantityqν is computed at all mesh points of the ray system as

qν(xmk, zk) = cosθ
τν(xm,k+1, zk+1) − τν(xm,k−1, zk−1)

zk+1 − zk−1
pν(xmk, zk)

≡ {ρ κν (uν − Sν)}mk . (63)

Finally, the partial heating ratesqν are interpolated back onto the HD grid in a conservative way,such that for all
height levelsk

∑

m

qν(xmk, zk) =
∑

i

qν(xi , zk) . (64)

Qrad(xi , y j, zk) is then built up by adding the individual contributionsqν(xi , y j, zk) of the different ray directions (θ, φ)
with their appropriate integration weights, and summationover all frequency groupsν.

By virtue of the definition ofq according to Eq. (63), and the requirement of a conservativeback interpolation as
expressed by Eq. (64), our long-characteristics radiative-transfer scheme conserves energy in the sense that for each
frequency group

∫

x

∫

y

F top
rad,ν dxdy −

∫

x

∫

y

Fbot
rad,ν dxdy =

∫

x

∫

y

∫

z
Qrad,ν(x, y, z) dxdy dz . (65)

Here,F top
rad,ν andFbot

rad,ν are, respectively, the net radiative energy flux through theupper and lower boundaries of the
model, computed directly from the ray system intensities atthe top and bottom level. Note that Eq. (65) holds only if
the volume integral includes theQrad,ν obtained at the additional horizontal sub-levels introduced for grid refinement.
The final Qrad on the original HD grid must therefore be computed as a suitable average over the neighboringz
sub-levels to ensure energy conservation.

A distinct advantage of the long-ray approach is that it allows an efficient solution of the transfer equation for
beams of parallel rays by means of the Feautrier scheme, which is very fast and elegant,automatically ensures the
correct asymptotic diffusion limit at large optical depth, andcould easily account for scattering along single rays(for
an early example of this approach see Cannon [114]). In principle, the LC method can also be combined with integral-
operator techniques (e.g. [115], [116]), which, however, are numerically less efficient and suffer from interpolation
issues ([117], [118]). In contrast to what is assumed in Kunasz and Auer [119], the computing time of our LC scheme
scales linearly with the number of HD cells and the number of frequency groups, as for the short-characteristics
scheme. It scales in a non-linear way with the number ofθ-angles, since more-inclined rays are longer and have a larger
number of mesh points. The computing time can be reduced by computingQrad from the diffusion approximation in
the lower, optically very thick layers of the model. Compared to the ray-system solution, the computation of the
diffusion approximation comes almost for free.

A disadvantage of the LC method is the necessity of extensiveinterpolation from the HD grid onto the ray system
and back. This procedure is prone to problems with “leaking”of heating or cooling to neighboring cells in the presence
of localized “hot spots”, as described in the following Section 3.6.4 (cf. Fig. 6). To some degree, such problems may
be abated, at the expense of higher computational cost, by increasing the number of rays per unit length in horizontal
direction.
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Figure 6: Initial run of the source function (topcurve), induced changed of energy per cell (centercurve), and run of the source function after one
time step (bottomcurve). The three quantities are plotted as function of optical depth for a few grid cells whose boundaries are depicted by vertical
dotted lines. The values atthecell centers are marked by squares. The two sub-intervals ineach cell can have different values of the energy change.
The lower curve shows the source function after one time stepfor a constant heat capacity per grid cell (thick line) and the case where the heat
capacity in the left neighbor of the hot cell is smaller by a factor 10.
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Figure 7: The sketch on the left illustrates the naming convention used for the case of a linear dependence of source function S on optical depth
τ within a single interval as opposed to the case of a piecewiselinear source function as in the plot on the right, where the interval [τ0, τ1] is split
into two sub-intervals with width∆τ0/2 and∆τ1/2, respectively. The source function varies linearly in each sub-interval. However, it is allowed to
have a jump at the transition.

3.6.4. Short-characteristics radiation transport
The LC scheme described in the previous section is part of CO5BOLD since the very beginning. It is adapted to

the conditions of plane-parallel atmospheres in local models: e.g., it heavily makes use of periodic side boundary con-
ditions. The angular distribution of rays is chosen to optimize the vertical radiative flux. The diffusion approximation
used in the deeper layers can save some computational time.
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Figure 8: Short-characteristics step to get the intensity in the target cell (bottom) from the values at the previous cell plane (top) in two dimensions:
left: standard integration with one short ray and interpolation of intensity and source function at the top grid plane; right: separate rays for each
neighbor cell with a summing up of the intensity in the bottomgrid cell, the splitting of each ray gives the intensity change within each cell.

23



While for local models there was no reason to spend time on experimenting with another radiation-transport
scheme, this changed for global models where the conditionsare different: the vertical direction is not preferred
anymore. Instead, all sides of the computational domain areopen for radiation. The numerical resolutions is in general
worse than for local models and the violent flows and give riseto large local temperature and opacity fluctuations.
This means that errors caused by the interpolation in LC schemes would become more apparent.

The short-characteristics (SC) scheme in CO5BOLD overcomes these stability problems at the possible expense
of the accuracy of the vertical radiative energy flux. The basic idea of not following rays through the entire volume
is the same as in Kunasz and Auer [119]. But a different way of interpolating the intensity and the source function
makes it better adapted to the use within an RHD code.

The main emphasis during the development ofthe SCscheme has been put on stability by preventing local peaks
of the source function from “leaking” into neighbor cells and causing an unwanted smearing of the cooling or heating
term (see Fig. 6). This requires a special reconstruction of the source function within optically thin cells in the 1D
radiation transport operator and a carefully chosen interpolation within the SC scheme.

Instead of a Feautrier scheme as in Sect. 3.6.3, the analyticsolution of the 1D version of the radiation transport
equation (22) with linear source function (Fig. 7, left) is used as atomic operator,

I1 = I0 e−∆τ + S1 − S0 e−∆τ +
∆S
∆τ

[

e−∆τ − 1
]

, (66)

which guarantees the positivity of the source function everywhere.
The energy change has to be computed accurately in the optically very thick (e.g., in the center of a toy stellar

model with∆τ > 108) and in the optically very thin (e.g., in some regions far away from the surface of a red supergiant
model with∆τ < 10−20). Both cases pose no problem for the formal solution becausein the former case the intensity
is essentially given by the local source function. And in thelatter case, the changes to the radiation field due the
contribution of the extremely thin regions can be safely ignored – or simply added to the much larger intensity along a
ray and therefore absorbed by the limited machine precision. However, optically very thick or thin regions still interact
with the radiation field and the local heating or cooling is significant and has to be computed in a time-dependent code.
TheSCscheme in CO5BOLD uses different arrangements of terms in optically thin and thick regimes to account for
round-off errors, giving accurate values for optically very thick or thin regions – even running only in single precision.

Separate integration steps are employed for the interval from the cell center to the boundary and from the cell
boundary to the next cell center (Fig. 7, right) to get the intensity change within each cell, from which the energy
change per cell is computed. In the optically thin regime, the slope of the source function is reduced (Fig. 7, right) to
suppress leaking of cooling or heating from one cell to the next (Fig. 6). Each ray inclination requires an integration of
the intensity in both directions. For inclined ray directions, there is one pair of intensity-integration steps for each pair
of neighbor cells to avoid the leaking of cooling or heating associated with the spatial interpolation of source function
and/or intensity (Fig. 8).That means, that in contrast to the well-known SC scheme in Kunasz and Auer [119], even
for a single direction there might be more than one ray connecting a cell with its neighbors.

The numerical schemeproceedsas follows:
At the beginning of each radiation-transport sub step, the temperatureT is computed from densityρ and internal

energyeint for every mesh point of an equidistant3D Cartesian grid. For every frequencygroup(Sect. 3.6.2) opacityκ
and source functionS are calculated by interpolating in precompiled tables. Next, for every ray inclination the optical
thickness∆τ of each cell is calculated.

At the beginning of each integration step, the boundary values of the intensity have to be set.For theSC
scheme, only open boundary conditions (zero infalling intensity) are implemented (for simulations with periodic side
boundaries, theLC scheme (Sect. 3.6.3) is used, instead).

The integration proceeds then layer by layer along the axis that is closest to the inclined ray direction. For each ray
direction, the intensity at each cell does not depend on its neighbors within a layer but only on cells in the previously
computed layer. That means, that the innermost loop in each layer can be efficiently vectorized. The next loop is
parallelized with OpenMP directives and the outermost loopperforms the integration.

Each complete 3D radiation-transport step includes directions according to the coordinates of the corners of regular
polyhedrons, which results in equal weights for all rays. After the loop over all inclinations and the loop over all
frequency groups, the energy change per time is derived fromall the accumulated intensity changes and used to
update the internal energyeint in each cell for given time step∆t. Here, “conservation of intensity” translates into

24



“conservation of energy” and ensures the conservativity ofthe radiation-transport update step (except for the losses
through the outer boundaries).

From one sub time step to the next, the orientation of the polyhedron can change randomly to give some coverage
of the entire sphere. However, some simulations are restricted to rays aligned with axes or diagonals resulting in
a considerable speed-up while loosing some angular resolution. There are several radiative time steps per hydro-
dynamics time step possible to compensate for the short radiative time scale compared to the hydrodynamic one.

In cool supergiants close to the Eddington limit, radiationpressure plays an important role in the stellar atmosphere
and the wind of asymptotic giant branch (AGB) stars is drivenby radiative pressure on dust. With the scheme presented
above, the three components of the radiative acceleration can easily by computed from the intensity change per cell.

3.7. MHD
In CO5BOLD, the numerical scheme used for the solution of theequations of magneto-hydrodynamics is quite

different from the one employed for the case of pure hydrodynamics described in Sect. 3.5.In the case of solar and
stellar magnetoconvection, the scheme must be able to deal with highly stratified flows where the plasma-β (i.e., the
ratio of the thermal to the magnetic energy density of the plasma) varies over several orders of magnitude. A special
requirement of MHD calculations is the enforcement of the divergence-free condition∇ ·B = 0 for the magnetic field.
Violating this condition can lead to unphysical forces, which can degrade the solution [120]. Several methods have
been developed to enforce this condition either to roundoff error or approximately to the order of the scheme. One
method is to use the eight-wave formulation of the MHD equations [121, 122]. The additional wave is associated
with the propagation of magnetic monopoles. In the eight-wave formulation, additional source terms proportional to
∇ · B appear, i.e., the equations are no longer conservative. Another method uses a cleanup step at the end of each
time step, removing the errors in∇ · B = 0. This requires the solution of a Poisson equation at each time step. A
third possibility, which is used in the MHD module of CO5BOLD, is the constrained-transport method of Evans and
Hawley [123]. It uses a special finite-difference discretization of the induction equation on a staggered grid such that a
discrete formulation of the divergence-free condition forthe magnetic field is maintained to machine accuracy. All of
these methods can be treated as modifications of an underlying base scheme. A detailed comparison of these methods
can be found in Tóth [124].

Another difficulty in MHD simulations is to keep the thermal gas pressure positive [125, 126]. Since the gas
pressure is a dependent variable when using the conservative form of the MHD equations, it is computed by subtracting
the potential, the kinetic, and the magnetic energy from thetotal energy,etot. When the magnetic energy is much larger
than the internal energy, i.e., for small values of the plasma-β, small errors in the total energy can drive the gas pressure
to negative values. This can be a problem in the solar chromosphere, where values ofβ ≈ 10−4 are common, whereas
the gas pressure dominates in the sub-photospheric layers whereβ is huge. In the MHD module of CO5BOLD,
several provisions are made to avoid a negative gas pressure. To keep the magnetic field solenoidal, CO5BOLD uses
the constrained-transport method in combination with a Godunov-type finite-volume scheme as the base scheme. In
the following, each component of the scheme is described in more detail.

3.7.1. Spatial and temporal discretization
The spatial discretization of the MHD equations is similar to the hydrodynamic case, i.e., the hydrodynamic

variables are cell centered. The magnetic fields are locatedat the cell interfaces.The cell-centered magnetic field
components, which are required by the Riemann solver of the base scheme, are computed from the magnetic field
components at the cell interfaces by linear interpolation.Then all cell-centered variables are updated by the base
scheme. The extension to second order in space is done by linear reconstruction of the primitive variablesρ, v, B,
P, andρeint. Second order in time is achieved either by a Hancock predictor step[127, 128]or by a second-order
TVD-Runge-Kutta time-integration scheme[129]. In some situations, where the second-order scheme would result
in negative gas pressure, the scheme is locally reduced to first order.

3.7.2. The approximate Riemann solver
In the hydrodynamic scheme of CO5BOLD, a Roe solver is used (Sect. 3.5). However, the Roe solver does not

guarantee positivity of the density and the pressure. This problem, which is also present in the hydrodynamic case
gets worse for MHD. Whereas in the hydrodynamic case, reducing the time step often helps to overcome the problem,
in MHD simulations, the problem remains, even if the time step is reduced considerably.
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It can be shown that the HLL solver[130]ensures positivity of the gas pressure and the density if theexact solution
of the Riemann problem is positive [131]. For MHD, this is thecase only if there is no jump in the normal component
of the magnetic field. In 1D, the divergence-free condition enforces the normal component of the magnetic field
to be constant. For multi-dimensional problems however, using cell-centered magnetic fields, jumps in the normal
component of the magnetic field occur even if the divergence-free condition is fulfilled in a discrete sense. It was
shown by Janhunen [126] that allowing magnetic monopoles, which arise from these jumps, and taking into account
their contribution to the Lorentz force, an additional source term occurs in the induction equation only. Using a
special discretization of this source term, Janhunen [126]demonstrated numerically that the HLL solver for MHD
always provides positive gas pressures.

We use the method of Janhunen for the MHD module of CO5BOLD. However, it should be noted that this source
term is only used for the computation of the fluxes by the HLL-solver of the base scheme. For the update of the
magnetic field by the constrained-transport method, this source term is not used so that the magnetic field stays
divergence-free.

3.7.3. The constrained-transport step
CO5BOLD uses the flux-interpolated constrained-transportmethod of Balsara and Spicer [132]. First, the electric

field at the cell edges is computed from the fluxes at the centers of the cell interfaces, provided by the base scheme.
The magnetic field at the cell interfaces is then updated withthis electric field, applying Stokes theorem to every face
of a cell. The updated cell-centered magnetic field from the base scheme is discarded. The new cell-centered magnetic
field is computed from the updated magnetic field at the cell interfaces by linear interpolation.

Since the new cell-centered magnetic field is different from the magnetic field provided by the base scheme, the
internal energy,eint, must be modified after the constrained-transport step according to

eint = e∗int +
B∗ · B∗ − B · B

2ρ
, (67)

whereB∗ and e∗int are the magnetic field and the internal energy provided by thebase scheme. If this correction
would result in negative gas pressure, it is not performed, i.e.,eint = e∗int (see also Balsara and Spicer [132]) and the
total-energy conservation is sacrificed in favor of improved robustness.

3.7.4. Dual-energy method and Alfvén-speed reduction
Even if a scheme guarantees positivity ofthe gas pressure, this does not necessarily mean that the gas pressure

is computed accurately. In fact, by using the total energy equation for the computation of the internal energy, the
discretization errors in the total energy, the kinetic energy, and the magnetic energy of the scheme tend to be imposed
on the internal energy. One could use the entropy equationor the equation for the thermal energy itself, instead.
Another possibility is to use the total energy equation in combination with one of these equations. For example Balsara
and Spicer [125] use the entropy equation for the update of the internal energy in regions with strong magnetic fields.
For the MHD module of CO5BOLD, the so-called dual-energy method, i.e., a combination of the equation for the
total energy and the equation for the thermal energy is used.In regions witha largeβ, the internal energy is updated
with the equation of the total energy. In turn, whenβ is small (β / 10−3), the equation for the internal energy is used
at the expense of strict energy conservation.Since typicallyβ is small in very restricted regions of the computational
box only, conservation of total energy is still maintained in most parts of the computational domain.

In order to avoid extremely small time steps due to the CFL condition when the Alfvén speed is high, the Alfvén
speed can be limited by artificially reducing the strength ofthe Lorentz force by a factor

f =
v2Amax

v2A + v
2
Amax

, (68)

wherevA is the actual Alfvén speed andvAmax is the desired upper limit of the Alfvén speed. The method issimilar
to that used by Rempel et al. [133]. Of course, caution is indicated when using this method. Obviously, it can hardly
be used for the study of magnetoacoustic wave propagation. However, it may be perfectly admissible in situations,
where the low-β regime is merely included as a buffer region to the (upper) boundary of the physical domain.
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3.7.5. Ohmic diffusivity
While it is not necessary for stability, the MHD-scheme of CO5BOLD can also handle explicit magnetic diffusion.

It is treated explicitly in the scheme by modifying the electric field in the constrained-transport-step. A constant mag-
netic diffusivity and the artificial magnetic diffusivity according to Stone and Pringle [134] are currently implemented
in CO5BOLD. The constant magnetic diffusivity can be used to specify the magnetic Reynolds number

Rm =
vL
η
, (69)

whereη is the magnetic diffusivity, L is a typical length scale andv is a typical velocity of the flow. The artificial
magnetic diffusivity is given by

η = C
(∆x)2 |j|
√
ρ
, (70)

where∆x is the grid spacing,j = ∇ × B is the current density, andC is a dimensionless parameter.

3.7.6. Magnetic boundary conditions
The boundary conditions for the magnetic field can be specified independently from the hydrodynamic settings for

the topand the bottom boundaries, and for each of the horizontal directions. Typical horizontal boundary conditions
used for simulating magnetoconvection in a local box are periodic. Another boundary condition, mostly applied to
the bottom and the top of the box, consists in setting the magnetic field tangential to the boundary to zero, so that the
magnetic field lines stay normal to the boundary. A generalization of this boundary condition specifies the obliquity
of the magnetic field at the boundary. There is also a special condition for the open lower boundary, which allows
upflows to advect horizontal magnetic field into the computational box. Another boundary condition consists in setting
the electric field to zero at the boundary. This means that thenormal component of the magnetic field at the boundary
does not change. In this case the magnetic field lines are effectively anchored at the boundary.

Conditions which keep the magnetic field vertical at the top and bottom boundaries are typically used for the sim-
ulation of intense, vertically directed magnetic flux tubesin the photosphere of the Sun as they occur in magnetically
active regions such as plages and enhanced network regions.The advection of weak horizontal field across the bottom
boundary is used for the simulation of magnetically inactive, very quiet regions on the Sun.With this boundary con-
dition, it is assumed that convective updrafts transport magnetic fields from deep layers of the convection zone to the
solar surface. Anchored fields may be useful for anchoring anentire sunspot at the bottom boundary or for anchoring
horizontal fields at the side boundaries for the simulation of horizontally directed penumbral filaments.

3.8. Optional modules

The numerical treatment of the source termsSi in Eq. (29)dealing with different types of dust and chemical-
reaction networks is implemented as a separate step (see below), following the general concept of operator splitting.
The optional modules are called after the (magneto)hydrodynamics step for each computational time step. These
modules treat the mass or number densities of the dust particles or chemical species as additional quantities, which
are included in the in- and output of the simulation data. Only up to one of these extra modules can be used at a time,
so far.

During the (magneto)hydrodynamics solver step, the additional densities are advected with the flow field anal-
ogously to the gas density. Their transport velocity acrosseach cell boundary is computed from the gas mass flux
divided by the upwind density, in some cases modified to account for the gravitational settling of dust.

The contribution of the additional components to the total opacity can be added to the standard equilibrium gas
opacities (Sect. 3.6.2). The boundary conditions are made consistent with the hydrodynamics part of the code.

3.8.1. Chemical-reaction networks
Apart from advection across the cell boundaries, the numberdensityni of a chemical species in a grid cell can be

changed due to chemical reactions:

(Si)chem= −ni
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k3, jlm n j nl nm (71)
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with the indexi for the included species. So far, the implementation is restricted to two- and three-body reactions,
which is a reasonable assumption for comparatively hot stellar atmospheres. The losses (negative sign) and gains
(positive sign) due to two-body reactions are described by the first and second right-hand terms with the corresponding
reaction ratesk2,i j andk2, jl , respectively. Analogously, the third and fourth term describe the change due to three-
body reactions. Such an equation is imposed for each included chemical species, resulting in a system of ordinary
differential equations of first order. In CO5BOLD, the chemical reactions are handled locally for each grid cell
separately by solving the system of differential equations. It starts with the calculation of the reaction ratesk, which
are functions of the local gas temperature and (for catalytic reactions) also of the number density of a representative
metal. The influence of the radiation field has been neglectedso far. The functions are parametrized with prescribed
coefficients that are provided in the form of a table [see 135, for details].

The chemical-reaction rates, the number densities of the involved species, and thus their derivatives can differ
by many orders of magnitude, which can cause the system of equations to be stiff. Thus, an implicit scheme is
used for the numerical solution. We based our solver on the DVODE package [136] with an implicit BDF (backward
differentiation formula) method and an automatic internal timestep. The solution finally provides the number densities
of the involved species after the overall (global) computational time step. For the numerical simulation of carbon
monoxide, 7 chemical species and a representative metal areconsidered, which are connected through 27 chemical
reactions [135].

Carbon monoxide is a non-negligible opacity source in the solar atmosphere, so that the opacity is in principle
affected by the deviations from equilibrium of the CO number density. To account for this effect, the back-coupling
to the radiative transfer was implemented [137]. It follows the approach by Steffen and Muchmore [138], which uses
two frequency groups. The first comprises the gray RosselandopacityκR without the wavelength region around the
CO fundamental vibration-rotation band in the infrared at awavelengths around∼ 4.6 µm. This wavelength range is
simulated with the second band, which is constructed from the gray Rosseland opacityκR and an additional opacity
κCO. The latter is directly connected to the CO number density that is derived from the preceding solution of the
chemical-reaction network.

3.8.2. Time-dependent hydrogen ionization
A detailed treatment of the time-dependent ionization of hydrogen is important for atmospheric layers, where

significant deviations from the ionization equilibrium occur, e.g., in the solar chromosphere (see Sect. 4.5). Current
applications for the Sun use a hydrogen model atom with 5 bound energy levels and a level representing ionized
hydrogen. The number densities of the individual level populationsni enter as additional quantities in CO5BOLD.
The levels are connected by collisional transitions and 10 radiative transitions (5 bound-bound and 5 bound-free). The
ratePi j of a transition between a leveli and a levelj is given byPi j = Ci j + Ri j , whereCi j andRi j are the rates due
to collisional and radiative transitions, respectively. First, these rates are calculated from the local gas density and
gas temperature, the imposed radiation field, and the level populations and electron densities, that are available from
the previous time step. Apart from advection, the change of the population number densities and thus the ionization
degree of hydrogen in a grid cell is then described by a set of time-dependent rate equations of the form

(Si)hion =

nl
∑

j,i

n jP ji − ni

nl
∑

j,i

Pi j , (72)

where the terms on the right-hand side are the rates into and out of level i. In CO5BOLD, the set of rate equations
for all considered energy levels is solved with the DVODE package like that for the chemical-reaction networks (see
Sect. 3.8.1).

An important simplification concerns the usage of fixed radiative rates. In principle, the radiation field and the
radiative transitions for hydrogen (both bound-bound and bound-free) are connected in such a way that a detailed
solution has to be found by iteration, which makes it computationally expensive. For the implementation in a multi-
dimensional radiation MHD code, the rates are fixed and calibrated so that they reproduce the full solution as it is
implemented in time-dependent 1D simulations [139, 140]. There is no back-coupling to the equation of state and the
opacities in the current implementation in CO5BOLD, a point, which will be worked on in the future. More details
are given in Leenaarts and Wedemeyer-Böhm [141].
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3.8.3. Dust
If the atmospheric temperatures are low enough, not only molecules but larger particles – dust – can form. In the

Earth’s atmosphere, possible typesof such particlesare for instance aerosols of different compositions, rain, snow, or
hail, mostly made of water, or particles from volcanic ashes. Many cool stars or substellar objects may contain dust in
their atmospheres, too (see Fig. 11). In the hotter objects,the dust will mostly be made of minerals (e.g., forsterite).
At lower temperatures (e.g., on the Earth) water plays an important role. For the dust chemistryof the warmer objects,
it is crucial whether oxygen or carbon is more abundant, because these two elements first form carbon monoxide gas
(CO) and only the remainder participates in dust formation.The formation, interaction, and destruction of grains of
different chemical composition, size, and shape is difficult to model [142, 143]. Compared to the possible complexity
of the processes occurring in real objects, the various dustmodules in CO5BOLD are simple. They are permanently
under development. Two examples will be outlined in the following:

Stars at the tip of the asymptotic giant branch lose part of their mass in form of a stellar wind, likely driven
by radiation pressure on dust. The formation of carbon-richdust around such stars was investigated by Freytag
and Höfner [144] with CO5BOLD and with the 1D-RHD code of Höfner et al. [107]. The CO5BOLD dust model
includes a time-dependent description of dust grain growthand evaporation using a method developed by Gail and
Sedlmayr [145] and Gauger et al. [146]. In this approach, thedust component is described in terms of four moments
K j of the grain-size distribution function, weighted with a power j of the grain radius. The momentK0 represents
the total number density of grains (integral of the size distribution function over all grain sizes), while the ratio
K3/K0 is proportional to the average volume of the grains. The equations, which determine the evolution of the dust
components, are solved considering spherical grains consisting of amorphous carbon. The nucleation, growth, and
evaporation of grains is assumed to proceed by reactions involving C, C2, C2H, and C2H2. The four momentsK j are
number densities and are advected with the gas as described in Sect. 3.8. The gas and dust opacities in this case are
gray. Some results are shown in Sect. 4.7 and Fig. 15.

In contrast to the cool giants, the conditions for the formation of (oxygen-rich) dust in Mdwarfsand brown dwarfs
are fulfilled even in standard 1D atmosphere models. However, the comparatively heavy dust grains should sink under
the influence of gravity and vanish from the visible photosphere, leaving no direct trace in emergent spectra, which
is at variance withobservations. The scheme used in [96] to investigate the question why the dust does not settle or
how the material comes back up is based on a simplified versionof the dust model used in [107], adapted to forsterite
(Mg2SiO4, 3.3 g/cm3). In this method, there are only two density fields, one is used to specify the mass density of dust
particles and the other to describe the monomers (the dust constituents), instead of four density fields for the dust and
none for the monomers as in [107] and [144]. Therefore, the ratio of the sum of dust and monomer densities to the
gas density is allowed to change, in contrast to the dust description in [107] used for the AGB simulations mentioned
above. Instead of modeling the nucleation and the detailed evolution of the number of grains, a constant ratio of
the number of seeds (dust nuclei) to the total number of monomers (in grains or free) per cellis assumed. If all the
material in a grid cell were to be condensed into dust, the grains would have the maximum radiusrd,max, which is set
to a typical value of 1µm. This is close to the typical particle sizes found for the optically thick part of the cloud deck
in solar-metallicity brown dwarfs according to theDRIFT-PHOENIXmodels of Witte et al. [147].

Condensation and evaporation are modeled as in [107],with parameters and saturation vapor curve adapted to
forsterite. In the hydrodynamics module, monomers and dustdensities are advected with the gas density, with the
terminal velocities given by the low-Reynolds-number caseof Eq. (19) in Rossow [148] as settling speed added to
the vertical advection velocity of dust grains. In contrastto the sophisticated treatment of the gas opacities, a simple
formula for the dust opacities is used, which assumes that the large-particle limit is valid for all grain sizes and treats
scattering as true absorption. The dust opacity in each cellof the simulated atmosphere is added to the gas opacity
(Sect. 3.6.2). Experiments have been made with another dustmodel, that uses in addition to one density field for the
monomers a number of further fields, one for each possible grain size.

4. Results

4.1. Code comparison: the solar benchmark

The natural benchmark for the comparison of different codes is of course the solar atmosphere. On the one
hand, its mean thermal stratification is well known empirically, and its velocity field and associated temperature
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Table 1: Setup and emergent radiation of solar models computed with different codes.

STAGGER MURaM CO5BOLD CO5BOLD
standard high resolution

Box size [Mm3] (x× y × z) 6.0×6.0×3.6 9.0×9.0×3.0 5.6×5.6×2.3 5.6×5.6×2.3
Grid dimension 240×240×230 512×512×300 140×140×150 400×400×300
Cell size [km3] (∆x× ∆y × ∆z) 25.1×25.1×∆z∗ 17.6×17.6×10.0 40.0×40.0×15.1 14.0×14.0×7.5
Height range [Mm] (z= 0 at〈τ〉 = 1) −2.72. . . + 0.88 −2.00. . . + 1.00 −1.38. . . + 0.88 −1.38. . . + 0.88
upper boundary condition transmitting closed transmitting transmitting
lower boundary condition open open open open
# snapshots used 19 19 19 60
# frequency groups used 12 4 12 12

Effective temperature [K] 5762 5768 5781 5763
Bol. intensity contrast (µ=1) [%] 14.9 15.4 14.4 14.1

∗ The STAGGER code uses a non-equidistant grid in the verticaldirection, with spacings ranging from∆z= 7 km
near the optical surface to∆z= 32 km in the deepest layers.

fluctuations have been studied in great detail based on a large body of observations. On the other hand, many numerical
simulations have been carried out to study solar surface convection with a variety of different computer codes. Here,
we compare some basic quantities obtained from numerical simulations of the solar surface layers with three different
codes: STAGGER, MURaM, and CO5BOLD. All three codes solve the time-dependent equations of compressible
(magneto)hydrodynamics for a gravitationally stratified,radiating fluid in a Cartesian box in 3 spatial dimensions,
taking into account partial ionization and non-gray radiative energy exchange, the latter treated with the opacity-
binning scheme (see Sect. 3.6.2).

The codes have been developed independently and use different numerical methods.STAGGER and MURaM
are similar in that both use a method of lines for the hydrodynamics part as well as artificial (hyper)diffusivities to
stabilize the numerical solution.The STAGGER code [59], [149] (see also Sect. 1) uses a sixth-order finite-difference
method to determine the spatial derivatives on a staggered mesh, while the equations are stepped forward in time using
an explicit third-order predictor-corrector procedure, conserving mass, momentum, energy, and magnetic-field diver-
gence. Radiative energy exchange is found by the formal solution of the Feautrier equations on long rays.Similarly,
MURaM [150], [54] uses afourth-ordercentral-difference scheme in space, and a fourth-order Runge-Kutta time
stepping; radiation transport is computed with a short-characteristics method.On the other hand,CO5BOLD is based
on a finite-volume approach and employs an approximate Riemann solver of Roe typeto advance the hydrodynamics
in time, relying on second-order monotonic reconstructionschemes to achieve numerical stability without the need
to invoke artificial viscosities. Directional splitting reduces the 3D problem to one dimensional sub-steps. Similar to
STAGGER,radiative transfer is treated with a Feautrier method on long characteristics(see Sect. 3.6.3).

The basic setup of the different solar simulation runs is summarized in Table 1. The twoCO5BOLD models differ
only in their spatial resolution. Since the models of the different groups have not been constructed for the purpose of
this comparison, they differ in many aspects, such as horizontal box size, vertical extent, spatial resolution, boundary
conditions, opacity tables, number offrequency groups,and equation of state (EOS), apart from the different numerical
methods used to solve the equations of hydrodynamics and radiative transfer. Despite these substantial differences,
the mean vertical structure, obtained from the various simulations by horizontal and temporal averaging, turns out to
be remarkably similar, as demonstrated in Fig, 9. Obviously, the mean thermal structure is the most robust quantity.
Ignoring the layers influenced by the top boundary, the temperature differences are everywhere below 2%; deviations
seen in the deeper layers are probably related to differences in the EOS. Except for the photospheric layers above
≈ 300 km, where the details of the opacity-binning recipe playa major role, the predicted amplitude of the horizontal
temperature fluctuations is also amazingly similar. As a consequence, the predicted continuum-intensity contrast (see
Sect. 4.2) is found to be in very good agreement (last row of Table 1).

The depth-dependence of the mean vertical velocity obtained from the three different simulations agrees closely
(lower set of curves in lower right panel of Fig, 9). As theoretically expected,〈Vz〉 is positive in the convectively
unstable layers below the surface, and negative in the overshoot region. Somewhat larger deviations among the

30



−1.5 −1.0 −0.5 0.0 0.5 1.0
Geometrical height [Mm]

2000
4000

6000

8000

10000

12000

14000
16000

<
T

>
 [K

]

−1.5 −1.0 −0.5 0.0 0.5 1.0
Geometrical height [Mm]

2000
4000

6000

8000

10000

12000

14000
16000

<
T

>
 [K

]

−1.5 −1.0 −0.5 0.0 0.5 1.0
Geometrical height [Mm]

0

500

1000

1500

2000

δT
rm

s 
[K

]

−1.5 −1.0 −0.5 0.0 0.5 1.0
Geometrical height [Mm]

0

500

1000

1500

2000

δT
rm

s 
[K

]

−1.5 −1.0 −0.5 0.0 0.5 1.0
Geometrical height [Mm]

−400

−300

−200

−100

0

100

200

<
T

>
 −

 <
T

>
(C

O
5B

O
LD

) 
[K

]

−1.5 −1.0 −0.5 0.0 0.5 1.0
Geometrical height [Mm]

−400

−300

−200

−100

0

100

200

<
T

>
 −

 <
T

>
(C

O
5B

O
LD

) 
[K

]

−1.5 −1.0 −0.5 0.0 0.5 1.0
Geometrical height [Mm]

0

1

2

3

V
er

tic
al

 v
el

oc
ity

 [k
m

/s
]

−1.5 −1.0 −0.5 0.0 0.5 1.0
Geometrical height [Mm]

0

1

2

3

V
er

tic
al

 v
el

oc
ity

 [k
m

/s
]

Figure 9: Comparison of the average vertical temperature structures,〈T〉(z) (left panels), the rms horizontal temperature fluctuations δTrms =
√

〈T2〉(z) − 〈T〉2(z) (top right), and the mean and rms vertical velocity〈Vz〉(z), and
√

〈V2
z 〉(z), respectively (lower and upper set of curves in bottom

right panel, respectively), as obtained with different codes for the solar simulations described in Table 1: STAGGER (dashed), MURaM (dotted),
CO5BOLD standard (solid). Here〈.〉 denotes averaging over horizontal planes of the numerical grid (constant geometric heightz) and over selected
snapshots in time.

different models are found in the velocity dispersion,
√

〈V2
z 〉(z) (upper curves). Is seems that both the location of the

lower boundary and the spatial resolution have some influence on the resulting velocity amplitude. Nevertheless, the
overall agreement is very satisfactory.

We have to keep in mind that the different codes are largely based on the same physical assumptions and approx-
imations. It may therefore not be too surprising that the resulting atmospheric structures are similar. And it does not
prove that all details of the models are physically correct.

The role of the spatial resolution is illustrated in Fig. 10,where we compare two CO5BOLD models that differ
only in spatial resolution: in the high-resolution model(cf. Fig. 1),the horizontal cell size is reduced by a factor 2

√
2

with respect to the standard CO5BOLD model, while the vertical cell size is reduced by a factor of 2. The mean
thermal structure is practically unchanged, as is the amplitude of the T-fluctuations up to the mid photosphere. As a
consequence, the intensity contrast is not significantly affected by the increased grid resolution (see Table 1). How-
ever, in the upper photosphere abovez ≈ 300 km, the amplitude of both the temperature and velocity fluctuations
increases somewhat with increasing spatial resolution. The question whether the moderate spatial resolution of the
standard hydrodynamical models is fully sufficient to account for the “turbulent” character of the solar photosphere,
and hence for correctly capturing the non-thermal Doppler broadening of spectral lines, is currently under investiga-
tion. Obviously, this is an important issue in the context ofaccurate chemical abundance determinations based on 3D
model atmospheres (cf. Sect. 4.3).
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Figure 10: Comparison of the same quantities as in Fig. 9, butfor two CO5BOLD solar simulations which differ only in spatial resolution:
CO5BOLDstandard(solid) and CO5BOLDhigh resolution(dashed). The thin curves in the upper left panel refer to〈T〉(z) ± δTrms(z).

4.2. Granular intensity contrast

The granulation pattern visible at the solar surface is a manifestation of convection in the sub-photospheric layers:
bright granules correspond to hot rising gas, while the darkintergranular lanes consist of cooler downward-sinking
material. The relative continuum-intensity contrast,

δIrms =

〈

√

〈I (x, y, t)2〉x,y − 〈I (x, y, t)〉2x,y
〈I (x, y, t)〉x,y

〉

t

, (73)

of this granulation pattern and its variation from the centre of the solar disk to its limb are important tests for the degree
of realism of numerical models. For many years, the values derived from observations were significantly lower than
those calculated on the basis of numerical simulations [e.g., 151]. Recently, it was shown that synthetic continuum-
intensity maps based on CO5BOLD [152] and also the code by Nordlund and Stein [149] can indeed reproduce the
empirical values quite well, if the instrumental image degradation is taken into account properly [153]. The necessary
image reconstruction is a very demanding task, which on the other hand turns out to be crucial, as was shown for
observations obtained with the Solar Optical Telescope (SOT) onboard the Hinode satellite [154]. Hirzberger et al.
[155] find very good agreement between the rms contrast of solar granulation obtained from measurements with a
balloon-borne 1-m solar telescope and simulations at wavelengths of 388 nm and 312 nm. At shorter wavelengths,
discrepancies between observations and simulations seem to persist.

By analogy, the surface of cool stars must be covered by a similar pattern, thestellar granulation. Its intensity
contrast cannot be measured directly. Numerical simulations are necessary to infer how the intensity contrast depends
on the stellar parameters: the effective temperatureTeff, the surface gravity logg, and the chemical composition.
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Figure 11: Top: grid of CO5BOLD models in the logTeff-logg diagram. Bottom: logarithm of rms bolometric intensity contrast versus logTeff .
The squares mark 3D local models, the triangles 2D local models. The stars indicate global models (with very low surface gravity). Larger symbols
indicate lower gravity. The Sun has its ownstandard symbol⊙ with yellow background.A red symbol (at lower effective temperatures) shows that
some treatment of dust is included in the simulation.

The top panel in Fig. 11 shows the CO5BOLD models on the main sequence and above it (i.e., with gravities
around logg 4 to 5 and lower: white dwarf models are not plotted) in a logTeff − logg diagram. The displayed models
comprise the solar-metallicity part of the CIFIST grid of solar-like 3D models [156], 3D M-dwarf models [157], local
2D “dusty” brown dwarf models [96], global 3D red supergiant[158, 159, 160] and AGB star models [144], as well
as more experimental models of e.g., A-type stars (in 2D or 3D) and cepheids (in 2D). Larger symbols mean lower
gravity (and usually a larger stellar radius). Squares depict 3D models, triangles 2D models. Solar models have the
⊙ symbol. Global 3D models of red supergiants and AGB stars aremarked asstar symbolsat the top. Red symbols
indicate that the simulations have accounted for dust in some form. Models with non-solar metallicities are not shown.

The bottom panel shows the (bolometric) relative intensitycontrast according to Eq. (73) versusTeff for the same
models and with the same symbols as in the top panel. On the main sequence (smallest symbols), the contrast
decreases for stars cooler than the Sun since the stellar energy flux decreases and convection can transport it with
smaller temperature fluctuations. The contrast does not increasefurtherbut has a plateau for stars a bit hotter than
the Sun because convection does not carry the entire stellarflux anymore. Below a minimum at around 2600 K, the
contrast increases again because fluctuating dust clouds start dominating the surface contrast (see Sect. 4.6). The
contrast decreases at the very cool end due to the decreasingoverall flux.
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In general, lowering the gravity has a similar effect as increasing the effective temperature, but results in slightly
more vigorous convective flows. The largest surface contrast is seen in the global AGB-star models, followed by the
global red-supergiant models. 2D models have a larger contrast than 3D models. Other types of dust (and/or dust
schemes) as well as global fluctuations might change the picture for the cooler models.

4.3. Solar and stellar abundances

One important application ofmulti-dimensional (multi-D)radiation-(magneto)hydrodynamics models is the de-
termination of chemical abundances in late-type stars. Under most circumstances, information about the thermal
and kinematic structure of a stellar atmosphere is necessary to interpret measured strengths of spectral lines in terms
of chemical abundances. To this end, simulated time series of the evolution of the stellar photospheric flow field
are serving as input for detailed spectral-synthesis calculations. The result of these calculations are time series of
spatially resolved synthetic spectra which, after suitable averaging in space and time, can be compared to the obser-
vations. For CO5BOLD, we developed the spectral-synthesiscode Linfor3D [161] which is on the one side adapted
to the particular data formats and structures of CO5BOLD, and on the other side designed to facilitate the abundance
analysis.

Historically, the application of multi-D models for deriving abundances started out on the Sun already early on.
However, in the beginning mainly structural properties of surface convection and associated magnetic fields were in
the modeling focus so that abundance analyses with multi-D models remained sparse. A turning point came with the
work of Asplund and collaborators [162, 163] suggesting that multi-D effects are important in the Sun and metal-poor
stars if one wishes to obtain high-fidelity abundances. Since then efforts are directed towards improving multi-D
modeling aspects specific to abundance analysis work, and extending the model basis covering successively larger
regions of the Hertzsprung-Russell diagram [156].

Hitherto, CO5BOLD models were applied to derive abundancesof twelve elements in the Sun (see Caffau et al.
[33] and references therein) including the CNO elements, which are important for the overall solar metallicity; work
on further elements is in progress. In the field of metal-poorstars, CO5BOLD models were used to derive abundances
from atomic (e.g., [164, 165]) as well as molecular lines (e.g., [166, 167]). An element of particular interest in
metal-poor stars is lithium due to its connection to nucleosynthetic processes in thebig bang and early universe.The
lithium abundance is commonly derived from the Li I resonance line at 6707 Å. Since lithium is mostly ionized in
the stars of interest, the formation of the line is highly temperature sensitive, which makes the resulting abundances
strongly model-dependent. Hoping for lithium abundances of higher fidelity, multi-D models were rather extensively
applied. CO5BOLD models were used to obtain lithium abundances in the most metal-poor dwarf stars known [168],
to investigate the structure of the so-called “Spite plateau” at lowest metallicities [169], and to study the evolutionof
lithium in the globular cluster NGC 6397 [170]. A related aspect is the abundance ratio between the lithium isotopes
6Li /7Li in metal-poor stars. CO5BOLD models were applied to argueagainst claims of a non-zero isotopic ratio
[34, 171]. The aforementioned investigations focused on dwarf or subgiant stars. There are also ongoing efforts to
extend the application of CO5BOLD simulations to giant stars including studies of their abundances [172, 173, 174].

Besides conducting actual abundance analyses, CO5BOLD models were instrumental in a number of studies more
indirectly linked to the derivation of stellar abundances from spectroscopy: the long-lasting issue of how small-scale
velocity fields in stellar atmospheres give rise to the spectroscopically derived microturbulence [175, 157], and the
influence of thermal inhomogeneities on effective temperatures derived from Balmer-line profiles [176].

The application of multi-D models to stellar-abundance studies is in its early stages and modeling challenges still
exist: the need for a precise thermal structure of the optically thin, line-forming regions demands for a detailed rep-
resentation of the radiation field. Sufficient wavelength resolution (Sect. 3.6.2), and inclusion of scattering processes
are current challenges in the simulations proper. In the post-processing, line-formation calculations including depar-
tures from LTE are necessary to fully exploit the model potentialities but are demanding in terms of computational
resources and amount of necessary atomic input data.

4.4. The magnetic Sun

4.4.1. Current status
Figure 12 exemplifies the type of MHD applications that are currently performed with CO5BOLD. It illustrates the

magnetic field structure at the interface between the convection zone and the overlying atmosphere of the Sun. The top
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Figure 12: Flux expulsion in a close-up from a simulation of solar magnetoconvection: Logarithmic magnetic field strength in a vertical cross
section (top) and in three horizontal cross sections (bottom) at heights of 0 km, 250 km, and 500 km. The emergent intensity is displayed in the
rightmost panel. The arrows represent the velocity field projected in the respective coordinate planes. Theyellow/white curve in the top panel
marks the height of visible optical depth unity, i.e., the “solar surface”. From Wedemeyer-Böhm et al. [177].

panel showsa close-up ofa vertical cross section through the three-dimensional computational domain, where colors
represent the magnetic field strength and arrows the velocity field. The dashed yellow/white curve indicates optical
depth unity, i.e., the “solar surface” as seen in the visiblepart of the spectrum. Below this surface, the atmosphere is
convectively unstable and energy is transported mainly by convection. Above this surface adjoins the stably stratified
photosphere, where energy is mainly transported by radiation and where convective overshoot motions are rapidly
damped. The panels in the bottom row show horizontal cross sectionsof corresponding sizeat three selected height
levels and the emerging bolometric intensity in the rightmost panel (intensity map). The location of the vertical cross
section is indicated by the dashed horizontal line in the bottom panels.

We can see a strong central updraft in the vertical cross section of Fig. 12, which corresponds to the central granule
visible in the intensity map. This granule is a typical representative for real solar granulation with respect to intensity
contrast and size. Since the diffusion length scale of the magnetic field is small compared to the size of a granule, it is
useful to think of the magnetic field to be “frozen into the plasma” so that the flow field transports the magnetic field
from the granule center to its boundaries where it gets concentrated. This process is called the flux expulsion process,
as magnetic flux is expelled from the granule interior to its boundaries. Correspondingly, the magnetic field in the
central part of the granule is weak (dark blue) and it gets concentrated in the intergranular lanes (red), where plasma
flows back into the convection zone again.

As the updraft runs into the stable stratification of the photospheric layer, it loses the driving buoyancy force and
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Figure 13: Logarithmic current density, log| j|, in a vertical cross section (top panel) and in four horizontal cross sections (bottom panels) in a depth
of 1180 km below, and at heights of 90 km, 610 km, and 1310 km above the mean surface of optical depth unity from left to right,respectively. The
arrows in the top panel indicate the magnetic field strength and direction. The dashed line in the bottom row indicates theposition of the vertical
section. j is given in units of 3× 105 A/m2. From Schaffenberger et al. [183].

buoyancy starts to act in the opposite direction. Consequently, and also because of the strong density stratification,the
flow must deviate inthehorizontal direction and it drags the magnetic field with it as a consequence of the frozen-in
condition. Hence, the magnetic field assumes a predominantly horizontal direction in the upper part of the photo-
sphere, above the mushroom shaped void in Fig. 12 (top panel). While MHD simulation have since long predicted
the existence of this prevalently horizontal field [178], itis only very recently that it got observationally detected
with polarimetric measurements from the Hinode space observatory [179]. More details about MHD simulations with
regard to this horizontal field can be found in Schüssler andVögler [180], Steiner et al. [181], and Steiner et al. [182].

Figure 13 shows the electric current density,j = ∇ × B, that forms as a consequence of the process discussed
above, in a similar but larger domain than that of Fig. 12. Again, the top panel is a vertical cross section through
the simulation domain, and the bottom row shows four horizontal cross sections at various heights. The magnetic
flux concentrations in the intergranular lanes, which form as a consequence of the flux expulsion process, give rise
to the conspicuous pairs of current sheets, visible in the horizontal cross section atz = 90 km. Another system of
current sheets forms in the region of predominantly horizontal magnetic fields above granules, in a height range from
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approximately 400–900 km, as can be seen from the vertical cross section. Higher up in the atmosphere, shock waves
form where the supersonic plasma flow sweeps magnetic field into the compression zone downstream of and along
the shock front. There again, current sheets form, e.g., theone extending fromx = 1.1 to x = 1.5 Mm in the top
part of the vertical cross section, which is also visible as athin filament atx = 1.4 Mm in the rightmost panel which
corresponds toz = 1310 km. More details about MHD simulations with CO5BOLD with regard to chromospheric
shock waves can be found in Schaffenberger et al. [53] and Schaffenberger et al. [183]

Interestingly, the mean vertical Poynting flux,〈S3〉, whereS = B × (v×B) = B2v − (v ·B)B is all of the magnetic
contribution to the total energy flux (see Eq.(19)), changessign near optical depth unity. Below this depth, in the
convection zone, the intense downdrafts in the intergranular lanes pump magnetic fields in the downward direction—
cool and dense plumes compress and drag the magnetic field with them. This leads to a net Poynting flux in the
downward direction. Aboveτc = 1, the Poynting flux that is connected to the magnetic field carried by the convective
overshoot prevails, leading to a net Poynting flux in the upward direction. We expect that at least a part of this flux
is turned into heat via ohmic dissipation by the current sheets that form on top of the overshoot in the chromospheric
layers (see Fig. 13).

One purpose of performingrealisticsimulations is thesynthesisof observable quantities from the simulation data,
which then become directly comparable to actual observations of the Sun. This typically involves the integration of the
radiation transfer equation along lines of sight across thecomputational domain in order to obtain (two-dimensional)
synthetic intensity maps.This analysis step is performed post factum, after completion of the simulation.In case
of magnetohydrodynamics, it requires the integration of the Unno-Rachkovsky equation for polarized radiation for
obtaining intensity maps of the Stokes parameters. For direct comparison with observations from space-based or
ground-based observatories, application of the corresponding instrumental point spread-function is necessary for de-
grading the synthetic intensity maps to the spatial resolution limits of the actual observation. Degradation in frequency
space and addition of noise may be required for taking into account the frequency resolution of the spectrometer and
the photon noise of the recording device, respectively. Quantitative comparisons of synthesized spectropolarimetric
maps from CO5BOLD simulation data with corresponding intensity maps from the Hinode space observatory were
performed by Steiner et al. [181] who focus on the above discussed horizontal magnetic fields and by Rezaei et al.
[184] with respect to intergranular magnetic flux concentrations.

MHD simulations with CO5BOLD are also performed for studying the excitation and propagation of magneto-
acoustic waves in the magnetically structured solar atmosphere. Effects of mode conversion, refraction, and transmis-
sion are studied for application in solar atmospheric seismology [185, 186, 187, 188].

4.4.2. Next steps
Most if not all simulations of stellar magnetoconvection rely on the MHD approximation. But the plasma in the

photosphere of the Sun is weakly ionized so that the frozen-in condition may not really apply after all, despite the
large scales of the magnetoconvective processes under consideration [see, e.g., 189, 190]. In the tenuous plasma of the
chromosphere and corona, effects become important which are not included in the single-fluid model of the standard
MHD equations, and a multi-fluid model or even a kinetic description of the plasma may become necessary.

Two consequences of a multi-fluid description are the Hall effect and the ambipolar diffusion. Since the electrons
and ions are moving on curved trajectories between collisions, the current density vector is no longer colinear with the
electric field vector, i.e., the electric conductivity is a tensor. Ambipolar diffusion occurs in partially ionized plasmas,
where collisions between charged and neutral particles produce new diffusion mechanisms. Since only the charged
particles are coupled to the magnetic field, theforcesacting on the different particles are different. This leads to a drift
between charged and neutral particles modifying the transport of magnetic flux in the plasma.

In the limit of a weakly ionized plasma consisting of electrons, ions, and neutrals, the single fluid description
can still be applied along with an appropriate modification of the induction equation. This modification includes a
term representing the Hall effect and a term representing the ambipolar diffusion. We plan to implement an optional
inclusion of these terms in the computation of the numericalfluxes for the induction equation of CO5BOLD.

Ohmic dissipation of electric currents is probably the mostimportant process in the heating of the outer solar
atmosphere. In the present version of the MHD module of CO5BOLD, there is only an explicit implementation of a
turbulent subgrid-scale magnetic diffusion(see Sect. 3.7.5). However, for taking a significant resistivity into account,
an implicit treatment must be implemented. Also the occurrence of anomalous resistivity should be accounted for.
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Currently, a much discussed topic in solar physics is the origin of the ubiquitous weak magnetic field outside
sunspots. It is thought to be generated through induction due to the turbulent motion of the plasma near the solar
surface, viz., by the turbulent dynamo [191]. On the other hand, turbulent pumping transports this magnetic field in
the downward direction, away from the surface into the deep,less turbulent layers of the convection zone [192]. It is
unclear, which effect prevails.First MHD simulations have been designed and carried out with the aim to improve
our understanding of this riddle (Vögler and Schüssler [193], Moll et al. [194]). For a review see Stein [195] who
argues that the solar dynamo has no preferred scale but rather acts throughout the convection zone over a wide range
of scales.

Regarding global models of solar magnetohydrodynamics, the long term goal should be the global, three-dimensional,
numerical simulation of the entire solar convection zone including at least the overshoot layers and a proper radia-
tive transfer at its boundaries, but ideally also photosphere, chromosphere (see below), and corona. Thus, we seek a
“Sun simulator” as a laboratory for the holistic simulation of the Sun on scales from the stellar radius to the size of
granules of about 1000 km. The outcome should be a virtually self-consistent simulation of the differentially rotating
convection zone including the self-exciting dynamo, whichis thought to be at theorigin of solar magnetic activity.
Simulations should shed light on the functioning of the dynamo, the solar rotation law, the torsional oscillation, the
luminosity variability, the sunspot cycle, and the global solar oscillation. Despite the apparent sphericity of stars, these
processes are truly three-dimensional and therefore, theyrequire a three-dimensional treatment unlike the traditional
one-dimensional approach in stellar-evolution modeling.

The development of such a simulation tool is a formidable task (see Sect 2.1). The main challenge at the beginning
consists in the recognition of the relevant physics to be included and in finding the proper physical approximations,
numerical scheme, and adaptive meshing for achieving sufficient spatial resolution. So far, global MHD simulations
have not been carried out with CO5BOLD. However, with CO5BOLD it should be possible to collect first experiences
on the way to a true “Sun simulator”.

4.5. Solar chromosphere

The chromosphere is the thin atmospheric layer between the photosphere and the transition region and corona
above. Although these layers are coupled by magnetic fields and waves, the properties of the atmospheric gas differ
significantly. Compared to the photosphere below, the chromospheric gas is relatively thin, which has a number of
important implications for the modeling (see Sect. 4.5.1) and also for observations. There are only a few diagnostics
suitable for probing the chromosphere, which makes it hard to derive constraints and viable reality checks for numeri-
cal models. Even worse, the interpretation of most of these diagnostics is complicated by the fact that non-equilibrium
effects must be taken into account. Advances in instrumentation both for ground-based and space-borne observations
during the recent years made it nevertheless possible to access the dynamic and intermittent fine structure at small
spatial scales like it is seen in current chromosphere simulations (see, e.g., the review by Wedemeyer-Böhm et al.
[177]). The coexistence of magnetic fields and propagating waves and interaction of these makes the modeling of the
chromosphere a challenging task and a true hardness test forthe stability of the code.

4.5.1. Challenges in chromospheric modeling
Radiative transfer:The gas becomes optically thin (i.e., essentially transparent) in a substantial wavelength range,

leading to a strongly non-local coupling of regions within this layer and also with the layers below and above. How-
ever, the chromosphere is neither completely optically thin nor completely optically thick. The often used simplifying
assumption of local thermodynamic equilibrium (LTE) breaks down in the chromosphere and effects like scattering
become important. All this makes the numerical treatment ofradiation challenging. Detailed (non-LTE) calculations
are today usually done for (a number of) single simulation snapshots but are still computationally too expensive to be
included in 3D radiation magnetohydrodynamic simulations. Simplifications are unavoidable, so far.

Non-equilibrium effects:Many more processes depart from equilibrium conditions in the thin chromosphere. For
instance, the ionization degree of hydrogen can no longer bemodeled under the assumption of an instantaneous
equilibrium (see Sect. 3.8.2). Some processes become so slow that the detailed time evolution must be followed.
A detailed treatment, however, is computationally expensive. Current approaches [140, 141, 196] use a hydrogen
model atom with 6 energy levels and 10 radiative transitions. The corresponding rate matrix can be stiff and is
solved implicitly for each grid cell in the model chromosphere. Another example for non-equilibrium modeling is the
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application of chemical-reaction networks for carbon monoxide [135, 137, 197]. See Sect. 3.8 for a short description
of the implementation of chemical-reaction networks and hydrogen ionization in CO5BOLD.

Computational time step:The thermal pressure is so low that the magnetic pressure canbecome larger already at
relatively low magnetic field strengths. The plasma-β, which is defined as the ratio of thermal to magnetic pressure, is
consequently less than one above heights of∼ 1000 km above the bottom of the photosphere. Under these conditions,
the magnetic field is no longer advected passively and magnetic wave modes become important. A full magneto-
hydrodynamic approach is therefore necessary. The computational time step is then determined by the Alfvén speed,
which easily can result in steps of the order of milliseconds(in simulations that cover a few hours), depending on
the magnetic configuration in the chromosphere. This is a reduction by one to two orders of magnitude compared
to purely hydrodynamic simulations. Under certain circumstances, an artificial reduction of the Alfvén speed can be
used, as is discussed in Sect. 3.7.4.

Numerical stability: Acoustic waves, which are continuously excited by the non-stationary surface convection
below, grow in amplitude while propagating into the thinnerchromosphere. There, they develop (MHD) shocks with
high peak temperatures of the order of 7000 K or more, and the dynamical pressure exceeds the gas pressure. The
physical conditions in a grid cell can change drastically during the passage of a shock wave, which requires a high
degree of stability of the numerical scheme. In the MHD case,the occurrenceof strong gradients in thermal and
magnetic properties can lead to exceptional situations in small parts of the computational domain. In this respect, the
HLL solver (see Sect. 3.7) has been proven a good choice.

4.5.2. Chromospheric modeling in the recent years
The many complications in modeling the chromosphere made itinevitable to begin with simplified models and

increase the degree of realism step by step. A very prominentexample is the pioneering study by Carlsson and Stein
[198, 199]. They restricted the simulations to one spatial dimension but implemented a detailed radiative transfer
treatment [cf. 200]. Skartlien et al. [201] succeeded to produce a 3D hydrodynamic model with a relatively coarse
spatial resolution by using a simplified description of the radiative transfer, which nevertheless included scattering.
The 3D hydrodynamic simulations by Wedemeyer et al. [92], which were carried out with CO5BOLD, did not include
scattering but used a higher spatial resolution. This type of local 3D models is restricted to a relatively small part of
the atmospheric layers extending from the chromosphere into the upper convection zone. The latter is important as
it provides an intrinsic driver for the atmospheric dynamics and thus avoids the need for an artificial driver like it is
necessary in 1D simulations.

The step to multi-dimensional magnetohydrodynamic simulations of the chromosphere has been performed only
a few years ago. The (non-local) radiative transfer is stilla limiting factor. Consequently, simplifications of the
radiative transfer are still necessary for 3D MHD simulations of the solar chromosphere. Schaffenberger et al. [53]
therefore used a frequency-independent (“gray”) radiative transport and a weak initial magnetic field for the first 3D
MHD simulations with CO5BOLD (see also Schaffenberger et al. [183]). Further 2D numerical experiments [202]
combined higher magnetic field strengths (B0 = 100 G) with the treatment of chemical-reaction networks including
carbon monoxide and the methylidyne radical CH in view of their diagnostic potential.

The models mentioned above focus on the small-scale structure and dynamics of the solar chromosphere, while
another class of models also includes the corona above [203,204, 65, 64, 205, 52]. These models have a larger spatial
extent so that the large-scale magnetic field structure can be fitted into the computational box. In order to keep the
simulations feasible, compromises such as a lower spatial resolution were unavoidable for the earlier models. How-
ever, the progress in computational performance and efficient numerical methods allows for higher spatial resolution
and at the same time a larger number of implemented physical processes, producing models with a increasing degree
of realism.

The chromospheric layer of the hydrodynamic CO5BOLD modelsby Wedemeyer et al. [92] exhibits a very dy-
namic and intermittent pattern made of propagating hot shock fronts and cool post-shock regions (cf. Fig. 14b). The
resulting fluctuations of the gas properties are substantial like it was found already from 1D simulations. As the shock
fronts are very narrow, the peak temperatures of 7000–8000Kin CO5BOLD simulations depend to some degree on
the resolution of the computational grid. Adiabatic expansion of the post-shock regions produces gas temperatures
down to∼ 2000 K. A similar shock pattern can already be perceived in the gas-temperature maps by Skartlien et al.
[201] but much less clearly due to the lower spatial resolution. Martı́nez-Sykora et al. [64], who employed the Oslo
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Figure 14: Vertical cross sections through the upper layersof a 3D MHD model by Wedemeyer-Böhm [206].a) logarithmic magnetic field strength
(color range 0.2 - 3.5 [G]),b) gas temperature (color range 2500 - 12000 K). The solidcurvesin both panels represent (projected) magnetic field
lines (thin blackcurves), thecontour for plasma-β = 1 (thick yellow contour), and the height where the optical depth is unity(horizontally running
black curve aroundz= 0). The latter defines the bottom of the photosphere.

Staggered Code for 3D simulations of magnetic-flux emergence, find a shock-induced pattern in their model chro-
mosphere, too. The range in chromospheric gas temperature is similar to the CO5BOLD results, whereas there are
differences in the temperature amplitudes. This is presumably caused by the different numerical treatment of the ra-
diative transfer in the upper layers. The existence of a chromospheric small-scale pattern in quiet regions of the Sun
is now supported by recent observations [e.g., 207, 208].

Also the MHD simulations carried out with CO5BOLD exhibit strong shock fronts in the chromosphere (see
Fig. 14b). Compared to the photosphere below, the magnetic field in the model chromospheres is less concentrated
and reaches a higher filling factor; it has a lower average field strength and evolves faster [53, 183]. See Sect. 4.4
for a description of the photosphere in this type of models. The topology of the chromospheric magnetic field is yet
complex and features shock-induced compression and amplification into magnetic field filaments. Fig. 14a, shows the
upper layers of a current 3D simulation. The vertical cross section is intersecting a magnetic flux concentration. The
magnetic field lines (thin solid lines, projected into the view plane) show that the field is highly concentrated in the
photosphere and expands in the chromosphere above. Thethick yellow curve represents the surface where plasma-
β = 1. Although the height of this surface varies strongly, it istypically found aroundz ∼ 1000 km outside strong
magnetic flux concentrations. For plasma-β = 1, sound speed and Alfvén speed aresimilar, which has important
implications for the occurrence, conversion, and propagation of different wave modes [e.g., 209, 210, 211, 185, 187].
The simulations indeed show a different behavior in the domains withβ < 1 andβ > 1, resulting in a slowly evolving
lower part and a highly dynamic upper part. Current sheets exist below and above theβ = 1 surface but differ in
their orientation (see Fig. 13). They are stacked with predominantly horizontal orientation in the lower atmosphere
(see Sect. 4.4) but are aligned with shock fronts in the low-β regime in the chromosphere, resulting in oblique or even
vertical orientation.

4.5.3. Next steps
The next steps towards realistic models of the solar chromosphere concern an improvement of the radiative transfer

under chromospheric conditions and the detailed treatmentof non-equilibrium processes that have a significant impact
on the equation of state and the opacities. However, the detailed modeling of non-equilibrium effects might increase
the computational costs to a degree that it can become impractical. For instance, important opacity sources that deviate
from their equilibrium state can prevent the usage of numerically efficient opacity look-up tables (Sect. 3.6.2) and
require a costly detailed line-by-line treatment of the radiation transfer. The inclusion of large-scale magnetic fields is
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another important point as most of the models discussed above resemble rather quiet Sun internetwork conditions with
comparatively weak magnetic fields and thus cannot be applied to more active regions on the Sun.Chromospheric
simulations with CO5BOLD have been restricted to heights below the transition region, where thermal conduction
can still be neglected. Simulations that include the transition region and low corona have not been performed so far
because it would require the implementation of the computationally expensive treatment of thermal conduction.

4.6. Local models of other stars

Surface-intensity snapshots from the hot A-type star regime (about 8500 K) over solar-type stars (Teff,Sun=5775K)
to brown dwarfs (about 1500K) are shown in Fig. 15.A-type stars[212, 213, 214] have only thin surface convection
zones, where convection carries only a small fraction of thetotal energy flux. Of interest in these stars is the amount
of overshootbelow the convection zone, that causes a mixing of elements counteracting the separating effect of
gravitational settling and radiative acceleration [36]. The shapes of spectral lines differ from solar counterparts [214],
suggesting different atmospheric flow patterns or deviating correlations between temperature fluctuations and velocity
fields. Due to the shorter radiative time scales, caused by efficient radiative energy exchange, the steeper and stronger
subphotospheric temperature jump, and the larger convective cells, the simulations are numerically more challenging
than those of solar-type stars, requiring more numerical grid cells and many more time steps. Therefore, the required
CPU time per model goes up by a factor of 100 or more – dependingon the stellar parameters – and an implicit
treatment (at least of the radiation transport) seems appropriate [215]. The transition from a thin, inefficient convection
zone to a deeper zone, where the convection carries in some layers almost all the energy flux, occurs in a similar way
in the temperature sequence of 2D cepheid models at logg=2 in Fig. 16. Remarkable is the extended overshoot region
with significantnegativeconvective flux.

F, G, and K dwarfsform a temperature sequence, in which the convection zone gets deeper, the Mach number
of the convective velocity declines, the relative efficiency of convection compared to radiation increases, and the
granular contrast decreases (Fig. 11). While the amplitudeof pressure waves drops rapidly, the amplitude of gravity
waves decreases more slowly: in solar models they are more difficult to detect than pressure waves [39], but they
dominate in brown dwarfs [96] and influence the shape of the dust clouds (coolest models in Fig. 15). The change in
the amount of photospheric overshoot and the optical depthat the top of the convection zone affect the appearance
of granules in Fig. 15. The scale of the granules seems related to the surface – or rather the sub-surface – pressure
scale height [216]. Both are indicated by the horizontal bars in Fig. 15, which have lengths of 10Hp, measured at two
different heights.

The first multi-D radiation-hydrodynamical model atmospheres forM-type starswere calculated by Ludwig and
collaborators [217, 218] using the simulation code of Nordlund and Stein [219]. An important issue, that needed
to be settled in the model construction, was the handling of molecular opacities in the opacity-binning scheme (see
Sect. 3.6.2). It turned out that no particular treatment is necessary, as long as the molecular opacities dominate the
atmospheric opacities. Subsequently, Wende et al. [157] used CO5BOLD with the previously developed opacity set-up
to calculate a sequence of models covering the main-sequence in the temperature range 2600 K≤ Teff ≤ 4000 K, and
probing surface gravities 3.0 ≤ log(g) ≤ 5.0 at fixed effective temperature of≈ 3300 K. Motivated by observational
demands, the authors investigated the impact of the velocity field and thermal structure on properties of FeH lines.

While the 2616 K model of an M-dwarf in Fig. 15 does not show visible amounts of dust, inbrown dwarfsat even
lower temperatures, dust clouds begin to form in the atmospheres [96], that show up as small dark patches (shaped
by gravity waves) above the low-contrast granules in the 2249 K model in Fig. 15. The coolest model in Fig. 15 has
completely opaque dust clouds, that hide the underlying gasconvection zone. A long-wavelength and high-amplitude
gravity wave creates the large-scale pattern in the plot, while convection within the dust clouds causes the thin bright
filaments. The numerical challenges in these simulations come from the – hardly known – non-equilibrium dust
chemistry, the long relaxation times of dust settling and mixing, and the need to account for the likely interaction of
small “cloud” scales, covered by the local models in Freytaget al. [96], and global “weather front” scales, far beyond
the size of the computational domain of the local models.

Cool hydrogen-richwhite dwarfsare old stars, that have used up their nuclear fuel and cool down slowly. The
large surface gravity causes high atmospheric pressures, small convective scales, and a settling of elements heavier
than hydrogen from the atmosphere into subsurface layers. Recently, first models for those objects were computed
with CO5BOLD [220]. The work follows up on earlier investigations by some of the authors (HGL, BF, MS) and
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Figure 15: Frequency-integrated-intensity snapshots of global models of a red supergiant and an AGB star with low surface gravity (top row) and
local models of stars near the main sequence with larger gravities. The title lines show the effective temperature,the decadiclogarithm of the
surface gravityin cm s2, andtherelative gray intensity contrast – averaged over a representative time span. The length of the upper bar in the top
right of each frame is 10 times the surface pressure scale height. The bar below is 10 times the pressure scale height but measured 3 pressure scale
heights below the other level.

collaborators [109, 221, 222] using a code which was a precursor of CO5BOLD. Similar to the case of M-type models,
the intention is to study the influence of multi-D effects on the formation of Balmer lines.

4.7. Global models of supergiants and AGB stars

Early explanations of the irregular light curves ofred supergiantsas due to giant convection cells by Stothers
and Leung [223] and Schwarzschild [224] got more recently support by interferometric detections of spatial inhomo-
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Figure 16: Convective fluxes (normalized bytheflux emitted atthetop of themodel) versus height for a temperature sequence of cepheid models
at logg=2. The curves are shifted inz, so that the entropy minimum at the top of the convection zonelies atz=0.

geneities on the surface of Betelgeuse (e.g., [225]). When convective scales are not very small compared to the stellar
diameter, global star-in-a-box simulations are possible (Sect. 3.2.2) making these stars the easiest targets for global
models, that include a major part of the convective envelopeas well as the near environment of the star. The top row
of Fig. 15 shows snapshots of the emergent intensity of such models: on the left from a red-supergiant [158] and on
the right from an AGB-star simulation [144]. The supergiantmodel confirms that convective scales are indeed huge,
with a few very large, deep, long-lived envelope cells and many small, short-lived surface cells. The surface contrast
is enormous (see Fig. 11), due to violent convective flows andin addition waves, that have already in the lower photo-
sphere a large amplitude, in contrast to the solar case. Large scales and contrast values render the features observable
with current interferometers: the models compare favorably with VLTI observations [159, 226, 160] indicating that
these global models start to become “realistic”, too.

RHD simulations of anAGB star(Fig. 15, top right [144]) demonstrate that convection can excite pressure waves
with amplitudes sufficient to turn them into shocks, which then push out dense material into layers cool enough
that dust can form (included in the 3D models, see Sect. 3.8.3). This allows radiation pressure on dust to accelerate
the material outward causing a stellar wind (not included yet in the 3D models of Freytag and Höfner [144] but in
the 1D simulations of Höfner et al. [106, 107]). Major challenges for the simulations are posed by the molecular
opacities varying strongly with frequency, that cause – together with large dust opacities – very small radiative time
steps during the time-explicit treatment of the radiative energy exchange. So far, only 1D RHD models (e.g., [107])
include important ingredients like scattering, radiationpressure, and a sufficiently large computational volume to
account for the extended wind acceleration region. While the properties of the simulated surface granulation seem
already quite realistic, there are discrepancies further out: The models have a too steep density drop and show no
“molsphere”, chromosphere, or wind. Future generations ofmodels will help to investigate the role of radiation
pressure on molecular lines and dust, magnetic fields, and rotation for these outer layers.

5. Conclusions

For stellarparameters close to the solar values, the transition from 1Dstatic stellar-atmosphere models to 3D dy-
namic local stellar-atmosphere simulations is in full swing. RHD simulations of surface convection of such stars are
routinely performed by codes like CO5BOLD, as presented in this paper. There is a good consistency between the re-
sults of similar codesand with solar observations. The simulationsprovide insight into processes related to stellar sur-
face convection, and deliver high-accuracy model atmospheres for spectrum-synthesis and abundance-determination
work for a variety of stellar parameters.

However, many physical effects are not properly incorporated by the current models: small-scale convective struc-
tures, covered by local-box simulations, interact with their environment via, for instance, large-scale convective flows,
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magnetic fields, waves, or global dust flows (the latter in cool substellar objects). The inclusion ofthechromosphere,
thecorona,thewind-formation zone, etc., requires to cover an even wider range of densities and temperatures than
the previous models. At lower densities, the detailed treatment of non-equilibrium processes (molecule formation,
radiation transport not in local thermal equilibrium) are amajor challenge, requiring algorithms with a complexity far
beyond the current treatment. The modeling of magnetic phenomena needs appropriate MHD or plasma-physics sim-
ulations. Objects significantly cooler than the Sun requirea detailed non-equilibrium treatment of dust and “weather
phenomena”. Varying efficiency ratios between radiation and convectionas a function ofstellar parameters have to
be considered: the extremely small radiative relaxation time scale in hotter stars causes small numerical time steps
and slows down simulations significantly. Cool objects on the other hand need extended simulation runs because of
their long thermal relaxation time scales. Low-gravity objects have extended atmospheres and can produce winds.
Magnetic-field phenomena exist on very large and very small scales and couple the stellar interiorto thephotosphere
andtheenvelope. In stars more active than the Sun, the fields are stronger and can form very different configurations.

In the future, we will see a refinement of local simulations and more and more extended model grids, providing
reliable stellar model atmospheres. However, the main challenges arise from the need to extend the simulations
in terms of stellar parameters (from A-type stars to planetary objects and from supergiants to white dwarfs),from
physical effects, andfrom the extension ofspatial and temporal scales towards 3D large-scale or even global dynamic
models. Thesemodelsshould not only include the photosphere but the stellar interior and the outer atmospheric layers
as well, covering short and long time scales (many rotation periods, dynamo cycles, stellar oscillation periods, climate
cycles).

Realistic global 3D MHD simulations for cool stars will remain a dreamfor the foreseeable future. Nevertheless,
numerical simulations will continue to beindispensable toolsfor theunderstandingof the various complex dynamical
processes in stars.
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Astrophysik 46 (1958) 108–143.
[3] D. Mihalas, Stellar atmospheres, W. H. Freeman and Co., San Francisco, 2nd edition, 1978.
[4] R. L. Kurucz, Atlas: a Computer Program for Calculating Model Stellar Atmospheres, SAO Special Report 309 (1970).
[5] R. L. Kurucz, ATLAS12, SYNTHE, ATLAS9, WIDTH9, et cetera, Mem. Soc. Astron. Italiana Suppl. 8 (2005) 14–24.
[6] B. Gustafsson, R. A. Bell, K. Eriksson, Å. Nordlund, A grid of model atmospheres for metal-deficient giant stars. I, A&A 42 (1975)

407–432.
[7] B. Gustafsson, B. Edvardsson, K. Eriksson, U. G. Jørgensen, Å. Nordlund, B. Plez, A grid of MARCS model atmospheres for late-type

stars. I. Methods and general properties, A&A 486 (2008) 951–970.
[8] F. Allard, P. H. Hauschildt, Model atmospheres for M (sub)dwarf stars. I. The base model grid, ApJ 445 (1995) 433–450.
[9] F. Allard, P. H. Hauschildt, D. R. Alexander, A. Tamanai,A. Schweitzer, The Limiting Effects of Dust in Brown Dwarf Model Atmospheres,

ApJ 556 (2001) 357–372.
[10] M. Steffen, S. Jordan, Numerical Simulation of Stellar Convection:Comparison with Mixing-length Theory, in: P. Murdin (Ed.),Encyclo-

pedia of Astronomy and Astrophysics, Taylor and Francis Group, 2000.
[11] K. Fuhrmann, M. Axer, T. Gehren, Balmer lines in cool dwarf stars. I. Basic influence of atmospheric models, A&A 271 (1993) 451–462.
[12] M. Steffen, H. Ludwig, Balmer Line Formation in Convective Stellar Atmospheres, in: A. Gimenez, E. F. Guinan, B. Montesinos (Eds.),

Stellar Structure: Theory and Test of Convective Energy Transport, volume 173 ofAstronomical Society of the Pacific Conference Series,
pp. 217–220.
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Veer, P. Molaro, B. Plez, T. Sivarani, M. Spite, F. Spite, T. C. Beers, N. Christlieb, P. François, V. Hill, The metal-poor end of the Spite
plateau. I. Stellar parameters, metallicities, and lithium abundances, A&A 522 (2010) A26.
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