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Abstract

The concern of the present work is the introduction of a very efficient Asymptotic Preserving
scheme for the resolution of highly anisotropic diffusion equations. The characteristic features of
this scheme are the uniform convergence with respect to the anisotropy parameter 0 < ε << 1,
the applicability (on cartesian grids) to cases of non-uniform and non-aligned anisotropy fields b
and the simple extension to the case of a non-constant anisotropy intensity 1/ε. The mathematical
approach and the numerical scheme are different from those presented in the previous work [Degond
et al. (2010), arXiv:1008.3405v1] and its considerable advantages are pointed out.

1 Introduction

The numerical resolution of highly anisotropic physical problems is a challenging task. In particular,
it is difficult to capture the behaviour of physical phenomena characterized by strong anisotropic
features since a straight-forward discretization leads typically to very ill-conditioned problems. In
the class of problems addressed in this paper the anisotropy is aligned with a vector field which
may be variable in space/time. Such problems are encountered in many physical applications, for
example flows in porous media [3, 10], semiconductor modeling [14], quasi-neutral plasma simu-
lations [7], the list of possible applications being not exhaustive. The motivation of this work is
closely related to the magnetized plasma simulations such as atmospheric plasmas [12, 13], internal
fusion plasmas [4, 9] or plasma thrusters [1]. In this case the anisotropy direction is defined by
a magnetic field confining the particles around the field lines, the anisotropy intensity 1/ε reach-
ing orders of magnitude as high as 1010. The difficulty with these anisotropic problems is that
they become singular in the limit ε → 0, where ε is a small parameter responsible for the strong
anisotropy of the problem. A straightforward discretization of such problems (using, for example,
finite difference methods) results in the inversion of a very badly conditioned linear system, which
becomes unfeasible for ε << 1. In this paper we present a new approach based on the so called
Asymptotic Preserving reformulation introduced initially in [11]. This work presents an important
improvement to the method presented in the previous paper [6] and is aimed to treat in a precise
manner a variety of strong anisotropies with low numerical costs.
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The model problem we are interested in, reads



















−∇ · A∇uε = f in Ω,

n · A∇uε = 0 on ΓN ,

uε = 0 on ΓD ,

(1)

where Ω ⊂ R2 or Ω ⊂ R3 is a bounded domain with boundary ∂Ω = ΓD ∪ΓN and outward normal
n. The direction of the anisotropy is given by a vector field B, where we suppose divB = 0 and
B 6= 0. The direction of B shall be denoted by the unit vector field b = B/|B|. The domain
boundary is decomposed into ΓD := {x ∈ ∂Ω | b(x) · n = 0} and ΓN := ∂Ω\ΓD. The anisotropic
diffusion matrix is then given by

A =
1

ε
A‖b⊗ b+ (Id− b⊗ b)A⊥(Id− b⊗ b) . (2)

The scalar field A‖ > 0 and the symmetric positive definite matrix field A⊥ are of order one while
the parameter 0 < ε < 1 can be very small, provoking thus the high anisotropy of the problem. The
system becomes ill posed if we consider the formal limit ε → 0. It is thus very ill conditioned for
ε << 1. The goal of the present paper is to circumvent this difficulty and to propose a numerical
scheme which is uniformly convergent with respect to the parameter ε.

This model problem has been studied before in the Asymptotic Preserving context, see for
example [8, 5, 6]. The key idea was to decompose the solution uε into two parts: pε, which is
constant along the anisotropy direction and qε, which contains the fluctuating part. The resulting
modified linear system is bigger than the original problem but has the important feature of reducing,
as ε → 0, to the so-called Limit model (L-model), which is a well-posed system satisfied by the
limit solution u0 = limε→0 u

ε. In other words, this AP-procedure transforms a singularly perturbed
problem in an equivalent regularly perturbed one.

In [8], a special case of an anisotropy aligned with the z-axis was studied. The Asymptotic
Preserving reformulation was obtained in the following way. Firstly, the original problem was
integrated along the anisotropy direction, resulting in an ε-independent elliptic equation for the
mean part pε. Then, the mean equation was subtracted from the original problem giving rise to
an elliptic equation for the fluctuating part qε. A generalization of this approach was proposed in
[5], in the framework of curvilinear anisotropy fields b. The introduction of an adapted curvilinear
coordinate system with one coordinate aligned with the anisotropy direction allowed to reduce the
problem to the one studied in [8] and hence to address more realistic problems, as for example the
ionospheric plasma simulations.

In [6], the original method of [8] is generalized for arbitrary fields b in a different manner. Instead
of performing a coordinate-system transformation and integrating along the anisotropy direction,
the new technique uses a Cartesian grid in combination with an adapted mathematical framework.
The mean part pε is forced to be in the space of functions constant along the b field by means of a
Lagrange multiplier technique. Similarly, the fluctuating part qε is forced to be in the orthogonal
space (with respect to the L2-norm). This approach requires the introduction of three Lagrange
multipliers and results in a system with five unknowns. The advantage of this method lies in its
generality. Since no change of the coordinate system is needed, no computation of the field lines,
no integration along them as well as no mesh adaptation is required, this numerical method is easy
to implement even for anisotropies varying in time. The method works well on Cartesian grids
even for strongly varying b fields. We will refer to the method of [6] as the Duality-Based (DB)
Asymptotic Preserving reformulation or simply as the DB-method, to emphasize the extensive use
of Lagrange multipliers in its derivation.
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In the present paper we introduce a novel approach. It is as general as the DB-method, i.e. no
change of coordinate system nor mesh adaptation is required. It is however much more efficient in
terms of computational cost. The new idea arises from the following questions: does pε need to be
the average of uε along the anisotropy direction? Does qε need to be orthogonal to pε, with respect
to the L2-norm? Is uε = pε + qε an optimal decomposition? In this paper we exploit a different
decomposition: uε = pε + εqε, with qε not being orthogonal to pε. Instead, qε belongs to the space
of functions vanishing on the “inflow” part of the boundary, i.e. where b · n < 0. This space is
easy to discretize without introducing any additional Lagrange multiplier. As a result, pε is no
longer an average of uε, however we still choose it to be constant along the anisotropy direction.
The AP reformulation of the original equation is then obtained in terms of uε and qε. We use first
the fact that the only component of uε that varies along the anisotropy direction is εqε, and thus
replace ∇||u

ε by ε∇||q
ε in the term of order 1/ε. We obtain thus an equation whose coefficients

are all of order one. We should add also a second equation assuring than pε = uε − εqε is indeed
constant along the field lines. The resulting system consists of only two equations compared to
the five equations of the DB-method. It should be noted that, while keeping the advantages of
the DB-method (no need of mesh- or coordinate-system-adaptation with respect to the anisotropy
direction, uniform convergence with respect to ε), the new method is far more efficient in terms
of memory requirements as well as computational time. The new method will be referred to as
the Micro-Macro (MM) Asymptotic Preserving reformulation or simply as the MM-method, to
emphasize the fact that the fluctuating part qε of the solution is now rescaled by ε. We will prove,
in particular, that qε does not explode as ε → 0, so that the ansatz uε = pε + εqε does indeed
introduce a proper rescaling for the “micro”-fluctuations over the “macro” part of the solution
contained in pε.

The paper is organized as follows. Section 2 introduces the Singularly Perturbed elliptic problem
(P-model) and the new Asymptotic Preserving reformulation (MM-method). We also perform a
mathematical study of this reformulation, in particular, of the convergence towards the Limit model,
as ε → 0. In Section 3 we present the discretization and the numerical results of various test cases
for constant and variable anisotropy fields b. We compare the efficiency of the new MM-method
with the previously proposed DB-method. Finally, in Section 4 we propose a generalization of the
MM-method to the case of a non-constant anisotropy parameter ε. The detailed numerical analysis
of the MM-method is postponed to a forthcoming work.

2 The mathematical problem

Let b be a smooth field in a domain Ω ⊂ Rd, with d = 2, 3, and let us decompose the boundary
Γ = ∂Ω into three components following the sign of the intersection with b:

ΓD := {x ∈ Γ / b(x)·n(x) = 0} , Γin := {x ∈ Γ / b(x)·n(x) < 0} , Γout := {x ∈ Γ / b(x)·n(x) > 0} .

The vector n is here the unit outward normal on Γ. We denote ΓN := Γin ∪ Γout. We also assume
b ∈ (C∞(Ω̄))d and |b(x)| = 1 for all x ∈ Ω̄.

Given this vector field b, one can decompose now vectors v ∈ Rd, gradients ∇φ, with φ(x) a
scalar function, and divergences ∇·v, with v(x) a vector field, into a part parallel to the anisotropy
direction and a part perpendicular to it. These parts are defined as follows:

v|| := (v · b)b , v⊥ := (Id− b⊗ b)v , such that v = v|| + v⊥ ,

∇||φ := (b · ∇φ)b , ∇⊥φ := (Id− b⊗ b)∇φ , such that ∇φ = ∇||φ+∇⊥φ ,

∇|| · v := ∇ · v|| , ∇⊥ · v := ∇ · v⊥ , such that ∇ · v = ∇|| · v +∇⊥ · v ,

(3)
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where we denoted by ⊗ the vector tensor product. With these notations we can now introduce the
mathematical problem, the so-called Singular Perturbation problem, whose numerical solution is
the main concern of this paper.

2.1 The Singular-Perturbation problem (P-model)

Our starting problem is the following Singular-Perturbation problem (P-problem)

(P )



















− 1
ε
∇‖ ·

(

A‖∇‖u
ε
)

−∇⊥ · (A⊥∇⊥u
ε) = f in Ω,

1
ε
n‖ ·

(

A‖∇‖u
ε
)

+ n⊥ · (A⊥∇⊥uε) = 0 on ΓN ,

uε = 0 on ΓD .

(4)

The diffusion coefficients and the source term satisfy

Hypothesis A Let f ∈ L2(Ω), 0 < ε < 1 be a fixed arbitrary parameter and
◦
ΓD 6= ∅. The diffusion

coefficients A|| ∈ L∞(Ω) and A⊥ ∈ Md×d(L
∞(Ω)) are supposed to satisfy

0 < A0 ≤ A||(x) ≤ A1 , f.a.a x ∈ Ω, (5)

A0||v||2 ≤ vtA⊥(x)v ≤ A1||v||2 , ∀v ∈ R
d with v · b(x) = 0 and f.a.a x ∈ Ω, (6)

with some constants 0 < A0 ≤ A1.
For the beginning we shall consider a constant anisotropy intensity ε (no space dependence) in order
to better understand and study the construction of the AP-reformulation. Later on, in section 4
we shall generalize the AP-reformulation to variable ε cases.

As we intend to use the finite element method for the numerical solution of the P-problem, let
us put (4) under variational form. For this, let us introduce the Hilbert-space

V = {v ∈ H1(Ω) , such that v|ΓD
= 0} , (u, v)V := (∇||u,∇||v) + (∇⊥u,∇⊥v) , (7)

and its subspace

G = {v ∈ V , such that ∇||v = 0} , (u, v)G := (∇⊥u,∇⊥v) , (8)

where (·, ·) shall stand in the following for the standard L2-scalar product.
We are seeking thus for uε ∈ V, solution of

(P ) a||(u
ε, v) + εa⊥(u

ε, v) = ε(f, v) , ∀v ∈ V , (9)

where the continuous bilinear forms a|| : V × V → R and a⊥ : V × V → R are given by

a||(u, v) :=

∫

Ω

A||∇||u · ∇||v dx , a⊥(u, v) :=

∫

Ω

(A⊥∇⊥u) · ∇⊥v dx . (10)

Thanks to Hypothesis A and to the Lax-Milgram theorem, problem (9) admits a unique solution
uε ∈ V for all fixed ε > 0. The parameter 0 < ε < 1 is responsible for the high anisotropy of the
problem, and its smallness induces severe numerical difficulties. Indeed, putting formally ε = 0
in (9), yields a||(u

0, v) = 0 for all v ∈ V, which has infinitely many solutions, constant along the
field lines. We see thus that the system (9) becomes degenerate in the limit ε → 0. It means that
solving (9) for 0 < ε << 1 with standard numerical schemes is very inadequate, since we have to
deal with very ill-conditioned linear systems.
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However, as detailed in [6], the solution uε ∈ V of (4) is shown to tend as ε → 0 towards a
function u0 ∈ G, constant along the field lines of b and solution of the Limit model

(L)

∫

Ω

(A⊥∇⊥u
0) · ∇⊥v dx =

∫

Ω

fv dx , ∀v ∈ G . (11)

Again, the Lax-Milgram theorem permits to show the existence and uniqueness of a solution u0 ∈ G
of this Limit problem (11).

The aim of the present work, is to introduce an AP-scheme (Asymptotic Preserving), which
shall permit to find numerically the solution of problem (4) (or (9) equivalently) in an accurate
manner, independently on ε and with only moderate requirements concerning computer resources.
This shall be based on the introduction of an equivalent reformulation of the P-model, which shall
permit to pass continuously from the reformulated P-model (9) to the L-model (11) as ε → 0. In
other words, this reformulation of the P-model will simply be a regular perturbation of the L-model,
avoiding thus the encountered problems of ill-posedness, when passing to the limit directly in the
singularly perturbed problem (9). This procedure leads to some considerable numerical advantages
for 0 < ε << 1.

2.2 An AP- reformulation of the problem (MM-problem)

To introduce a reformulation of the P-model, which shall be well-posed in the limit ε → 0, we need
the following Hilbert space

L = {q ∈ L2(Ω) / ∇||q ∈ L2(Ω) and q|Γin
= 0} , (q, w)L := (∇||q,∇||w) , ∀q, w ∈ L . (12)

Consider the following problem, called in the sequel Asymptotic-Preserving problem based on a
micro-macro decompostion (MM-problem): find (uε, qε) ∈ V × L, solution of

(MM)















∫

Ω

(A⊥∇⊥u
ε) · ∇⊥v dx+

∫

Ω

A||∇||q
ε · ∇||v dx =

∫

Ω

fv dx, ∀v ∈ V
∫

Ω

A||∇||u
ε · ∇||w dx− ε

∫

Ω

A||∇||q
ε · ∇||w dx = 0, ∀w ∈ L .

(13)

System (13) is an equivalent reformulation (for fixed ε > 0) of the original P-problem (9). Indeed,
if uε ∈ V solves (9), then we can construct qε ∈ L such that ∇||q

ε = (1/ε)∇||u
ε, cf. Lemma 4

below. Indeed, for this observe that

q ∈ L 7−→ ∇||q ∈ L2(Ω) ,

is a one to one mapping. This, in weak form, gives the second equation of (13). Replacing then
∇||u

ε by ε∇||q
ε inside (9), we see that (uε, qε) solves also the first equation in (13). Conversely,

if (13) has a solution (uε, qε) ∈ V × L then the second equation implies ε∇||q
ε = ∇||u

ε, which
inserted in the first one, leads to the weak formulation (9).

This proves that the MM-formulation (13) has a unique solution (uε, qε) ∈ V × L for all ε > 0
and f ∈ L2(Ω), where uε ∈ V is the unique solution of the P-problem (9). The advantage of (13)
over (9) consists in the fact that taking formally the limit ε → 0 in (13) leads to the correct limit
problem (11). Indeed, setting ε = 0 in the MM-formulation (13), we obtain the following problem
(referred hereafter as the L-model): Find (u0, q0) ∈ V × L such that

(L)















∫

Ω

(A⊥∇⊥u
0) · ∇⊥v dx+

∫

Ω

A||∇||q
0 · ∇||v dx =

∫

Ω

fv dx, ∀v ∈ V
∫

Ω

A||∇||u
0 · ∇||wdx = 0, ∀w ∈ L .

(14)
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Remark that (14) is formally an equivalent formulation of the Limit problem (11). In particular,
if (u0, q0) ∈ V × L is a solution of (14), then u0 ∈ G, where G is defined in (8) and u0 solves (11).
The additional unknown q0 serves here as the Lagrange multiplier responsible for the constraint
u0 ∈ G. The existence of this Lagrange multiplier q0 ∈ L is not completely straight-forward to
prove, since we do not have an inf-sup property for the bilinear form a|| on the pair of spaces V×L.
Fortunately, we can prove the existence assuming f ∈ L2(Ω), cf. Theorem 3, thus establishing
rigorously the equivalence between (11) and (14), at least for f ∈ L2(Ω). This shall be part of the
aim of the next subsection. The uniqueness is given by

Lemma 1 Suppose that Hypothesis A is satisfied, in particular that f ∈ L2(Ω). Then the solution
to (14), if it exists, is unique.

Proof. It is sufficient, due to linearity, to consider f = 0. Let thus (u0, q0) ∈ V × L be the
solution of (14) for f = 0. Taking then test functions v ∈ G, we get immediately u0 = 0, implying
a||(q

0, v) = 0 for all v ∈ V. By density arguments one gets then q0 = 0.

Remark 2 In the previous paper [6] we used the decomposition uε = pε + qε for the construction
of the duality-based AP-scheme, where p ∈ G and q ∈ A, with A the space of functions with
zero average along the field lines. In the present paper we have a slightly different decomposition
uε = pε + εqε hidden in (9). The space A was replaced by the space L of functions vanishing on the
inflow boundary. In the previous version, qε was useless in the limit ε → 0, now it is a meaningfull
Lagrange multiplier in this limit. Indeed, we prove in Theorem 3 below that qε → q0 as ε → 0.
This is the main reason why our new Micro-Macro AP-reformulation is more economical than the
old Duality-based AP-reformulation.

2.3 The behaviour of the MM-problem as ε → 0

The objective of this subsection is to study the behaviour of the MM-solution (uε, qε) ∈ V × L
of system (13) in the limit ε → 0, in particular to show that it tends (in some sense) towards
(u0, q0) ∈ V × L, solution of the Limit model (14). In order to prove rigorously these results,
we will suppose the following hypothesis on the domain that tells us essentially that Ω is a tube
composed of field lines of b.

Hypothesis B There exists a smooth coordinate system (ξ1, . . . , ξn) on Ω with (ξ1, . . . , ξn−1) ∈ D,
ξn ∈ (0, 1), D being a smooth domain in Rn−1, such that the field lines of b are given by the coordi-
nate lines (ξ1, . . . , ξn−1) = const. Moreover, Γin is represented by ξn = 0, (ξ1, . . . , ξn−1) ∈ D; Γout

is represented by ξn = 1, (ξ1, . . . , ξn−1) ∈ D and ΓD is represented by ξn ∈ (0, 1), (ξ1, . . . , ξn−1) ∈
∂D.

We proved in [6] that such a coordinate system exists provided the components of the boundaries
Γin and Γout admit smooth parametrizations and that b penetrates Γin and Γout at an angle that
stays away from 0.

In the following we suppose that Hypotheses A and B hold true. We are then able to prove the
following

Theorem 3 Let Hypothesis A and B be statisfied and moreover suppose that A⊥ ∈ Md×d(W
2,∞(Ω))

and A|| ∈ W 2,∞(Ω). Then the MM-problem (13) admits a unique solution (uε, qε) ∈ V × L for
any ε > 0, where uε is the unique solution of problem (9). There exists also a unique solution
(u0, q0) ∈ V × L of the L-problem (14), where u0 ∈ G solves problem (11). Moreover, we have the
following convergences as ε → 0

uε → u0 in V , qε ⇀ q0 in L ,

6



and the following bounds hold

||∇⊥uε −∇⊥u0||L2 ≤ C
√
ε||f ||L2 , ||∇||u

ε||L2 ≤ Cε ||f ||L2 and ||∇||q
ε||L2 ≤ C||f ||L2 .

with a constant C > 0 independent of ε and f .

The proof of this theorem will use several lemmas which we prove first.

Lemma 4 For any u ∈ H1(Ω) and ε > 0, there exists a unique q ∈ L satisfying ε∇||q = ∇||u a.e.
Moreover, if u ∈ H2(Ω) then q ∈ H1(Ω) and if u ∈ V ∩H2(Ω) then q ∈ V.

Proof. The idea of the proof is simply to say that q is constructed by subtracting from u its value
on the inflow Γin on each field line and dividing the result by ε. More formally speaking, let us
introduce the operator J that takes any function φ on Γin and returns the function p = Jφ, which
coincides with φ on Γin and is constant on the field lines. In the coordinate system introduced in
Hypothesis B, the definition of the operator J resumes to the following formula

(Jφ)(ξ1, . . . , ξn−1, ξn) = φ(ξ1, . . . , ξn−1).

This implies (going from the coordinates ξ to the original ones) that J maps L2(Γin) to L2(Ω),
H1(Γin) to H1(Ω) and H1

0 (Γin) to V. Let us now define, for given u, the function q = (u −
J(u|Γin

))/ε. Consequently, if u ∈ H1(Ω) then u|Γin
∈ L2(Γin) and q ∈ L2(Ω). If u ∈ H2(Ω) then

u|Γin
∈ H1(Γin) and q ∈ H1(Ω). If, moreover, u vanishes on ΓD then u|Γin

∈ H1
0 (Γin) and q ∈ V.

Lemma 5 Let Hypothesis A and B be statisfied and moreover suppose that A⊥ ∈ Md×d(W
2,∞(Ω))

and A|| ∈ W 2,∞(Ω). Then the solution u0 ∈ G of (11) belongs to H2(Ω) and satisfies the estimates

||u0||H2 ≤ C||f ||L2 , (15)

with a constant C independent of f .

Proof. Since u0 is constant along the field lines, it is represented by u0(ξ1, . . . , ξn−1) in the
notations of Hypothesis B. The same is true for the test functions v in (11). Rewriting (11) in the
ξ-coordinates gives

∑

1≤i,j≤n

∑

1≤k,l≤n−1

∫

D×(0,1)

A⊥,ij
∂ξk
∂xi

∂ξl
∂xj

∂u0

∂ξk

∂v

∂ξl

∣

∣

∣

∣

∂x

∂ξ

∣

∣

∣

∣

dξ =

∫

D×(0,1)

fv

∣

∣

∣

∣

∂x

∂ξ

∣

∣

∣

∣

dξ

Introducing the positive definite matrix Ckl =
∑

1≤i,j≤n
A⊥,ij

∂ξk
∂xi

∂ξl
∂xj

∣

∣

∣

∂x
∂ξ

∣

∣

∣ and integrating on ξn

over (0, 1) yields

∑

1≤k,l≤n−1

∫

D

Ckl
∂u0

∂ξk

∂v

∂ξl
dξ1 · · · dξn−1 =

∫

D×(0,1)

fv

∣

∣

∣

∣

∂x

∂ξ

∣

∣

∣

∣

dξ.

We see that it is the weak formulation of an elliptic equation for u0 on D with the boundary
conditions u0 = 0 on ∂D. By regularity results for elliptic equations, we see immediately that
u0 ∈ H2(D) if f ∈ L2(Ω) with continuous dependence of u0 on f . Reminding that u0 does not
depend on ξn and going back to the original coordinates yields (15).

Proof of Theorem 3. The existence and uniqueness of a solution of the MM-problem (13) was
shown in the previous section. Note that uε is in fact in H2(Ω) by the regularity results for elliptic
equations since uε solves (4). Moreover, qε ∈ V thanks to Lemma 4.
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Taking in the first equation of (13) test functions v ∈ G , we deduce

a⊥(u
ε, v) = (f, v) = a⊥(u

0, v), ∀v ∈ G .

Choose now v := uε − εqε − u0 where u0 ∈ G is the unique solution of (11). Thanks to the second
eqaution in (13), ∇||v = 0 a.e. in Ω so that v ∈ G. Substituting it in the equation above gives

a⊥(u
ε, uε − εqε − u0) = a⊥(u

0, uε − εqε − u0) ,

implying
a⊥(u

ε − u0, uε − u0)− εa⊥(u
ε, qε) = −εa⊥(u

0, qε). (16)

Take now v := εqε in the first equation of (13) and add it to (16). This yields

a⊥(u
ε − u0, uε − u0) + εa||(q

ε, qε) = ε(f, qε)− εa⊥(u
0, qε). (17)

Since u0 ∈ H2(Ω) by Lemma 5 we can integrate by parts in a⊥(u
0, qε):

−a⊥(u
0, qε) = −

∫

Ω

(

A⊥∇⊥u
0
)

· ∇⊥q
εdx = −

∫

Ω

[

(Id− b⊗ b)A⊥∇u0
]

· ∇qεdx

= −
∫

Γout

[

(Id− b⊗ b)A⊥∇u0] · nqεdσ +

∫

Ω

[

∇ · ((Id− b⊗ b)A⊥∇u0)
]

qεdx

≤ C||u0||H2(Ω)

(

||qε||L2(Γout) + ||qε||L2(Ω)

)

since ∇u0 has a trace on Γout and its norm in L2(Γout) is bounded by C||u0||H2(Ω). Thus, (17)
tells us

||∇||q
ε||2L2(Ω) ≤ Ca||(q

ε, qε) ≤ C||f ||L2 ||qε||L2(Ω) + C||u0||H2(Ω)

(

||qε||L2(ΓN ) + ||qε||L2(Ω)

)

.

By the Poincaré and trace inequalities (proved easily by passing to the ξ-coordinates of Hypothesis
B) and by Lemma 5, we have

||qε||L2(Ω) ≤ C||∇||q
ε||L2(Ω), ||qε||L2(Γout) ≤ C||∇||q

ε||L2(Ω), and ||u0||H2(Ω) ≤ C||f ||L2(Ω)

so that
||∇||q

ε||L2(Ω) ≤ C||f ||L2(Ω).

This gives immediately also the estimate ||∇||u
ε||L2 ≤ Cε||f ||L2 since ∇||u

ε = ε∇||q
ε. Returning

to (17), we observe that

||∇⊥uε −∇⊥u
0||2L2 ≤ ε(f, qε)− εa⊥(u

0, qε) ≤ Cε||f ||2L2(Ω) ,

so that all the estimates are proved. They imply immediately the strong convergence uε → u0 in
H1(Ω).

It remains to prove the weak convergence of qε and existence of q0 that solves (14). Since the
familly of functions qε is bounded in L, there is a subsequence qεn weakly converging to some
q0 ∈ L as εn → 0. Taking the limit εn → 0 in (13), we see that (u0, q0) solves (14). We know
already that the solution (u0, q0) is unique, cf. Lemma 1. It means that any converging sequence
qεn (with εn → 0) has q0 as its limit. Hence, qε ⇀ q0 as ε → 0. This finishes the proof.

The next theorem shows some nice H2-regularity results for the unique solution uε ∈ V of
the P-problem (9). This result is proven for the moment only for a simplified geometry: Ω :=
(0, Lx)× (0, Ly) and b = (0, 1) assumed constant and aligned in the y direction. Let us thus study
the system















− 1
ε
∂y(Ay∂yu

ε)− ∂x(Ax∂xu
ε) = f , in Ω

∂yu
ε = 0 , for y = 0, Ly

uε = 0 , for x = 0, Lx .

(18)

8



Theorem 6 Take Ω := (0, Lx) × (0, Ly), b = (0, 1), suppose that Hypothesis A is satisfied and
moreover that Ax = (A⊥)11 ∈ W 2,∞(Ω) and Ay = A|| ∈ W 2,∞(Ω). Then uε, the unique solution
of (18), belongs to H2(Ω) and we have the estimates

||∂xu
ε||2L2 +

1

ε2
||∂yu

ε||2L2 ≤ C||f ||2L2 , (19)

||∂xxu
ε||2L2 +

1

ε
||∂xyu

ε||2L2 +
1

ε2
||∂yyu

ε||2L2 ≤ C||f ||2L2 , (20)

with C > 0 a constant independent of ε and f .

Remark 7 The estimate (19) is already proven in Theorem 3 in a more general context. However,
we provide below an alternative proof for it, which consists in the interplay with the estimates for
the second derivatives and which does not require the Lemmas proven above. This alternative proof
is thus simpler than that of Theorem 3 presented above, but it is not straight forward to generalize
it to the case of an arbitrary geometry of Ω and an arbitrary field b.

Proof of Theorem 6. Standard elliptic results permit to show, under the additional hypothesis
of this theorem, that uε ∈ H2(Ω).

First remark that multiplying the equation by uε, integrating over Ω yields immediately by
integration by parts the H1-estimate

1

ε
||∇yu

ε||2L2 + ||∇xu
ε||2L2 ≤ C||f ||2L2 . (21)

Rewriting now the equation as

−1

ε
Ay∂yyu

ε − Ax∂xxu
ε = f +

1

ε
(∂yAy)∂yu

ε + (∂xAx)∂xu
ε ,

multiplying it by −∂yyu
ε − ∂xxu

ε and integrating over Ω yields (by integration by parts)

1
ε
||
√

Ay∂yyu
ε||2 + 1

ε
||
√

Ay∂xyu
ε||2 + ||

√
Ax∂xyu

ε||2 + ||
√
Ax∂xxu

ε||2

≤ C
[

||f || (||∂xxu
ε||+ ||∂yyu

ε||) + 1
ε
(||∂yu

ε|| ||∂xyu
ε||+ ||∂yu

ε|| ||∂yyu
ε||) + ||∂xu

ε|| (||∂xyu
ε||+ ||∂xxu

ε||)
]

Using now the H1-estimate (21), in particular that ||∂yu
ε|| ≤ C

√
ε||f || one gets

1
ε
||
√

Ay∂yyu
ε||2 + 1

ε
||
√

Ay∂xyu
ε||2 + ||

√
Ax∂xyu

ε||2 + ||
√
Ax∂xxu

ε||2

≤ C||f ||
(

||∂xxu
ε||+ ||∂yyu

ε||+ 1√
ε
||∂xyu

ε||+ 1√
ε
||∂yyu

ε||+ ||∂xyu
ε||

)

,

yielding immediately by Young inequality

1
ε
||∂yyu

ε||2 + 1
ε
||∂xyu

ε||2 + ||∂xxu
ε||2 ≤ C||f ||2 .

Coming now back to the equation

−1

ε
∂y(Ay∂yu

ε) = f + ∂x(Ax∂xu
ε) ,

one gets with the last estimates

1

ε
||∂y(Ay∂yu

ε)|| ≤ C||f || .

Poincaré’s inequality permits then to estimate

||Ay∂yu
ε|| ≤ C||∂y(Ay∂yu

ε)|| ≤ Cε||f || ,
yielding ||∂yu

ε|| ≤ Cε||f || and thus (19). Coming again back to the equation

−1

ε
Ay∂yyu

ε = f + ∂x(Ax∂xu
ε) +

1

ε
(∂yAy)∂yu

ε ,

permits to show (20) and to conclude the proof.
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3 Numerical results

This section is devoted to the numerical simulation of the anisotropic P-problem (4) via the here
introduced MM-scheme and to the numerical illustration of its advantages.

3.1 A finite element discretization

Let us introduce a discretization of the domain Ω of size h and a finite element space Vh of type Pk

or Qk on this mesh. We assume that the boundary conditions on ΓD are enforced in the definition
of Vh, i.e. Vh ⊂ V. Consider then the subspace Lh of Vh defined by Lh = Vh ∩ L

Lh = {qh ∈ Vh , such that qh|Γin
= 0}.

This choice is explained in more details in our previous paper [6]. The standard discretization of
(13) writes then: find (uε

h, q
ε
h) ∈ Vh × Lh such that

(MM)h







a⊥(u
ε
h, vh) + a||(q

ε
h, vh) =

∫

Ω
fvh dx, ∀vh ∈ Vh

a||(u
ε
h, wh)− εa||(q

ε
h, wh) = 0, ∀wh ∈ Lh .

(22)

This section concerns the detailed study of the obtained numerical results. In particular, we
compare the method presented herein with the duality-based AP-approach developed in our pre-
vious article [6] and present the convergence of the new scheme for an arbitrary anisotropy field b
and constant ε test case, the convergence being uniform in ε. The detailed numerical analysis shall
be presented in a forthcoming work.

3.2 Discretization

Let us present, for simplicity, the discretization in a 2D case, the 3D case being a simple extension.
The here considered computational domain Ω is a square Ω = [0, 1] × [0, 1]. All simulations are
performed on structured meshes. Let us introduce the Cartesian, homogeneous grid

xi = i/Nx , 0 ≤ i ≤ Nx , yj = j/Ny , 0 ≤ j ≤ Ny , (23)

where Nx and Ny are positive even constants, corresponding to the number of discretization inter-
vals in the x- resp. y-direction. The corresponding mesh-sizes are denoted by hx > 0 resp. hy > 0.
Choosing a Q2 finite element method (Q2-FEM), based on the following quadratic base functions

θxi
=











(x−xi−2)(x−xi−1)

2h2
x

x ∈ [xi−2, xi],
(xi+2−x)(xi+1−x)

2h2
x

x ∈ [xi, xi+2],

0 else

, θyj =















(y−yj−2)(y−yj−1)

2h2
y

y ∈ [yj−2, yj ],
(yj+2−y)(yj+1−y)

2h2
y

y ∈ [yj , yj+2],

0 else

(24)

for even i, j and

θxi
=

{

(xi+1−x)(x−xi−1)

h2
x

x ∈ [xi−1, xi+1],

0 else
, θyj =

{

(yj+1−y)(y−yj−1)

h2
y

y ∈ [yj−1, yj+1],

0 else

(25)

for odd i, j, we define

Wh := {vh =
∑

i,j

vij θxi
(x) θyj (y)} .
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The spaces Vh and Lh are then defined by

Vh = {uh ∈ Wh , such that uh|ΓD
= 0} , Lh = {qh ∈ Vh , such that qh|Γin

= 0}.

The matrix elements are computed using the 2D Gauss quadrature formula, with 3 points in the x
and y direction:

∫ 1

−1

∫ 1

−1

f(x, y) =
1

∑

i,j=−1

ωiωjf(xi, yj) , (26)

where x0 = y0 = 0, x±1 = y±1 = ±
√

3
5
, ω0 = 8/9 and ω±1 = 5/9, which is exact for polynomials

of degree 5.

3.3 Duality-Based (DB) asymptotic-preserving method

In order to compare the new, here introduced, MM-reformulation (13) with the previously consid-
ered [6] duality-based AP-scheme, let us briefly recall the former one. This alternative approach
is based on the following orthogonal decomposition of the solution of the original problem (4):
u = p+ q, where p ∈ G and q ∈ A. The vector space

G = {u ∈ V | ∇‖u = 0} , (27)

is the Hilbert space of functions, which are constant along the field lines of b and was introduced
in (8). The vector space A is the L2-orthogonal complement to G in V, defined by

A := {u ∈ V | (u, v) = 0 , ∀v ∈ G} , V = G ⊕⊥ A . (28)

Hence, the subspace A contains the functions that have zero average along the field lines b.
This decomposition leads to the system: find (pε, qε) ∈ G ×A such that:







a⊥(p
ε, η) + a⊥(q

ε, η) = (f, η) ∀η ∈ G

a||(q
ε, ξ) + εa⊥(q

ε, ξ) + εa⊥(p
ε, ξ) = ε(f, ξ) ∀ξ ∈ A

, (29)

which is asymptotic-preserving, well-posed and well-conditioned regardless of the value of ε. The
discretization of the vector spaces A and G is achieved by means of a Lagrange multiplier technique:
first we explore the orthogonality of A and G in order to avoid the direct discretization of the space
A. The thus obtained system reads: find (pε, qε, lε) ∈ G × V × G such that



















a⊥(p
ε, η) + a⊥(q

ε, η) = (f, η) ∀η ∈ G,

a||(q
ε, ξ) + εa⊥(q

ε, ξ) + εa⊥(p
ε, ξ) + (lε, ξ) = ε(f, ξ) ∀ξ ∈ V,

(qε, χ) = 0 ∀χ ∈ G,

(30)

where lε is a Lagrange multiplier. The additional term (lε, ξ) in the second equations allows us to
replace the vector space A by V. The third equation forces qε to belong to A.

Afterwards, the definition of the space G is used to obtain a system which does not require the
direct discretization of G. The resulting system reads now: find (pε, λε, qε, lε, µε) ∈ V ×L×V ×

11



V × L such that

(DB)















































a⊥(p
ε, η) + a⊥(q

ε, η) + a||(η, λ
ε) = (f, η) , ∀η ∈ V ,

a||(p
ε, κ) = 0 , ∀κ ∈ L ,

a||(q
ε, ξ) + εa⊥(q

ε, ξ) + εa⊥(p
ε, ξ) + (lε, ξ) = ε (f, ξ) , ∀ξ ∈ V ,

(qε, χ) + a||(χ, µ
ε) = 0 , ∀χ ∈ V ,

a||(l
ε, τ ) = 0 , ∀τ ∈ L ,

(31)

with L being a Lagrange multiplier space defined by (12). Two additional Lagrange multipliers λε

and µε are introduced in order to replace G by the bigger and easier to implement vector-space
V. For a more detailed presentation of the duality-based asymptotic preserving reformulation, we
refer to [6].

This decomposition of the solution u ∈ V into two parts: a mean part p ∈ G and the fluctu-
ating part q ∈ A with zero average along the field lines, may seem more intuitive than the new
decomposition presented in this paper. This feature however has its drawbacks. The fact that we
had to introduce three additional unknowns increases significantly the computational complexity
of the problem. In the following, we compare the DB Asymptotic-Preserving approach (31) with
the new MM Asymptotic-Preserving approach (13) and show that the new method is superior in
terms of memory requirements and computational time, while the accuracy remains the same. In
particular, we demonstrate that convergence is uniform in ε.

3.4 Numerical tests

3.4.1 2D test case, constant ε, uniform and aligned b-field

In this section we compare the numerical results obtained via the Q2-FEM described in Section
3.2, and applied to the Singular Perturbation model (4), the Duality-Based model (31) and the
Micro-Macro reformulation (13). In all numerical tests we set A⊥ = Id and A‖ = 1. We start with
a simple test case, where the analytical solution is known. Let the source term f be given by

f = (4 + ε)π2 cos (2πx) sin (πy) + π2 sin (πy) (32)

and let the b field be aligned with the x-axis. Hence, the solution uε of (4) is given by

uε = sin (πy) + ε cos (2πx) sin (πy)

We denote by uP , uD resp. uA the numerical solutions of the Singular Perturbation model (4),
the Duality-Based Asymptotic Preserving model (31) resp. the Micro-Macro Asymptotic Preserving
reformulation (13). The comparison will be done in the L2-norm as well as the H1-norm. The linear
systems obtained after discretization of the three methods are solved using the same numerical
algorithm — LU decomposition implemented in a solver MUMPS[2].

In Figure 1 we plotted the absolute errors (in the L2 resp. H1-norms) between the numerical
solutions obtained with one of the three methods and the exact solution, and this, as a function of
the parameter ε and for several mesh-sizes. In Table 1, we specified the error values for one fixed
grid and several ε-values. One observes that the Singular Perturbation finite element approximation
is accurate only for ε bigger than some critical value εP while the MM-scheme and the DB-scheme
are both accurate independently on ε and give similar results.
The order of convergence for all three methods is three in the L2-norm and two in the H1-norm,
which is an optimal result for Q2 finite elements. The convergence of the MM-scheme is presented
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(a) L2 error for a grid with 50× 50 points.
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(b) H1 error for a grid with 50× 50 points.
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(c) L2 error for a grid with 100× 100 points.
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(d) H1 error for a grid with 100× 100 points.
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(e) L
2 error for a grid with 200× 200 points.
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(f) H
1 error for a grid with 200 × 200 points.

Figure 1: Relative L2 (left column) and H1 (right column) errors between the exact solution uε and
the computed numerical solutions uM (MM), uD (DB), uP (P) for the test case with constant b. The
error is plotted as a function of the parameter ε and for three different mesh-sizes.
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ε
MM scheme DB scheme Singular Perturbation scheme

L2 error H1 error L2 error H1 error L2 error H1 error

10 7.2× 10−6 4.7× 10−3 7.2× 10−6 4.7× 10−3 7.2× 10−6 4.7× 10−3

1 7.3× 10−7 4.7× 10−4 7.3× 10−7 4.7× 10−4 7.3× 10−7 4.7× 10−4

10−1 1.47× 10−7 9.6× 10−5 1.47× 10−7 9.6× 10−5 1.45× 10−7 9.4× 10−5

10−4 1.28× 10−7 8.3× 10−5 1.28× 10−7 8.3× 10−5 1.26× 10−7 8.2× 10−5

10−6 1.28× 10−7 8.3× 10−5 1.28× 10−7 8.3× 10−5 5.9× 10−7 8.2× 10−5

10−10 1.28× 10−7 8.3× 10−5 1.28× 10−7 8.3× 10−5 9.9× 10−3 3.12× 10−2

10−15 1.28× 10−7 8.3× 10−5 1.28× 10−7 8.3× 10−5 7.1× 10−1 2.23× 100

Table 1: Comparison between the Micro-Macro scheme, the Duality-Based reformulation and the Sin-
gular Perturbation model for h = 0.005 (200 mesh points in each direction) and constant b: absolute
L2-errors and H1-errors, for different ε-values.

method # rows # non zero time L2-error H1-error

MM 20× 103 623× 103 1.156 s 1.19× 10−6 1.47× 10−4

DB 50× 103 1563× 103 7.405 s 1.19× 10−6 1.47× 10−4

P 10× 103 255× 103 0.501 s 1.19× 10−6 1.47× 10−4

Table 2: Comparison between the Micro-Macro AP-scheme (MM), the Duality-Based AP-scheme (DB)
and the Singular Perturbation model (P) for h = 0.01 (100 mesh points in each direction) and fixed
ε = 10−6: matrix size, number of nonzero elements, average computational time and relative error in
L2 and H1 norms.

on Tables 3 and 4.
Furthermore the condition number of the MM-scheme is bounded by an ε independent constant
and coincides with the condition number of DB-scheme for ε < 0.1. See Figure 2 for the plots.

Since both Asymptotic Preserving models (DB/MM) give the same accuracy in this test case,
it is worthwhile to compare the computational resources required to obtain this same results. The
computational time and the matrix sizes required to solve the problem for fixed ε and h are given
in the Table 2. As expected, the MM-scheme is more efficient than the DB-approach. The average
computational time of the MM-scheme is approximately 6.4 times smaller as compared to the DB-
simulation time. It should be noted that the Singular Perturbation model is approximately 2.3
faster than the new MM-method. However, the applicability of the Singular Perturbation scheme
is limited to sufficiently large values of ε.

3.4.2 2D test case, constant ε, non-uniform and non-aligned b-field

We now focus our attention on the original feature of the here introduced numerical method, namely
its ability to treat nonuniform b fields. In this section we present numerical simulations performed
for a variable field b.

First, let us construct a numerical test case. Finding an analytical solution for an arbitrary
b-field presents a considerable difficulty. In the previous paper [6], we presented a way to find such
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h L2-error in u H1-error in u L2-error in q H1-error in q

0.1 5.7× 10−3 1.86× 10−1 5.7× 10−3 1.86× 10−1

0.05 7.3× 10−4 4.7× 10−2 7.3× 10−4 4.7× 10−2

0.025 9.1× 10−5 1.18× 10−2 9.1× 10−5 1.18× 10−2

0.0125 1.14× 10−5 2.96× 10−3 1.14× 10−5 2.96× 10−3

0.00625 1.43× 10−6 7.4× 10−4 1.43× 10−6 7.4× 10−4

0.003125 1.78× 10−7 1.85× 10−4 1.78× 10−7 1.85× 10−4

0.0015625 2.23× 10−8 4.6× 10−5 2.23× 10−8 4.6× 10−5

Table 3: The absolute error of u and q in L2 and H1-norms for different mesh sizes and ε = 1. Used
discretization method: Micro-Macro scheme (MM).

h L2-error in u H1-error in u L2-error in q H1-error in q

0.1 1.00× 10−3 3.25× 10−2 5.7× 10−3 1.86× 10−1

0.05 1.26× 10−4 8.2× 10−3 7.3× 10−4 4.7× 10−2

0.025 1.58× 10−5 2.04× 10−3 9.1× 10−5 1.18× 10−2

0.0125 1.97× 10−6 5.1× 10−4 1.14× 10−5 2.96× 10−3

0.00625 2.46× 10−7 1.28× 10−4 1.43× 10−6 7.4× 10−4

0.003125 3.1× 10−8 3.2× 10−5 2.59× 10−5 2.96× 10−2

0.0015625 4.1× 10−9 8.0× 10−6 4.0× 10−4 9.1× 10−1

Table 4: The absolute error of u and q in L2 and H1-norms for different mesh sizes and ε = 10−100.
Used discretization method: Micro-Macro scheme (MM).
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(a) mesh size: 100× 100 points
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(b) mesh size: 400 × 400 points

Figure 2: Condition number estimate provided by the MUMPS solver for the (MM), (DB) and (P)
schemes.

a solution. Let us recall briefly how to do. First, we choose a limit solution

u0 = sin
(

πy + α(y2 − y) cos(πx)
)

, (33)

where α is a numerical constant aimed to control the variations of b. For α = 0, the limit solution
of the previous section is obtained. The limit solution for α = 2 is shown in Figure 4. Since u0 is
a limit solution, it is constant along the b field lines. Therefore we can determine the b field using
the following implication

∇‖u
0 = 0 ⇒ bx

∂u0

∂x
+ by

∂u0

∂y
= 0 , (34)

which yields for example

b =
B

|B| , B =

(

α(2y − 1) cos(πx) + π
πα(y2 − y) sin(πx)

)

. (35)

Note that the field B, constructed in this way, satisfies divB = 0, which is an important property in
the framework of plasma simulations. Furthermore, we have B 6= 0 in the computational domain.
Now, we choose uε to be a function that converges, as ε → 0, to the limit solution u0, for example

uε = sin
(

πy + α(y2 − y) cos(πx)
)

+ ε cos (2πx) sin (πy)

Finally, the force term is calculated, using the equation, i.e.

f = −∇⊥ · (A⊥∇⊥u
ε)− 1

ε
∇‖ · (A‖∇‖u

ε).

The simulation results are presented on Figure 3. Similarly to the previous test case, both,
the Micro-Macro Asymptotic Preserving approach and the Duality-Based Asymptotic Preserving
reformulation, give the same accuracy. Both methods converge with the optimal rate in both L2

and H1 norms, independently of ε. The discretization of the Singular-Perturbation model is again
limited. The critical value εP is now of the order of 10−2 and seems mesh independent while in the
uniform b case this value ranged from 10−9 to 10−5 depending on the mesh size.
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(a) L2 error for a grid with 50× 50 points.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1e-15  1e-10  1e-05  1

(P)
(DB)
(MM)

(b) H1 error for a grid with 50× 50 points.
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(c) L2 error for a grid with 100× 100 points.
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(d) H1 error for a grid with 100× 100 points.
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(e) L
2 error for a grid with 200× 200 points.
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1 error for a grid with 200 × 200 points.

Figure 3: Relative L2 (left column) and H1 (right column) errors between the exact solution uε and
the computed solution uM (MM), uD (DB), uP (P) for the test case with variable b. Plotted are the
errors as a function of the small parameter ε, for three different meshes.
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Figure 4: The limit solution for the test case with variable b.

It is worthwile to investigate the influence of the variations of the b-field on the accuracy of
the solution. It is particularly interesting to find out the minimal number of mesh nodes per
characteristic length of b-variations required to obtain an acceptable solution. For this, let us
proceed as in the previous paper [6] and define a variant of the test case presented above.

Let b = B/|B|, with

B =

(

α(2y − 1) cos(mπx) + π
mπα(y2 − y) sin(mπx)

)

, (36)

m being an integer. The limit solution φ0 and φε are chosen to be

φ0 = sin
(

πy + α(y2 − y) cos(mπx)
)

, (37)

φε = sin
(

πy + α(y2 − y) cos(mπx)
)

+ ε cos (2πx) sin (πy) . (38)

As in [6], we perform numerical simulations on a fixed 400×400 grid (h = 0.0025) and vary m. We

obtain the same results: the relative error in the L2-norm, defined as
||uε−uM ||

L2(Ω)

||uM ||
L2(Ω)

, is below 0.01

for all tested values of 1 ≤ m ≤ 50. The relative H1-error
||uε−uM ||

H1(Ω)

||uM ||
H1(Ω)

exceeds the critical value

for m > 25. For ε = 10−20 the maximal m for which the error is acceptable in both norms is 20.
The minimal number of mesh points per period of b variations is 40 in the worst case, in order to
obtain an 1% relative error. The results are summarized on Figures 5. The results prove that the
MM-scheme is precise even for strongly oscillating fields for relatively small mesh sizes.

4 Generalization to the variable ε case

In this section we introduce a generalization of the Micro-Macro scheme to the case of an anisotropy
intensity ε variable in space. The anisotropy parameter ε is now a function of space coordinates
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(b) ε = 10−20

Figure 5: Relative L2 and H1 errors between the exact solution φε and the computed solution φM

(MM) for h = 0.0025 (400 points in each direction) as a function of m and for ε = 1 respectively 10−20.

and takes values (within the computational domain) in the interval [εmin, 1]. This setting requires
a novel approach to the problem since the original decomposition presented in 2.2 would yield a
function q that could take values of O(1) in the subdomain where ε is big and of O(1/εmin) in the
subdomain where ε is close to εmin. To understand this, let us consider the simple test of Section
3.4.1, i.e. uε = sin (πy) + ε cos (2πx) sin (πy) with b constant and aligned with the x-axis. Let
ε = 1 for x < 0.5 and ε = εmin for x > 0.5. In the decomposition u = p + εq the function p is
constant in the direction of the anisotropy field b and p|Γin

= φ|Γin
. In the mentioned test case

p = 2 sin (πy). For x < 0.5 we obtain q = cos (2πx) sin (πy)− sin (πy) = O(1). However, for x > 0.5
we get q = cos (2πx) sin (πy)− 1

εmin
sin (πy) = O(1/εmin). Therefore the decomposition u = p+ εq

is not suitable in the case of variable ε, the function q being no more bounded.
The remedy to this deficiency is surprisingly simple. Instead of introducing the decomposition

u = p+ εq it suffices to define q via the following relation

∇‖q =
1

ε
∇‖u (39)

with again q = 0 on Γin. This leads to almost the same system as introduced in 2.2. The only
change is that the variable ε(x) should be now inside the integral:















∫

Ω

(A⊥∇⊥u
ε) · ∇⊥v dx+

∫

Ω

A||∇||q
ε · ∇||v dx =

∫

Ω

fv dx, ∀v ∈ V
∫

Ω

A||∇||u
ε · ∇||w dx−

∫

Ω

εA||∇||q
ε · ∇||w dx = 0, ∀w ∈ L .

(40)

4.1 2D test case, variable ε, uniform and aligned b-field

Let us consider a test case, where ε is close to 1 in one part of the computational domain and close
to some fixed parameter εmin in the remaining part. The anisotropy varies smoothly and changes
its value in a relatively narrow transition region. We set

ε(x, y) =
1

2
[1 + tanh (a(x0 − x)) + εmin (1− tanh (a(x0 − x)))] , (41)
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(a) L2 error for a grid with 50× 50 points.
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(b) H1 error for a grid with 50× 50 points.
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(c) L2 error for a grid with 100× 100 points.
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(d) H1 error for a grid with 100× 100 points.
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(e) L
2 error for a grid with 200× 200 points.
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(f) H
1 error for a grid with 200 × 200 points.

Figure 6: Relative L2 (left column) and H1 (right column) errors between the exact solution uε and
the computed numerical solution uM (MM), uP (P) for the test case with constant b and variable ε.
The error is plotted as a function of the parameter εmin and for three different mesh-sizes.
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h
εmin = 1 εmin = 10−20

L2-error H1-error L2-error H1-error

0.1 5.7× 10−3 1.86× 10−1 2.94 9.3× 10−1

0.05 7.3× 10−4 4.7× 10−2 2.12× 10−1 7.5× 10−1

0.025 9.1× 10−5 1.18× 10−2 1.74× 10−2 1.51× 10−1

0.0125 1.14× 10−5 2.96× 10−3 3.14× 10−4 6.3× 10−2

0.00625 1.43× 10−6 7.4× 10−4 2.09× 10−5 1.29× 10−2

0.003125 1.78× 10−7 1.85× 10−4 2.60× 10−6 3.2× 10−3

0.0015625 2.23× 10−8 4.6× 10−5 3.3× 10−7 8.1× 10−4

Table 5: The absolute error of u in L2 and H1-norms for different mesh sizes and εmin = 1 resp.
εmin = 10−20 using the Micro-Macro scheme (MM) for the variable ε and constant b test case.

with a being a parameter which controls the width of the transition region and x0 the position of
the interface. In our simulations we set x0 = 0.25 and a = 50.

Remark 8 One should put extreme attention in coding the ε(x, y) function. If εmin is smaller than
the numerical precision, the term 1 + tanh (a(x0 − x)) dominates and hence the value of εmin is

never reached. Instead one should replace 1 + tanh (a(x0 − x)) by the equivalent term 2e2a(x0−x)

e2a(x0−x)+1
,

which is not limited by a computer precision.

The solution uε of (4) is now given by

uε = sin (πy) + ε cos (2πx) sin (πy)

and let the force term f be calculated accordingly.
As in the previous examples we solve the problem using Q2-FEM. We compare the results of

the Micro-Macro reformulation with the Singular Perturbation model. The simulation results are
presented on Figure 6. The convergence of the MM-scheme is given in the Table 5. Note that for
small mesh sizes and small values of εmin superconvergence occurs. This is caused by the small
size of the transition region between two ε regimes. For sufficiently small meshes the convergence
attains the optimal rate. Similarly as in the constant ε test cases, the Micro-Macro scheme is
capable to produce the accurate results regardless of the anisotropy strength.

4.2 2D test case, variable ε, non-uniform and non-aligned b-field

In this section we choose the same test case as in Section 3.4.2 but again the epsilon varies in the
computational domain and is defined by (41). The analytical solution to the problem is

uε = sin
(

πy + α(y2 − y) cos(πx)
)

+ ε cos (2πx) sin (πy)

where α = 2 and the force term f is calculated accordingly.
The results are shown on Figure 7. Again, contrary to the Singular Perturbation formulation, the

Micro-Macro Asymptotic-Preserving formulation is capable to produce reliable numerical results
regardless of the anisotropy strength. Similarly, the optimal convergence rate is attained when the
mesh size is small enough to capture the ε transition.
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(a) L2 error for a grid with 50× 50 points.
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(b) H1 error for a grid with 50× 50 points.
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(c) L2 error for a grid with 100× 100 points.
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(d) H1 error for a grid with 100× 100 points.
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(e) L
2 error for a grid with 200× 200 points.
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Figure 7: Relative L2 (left column) and H1 (right column) errors between the exact solution uε and
the computed numerical solution uM (MM) resp. uP (P) for the test case with variable b and ε. The
error is plotted as a function of the parameter εmin and for three different mesh-sizes.
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5 Conclusion

The construction of the here introduced Micro-Macro based Asymptotic-Preserving scheme for the
resolution of an anisotropic diffusion equation was based on a different reformulation of the initial
Singular Perturbation problem as compared to the earlier work [6]. The advantages of the new
MM-verison were shown numerically, in particular the considerable gain in simulation time and
the simplicity to treat variable ε-intensities within the domain. The rigorous numerical analysis
of both AP-reformulations will be the aim of a futur work, in particular the AP-property shall be
shown, i.e. the uniform convergence of the scheme with respect to ε.
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ondary EŨB instabilities. Journal of Atmospheric and Solar-Terrestrial Physics, 66(17):1559–
1565, 2004.

[13] M. Keskinen, S. Ossakow, and B. Fejer. Three-dimensional nonlinear evolution of equatorial
ionospheric spread-F bubbles. Geophys. Res. Lett, 30(16):4–1–4–4, 2003.

[14] T. Manku and A. Nathan. Electrical properties of silicon under nonuniform stress. Journal of
Applied Physics, 74(3):1832–1837, 1993.

24


	1 Introduction
	2 The mathematical problem
	2.1 The Singular-Perturbation problem (P-model)
	2.2 An AP- reformulation of the problem (MM-problem)
	2.3 The behaviour of the MM-problem as 0

	3 Numerical results
	3.1 A finite element discretization
	3.2 Discretization
	3.3 Duality-Based (DB) asymptotic-preserving method
	3.4 Numerical tests
	3.4.1 2D test case, constant , uniform and aligned b-field
	3.4.2 2D test case, constant , non-uniform and non-aligned b-field


	4 Generalization to the variable  case
	4.1 2D test case, variable , uniform and aligned b-field
	4.2 2D test case, variable , non-uniform and non-aligned b-field

	5 Conclusion

