
A sparse octree gravitational N-body code that runs

entirely on the GPU processor

Jeroen Bédorfa,∗, Evghenii Gaburovb,a, Simon Portegies Zwarta

aLeiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, The
Netherlands

bNorthwestern University, 2131 Tech Drive, Evanston 60208, IL, USA

Abstract

We present the implementation and performance of a new gravitational N -
body tree-code that is specifically designed for the graphics processing unit
(GPU)1 . All parts of the tree-code algorithm are executed on the GPU.
We present algorithms for parallel construction and traversing of sparse oc-
trees. These algorithms are implemented in CUDA and tested on NVIDIA
GPUs, but they are portable to OpenCL and can easily be used on many-
core devices from other manufacturers. This portability is achieved by using
general parallel-scan and sort methods. The gravitational tree-code outper-
forms tuned CPU code during the tree-construction and shows a performance
improvement of more than a factor 20 overall, resulting in a processing rate
of more than 2.8 million particles per second.

Keywords:
GPU, Parallel, Tree-code, N-body, Gravity, Hierarchical

1. Introduction

A common way to partition a three-dimensional domain is the use of
octrees, which recursively subdivide space into eight octants. This structure
is the three-dimensional extension of a binary tree, which recursively divides
the one dimensional domain in halves. One can distinguish two types of

∗Corresponding author
Email address: bedorf@strw.leidenuniv.nl (Jeroen Bédorf)

1The code is publicly available at:
http://castle.strw.leidenuniv.nl/software.html

Preprint submitted to Journal of Computational Physics April 11, 2012

ar
X

iv
:1

10
6.

19
00

v2
 [

as
tr

o-
ph

.I
M

]
 1

0
A

pr
 2

01
2

octrees, namely dense and sparse. In the former, all branches contain an
equal number of children and the structure contains no empty branches. A
sparse octree is an octree of which most of the nodes are empty (like a sparse
matrix), and the structure is based on the underlying particle distribution.
In this paper we will only focus on sparse octrees which are quite typical for
non-homogenous particle distributions.

Octrees are commonly used in applications that require distance or inter-
section based criteria. For example, the octree data-structure can be used
for the range search method [1]. On a set of N particles a range search using
an octree reduces the complexity of the search from O(N) to O(logN) per
particle. The former, though computationally expensive, can easily be imple-
mented in parallel for many particles. The later requires more communication
and book keeping when developing a parallel method. Still for large number
of particles (∼ N ≥ 105) hierarchical2 methods are more efficient than brute
force methods. Currently parallel octree implementations are found in a wide
range of problems, among which self gravity simulations, smoothed particle
hydrodynamics, molecular dynamics, clump finding, ray tracing and voxel
rendering; in addition to the octree data-structure these problems often re-
quire long computation times. For high resolution simulations (∼ N ≥ 105)
1 (Central Processing Unit) CPU is not sufficient. Therefore one has to use
computer clusters or even supercomputers, both of which are expensive and
scarce. An attractive alternative is a Graphics Processing Unit (GPU).

Over the years GPUs have grown from game devices into more general
purpose compute hardware. With the GPUs becoming less specialised, new
programming languages like Brook [2], CUDA [3] and OpenCL [4] were in-
troduced and allow the GPU to be used efficiently for non-graphics related
problems. One has to use these special programming languages in order to
be able to get the most performance out of a GPU. This can be realized
by considering the enormous difference between todays CPU and GPU. The
former has up to 8 cores which can execute two threads each, whereas a mod-
ern GPU exhibits hundreds of cores and can execute thousands of threads in
parallel. The GPU can contain a large number of cores, because it has fewer
resources allocated to control logic compared to a general purpose CPU.
This limited control logic renders the GPU unsuitable for non-parallel prob-
lems, but makes it more than an order of magnitude faster than the CPU on

2Tree data-structures are commonly referred to as hierarchical data-structures

2

massively parallel problems [3]. With the recent introduction of fast double
precision floating point operations, L1 and L2 caches and ECC memory the
GPU has become a major component in the High Performance Computing
market. The number of dedicated GPU clusters is steadily increasing and
the latest generation of supercomputers have nodes equipped with GPUs,
and have established themselves in the upper regions of the top5003.

This wide spread of GPUs can also be seen in the acceptance of GPUs in
computational astrophysics research. For algorithms with few data depen-
dencies, such as direct N -body simulations, programming the GPU is rela-
tively straightforward. Here various implementations are able to reach almost
peak-performance [5, 6, 7] and with the introduction of N -body libraries the
GPU has taken over the GRAPE (GRAvity PipE [8]) 4 as preferred com-
putation device for stellar dynamics [9]. Although it is not a trivial task to
efficiently utilise the computational power of GPUs, the success with direct
N -body methods shows the potential of the GPU in practice. For algorithms
with many data dependencies or limited parallelism it is much harder to make
efficient use of parallel architectures. A good example of this are the gravita-
tional tree-code algorithms which were introduced in 1986 [10] as a sequential
algorithm and later extended to make efficient use of vector machines [11].
Around this time the GRAPE hardware was introduced which made is pos-
sible to execute direct N -body simulations at the same speed as a simulation
with a tree-code implementation, while the former scales as O(N2) and the
latter as O(N logN). The hierarchical nature of the tree-code method makes
it difficult to parallelise the algorithms, but it is possible to speed-up the com-
putational most intensive part, namely the computation of gravitational in-
teractions. The GRAPE hardware, although unsuitable for constructing and
traversing the tree-structure, is able to efficiently compute the gravitational
interactions. Therefore a method was developed to create lists of interact-
ing particles on the host and then let the GRAPE solve the gravitational
interactions [12, 13]. Recently this method has successfully been applied to
GPUs [14, 15, 16]. With the GPU being able to efficiently calculate the force
interactions, other parts like the tree-construction and tree-traverse become
the bottleneck of the application. Moving the data intensive tree-traverse to

3Top500 Supercomputing November 2010 list, http://www.top500.org
4The GRAPE is a plug-in board equipped with a processor that has the gravitational

equations programmed in hardware.

3

the GPU partially lifts this bottleneck [17, 18]. This method turns out to be
effective for shared time-step integration algorithms, but is less effective for
block time-step implementations. In a block time-step algorithm not all par-
ticles are updated at the same simulation time-step, but only when required.
This results in a more accurate (less round-off errors, because the reduced
number of interactions) and more efficient (less unnecessary time-steps) sim-
ulation. The number of particles being integrated per step can be a fraction
of the total number of particles which significantly reduces the amount of
parallelism. Also the percentage of time spent on solving gravitational in-
teractions goes down and other parts of the algorithm (e.g. construction,
traversal and time integration) become more important. This makes the hi-
erarchical tree N -body codes less attractive, since CPU-GPU communication
and tree-construction will become the major bottlenecks [7, 17]. One solu-
tion is to implement the tree-construction on the GPU as has been done for
surface reconstruction [19] and the creation of bounding volume hierarchies
[20, 21]. An other possibility is is to implement all parts of the algorithm
on the GPU using atomic operations and particle insertions [22] here the
authors, like us, execute all parts of the algorithm on the GPU. When we
were in the final stages of finishing the paper we were able to test the imple-
mentation by Burtscher et al. [22]. It is difficult to compare the codes since
they have different monopole expansions and multipole acceptance criteria
(see Sections 3.2 and 3.3). However, even though our implementation has
higher multipole moments (quadrupole versus monopole) and a more strict
multipole acceptance criteria it is at least 4 times faster.

In this work we devised algorithms to execute the tree-construction on the
GPU instead of on the CPU as is customarily done. In addition we redesign
the tree-traverse algorithms for effective execution on the GPU. The time
integration of the particles is also executed on the GPU in order to remove
the necessity of transferring data between the host and the GPU completely.
This combination of algorithms is excellently suitable for shared and block
time-step simulations. Although here implemented as part of a gravitational
N -body code (called Bonsai, Section 3), the algorithms are applicable and
extendable to related methods that use hierarchical data structures.

2. Sparse octrees on GPUs

The tree construction and the tree-traverse rely on scan algorithms, which
can be efficiently implemented on GPUs. (Appendix A). Here we discuss

4

the main algorithms that can be found in all hierarchical methods. Starting
with the construction of the tree-structure in Section 2.1, followed by the
method to traverse the previously built tree-structure in Section 2.2. The
methods that are more specific for a gravitational N -body tree-algorithm
are presented in Section 3.

2.1. Tree construction

The common algorithm to construct an octree is based on sequential
particle insertion [10] and is in this form not suitable for massively parallel
processors. However, a substantial degree of parallelism can be obtained if
the tree is constructed layer-by-layer5 from top to bottom. The construction
of a single tree-level can be efficiently vectorised which is required if one uses
massively parallel architectures.

To vectorise the tree construction particles have to be mapped from a
3-dimensional spatial representation to a linear array while preserving local-
ity. This implies that particles that are nearby in 3D space also have to be
nearby in the 1D representation. Space filling curves, which trace through
the three dimensional space of the data enable such reordering of particles.
The first use of space filling curves in a tree-code was presented by War-
ren and Salmon (1993) [23] to sort particles in a parallel tree-code for the
efficient distribution of particles over multiple systems. This sorting also im-
proves the cache-efficiency of the tree-traverse since most particles that are
required during the interactions are stored locally, which improves caching
and reduces communication. We adopt the Morton space filling curve (also
known as Z-order) [24], because of the existence of a one-to-one map be-
tween N-dimensional coordinates and the corresponding 1D Morton-key. The
Morton-keys give a 1D representation of the original ND coordinate space
and are computed using bit-based operations (Appendix B). After the keys
are calculated the particles are sorted in increasing key order to achieve a
Z-ordered particle distribution in memory. The sorting is performed using
the radix-sort algorithm (see for our implementation details Appendix A),
which we selected because of its better performance compared to alternative
sorting algorithms on the GPU [25, 26]. After sorting the particles have to
be grouped into tree cells. In Fig. 1 (left panel), we schematically demon-

5A tree-structure is built-up from several layers (also called levels), with the top most
level called the root, the bottom levels leaves and in between the nodes.

5

strate the procedure. For a given level, we mask the keys6 of non-flagged
particles (non-black elements of the array in the figure), by assigning one
particle per GPU thread. The thread fetches the precomputed key, applies
a mask (based on the current tree level) and the result is the octree cell to
which the particle should be assigned. Particles with identical masked keys
are grouped together since they belong to the same cell. The grouping is
implemented via the parallel compact algorithm (Appendix A). We allow
multiple particles to be assigned to the same cell in order to reduce the size
of the tree-structure. The maximum number of particles that is assigned to a
cell is Nleaf , which we set to Nleaf = 16. Cells containing up-to Nleaf particles
are marked as leaves, otherwise they are marked as nodes. If a particle is
assigned to a leaf the particle is flagged as complete (black elements of the
array in the figure). The masking and grouping procedure is repeated for
every single level in serial until all particles are assigned to leaves or that
the maximal depth of the tree is reached, whichever occurs first. When all
particles are assigned to leaves all required tree cells have been created and
are stored in a continuous array (right panel of Fig. 1).

However, to complete the tree-construction, the parent cells need to be
linked to their children. We use a separate function to connect the parent
and child cells with each other (linking the tree). This function assigns a
cell to a single thread which locates its parent and the first child if the cell
is not a leaf (Fig. 2). This is achieved by a binary search of the appropriate
Morton key in the array of tree-cells, which is already sorted in increasing
key order during the construction phase. The thread increases the child
counter of its parent cell and stores the index of the first child. To reduce
memory, we use a single integer to store both the index to the first child
and the number of children (most significant 3 bits). If the cell is a leaf, we
store the index of the first particle instead of the index of the first child cell,
together with the number of particles in the leaf. During these operations
many threads concurrently write data to the same memory location. To
prevent race conditions, we apply atomic read-modify-write instructions for
modifying the data. At the end of this step, the octree is complete and can
be used to compute gravitational attractions.

6The masking is a bitwise operation that preserves the bits which are specified by the
mask, for example masking “1011b” with “1100b” results in “1000b”.

6

Root level: mask=000 000 000 000 000

Level 3: mask=111 111 111 000 000

Level 1: mask=111 000 000 000 000

Level 2: mask=111 111 000 000 000

tree-cell array

Figure 1: Schematic representation of particle grouping into a tree cell. (Left panel)
The particles Morton keys are masked6 with the level mask. Next the particles with the
same masked keys are grouped together into cells (indicated by a thick separator, such
as in level 1). Cells with less than Nleaf particles are marked as leaves (green), and the
corresponding particles are flagged (black boxes as in level 2 and 3) and not further used
for the tree construction. The other cells are called nodes (blue) and their particles are
used constructing the next levels. The tree construction is complete as soon as all particles
are assigned to leafs, or when the maximal depth of the tree is reached. (Right panel) The
resulting array containing the created tree cells.

2.2. Tree traverse

To take advantage of the massively parallel nature of GPUs we use breadth
first, instead of the more common depth first, traversal. Both breadth first
and depth first can be parallelised, but only the former can be efficiently
vectorised. To further vectorise the calculation we do not traverse a sin-
gle particle, but rather a group of particles. This approach is known as
Barnes’ vectorisation of the tree-traverse [11]. The groups are based on the
tree-cells to take advantage of the particle locality as created during the
tree-construction. The number of particles in a group is ≤ Ncrit which is
typically set to 64 and the total number of groups is Ngroups. The groups
are associated with a GPU thread-block where the number of threads in a
block is Nblock with Nblock >= Ncrit. Hereby we assume that thousands of
such blocks are able to run in parallel. This assumption is valid for CUDA-
enabled GPUs, as well as on AMD Radeon GPUs via OpenCL. If the code is
executed with shared time-steps, all particles are updated at the same time
and subsequently all groups are marked as active, for block time-steps this
number varies between 1 and Ngroups. Each thread block executes the same
algorithm but on a different set of particles.

7

Leaf cell

Node cell

Empty cell

Figure 2: Schematic illustration of the tree link process. Each cell of the tree, except the
empty cells which are not stored, is assigned to a GPU thread. The thread locates the first
child, if it exists, and the parent of the cell. The threads increment the child counter of
the parent (indicated by the up arrows) and store the first child in the memory of the cell.
This operation requires atomic read-modify-write operations because threads concurrently
modify data at the same memory location.

8

Each thread in a block reads particle data that belongs to the correspond-
ing group as well as group information which is required for the tree traverse.
If the number of particles assigned to a group is smaller than Nblock by a fac-
tor of two or more, we use multiple threads (up to 4) per particle to further
parallelise the calculations. As soon as the particle and group data is read
by the threads we proceed with the tree-traverse.

On the CPU the tree-traverse algorithm is generally implemented using
recursion, but on the GPU this is not commonly supported and hard to
parallelise. Therefore we use a stack based breadth first tree-traverse which
allows parallelisation. Initially, cells from one of the topmost levels of the
tree are stored in the current-level stack and the next-level stack is empty;
in principle, this can be the root level, but since it consists of one cell, the
root node, only one thread from Nblock will be active. Taking a deeper level
prevents this and results in more parallelism. We loop over the cells in the
current-level stack with increments of Nblock. Within the loop, the cells are
distributed among the threads with no more than one cell per thread. A
thread reads the cell’s properties and tests whether or not to traverse the
tree further down from this cell; if so, and if the cell is a node the indexes of
its children are added to the next-level stack. If however, the cell is a leaf, the
indexes of constituent particles are stored in the particle-group interaction
list. Should the traverse be terminated then the cell itself is added to cell-
group interaction list (Fig.3).

The cell-group interaction list is evaluated when the size of the list exceeds
Nblock. To achieve data parallelism each thread reads properties of an inter-
acting cell into fast low-latency on-chip memory that can be shared between
the threads, namely shared memory (CUDA) or local memory (OpenCL).
Each thread then progresses over the data in the on-chip memory and ac-
cumulates partial interactions on its particle. At the end of this pass, the
size of the interaction list is decreased by Nblock and a new pass is started
until the size of the list falls below Nblock. The particle-group interaction
list is evaluated in exactly the same way, except that particle data is read
into shared memory instead of cell data. This is a standard data-sharing
approach that has been used in a variety of N -body codes, e.g. Nyland et
al. [27].

The tree-traverse loop is repeated until all the cells from the current-level
stack are processed. If the next-level stack is empty, the tree-traverse is
complete, however if the next-level stack is non-empty its data is copied to
the current-level stack. The next-level stack is cleaned and the current-level

9

a b c e f
current stack

next-level stack

cell-group list: a,e,f
particle-group list: ci,ci+1,ci+2,ci+3,ci+4

bi bi+1 bi+2 bi+3 bi+4

Figure 3: Illustration of a single level tree-traverse. There are five cells in the current
stack. Those cells which are marked with crosses terminate traverse, and therefore are
added to the cell-group list for subsequent evaluation. Otherwise, if the cell is a node, its
children are added to the next-level stack. Because children are contiguous in the tree-cell
array, they are named as bi, bi + 1, . . ., bi + 4, where bi is the index of the first child of
the node b. If the cell is a leaf, its particles are added to the particle-cell interaction list.
Because particles in a leaf are also contiguous in memory, we only need to know the index
of the first particle, ci, and the number of particles in a leaf, which is 5 here.

10

stack is processed. When the tree-traverse is complete either the cell-group,
particle-group or both interaction lists may be non-empty. In such case the
elements in these lists are distributed among the threads and evaluated in
parallel. Finally if multiple threads per particle are used an extra reduction
step combines the results of these threads to get the final interaction result.

3. Gravitational Tree-code

To demonstrate the feasibility and performance, we implement a ver-
sion of the gravitational Barnes-Hut tree-code [10] which is solely based on
the sparse octree methods presented in the previous sections. In contrast
to other existing GPU codes [15, 17], our implementation runs entirely on
GPUs. Apart from the previous described methods to construct and traverse
the tree-structure we implement time integration (Section 3.1), time-step cal-
culation and tree-cell properties computation on the GPU (Section 3.2). The
cell opening method, which sets the accuracy and performance of the tree-
traverse, is described in Section 3.3.

3.1. Time Integration

To move particles forward in time we apply the leapfrog predictor-corrector
scheme described by Hut et al. (1995) [28]. Here the position and velocity
are predicted to the next simulation time using previously calculated accel-
erations. Then the new accelerations are computed (tree-traverse) and the
velocities are corrected. This is done for all particles in parallel or on a subset
of particles in case of the block-time step regime. For a cluster of >∼ 105

particles, the time required for one prediction-correction step is less than 1%
of the total execution time and therefore negligible.

3.2. Tree-cell properties

Tree-cell properties are a summarized representation of the underlying
particle distribution. The multipole moments are used to compute the forces
between tree-cells and the particles that traverse the tree. In this implemen-
tation of the Barnes-Hut tree-code we use only monopole and quadrupole
moments [29]. Multipole moments are computed from particle positions and
need to be recomputed at each time-step; any slowdown in their computation
may substantially influence the execution time. To parallelise this process
we initially compute the multipole moments of each leaf in parallel. We sub-
sequently traverse the tree from bottom to top. At each level the multipole

11

3

1

22

Figure 4: Illustration of the computation of the multipole moments. First the properties
of the leaves are calculated (green circles). Then the properties of the nodes are calculated
level-by-level from bottom to top. This is indicated by the numbers in the nodes, first we
compute the properties of the node with number 1, followed by the nodes with number 2
and finally the root node.

moments of the nodes are computed in parallel using the moments of the cells
one level below (Fig. 4). The number of GPU threads used per level is equal
to the number of nodes at that level. These computations are performed in
double precision since our tests indicated that the NVIDIA compiler aggres-
sively optimises single precision arithmetic operations, which results in an
error of at most 1% in the multipole moments. Double precision arithmetic
solved this problem and since the functions are memory-bound7 the overhead
is less than a factor 2. As final step the double precision values are converted
back to single precision to be used during the tree-traverse.

3.3. Cell opening criterion

In a gravitational tree-code the multipole acceptance criterion (MAC)
decides whether to use the multipole moments of a cell or to further traverse
the tree. This influences the precision and execution time of the tree-code.

7On GPUs we distinguish two kind of performance limitations, memory-bound and
compute-bound. In the former the performance is limited by the memory speed and
memory bandwidth, in the later the performance is limited by the computation speed.

12

The further the tree is traversed the more accurate the computed acceleration
will be. However, traversing the tree further results in a higher execution time
since the number of gravitational interactions increases. Therefore the choice
of MAC is important, since it tries to determine, giving a set of parameters,
when the distance between a particle and a tree cell is large enough that
the resulting force approximation error is small enough to be negligible. The
MAC used in this work is a combination of the method introduced by Barnes
(1994) [30] and the method used for tree-traversal on vector machines [11].
This gives the following acceptance criterion,

d >
l

θ
+ δ (1)

where d is the smallest distance between a group and the center of mass of
the cell, l is the size of the cell, θ is a dimensionless parameter that controls
the accuracy and δ is the distance between the cell’s geometrical center and
the center of mass. If d is larger than the right side of the equation the
distance is large enough to use the multipole moment instead of traversing
to the child cells.

Fig. 5 gives an overview of this method. We also implemented the mini-
mal distance MAC [31], which results in an acceleration error that is between
10% and 50% smaller for the same θ than the MAC used here. The compu-
tation time, however, is almost a factor 3 higher since more cells are accepted
(opened).

The accuracy of the tree-traverse is controlled by the parameter θ. Larger
values of θ causes fewer cells to be opened and consequently results in a
shallower tree-traverse and a faster evaluation of the underlying simulation.
Smaller values of θ have the exact opposite effect, but result in a more accu-
rate integration. In the hypothetical case that all the tree cells are opened
(θ → 0) the tree-code turns in an inefficient direct N -body code. In Sec-
tion 4.1 we adopt θ = 0.5 and θ = 0.75 to show the dependence of the
execution time on the opening angle. In Section 4.2 we vary θ between 0.2
and 0.8 to show the dependence of the acceleration error on θ.

4. Performance and Accuracy

In this section we compare the performance of our implementation of
the gravitational N -body code (Bonsai) with CPU implementations of com-
parable algorithms. Furthermore, we use a statistical test to compare the

13

cell

group

d

i

d

center

c.o.m.

Figure 5: Schematic overview of the multipole acceptance criterion. We determine if the
cell has to be opened (continue tree-traversal) for the whole group and therefore take the
minimal distance d between the group and the center of mass of the node. The cell size
and the distance between the center of mass and the geometrical center are indicated by
l and δ respectively. The parameters are used in Eq. 1 to determine if the cell has to be
opened.

14

Table 1: Used hardware. The Xeon is the CPU in the host system, the other five devices
are GPUs.

Hardware model Xeon E5620 8800 GTS512 C1060 GTX285 C2050 GTX480
Architecture Gulftown G92 GT200 GT200 GF100 GF100

Cores 4 128 240 240 448 480
Core (Mhz) 2400 1625 1296 1476 1150 1401
Memory (Mhz) 1066 1000 800 1243 1550 1848
Interface (bit) 192 256 512 512 384 384
Bandwidth (GBs) 25.6 64 102 159 148 177.4
Peak (GFLOPs)2 76.8 624 933 1063 1030 1345
Memory size (GB) 16 0.5 4 1 2.5 1.5

1All calculations in this work are done in single precision arithmetic.
2The peak performance is calculated as follows:
Gulftown: #Cores × Core speed × 8 (SSE flops/cycle)
G92 & GT200: #Cores × Core speed × 3 (flops/cycle)
GF100: #Cores × Core speed × 2 (flops/cycle)

accuracy of Bonsai with a direct summation code. As final test Bonsai is
compared with a direct N -body code and a set of N -body tree-codes using
a production type galaxy merger simulation.

Even though there are quite a number of tree-code implementations each
has its own specific details and it is therefore difficult to give a one-to-one
comparison with other tree-codes. The implementations closest to this work
are the parallel CPU tree-code of John Dubinski (1996) [32] (Partree) and
the GPU accelerated tree-code Octgrav [17]. Other often used tree-codes
either have a different MAC or lack quadrupole corrections. The default
version of Octgrav has a different MAC than Bonsai, but for the galaxy
merger simulation a version of Octgrav is used that employs the same method
as Bonsai (Section 3.3). We use phiGRAPE [33] in combination with the
Sapporo [9] direct N -body GPU library for the comparison with direct N -
body simulations. Although here used as standalone codes, most of them
are part of the AMUSE framework[34], as will be a future version of Bonsai
which would make the comparison trivial to execute.

The hardware used to run the tests is presented in Table 1. For the CPU

15

calculations we used an Intel Xeon E5620 CPU which has 4 physical cores.
For GPUs, we used 1 GPU with the G92 architecture (GeForce 8800GTS512),
2 GPUs with the GT200 architecture (GeForce 285GTX and Tesla C1060),
and 2 GPUs with the GF100 architecture (GTX480 and Tesla C2050). All
these GPUs are produced by NVIDIA. The Tesla C2050 GPU is marketed as a
professional High Performance Computing card and has the option to enable
error-correcting code memory (ECC). With ECC enabled extra checks on the
data are conducted to prevent the use of corrupted data in computations,
but this has a measurable impact on the performance. Therefore, the tests
on the C2050 are executed twice, once with and once without ECC enabled
to measure the impact of ECC.

All calculations are conducted in single precision arithmetic except for
the computation of the monopole and quadrupole moments in Bonsai and
the force calculation during the acceleration test in phiGRAPE for which we
use double precision arithmetic.

4.1. Performance

To measure the performance of the implemented algorithms we execute
simulations using Plummer [35] spheres with N = 215 (32k) up to N =
224 (16M) particles (up to N = 222 (4M) for the GTX480, because of
memory limitations). For the most time critical parts of the algorithm we
measure the wall-clock time. For the tree-construction we distinguish three
parts, namely sorting of the keys (sorting), reordering of particle properties
based on the sorted keys (moving) and construction and linking of tree-cells
(tree-construction). Furthermore, are timings presented for the multipole
computation and tree-traverse. The results are presented in Fig. 6. The
wall-clock time spend in the sorting, moving, tree-construction and multipole
computation algorithms scales linearly with N for N & 106. For smaller
N , however, the scaling is sub-linear, because the parallel scan algorithms
require more than 105 particles to saturate the GPU. The inset of Fig. 6
shows that the average number of particle-cell interactions doubles between
N & 32k and N . 1M and keeps gradually increasing for N & 1M. Finally,
more than 90% with θ = 0.75 and 95% with θ = 0.5 of the wall-clock time is
spent on tree-traversal. This allows for block time-step execution where the
tree-traverse time is reduced by a factor Ngroups/Nactive, where Nactive is the
number of groups with particles that have to be updated.

In Fig. 7 we compare the performance of the tree-algorithms between the

16

 0.1

 1

 10

 100

 1000

 10000

 10000 100000 1e+06 1e+07 1e+08

T
im

e
 [
m

s
]

N

Sorting
Moving

Tree construction
Node properties

Tree-traverse, GTX480 θ=0.75

Tree-traverse, C1060 θ=0.75

Total, GTX480 θ=0.75

Tree-traverse, GTX480 θ=0.5

N log(N)

 0

 500

 1000

 1500

 10000 1e+06 1e+08

p-p interactions
p-c interactions

Figure 6: The wall-clock time spent by various parts of the program versus the num-
ber of particles N . We used Plummer models as initial conditions [35] and varied the
number of particles over two orders of magnitude. The solid black line, which is offset
arbitrarily, shows the theoretical O(N logN) scaling [10]. The asymptotic complexity of
the tree-construction approaches O(N), because all the constituent primitives share the
same complexity. The tree-construction timing comes from the GTX480. To show that
the linear scaling continues we added timing data for the C1060, which allows usage of
larger data sets. For the GTX480 we included the results of the tree-traverse with θ = 0.5
and the results of the tree-traverse with θ = 0.75. The inset shows the average number of
particle-particle and particle-cell interactions for each simulation where θ = 0.75.

17

three generations of GPUs as well as against tuned CPU implementations8.
For all algorithms the CPU is between a factor of 2 (data reordering) to
almost a factor 30 (tree-traverse) slower than the fastest GPU (GTX480).
Comparing the results of the different GPUs we see that the GTS512 is slow-
est in all algorithms except for the data moving phase, in which the C1060
is the slowest. This is surprising since the C1060 has more on-device band-
width, but the lower memory clock-speed appears to have more influence than
the total bandwidth. Overall the GF100 generation of GPUs have the best
performance. In particular, during the tree-traverse part, they are almost a
factor 2 faster than the GT200 series. This is more than their theoretical
peak performance ratios, which are 1.1 and 1.25 for C1060 vs. C2050 and
GTX285 vs. GTX480 respectively. In contrast, the GTX285 executes the
tree-traverse faster than the C1060 by a factor of 1.1 which is exactly the
peak performance ratio between these GPUs. We believe that the difference
between the GT200 and GF100 GPUs is mainly caused by the lack of L1 and
L2 caches on GT200 GPUs that are present on GF100 GPUs. In the latter,
non-coalesced memory accesses are cached, which occur frequently during
the tree-traverse, this reduces the need to request data from the relatively
slow global memory. This is supported by auxiliary tests where the texture
cache on the GT200 GPUs is used to cache non-coalesced memory reads,
which resulted in a reduction of the tree-traverse execution time between 20
and 30%. Comparing the C2050 results with ECC-memory to those without
ECC-memory we notice a performance impact on memory-bound functions
that can be as high as 50% (sorting), while the impact on the compute-bound
tree-traverse is negligible, because the time to perform the ECC is hidden
behind computations. Overall we find that the implementation scales very
well over the different GPU generations and makes optimal use of the newly
introduced features of the GF100 architecture. The performance of the tree-
traverse with θ = 0.75 is 2.1M particles/s and 2.8M particles/s on the C2050
and GTX480 respectively for N = 1M.

8The tree-construction method is similar to [23], and was implemented by Keigo Nita-
dori with OpenMP and SSE support. The tree-traverse is, however, from the CPU version
of the MPI-parallel tree-code by John Dubinski [32]. It has monopole and quadrupole
moments and uses the same multipole acceptance criterion as our code. We ran this code
on the Xeon E5620 CPU using 4 parallel processes where each process uses one of the 4
available physical cores.

18

 1

 10

 100

 1000

 10000

 100000

Sorting Moving Construction Properties Tree traverse

T
im

e
 [
m

s
]

CPU
8800GTS512

C1060
GTX285

C2050
C2050-ECC

GTX480

Figure 7: Wall-clock time spent by the CPU and different generations of GPUs on various
primitive algorithms. The bars show the time spent on the five selected sections of code
on the CPU and 5 different GPUs (spread over 3 generations). The results indicate that
the code outperforms the CPU on all fronts, and scales in a predictable manner between
different GPUs. The C2050-ECC bars indicate the runs on the C2050 with ECC enabled,
the C2050 bars indicate the runs with ECC disabled. Note that the y-axis is in log scale.
(Timings using a 220 million body Plummer sphere with θ = 0.75)

19

4.2. Accuracy

To measure the accuracy of the tree-code we use two tests. In the first, the
accelerations due to the tree-code are compared with accelerations computed
by direct summation. In the second test, we compared the performance and
accuracy of three tree-codes and a direct summation code using a galaxy
merger simulation.

4.2.1. Acceleration

To quantify the error in the accelerations between phiGRAPE and Bonsai

we calculate
∆a/a = |atree − adirect|/|adirect|, (2)

where atree and adirect are accelerations obtained by tree and direct summa-
tion respectively. The direct summation results are computed with a double
precision version of Sapporo, while for tree summation single precision is
used. For both methods the softening is set to zero and a GTX480 GPU is
used as computation device.

In Fig. 8 the error distribution for different particle numbers and opening
angles is shown. Each panel shows the fraction of particles (vertical-axis)
having a relative acceleration error larger than a given value (horizontal-axis).
The three horizontal dotted lines show the 50th, 10th and 1st percentile of
the cumulative distribution (top to bottom). The results indicate that the
acceleration error is slightly smaller (less than an order of magnitude) than
Octgrav and comparable to CPU tree-codes with quadrupole corrections
[36, 37, 38]. In Octgrav a different MAC is used than in Bonsai which
explains the better accuracy results of Bonsai.

The dependence of the acceleration error on θ and the number of particles
is shown in Fig. 9. Here the median and first percentile of the relative
acceleration error distributions of Fig. 8 are plotted as a function of θ. The
figure shows that the relative acceleration error is nearly independent of
N , which is a major improvement compared to Octgrav where the relative
acceleration error clearly depends on N (Figure 5 in [17]). The results are
consistent with those of Partree [32] which uses the same MAC.

4.2.2. Galaxy merger

A realistic comparison between the different N -body codes, instead of
statistical tests only, is performed by executing a galaxy merger simulation.
The merger consists of two galaxies, each with 105 dark matter particles,

20

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

1e-06 1e-04 0.01 1

F
(>

∆
a
/a

)

∆a/a

1e-06 1e-04 0.01 1

∆a/a

1e-06 1e-04 0.01 1

∆a/a

Figure 8: Each panel displays a fraction of particles, F (> ∆a/a), having a relative ac-
celeration error, ∆a/a, (vertical axis) greater than a specified value (horizontal axis). In
each panel the solid lines show the errors for various opening angles, from left to right
θ = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8. The panels show, from left to right, simulations
with N = 32768, N = 131072 and N = 1048576 particles. The dotted horizontal lines
indicate 50%, 10% and 1% of the error distribution.

2×104 star particles and one super massive black hole (for a total of 240.002
bodies). The galaxies have a 1:3 mass ratio and the pericenter is 10kpc. The
merger is simulated with Bonsai, Octgrav, Partree and phiGRAPE. The
used hardware for Bonsai and Octgrav was 1 GTX480, Partree used 4 cores
of the Intel Xeon E5620 and phiGRAPE used 4 GTX480 GPUs. With each
tree-code we ran two simulations, one with θ = 0.5 and one with θ = 0.75.
The end-time of the simulations is T = 1000 with a shared time-step of
1
64

(resulting in 64000 steps) and a gravitational softening of ε = 0.1. For
phiGRAPE the default time-step settings were used, with the maximum time-
step set to 1

16
and softening set to ε = 0.1. The settings are summarised in

the first four columns of Table 2.
We compared the density, cumulative mass and circular velocity profiles

of the merger product as produced by the different simulation codes, but
apart from slight differences caused by small number statistics the profiles
are identical. As final comparison we recorded the distance between the
two black holes over the course of the simulation. The results of which are
shown in the bottom panel of Fig. 10, the results are indistinguishable up
to the third pericenter passage at t = 300 after which the results, because
of numerical differences, become incomparable. Apart from the simulation
results we also compare the energy conservation. This is done by computing
the relative energy error (dE, Eq. 3) and the maximal relative energy error

21

 1e-06

 1e-05

 0.0001

 0.001

 0.01

0.2 0.5 0.8 1

∆
a
/a

opening angle (θ)

50%
1%

Figure 9: The median and the first percentile of the relative acceleration error distribution
as a function of the opening angle and the number of particles. We show the lines for
N = 32768 (bottom striped and solid line) N = 131072 (middle striped and dotted line)
and N = 1048576 (top striped and dotted line).

22

Table 2: Settings and results of the galaxy merger. The first two columns indicate the
software and hardware used, the third the time-step (dt) and the fourth the opening
angle (θ). The last three columns present the results, energy error at the time = 1000
(fifth column), maximum energy error during the simulation (sixth column) and the total
execution time (seventh column).

Simulation Hardware dt θ dEend[×10−4] dEmax[×10−4] time[s]
phiGRAPE 4x GTX480 block - −1.9 1.8 62068
Bonsai run1 1x GTX480 1

64
0.75 0.21 2.8 7102

Bonsai run2 1x GTX480 1
64

0.50 0.44 1.3 12687
Octgrav run1 1x GTX480 1

64
0.75 −1.1 3.5 11651

Octgrav run2 1x GTX480 1
64

0.50 −1.1 2.2 15958
Patree run1 Xeon E5620 1

64
0.75 −3.5 3.8 118424

Patree run2 Xeon E5620 1
64

0.50 0.87 0.96 303504

(dEmax).

dE =
E0 − Et

E0

(3)

Here E0 is the total energy (potential energy + kinetic energy) at the
start of the simulation and Et is the total energy at time t. The time is in
N -body units.

The maximal relative energy error is presented in the top panel of Fig. 10,
the tree-code simulations with θ = 0.75 give the highest dEmax which occurs
for both θ = 0.75 and θ = 0.5 during the second pericenter passage at t ≈ 280.
For θ = 0.5, the dEmax is roughly a factor 2 smaller than for θ = 0.75. For
phiGRAPE dEmax shows a drift and does not stay constant after the second
pericenter passage. The drift in the energy error is caused by the formation
of binaries, for which phiGRAPE has no special treatment, resulting in the
observed drift instead of a random walk.

A detailed overview of the energy error is presented in Fig. 11 which shows
the relative energy error (dE) over the course of the simulation. Comparing
the dE of the tree-codes shows that Bonsai has a more stable evolution than
Octgrav and Partree. Furthermore if we compare the results of θ = 0.75 and
θ = 0.5 there hardly is any improvement visible for Octgrav while Bonsai

and Partree show an energy error with smaller per time-step variance of the

23

 0.01

 0.1

 1

 10

 100

 1000

 0 200 400 600 800 1000

d
is

ta
n
c
e

time

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0.00045

d
E

m
a
x

Bonsai θ=0.75
Bonsai θ=0.5

Octgrav θ=0.75
Octgrav θ=0.5

Partree θ=0.75
Partree θ=0.5

phiGRAPE

Figure 10: The top panel shows the maximal relative energy error over the course of
the simulation. The solid lines show the results of Bonsai, the striped lines the results of
Octgrav and the striped-dotted lines show the results of Partree. In all cases the top lines
show the result of θ = 0.75 and the bottom lines the result of θ = 0.5. Finally the dotted
line shows the result of phiGRAPE. The bottom panel shows the distance between the two
supermassive black-holes. The lines themselves have no labels since up to t = 300 the lines
follow the same path and after t = 300 the motion becomes chaotic and incomparable.
The distance and time are in N -body units.

24

energy error.
The last thing to look at is the execution time of the various codes, which

can be found in the last column of Tab. 2. Comparing Bonsai with Octgrav

shows that the former is faster by a factor of 1.6 and 1.26 for θ = 0.75 and
θ = 0.5 respectively. The smaller speed-up for θ = 0.5 results from the fact
that the tree-traverse, which takes up most of the execution time, is faster in
Octgrav than in Bonsai. Comparing the execution time of Bonsai with that
of Partree shows that the former is faster by a factor of 17 (24) with θ = 0.75
(θ = 0.5). Note that this speed-up is smaller than reported in Section 4.1
due to different initial conditions. Finally, when comparing phiGRAPE with
Bonsai, we find that Bonsai completes the simulation on 1 GTX480 faster
than phiGRAPE, which uses 4 GTX480 GPUs, by a factor of 8.7 (θ = 0.75)
and 4.9 (θ = 0.5).

5. Discussion and Conclusions

We have presented algorithms to efficiently construct and traverse hierar-
chical data-structures. These algorithms are implemented as part of a gravi-
tational N -body tree-code. In contrast to other existing GPU tree-codes, this
implementation is executed on the GPU. While the code is written in CUDA,
the methods themselves are portable to other massively parallel architectures,
provided that parallel scan-algorithms exist for such architectures. For this
implementation a custom CUDA API wrapper is used that can be replaced
with an OpenCL version. As such the code can be ported to OpenCL, by
only rewriting the GPU functions, which is currently work in progress.

The number of particles processed per unit time, is 2.8 million particles
per second with θ = 0.75 on a GTX480. Combined with the stable energy
evolution and efficient scaling permits us to routinely carry out simulations
on the GPU. Since the current version can only use 1 GPU, the limitation is
the amount of memory. For 5 million particles ±1 gigabyte of GPU memory
is required.

Although the the tree-traverse in Octgrav is ±10% faster than in Bonsai,
the latter is much more appropriate for large (N > 106) simulations and
simulations which employ block-time steps. In Octgrav the complete tree-
structure, particle array and multipole moments are send to the GPU during
each time-step. When using shared-time steps this is a non-critical amount
of overhead since the overall performance is dominated by the tree-traverse
which takes up more than 90% of the total compute time. However, this

25

-0.0002

-0.0001

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0 200 400 600 800 1000

d
E

time

Bonsai Octgrav Partree phiGRAPE

-0.0002

-0.0001

 0

 0.0001

 0.0002

 0.0003

 0.0004

d
E

θ=0.75

θ=0.5

Figure 11: Relative energy error over the course of the simulation. The top panel shows
the results of θ = 0.75 and the bottom panel the results of θ = 0.5, all other settings as
defined in Tab. 2. The Bonsai results are shown by the blue lines, the Octgrav results are
shown by the red lines, the Partree results are shown by the green lines and the black
lines show the results of phiGRAPE. Note that the result of phiGRAPE is the same in the
top and bottom panel and that the range of the y-axis is the same in both panels.

26

balance changes if one uses block time-steps. The tree-traverse time is re-
duced by a factor Ngroups/Nactive, where Nactive is the number of groups with
particles that have to be updated. This number can be as small as a few
percent of Ngroups, and therefore tree-construction, particle prediction and
communication becomes the bottleneck. By shifting these computations to
the GPU, this ceases to be a problem, and the required host communication
is removed entirely.

Even though the sorting, moving and tree-construction parts of the code
take up roughly 10% of the execution time, these methods do not have to be
executed during each time-step when using the block time-step method. It
is sufficient to only recompute the multipole moments of tree-cells that have
updated child particles. Only when the tree-traverse shows a considerable
decline in performance the complete tree-structure has to be rebuild. This
decline is the result of inefficient memory reads and an increase of the aver-
age number of particle-cell and particle-particle interactions. This quantity
increases because the tree-cell size (l) increases, which causes more cells to
be opened by the multipole acceptance criterion (Eq. 1).

Although the algorithms described herein are designed for a shared-memory
architecture, they can be used to construct and traverse tree-structures on
parallel GPU clusters using the methods described in [23, 32]. Furthermore,
in case of a parallel GPU tree-code, the CPU can exchange particles with
the other nodes, while the GPU is traversing the tree-structure of the local
data. In this way, it is possible to hide most of the communication time.

The presented tree-construction and tree-traverse algorithms are not lim-
ited to the evaluation of gravitational forces, but can be applied to a variety of
problems, such as neighbour search, clump finding algorithms, fast multipole
method and ray tracing. In particular, it is straightforward to implement
Smoothed Particle Hydrodynamics in such a code, therefore having a self-
gravitating particle based hydrodynamics code implemented on the GPU.

Acknowledgements

This work is supported by NOVA and NWO grants (#639.073.803, #643.000.802,
and #614.061.608, VICI #643.200.503, VIDI #639.042.607). The authors
would like to thank Massimiliano Fatica and Mark Harris of NVIDIA for
the help with getting the code to run on the Fermi architecture, Bernadetta
Devecchi for her help with the galaxy merger simulation and Dan Caputo for
his comments which improved the manuscript.

27

References

[1] M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf, Com-
putational Geometry: Algorithms and Applications, chap. 5 and 16,
Springer-Verlag, second edn., 2000.

[2] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston,
P. Hanrahan, Brook for GPUs: stream computing on graphics hardware,
in: SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, ACM, New York,
NY, USA, 777–786, doi:http://doi.acm.org/10.1145/1186562.1015800,
2004.

[3] NVIDIA, NVIDIA CUDA Programming Guide 3.2, 2010.

[4] Khronos Group Std., The OpenCL Specification Version 1.0 Rev.48 ,
URL http://khronos.org/registry/cl/specs/opencl-1.0.48.pdf,
2010.

[5] S. F. Portegies Zwart, R. G. Belleman, P. M. Geldof, High-performance
direct gravitational N-body simulations on graphics processing units,
New Astronomy 12 (2007) 641–650, doi:10.1016/j.newast.2007.05.004.

[6] T. Hamada, T. Iitaka, The Chamomile Scheme: An Optimized Algo-
rithm for N-body simulations on Programmable Graphics Processing
Units, ArXiv Astrophysics e-prints .

[7] R. G. Belleman, J. Bédorf, S. F. Portegies Zwart, High performance
direct gravitational N-body simulations on graphics processing units II:
An implementation in CUDA, New Astronomy 13 (2008) 103–112, doi:
10.1016/j.newast.2007.07.004.

[8] J. Makino, M. Taiji, Scientific simulations with special-purpose comput-
ers : The GRAPE systems, Scientific simulations with special-purpose
computers : The GRAPE systems /by Junichiro Makino & Makoto
Taiji. Chichester ; Toronto : John Wiley & Sons, c1998., 1998.

[9] E. Gaburov, S. Harfst, S. Portegies Zwart, SAPPORO: A way to turn
your graphics cards into a GRAPE-6, New Astronomy 14 (7) (2009) 630
– 637, ISSN 1384-1076, doi:DOI: 10.1016/j.newast.2009.03.002.

[10] J. Barnes, P. Hut, A Hierarchical O(NlogN) Force-Calculation Algo-
rithm, Nature 324 (1986) 446–449.

28

[11] J. E. Barnes, A Modified Tree Code Don’t Laugh: It Runs, Journal of
Computational Physics 87 (1990) 161–+.

[12] T. Fukushige, T. Ito, J. Makino, T. Ebisuzaki, D. Sugimoto,
M. Umemura, GRAPE-1A: Special-Purpose Computer for N-body Sim-
ulation with a Tree Code, Publ. Astr. Soc. Japan 43 (1991) 841–858.

[13] J. Makino, A Fast Parallel Treecode with GRAPE, Publications of the
Astronomical Society of Japan 56 (2004) 521–531.

[14] T. Hamada, K. Nitadori, K. Benkrid, Y. Ohno, G. Morimoto,
T. Masada, Y. Shibata, K. Oguri, M. Taiji, Anovel multiple-
walk parallel algorithm for the BarnesHut treecode on GPUs to-
wards cost effective, high performance N-body simulation, Com-
puter Science - Research and Development 24 (2009) 21–31, ISSN
1865-2034, URL http://dx.doi.org/10.1007/s00450-009-0089-1,
10.1007/s00450-009-0089-1.

[15] T. Hamada, T. Narumi, R. Yokota, K. Yasuoka, K. Nitadori, M. Taiji,
42 TFlops hierarchical N-body simulations on GPUs with applications
in both astrophysics and turbulence, in: SC ’09: Proceedings of the
Conference on High Performance Computing Networking, Storage and
Analysis, ACM, New York, NY, USA, ISBN 978-1-60558-744-8, 1–12,
doi:http://doi.acm.org/10.1145/1654059.1654123, 2009.

[16] T. Hamada, K. Nitadori, 190 TFlops Astrophysical N-body
Simulation on a Cluster of GPUs, in: Proceedings of the
2010 ACM/IEEE International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, SC ’10,
IEEE Computer Society, Washington, DC, USA, ISBN 978-1-
4244-7559-9, 1–9, doi:http://dx.doi.org/10.1109/SC.2010.1, URL
http://dx.doi.org/10.1109/SC.2010.1, 2010.

[17] E. Gaburov, J. Bédorf, S. Portegies Zwart, Gravitational Tree-Code on
Graphics Processing Units: Implementation in CUDA, in: International
Conference on Computational Science 2010, Elsevier, 2010.

[18] R. Yokota, L. A. Barba, GPU Computing Gems Emerald Edition, chap.
9: Treecode and fast multipole method for N-body simulation with

29

CUDA, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1st edn., ISBN 0123849888, 9780123849885, 113–132, 2011.

[19] K. Zhou, M. Gong, X. Huang, B. Guo, Highly Parallel Surface Recon-
struction, Tech. Rep. MSR-TR-2008-53, Microsoft Research, 2008.

[20] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, D. Manocha, Fast
BVH Construction on GPUs, Comput. Graph. Forum 28 (2) (2009) 375–
384.

[21] J. Pantaleoni, D. Luebke, HLBVH: hierarchical LBVH construction for
real-time ray tracing of dynamic geometry, in: Proceedings of the Con-
ference on High Performance Graphics, HPG ’10, Eurographics Associ-
ation, Aire-la-Ville, Switzerland, Switzerland, 87–95, 2010.

[22] M. Burtscher, K. Pingali, GPU Computing Gems Emerald Edition,
chap. 6: An Efficient CUDA Implementation of the Tree-based Barnes
Hut n-Body Algorithm, Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 1st edn., ISBN 0123849888, 9780123849885, 75–92,
2011.

[23] M. S. Warren, J. K. Salmon, A parallel hashed Oct-Tree N-body algo-
rithm, in: Supercomputing ’93: Proceedings of the 1993 ACM/IEEE
conference on Supercomputing, ACM, New York, NY, USA, ISBN
0-8186-4340-4, 12–21, doi:http://doi.acm.org/10.1145/169627.169640,
1993.

[24] G. M. Morton, A computer Oriented Geodetic Data Base; and a New
Technique in File Sequencing, Tech. Rep., Ottawa, Canada: IBM Ltd.,
1966.

[25] N. Satish, M. Harris, M. Garland, Designing efficient sorting algorithms
for manycore GPUs, in: IPDPS ’09: Proceedings of the 2009 IEEE In-
ternational Symposium on Parallel&Distributed Processing, IEEE Com-
puter Society, Washington, DC, USA, ISBN 978-1-4244-3751-1, 1–10,
doi:http://dx.doi.org/10.1109/IPDPS.2009.5161005, 2009.

[26] D. Merill, A. Grimshaw, Revisiting Sorting for GPGPU Stream Ar-
chitectures, Tech. Rep. CS2010-03, Department of Computer Science,
University of Virginia, 2010.

30

[27] L. Nyland, M. Harris, J. Prins, Fast N-body simulation with CUDA.,
GPU Gems 3 (2007) 677–695.

[28] P. Hut, J. Makino, S. McMillan, Building a better leapfrog, ApJL 443
(1995) L93–L96, doi:10.1086/187844.

[29] S. L. W. McMillan, S. J. Aarseth, An O(N log N) integration scheme for
collisional stellar systems, ApJ 414 (1993) 200–212, doi:10.1086/173068.

[30] J. Barnes, Computational Astrophysics, Springer-Verlag, Berlin, 1994.

[31] J. K. Salmon, M. S. Warren, Skeletons from the treecode
closet, Journal of Computational Physics 111 (1994) 136–155, doi:
10.1006/jcph.1994.1050.

[32] J. Dubinski, A parallel tree code, New Astronomy 1 (1996) 133–147,
doi:10.1016/S1384-1076(96)00009-7.

[33] S. Harfst, A. Gualandris, D. Merritt, R. Spurzem, S. Portegies Zwart,
P. Berczik, Performance analysis of direct N-body algorithms on special-
purpose supercomputers, New Astronomy 12 (2007) 357–377, doi:
10.1016/j.newast.2006.11.003.

[34] S. Portegies Zwart, S. McMillan, S. Harfst, D. Groen, M. Fujii, B. Ó.
Nualláin, E. Glebbeek, D. Heggie, J. Lombardi, P. Hut, V. Angelou,
S. Banerjee, H. Belkus, T. Fragos, J. Fregeau, E. Gaburov, R. Izzard,
M. Jurić, S. Justham, A. Sottoriva, P. Teuben, J. van Bever, O. Yaron,
M. Zemp, A multiphysics and multiscale software environment for mod-
eling astrophysical systems, New Astronomy 14 (2009) 369–378, doi:
10.1016/j.newast.2008.10.006.

[35] H. C. Plummer, The distribution of stars in globular clusters, MNRAS
76 (1915) 107–121.

[36] W. Dehnen, A Hierarchical O(N) Force Calculation Algorithm, Journal
of Computational Physics 179 (2002) 27–42.

[37] V. Springel, N. Yoshida, S. D. M. White, GADGET: a code for colli-
sionless and gasdynamical cosmological simulations, New Astronomy 6
(2001) 79–117, doi:10.1016/S1384-1076(01)00042-2.

31

[38] J. G. Stadel, Cosmological N-body simulations and their analysis, Ph.D.
thesis, AA(UNIVERSITY OF WASHINGTON), 2001.

[39] Guy E. Blelloch, Prefix Sums and Their Applications, Tech. Rep. CMU-
CS-90-190, School of Computer Science, Carnegie Mellon University,
1990.

[40] D. E. Knuth, The Art of Computer Programming, Volume 3: (3rd ed.)
Sorting and Searching, chap. Sorting by Distribution, Addison-Wesley,
ISBN 0-201-89685-0, 168–179, 1997.

[41] Mark Harris (NVIDIA), Parallel Prefix Sum (Scan) with CUDA, CUDA
Scan Whitepaper .

[42] S. Sengupta, M. Harris, M. Garland, Efficient parallel scan algorithms
for GPUs, Tech. Rep. NVR-2008-003, NVIDIA, 2008.

[43] M. Billeter, O. Olsson, U. Assarsson, Efficient stream compaction
on wide SIMD many-core architectures, in: HPG ’09: Pro-
ceedings of the Conference on High Performance Graphics 2009,
ACM, New York, NY, USA, ISBN 978-1-60558-603-8, 159–166, doi:
http://doi.acm.org/10.1145/1572769.1572795, 2009.

[44] R. Raman, D. S. Wise, Converting to and from Di-
lated Integers, IEEE Trans. Comput. 57 (2008) 567–
573, ISSN 0018-9340, doi:10.1109/TC.2007.70814, URL
http://dl.acm.org/citation.cfm?id=1345867.1345918.

Appendix A. Scan algorithms

Both tree-construction and tree-traverse make extensive use of parallel-
scan algorithms, also known as parallel prefix-sum algorithms. These algo-
rithms are examples of computations that seem inherently sequential, but
for which an efficient parallel algorithm can be defined. Blelloch [39] defines
the scan operations as follows:

Definition: The all-prefix-sums operation takes a binary associative opera-
tor ⊕, and an array of n elements

[a0, a1, ..., an−1],

32

and returns the ordered set

[a0,(a0 ⊕ a1), ...,(a0 ⊕ a1 ⊕ ... ⊕ an−1)].

Example: If ⊕ is the addition operator, then the all-prefix-sums operation
on the array

[3 1 7 0 4 1 6 3],

would return

[3 4 11 11 15 16 22 25].

The prefix-sum algorithms form the building blocks for a variety of methods,
including stream compaction, stream splitting, sorting, regular expressions,
tree-depth determination and histogram construction. In the following para-
graphs, we give a concise account on the algorithms we used in this work,
however we refer the interested readers to the survey by Blelloch [39] for
further examples and detailed descriptions.

Appendix A.1. Stream Compaction

Stream compaction removes “invalid” items from a stream of elements;
this algorithm is also known as stream reduction. In the left panel of the
Fig.A.12 an example of a compaction is shown where invalid elements are
removed and valid elements are placed at the start of the output stream.

Appendix A.2. Split and Sort

Stream split is related to stream compaction, but differs in that the invalid
elements are placed behind the valid ones in the output stream instead of
being discarded (right panel of Fig.A.12). This algorithm is used as building
block for the radix sort primitive. Namely, for each bit of an integer we call
the split algorithm, starting from the least significant bit, and terminating
with the most significant bit [40].

Appendix A.3. Implementation

All parts of our parallel octree algorithms use scan algorithms in one
way or another. Therefore, it is important that these scan algorithms are
implemented in the most efficient way and do not become the bottleneck of
the application. There are many different implementations of scan algorithms
on many-core architectures [41, 42, 43]. We use the method of Billeter et al.

33

Figure A.12: Example of compact and split algorithms. The “compact” discards invalid
items whereas the “split” places these behind the valid items. We use this “split” primitive
for our radix sort implementation because it preserves the item ordering–a property which
is fundamental for the radix sort algorithm.

[43] for stream compaction, split and radix-sort because it appears to be, at
the moment of writing, the fastest and is easily adaptable for our purposes.

Briefly, the method consists of three steps:

1. Count the number of valid elements in the array.

2. Compute output offsets using parallel prefix-sum.

3. Place valid elements at the output offsets calculated in the previous
step.

We used the prefix-sum method described by Sengupta et al. [42], for all
such operations in both the tree-construction and tree-traverse parts of the
implementation.

Appendix B. Morton Key generation

One of the properties of the Morton key is its direct mapping between
coordinates and keys. To generate the keys given a set of coordinates one
can make use of look-up tables or generate the keys directly. Since the
use of look-up tables is relative inefficient on GPUs (because of the many
parallel threads that want to access the same memory) we decided to compute
the keys directly. First we convert the floating point positions into integer
positions. This is done by shifting the reference frame to the lower left corner
of the domain and then multiply the new positions by the size of the domain.

34

Then we can apply bit-based dilate primitives to compute the Morton key
(List.1, [44]). This dilate primitive converts the first 10 bits of an integer to
a 30 bit representation, i.e. 0100111011→ 000 001 000 000 001 001 001

000 001 001:

List 1: The GPU code which we use to dilate the first 10-bits of an integer.

1 int dilate(const int value) {

2 unsigned int x;

3 x = value & 0x03FF;

4 x = ((x << 16) + x) & 0xFF0000FF;

5 x = ((x << 8) + x) & 0x0F00F00F;

6 x = ((x << 4) + x) & 0xC30C30C3;

7 x = ((x << 2) + x) & 0x49249249;

8 return x;

9 }

This dilate primitive is combined with bit-shift and OR operators to get
the particles’ key. In our implementation, we used 60-bit keys, which is
sufficient for an octree with the maximal depth of 20 levels. We store a
60-bit key in two 32-bit integers, each containing 30-bits of the key. The
maximal depth imposes a limit on the method, but so far we have never run
into problems with our simulations. This limitation can easily be lifted by
either going to 90-bit keys for 30 levels or by modifying the tree-construction
algorithm when we reach deepest levels. This is something we are currently
investigating.

35

