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A volume penalization method for imposing homogeneous Neumann boundary conditions in advection–diffusion equations is presented. 

Thus complex geometries which even may vary in time can be treated efficiently using discretizations on a Cartesian grid. A mathe-

matical analysis of the method is conducted first for the one-dimensional heat equation which yields estimates of the penalization error. 

The results are then confirmed numeri-cally in one and two space dimensions. Simulations of two-dimensional incompressible flows with 

passive scalars using a classical Fourier pseudo-spectral method validate the approach for moving obstacles. The potential of the method 

for real world applications is illustrated by simulating a simplified dynamical mixer where for the fluid flow and the sca-lar transport no-

slip and no-flux boundary conditions are imposed, respectively.

1. Introduction

Computational fluid dynamics (CFD) in complex geometries which may vary in time, a problem typically encountered in

fluid–structure interaction problems, is still a major challenge and requires advanced numerical techniques. Different ap-

proaches have been developed so far and an exhaustive overview is beyond the scope of the paper. Body fitted coordinate

systems, see, e.g., [1], yield a well adapted discretization for a given geometry. For time varying geometries the grid gener-

ation becomes however even more complex and for instance elliptic grid generation techniques [2,3] are necessary which

further increase the computational effort.

During the last decades immersed boundary methods gained ground and became an attractive alternative. The idea can

be traced back to Courant (1943) [4] in the context of constrained optimization to obtain problems free of constraints. There

exists a large variety of immersed boundary methods, for example Lagrangian multipliers [5], level-set methods [6], fictitious

domain approaches and surface [7] and volume penalization approaches [8]. For reviews we refer the reader to [9,10].

A common feature of immersed boundary methods is that the Navier–Stokes equations can be discretized on a classical

grid, e.g., a Cartesian one in a simple domain, for instance, a square, for which efficient solvers are available. The complex

geometry is then immersed into the larger computational domain and the boundary conditions are appended by adding

terms to the equations. The imposed boundary conditions are classically of Dirichlet type corresponding to no-slip walls

for fluid flow. For Neumann boundary conditions, which correspond to no-flux conditions only some works can be found
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in the literature, for example [11,12]. A drawback of most immersed boundary methods is their limitation to low order

approximation, i.e., first or second order, and their computational stiffness leading to ill-conditioned linear systems or pro-

hibitive small time steps.

In the current work we focus on the volume penalization approach which is physically motivated by modeling solid walls

as porous media whose permeability tends to zero [13] and mathematically justified in [14,15]. Therewith no-slip boundary

conditions have been applied in many simulations [8,16,17], including benchmarking of dipole-wall interactions [18,19] and

turbulent flows in confined geometries [20,21]. The volume penalization has been generalized to impose in addition to

Dirichlet [8] also Neumann or Robin boundary conditions [22]. However, this generalization has been applied in the finite

element or finite volume context but is not directly applicable to pseudo-spectral methods.

The aim of the present paper is to propose a method well adapted to study transport and mixing in complex geometries.

The novelty is to include into a classical Fourier pseudo-spectral code, homogeneous Neumann boundary conditions for

advection–diffusion of passive scalars combined with the Navier–Stokes equations describing the fluid flow. Another chal-

lenge is to take into account time-dependent geometries with homogeneous Neumann boundary conditions using the same

approach as in [23] which generalizes the volume penalization method for moving obstacles with Dirichlet boundary con-

ditions. Since spectral methods are available for direct numerical simulation of turbulence in periodic domains, the method

proposed here could be implemented easily into existing codes. A mathematical analysis will be conducted in order to val-

idate the penalization approach for Neumann boundary conditions which is confirmed by numerical simulations. An exam-

ple for more complex flows in a dynamical mixer illustrates the potential of the method.

Studying scalar mixing is motivated by many applications, such as chemical reactors, ventilation systems or atmospheric

pollutant mixing. Numerical simulation is a powerful tool to characterize these industrial devices such as mixers, see, e.g.,

[24]. Numerous studies have been carried out also in the context of homogeneous isotropic turbulence, see, e.g., [25,26] or in

presence of walls [27,28]. However, almost all the flows in nature and in industrial devices are wall bounded, so we need to

include solid boundaries to be able to simulate these configurations. In recent work two of the authors studied the influence

of wall-bounded domains on the Lagrangian statistics of particles [21] and they showed that in particular high order statis-

tics differ significantly from those in periodic domains. This motivates the study of passive scalars in the presence of walls.

The manuscript is decomposed as follows. In Section 2 the mathematical method will be described presenting the gov-

erning equations. A mathematical analysis of the penalization technique is then given for simplified examples. Section 3

shows numerical simulations in one and two space dimensions which are in agreement and thus validate the theoretical

results. Then in Section 4 the penalization method will be extended to moving obstacles and illustrations for different

two-dimensional flows with passive scalars will be presented. Finally, some conclusions and perspectives will be exposed.

2. Mathematical method

The computational domain X contains the fluid domain Xf and the solid domain Xs, as illustrated in Fig. 1. The volume

penalization method consists in considering the whole domain X and to modify the governing equations in order to insure

the desired boundary conditions at the interface R between the fluid and solid domains. In the case of spectral methods, the

computational domain X is considered to be periodic.

The fluid flow is governed by the incompressible Navier–Stokes equations, which we recast here in the form of the penal-

ized momentum equation:

@u

@t
þ u �ru� mr2

uþ 1

q
rp ¼ � 1

gu

ðvuÞ for x 2 X; t > 0 ð1Þ

Fig. 1. The computational domainX is the union of the fluid domainXf and the solid domainXs. The interface between these two domains isR = @Xf \ @ Xs

and C = @X is the boundary of X.
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where the velocity u is divergence-free, r � u = 0, p is the pressure, q is the fluid density assumed to be constant with q = 1

and m the kinematic viscosity. The right-hand side of Eq. (1) corresponds to the penalization term, which is used to impose

the no-slip boundary condition, ujR = 0. The mask function v equals 1 inside the solid Xs and 0 inside the fluid domain Xf,

where the original (non penalized) momentum equation is recovered. The permeability gu is required to be sufficiently small

for a given m in order to minimize the modeling error [8,17], since the physical idea behind the volume penalization method

is to consider solids as porous media with vanishing permeability, such that the velocity of the surrounding fluid vanishes at

the interface. Angot et al. [8] proved rigorously the convergence of the velocity of the penalized equation in the limit of van-

ishing gu to the solution of the velocity of the Navier–Stokes with no-slip boundary conditions, with a global convergence

rate as O g1=4
u

� �

. Carbou and Fabrie [15] improved this estimate by using BKW analysis of the boundary layer for smooth solu-

tions. In the H1-norm, the convergence rate varies asO g1=4
u

� �

inside the solid and asO g1=2
u

� �

in the fluid domain, whereas the

error L2-norm varies like O g3=4
u

� �

inside the solid and O g1=2
u

� �

in the fluid domain.

To study mixing, we extend the penalization technique to the advection–diffusion equation of a passive scalar:

@h

@t
þ ðð1� vÞuÞ �rh ¼ r � ð½jð1� vÞ þ ghv�rhÞ; ð2Þ

where h is the passive scalar, which can represent for example the concentration or the temperature, j is the diffusivity, and

gh is the penalization parameter. The right-hand side of Eq. (2) corresponds to the penalized diffusion term [22], which takes

into account the no-flux boundary condition at the wall rh � njXf
¼ 0 where n is the normal vector to the wall. Zero flux

through the fluid–solid interface can be achieved by imposing vanishing diffusivity inside the solid domain. In the periodic

case without boundaries where the penalization term is absent this term simply equals j r2h.

In the following analysis we neglect the advective term in Eq. (2), that is we assume that u � 0.

2.1. One-dimensional diffusion equation

In this part we study the simple test case, in which the penalized problem has an analytical solution. We consider a one-

dimensional diffusion equation on the positive real axis with the Neumann boundary condition imposed at the origin,

@h

@t
� @2h

@x2
¼ 0; x > 0; t > 0 ð3Þ

completed with the initial and boundary conditions

hjt¼0 ¼ cos x;
@h
@x

�

�

x¼0
¼ 0;

(

ð4Þ

and where h is supposed to be a bounded function. The exact solution of this problem is

hðx; tÞ ¼ e�t cos x: ð5Þ

Now we model the Neumann boundary condition in Eq. (3) using the volume penalization method. For convenience of nota-

tions, in this part we drop the subscript of gh and simply denote it by g. The spatial domain is extended to the whole real axis,

and for negative x the solution is governed by the diffusion equation with diffusivity g, i.e., the penalization parameter,

which is small. We shall call x > 0 the ‘fluid domain’, and x < 0 the ‘solid domain’. Continuity of the solution and of the flux

is imposed at the origin x = 0 for t > 0. The initial condition in the solid domain is zero. Hence the penalized problem reads,

@hg
@t

� @2hg
@x2

¼ 0; x > 0; t > 0;

@hg
@t

� g @2hg
@x2

¼ 0; x < 0; t > 0;

hgjt¼0 ¼ cos x; x > 0;

hgjt¼0 ¼ 0; x 6 0;

lim
x!0�

hg ¼ lim
x!0þ

hg;

lim
x!0�

g @hg
@x

¼ lim
x!0þ

@hg
@x

:

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

ð6Þ

This problem can be solved using the same approach as previously applied for Dirichlet boundary conditions [16,29]. Per-

forming the Laplace transform in time, vgða; xÞ ¼
R1
0

e�athgðx; tÞdt;a 2 C, we obtain the following set of ordinary differential

equations:

avg � cos x� v
00
g ¼ 0; x > 0;

avg � gv 00
g ¼ 0; x < 0;

(

ð7Þ
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where primes stand for derivatives with respect to x. These equations can readily be solved, and integration constants are

determined by requiring vg to be bounded at infinity and using the continuity conditions. Finally, after performing the in-

verse Laplace transform, we obtain

hgðx; tÞ ¼ e�t cos x� 1

2
ffiffiffiffi

p
p

ffiffiffi

g
p

1þ ffiffiffi

g
p

Z t

0

es�txe�x2=4s

s3=2
ds; x > 0;

hgðx; tÞ ¼ � 1

2
ffiffiffiffi

p
p 1

1þ ffiffiffi

g
p

Z t

0

es�txe�x2=4gs

ffiffiffi

g
p

s3=2
ds; x < 0:

8

>

>

>

<

>

>

>

:

ð8Þ

The cosine in the right-hand side of the first of these equations is recognizable as Eq. (5), the exact solution of Eq. (3). The

remaining term gives the penalization error in the fluid domain x > 0, ef = hg � h. This error is shown in Fig. 2 (left) as a func-

tion of x at three different time instants and for two different values of g. The plot on the right shows its derivative with

respect to x. Both are decaying with x?1 and with t ?1. Smaller values of g result in smaller errors. The error in the

solid domain, x < 0, is identical to the solution of the penalized problem, es = hg. It is shown in the left panel of Fig. 3, while

its derivative is depicted in the right panel. This figure reveals a thin boundary layer inside the solid, similar to that observed

in [16] for the Dirichlet boundary condition. While es is large (compared to maxjefj) and @es/@x is even larger, the thickness of

this layer diminishes with decreasing g.
The spatial L2-norm of the error in the fluid domain and the norm of the derivative equal, respectively,

kef kL2ðXf Þ ¼
ffiffiffi

g
p

1þ ffiffiffi

g
p F1ðtÞ; k@ef =@xkL2ðXf Þ ¼

ffiffiffi

g
p

1þ ffiffiffi

g
p F2ðtÞ: ð9Þ

Correspondingly, in the solid domain we have,

keskL2ðXsÞ ¼
g1=4

1þ ffiffiffi

g
p F1ðtÞ; k@es=@xkL2ðXsÞ ¼

g�1=4

1þ ffiffiffi

g
p F2ðtÞ: ð10Þ

with the time dependent functions,

F1ðtÞ ¼
Z 1

0

@f ðy; tÞ
@y

� �2

dy

( )1=2

; F2ðtÞ ¼
Z 1

0

@2f ðy; tÞ
@y2

!2

dy

8

<

:

9

=

;

1=2

; ð11Þ

and where

f ðy; tÞ ¼
Z t

0

es�te�y2=4s

ffiffiffiffiffiffi

ps
p ds: ð12Þ

The graphs of the time dependent functions F1 and F2 are depicted in Fig. 4. Thus, in the fluid domain,

kef k2H1 ¼ kef k2L2 þ k@ef =@xk2L2 converges to zero with g? 0, and it also decays when time becomes large. However, when

t? 0, the error in the derivative is diverging. This is a consequence of the discontinuity in the initial condition. Care is

needed, however, when choosing a continuous initial condition, since a non-zero hgjt=0 in the solid domain is acting as a

source of error for the fluid domain. In the solid domain, the norm kesk2H1 ¼ kesk2L2 þ k@es=@xk2L2 diverges with g? 0, whereas

keskL2 ¼ Oðg1=4Þ.
The cosine initial condition in Eq. (6) verifies the Neumann condition at the boundary x = 0. It is also important to consider

a situation when the initial condition fails to satisfy the boundary condition, as this might often be the case in practical

numerical simulations. Starting from the initial condition
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Fig. 2. Penalization error ef = hg � h in the fluid domain (left); derivative of the penalization error (right).
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hgjt¼0 ¼ sin x; x > 0;

hgjt¼0 ¼ 0; x 6 0;

�

ð13Þ

we obtain the following exact solution of the penalized equation at t > 0:

hgðx; tÞ ¼ e�t sin xþ 1

1þ ffiffiffi

g
p

Z t

0

es�te�x2=4s

ffiffiffiffiffiffi

ps
p ds; x > 0;

hgðx; tÞ ¼
1

1þ ffiffiffi

g
p

Z t

0

es�te�x2=4gs

ffiffiffiffiffiffi

ps
p ds; x < 0:

8

>

>

>

<

>

>

>

:

ð14Þ

The norm of the error in the fluid domain is

kef kL2ðXf Þ ¼
ffiffiffi

g
p

1þ ffiffiffi

g
p F0ðtÞ; k@ef =@xkL2ðXf Þ ¼

ffiffiffi

g
p

1þ ffiffiffi

g
p F1ðtÞ; ð15Þ
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Fig. 3. Penalization error es = hg in the solid domain (left); derivative of the penalization error (right).
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and in the solid domain it equals

keskL2ðXsÞ ¼
g1=4

1þ ffiffiffi

g
p F0ðtÞ; k@es=@xkL2ðXsÞ ¼

g�1=4

1þ ffiffiffi

g
p F1ðtÞ; ð16Þ

where

F0ðtÞ ¼
Z 1

0

ðf ðy; tÞÞ2dy
� 	1=2

: ð17Þ

The time evolution of F0 is shown in Fig. 4. Note that the H1-norm now remains finite for t? 0, since the initial condition is

continuous at x = 0. The rate of convergence with respect to g is the same as in the previous case and is therefore indepen-

dent of the initial condition.

2.2. Theorem on convergence and error estimates

The above calculations of the exact penalization error for a simplified one-dimensional diffusion equation can be general-

ized. In the case of fixed rigid obstacles, a short sketch of this rather technical proof is given in the appendix. For details we

refer to [30].

Theorem 2.1 (Convergence and error estimates). With usual regularity assumptions for the data, the sequence (hg)f = (1 � v)hg,
solution of the penalized unsteady advection–diffusion problem, strongly converges in L1(0,T; L2(Xf)) when g? 0 to the solution hf
of the original problem in the fluid domain Xf with hS = 0 in the solid domain Xs.

Moreover, the error (hg)f � h in the fluid domain for the L1(0,T; L2(Xf)) and L2 0; T;H1
0ðXf Þ

� �

norms and the error on the

Neumann boundary condition on R for a suitable norm both converge like Oð ffiffiffi

g
p Þ.

This theorem justifies thus the use of the volume penalization method to impose Neumann boundary conditions for

advection–diffusion problems for any fixed geometry. In the next sections, the extension of this method to higher dimen-

sions is described. Numerical validations for fixed and moving obstacles in two space dimensions are also presented.

3. Numerical validation

3.1. Numerical discretization

The fluid domain is immersed in a periodic domain of size 2p. A classical Fourier pseudo-spectral discretization on a

Cartesian grid is used in space. The time discretization is semi-implicit and of second order using Adams–Bashforth for

the non-linear term and the penalization term, and Euler backwards for the linear diffusion term [17]. The stability limit

of the time discretized Eq. (1) is imposed by the Courant-Friedrichs-Lewy (CFL) condition Dt 6 CDx/Umax, where C < 1 is a

constant and Umax the maximum velocity on the grid. As the penalization term is treated explicitly, the time step must also

be smaller than the penalization parameter Dt < gu.
Applying the same time scheme to Eq. (2) with the diffusive term being treated explicitly, the stability limit is given by

Dt 6 C2 min((Dx)2/j, (Dx)2/gh) where C2 < 1 is a constant. As j� gh, there is no stability limit imposed by gh which can thus

be chosen as small as desired. Therefore, the choice of Dt is only limited by the penalization parameter of the velocity gu and
the above CFL condition.

3.2. One-dimensional diffusion equation

To get further insight into the numerical convergence properties of the volume penalization method for imposing the

Neumann boundary condition, we first consider the one-dimensional diffusion equation. In this part, for convenience we de-

note again gh simply by g. The equation under consideration is

@h

@t
� j

@2h

@x2
¼ 0: ð18Þ

The corresponding penalized equation is

@hg
@t

� @

@x
ðgvþ jð1� vÞÞ @hg

@x


 �

¼ 0; ð19Þ

where v is the mask function:

v ¼
1; x 2 ½�2;�1½[�1;2�
0; x 2 ½�1;1�

�

ð20Þ

The solid and fluid domains correspond thus to the domain where v = 1 and v = 0, respectively.

The computational periodic domain is X =Xs [Xf = [�2,2] where Xf = [�1,1] is the fluid domain and Xs is the solid

domain. Homogeneous Neumann boundary conditions are imposed at x = �1 and x = 1, i.e, @hg/@x = 0, for x = ±1. The initial

condition, which is continuous and does not vanish inside the solid domain, is

6



hðx; t ¼ 0Þ ¼ cos 4pxþ cospx; for x 2 X ð21Þ

and it is advanced in time up to tmax = 0.5. This is done using exponential propagation (exact integration of Eq. (18) with re-

spect to time):

hgðx; tmaxÞ ¼ etmax
@
@x½gvþjð1�vÞ�

@
@x hðx;0Þ; ð22Þ

Therefore there is no time discretization error in the numerical solution. However there is a spatial discretization error,

because the spatial derivative @
@x

is approximated with the collocation differentiation matrix. We note that the exact time

integration corresponds to computing the exponential of a matrix. There is also a penalization error, since g is finite.

A series of numerical simulations is performed for N = 23
. . .213 grid points and g = 10�1

. . .10�8. The results are then com-

pared to the exact solution of Eq. (18) at the corresponding grid points

hðx; tÞ ¼ e�16p2jt cos 4pxþ e�p
2jt cospx; ð23Þ

which lie inside the fluid domainXint = {x:jxj < 1}. Subsequently, the L1 and L2-norms of the error between hg and h are com-

puted. Fig. 5 shows that the penalization error is decaying as g1/2. The spatial discretization error is decaying as N�1/2 (see

Fig. 6). This is due to the low regularity of the exact solution of the penalized equation near the wall. There the solution is

continuous, but the first derivative has a jump. Hence the convergence rate of the spectral method is limited. As an example,

Fig. 7 shows a zoom of the exact solution Eq. (8) near the boundary at two time instants and for two values of gh.
Fig. 8 shows the numerical solution calculated with N = 212 grid points for two values of g. For g = 10�3, the penalization

boundary layer is thick, so that there are enough grid points inside to ensure a good approximation of the penalized solution.

However, the penalization error is also large. For g = 10�6, there are only three grid points in the penalization boundary layer,

and Gibbs oscillations are present, similar to what is observed for a discontinuous function. The L1-error is therefore large

(just slightly smaller than for g = 10�3). But on average, this oscillating solution matches the exact one (continuous line),

therefore the L2-norm is small (much smaller than for g = 10�3).

To quantify the influence of the initial condition, we performed a series of new computations using an initial condition

which vanishes inside the solid domain Xs and inside the fluid domain, we take h(x, t = 0) = cos 4px + cospx for x 2Xf. The

results are shown in Figs. 5 and 6. The blue lines correspond to the modified initial condition (zero inside the solid) and

the black lines correspond to the original initial condition (non-zero inside the solid). Actually, the discrepancy is now larger

for the largest value of the penalization parameter g, because the new initial condition has a discontinuity that activates the

diffusion. However, the discrepancy becomes invisible when g is small.

An additional series of computations has been performed by changing the position of the collocation points. The latter

have been shifted by Dx/2, where Dx is the grid step size, so that the boundary lies exactly between two collocation points.

The errors between the new numerical solution and the exact solution have been calculated. They are shown in Figs. 5 and 6
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(red lines). The differences with respect to the original results are minor. Hence we can deduce that the relative position of

the collocation points has no significant influence on the numerical precision.

We can conclude that the volume penalization method applied to the viscous term with the Neumann boundary condi-

tion thus converges and yields for sufficiently small choices of the penalization parameter accurate results.

3.3. Two-dimensional diffusion equation

In this part, we test the volume penalization in a two-dimensional configuration. For that, we construct a function which

satisfies the two-dimensional diffusion equation with Neumann boundary conditions, and which can be used to validate the

penalization method. The following problem is considered:

@h

@t
� j

@2h

@x21
þ @2h

@x22

!

¼ 0; ðx1; x2Þ 2 Xf ; t 2 R
þ; Xf ¼ ½�1;1�2; ð24Þ
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with boundary conditions

@h

@x1

�

�

�

�

x1¼�1

¼ 0;
@h

@x2

�

�

�

�

x2¼�1

¼ 0; ð25Þ

and initial condition

h0ðx1; x2Þ ¼ ðcos 4px1 þ cospx1Þ cospx2; for ðx1; x2Þ 2 Xf : ð26Þ

The initial condition h0 can be extended periodically, and, due to symmetry, the corresponding solution h still satisfies the

Neumann boundary condition. The exact solution is calculated as a convolution of the heat kernel with the initial condition.

The Fourier transform of Eq. (24) yields

ĥðk1; k2; tÞ ¼ e�mt k21þk22ð Þĥ0ðk1; k2Þ: ð27Þ

For h0 in Eq. (26) which has been extended periodically, we thus get

ĥ0ðk1; k2Þ ¼
1

4p2

Z 1

�1

Z 1

�1
h0ðx1; x2Þe�iðk1x1þk2x2Þdx1dx2

¼ dðk1 � 4pÞ þ dðk1 þ 4pÞ
2

þ dðk1 � pÞ þ dðk1 þ pÞ
2

� �

dðk2 � pÞ þ dðk2 þ pÞ
2

:

Upon performing the inverse Fourier transform of Eq. (27),

hðx1; x2; tÞ ¼
Z 1

�1

Z 1

�1
ĥðk1; k2; tÞeiðk1x1þk2x2Þdk1dk2;

we obtain the solution of Eqs. (24)–(26) in physical space,

hðx1; x2; tÞ ¼ e�2p2jt cospx2 cospx1 þ e�15p2jt cos 4px1
� �

: ð28Þ

In order to solve Eqs. (24)–(26) numerically using the volume penalization method, we consider an extended spatial domain

X = [� 1.1,1.1]2, in which Xf is included. The mask function which defines the desired position of the boundary is

vðx1; x2Þ ¼
0 for ðx1; x2Þ 2 ½�1;1�2

1 elsewhere:

(

ð29Þ

In the following, the solid and fluid domains correspond thus to the domains where v = 1 and v = 0, respectively.

As initial condition we use Eq. (26) evaluated in the larger domainX. The diffusivity equals j = 10�2 and the penalization

parameter is g = 10�8. The discretization parameters are N1 � N2 = 5122 and Dt = 10�3.

Fig. 9 displays the numerical solution at t = 1, whereas Fig. 10 shows a comparison of its one-dimensional cuts along the x-

and y-axes together with the exact solution given by Eq. (28).

Moreover, the decay of the error between the exact solution and the numerical solution of the penalized equation as a

function of g is shown in Fig. 11 (black curves) for two different resolutions, N1 � N2 = 5122 and 10242. One observes that

the error decays with decreasing g. However, for sufficiently small g the error saturates which is reflected in the plateau.
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Fig. 8. A zoom on the solution of the one-dimensional diffusion equation near the boundary x = 1. The dashed and dashed-dotted lines show the numerical

solution of the penalized equation with two different values of the penalization parameter g, as described in Section 3.2. The black line shows the exact

solution of the equation with the Neumann boundary condition.
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Increasing the resolution leads to smaller errors, and the saturation occurs for smaller values of g. The values of the plateau

correspond to the spatial discretization error which dominates the penalization error for sufficiently small g.
The mask function is also modified by translating the discontinuity on the left by one space step to the left and the one on

the right by one space step to the right, in order to quantify the influence of the relative position of collocation points. Fig. 11

(red curves) shows the computations with the new shifted mask function. The decay of the L2 and L1-errors for decreasing g
with the new shifted mask function exhibits a similar behavior as the one for the original computation and a vertical shift of

the errors for the newmask functions is observed. This can be explained by the increase of the distance between the position

of the collocation point defined by the position of the mask function and the real position of the interface between the fluid

and solid domains jxj = 1. In the following, only the original mask function will be used.

Finally, it can be observed that the error decays as N�3/4 in both the L2 and the L1-norm, which is shown in Fig. 12 for

g = 10�8.

Additionally we performed computations where the initial condition is changed by imposing zero inside the solid domain

h(x1,x2, t = 0) = (cos 4px1 + cospx1) cospx2, for (x1,x2) 2Xf and 0 for (x1,x2) 2Xs (results not presented). It can be shown that if

we compare with the computations done using the initial condition in Eq. (26) (black curves in Fig. 11), we observe quali-

tatively the same behavior as in the one-dimensional case: the errors (L2 and L1) decay with decreasing g, and then saturate

for the same sufficiently small value of the penalization parameter.
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The above computations yield thus a validation of the volume penalization method for the two-dimensional diffusion

equation with Neumann boundary conditions. The precision depends on the penalization parameter which has to be chosen

sufficiently small. We can note that the behavior of the solution in the solid domain is unpredictable and this is due to

numerical reasons. Indeed, the solution adapts itself in the solid domain in order to guarantee the Neumann boundary con-

dition at the boundary between the solid and fluid domain.

4. Moving obstacles

In this section, we extend the volume penalization method in order to compute flows containing moving obstacles. In

[23], this was done for Dirichlet boundary conditions. The aim of this part is to adapt the advection–diffusion equation to
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moving solids with zero flux boundary conditions at the walls. First, we validate the method using a simple test case and

then we present some results for a flow in a dynamical mixer.

4.1. Validation

4.1.1. Numerical method

A two-dimensional incompressible turbulent flow with unit density is considered. The Navier–Stokes equations written

in vorticity–velocity formulation are modified by a volume penalization method which takes into account the no-slip bound-

ary conditions and the moving solid:

@x
@t

þ ðuþ U0Þ �rx� mr2x ¼ � 1

gu

r� ½vðuþ U0 � USÞ�; ð30Þ

where u = (u1,u2) is the velocity, x =r � u is the vorticity, m is the kinematic viscosity and U0 is a mean flow velocity. US is

the velocity of the solid at position x and at time t,

USðx; tÞ ¼ _xcgðtÞ þ _acgðtÞ½x� xcgðtÞ�?; ð31Þ

with xcg being the center-of-gravity position vector of the solid, acg being the angle of incidence. The dot denotes the deriv-

ative with respect to time, and x
\ = (�y,x). The motion of the obstacle implies changing in time its mask function v. For its

translation we rotate the phase of its Fourier coefficients:

vðx; tÞ ¼ v0ðx� dxÞ () v̂ðk; tÞ ¼ e�ik�dxv̂0ðkÞ; ð32Þ

where k is the wave number. Following [23], the solid body rotation at an angle b is decomposed into three skewing

operations:

RðbÞ ¼ cos b � sin b

sin b cos b


 �

¼
1 � tanðb=2Þ
0 1


 �

1 0

sinb 1


 �

1 � tanðb=2Þ
0 1


 �

: ð33Þ

The mask function is smoothed to avoid Gibbs oscillations. This is done by solving the heat equation with a discontinuous

mask function taken as initial condition. For details, we refer again to [23].

In order to include the time evolution of the passive scalar in such a configuration, the advection–diffusion equation is

considered and is modified with a volume penalization method to impose zero scalar flux at the wall:

@h

@t
þ ð1� vÞðuþ U0Þrhþ vðUSrhÞ ¼ r � ð½jð1� vÞ þ ghv�rhÞ; ð34Þ

where h is the passive scalar, j is the scalar diffusivity, and gh is the penalization parameter for the advection–diffusion of the

passive scalar. Note the additional term in Eq. (34) compared to the original equation (Section 2): v(USrh). This term is

important because it transports the artificial scalar field, which is created inside the moving solid body to ensure the no-flux

condition. Otherwise these numerical artifacts would be ejected inside the fluid domain once the solid left its position. As for

the vorticity equation, we used a smoothed mask function to avoid Gibbs oscillations.

To solve the Eqs. (30) and (34), we use again a classical Fourier pseudo-spectral scheme with semi-implicit time integra-

tion, an Adams–Bashforth scheme for the nonlinear and the penalization terms and Euler backwards for the diffusion term in

(30), which are both of second order. Note that in (34), the diffusion term is discretized explicitly with Adams–Bashforth.

4.1.2. Numerical test

In this part, we describe the test case used for validation. It consists in comparing a fixed obstacle in a mean flow

U0 = (0,1) and a moving obstacle which moves in the fluid domain with a velocity equal to US = (0,�1). Thus we obtain

two configurations:

	 configuration 1: ‘fixed’ with U0 = (0,1) and US = (0,0).

	 configuration 2: ‘moving’ with U0 = (0,0) and US = (0,�1),

which are equivalent in the continuous formulation due to Galilean invariance.

For both configurations, the resolution of the computation is equal to N = 5122 grid points and the time step is Dt = 10�4.

The penalization parameters are equal to gu = 10�4 and gh = 10�7 for the Eqs. (30) and (34), respectively. The kinematic vis-

cosity is set to m = 10�2. The initial condition for the passive scalar is a circular blob placed in the domain at (x,y) = (p,p/3). Its
characteristic radius is R = 0.7. The Schmidt number Sc = m/j is unity and the domain size is [0,2p] � [0,2p].

Figs. 13 and 14 show visualizations of vorticity, x =r � u, and the passive scalar field, h, for both configurations. Qual-

itatively, we observe the same results for the vorticity and the scalar. Moreover, for the scalar, oscillations with negatives

values are present inside the solid which illustrates the numerical artifact in the solid due to the penalization method. As

these values could be non-negligible, all the statistics of the scalar fluid are computed inside the fluid domain only and

not in the full domain.
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Fig. 15 presents the time evolution of the kinetic energy E = 1/2hu2i where h � i is the space average and of the enstrophy

Z = 1/2hx2i for both configurations (proportional to the energy dissipation). The curves of the two configurations collapse for

both, energy and enstrophy, which gives us a first indication on the validity of the method used to compute the flow around a

moving solid.

Fig. 16 shows the scalar variance r2(t) = h(h(t) � hh(t)ix)2if, the scalar dissipation rate K(t) = hjrh(t)j2if, and the scalar gra-

dient production CðtÞ ¼
R

Xf
cðx; tÞdx where the local scalar gradient production is c = 1/2jrhjscos2a and a is the angle be-

tween the scalar gradient and the eigenvector of the strain vector s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s21 þ s22

q

with s1 = @x u1 � @yu2, see, e.g., [31]. Note

that h � if denotes the spatial average computed only in the fluid domain. For both configurations, all three quantities do per-

fectly agree, which validates the method for moving solid obstacles, described by Eq. (34).

In the exact, continuous formulation the two cases are identical up to a change of the reference frame. However, the cor-

responding discretized problems are not algebraically equivalent.We shownow that both approximated solutions converge to

the same limit, which is taken from the fixed-cylinder case andwhich is assumed to be the reference solution of the continuous

problem. The numerical simulations are performed with three different spatial resolutions: N2 = 2562, 5122 and 10242.

Fig. 17 displays the difference between the ‘fixed’ and ‘moving’ cases for simulations with N2 = 10242. At t = 0 the fixed

and the moving cylinder are not in the same position with respect to the grid. Therefore the vorticity field of the moving

cylinder is interpolated on the grid of the fixed cylinder, and then the point-wise difference is calculated. This is shown

in the left panel of Fig. 17. The right panel shows a similar quantity calculated for the passive scalar. The maximum error

is localized near the solid for the vorticity and inside the solid for the scalar. Indeed for the scalar, the solution adapts itself

inside the solid to insure Neumann conditions and these numerical artifactis are advected with the solid, which explains why

the errors are concentrated inside the solid.

Fig. 18 displays the L1 and L2-norms of the difference of the vorticity fields for different resolutions. The values in the left

panel are calculated in the whole computational domain, containing thus both, the solid and the fluid. In the right panel the

contribution of the solid domain is excluded. The results show that the vorticity fields differ primarily inside the fluid do-

main. The difference is converging with the grid size with N�1 for both the L2 and L1-norms.

In contrast, the errors for the passive scalar, shown in Fig. 19, are only converging inside the fluid domain. The lack of

convergence inside the solid is explained by the different treatment of the advection term in the two cases. For the physical

interpretation of the results this is insignificant as only the scalar inside the fluid domain is considered.

4.2. Results for a dynamical mixer

In this part we present numerical simulations of flow with passive scalar in a simplified dynamical mixing device. The

study of such flows is relevant for many industrial applications for control and optimization, for example in chemical
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Fig. 13. (Color online) Snapshots of vorticity at different time instants for configuration ‘fixed’ (top) and ‘moving’ (bottom).
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reactors. As penalization methods are very flexible concerning the choice of geometries, these techniques could have some

impact on the optimization of industrial devices.

As computational domain, we consider a square with side length 2p and impose periodic boundary conditions. The fluid

domain is confined inside a disk of radius R = 2.8. The cross shaped rotor of the mixer is located in the center of the domain

and has four rectangular blades of size L = 1 and width W = 0.05. At t = 0 the fluid is at rest and the rotation of the blades

starts impulsively with angular velocity of _acg ¼ 1. The initial condition of the passive scalar is a Gaussian blob with a

characteristic size equal to Rb = 0.79. The blob is placed inside the domain at (x,y) = (p � 1.5,p). The viscosity and the

diffusivity are m = j = 10�4. The resolution is N = 10242.

Figs. 20 and 21 show respectively snapshots of vorticity and scalar fields for different time instants. The blades of the rotor

create vortices which are ejected from the blades because of the detachment of the boundary layer. Negative vortices are

created on the tips of the mixer and positive vortices are formed on the blades. Sometimes, two counter-rotative vortices

form a dipole which advances and crashes into the wall. We can observe that the scalar is advected by the mean rotation

and rolled-up by small vortices created by the blades which thus enhance the mixing.
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Fig. 14. Snapshots of the scalar fields at different time instants for the configuration ‘fixed’ (top) and ‘moving’ (bottom).
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Fig. 22 shows the time evolution of energy and enstrophy. The energy increases rapidly with oscillations and then fluc-

tuates around a constant value, while the enstrophy oscillates even more and then decays non-monotonically due to the vor-

ticity production at the boundaries.

Fig. 23 gives the time evolution of scalar variance and scalar dissipation rate. The scalar variance exhibits a strong de-

crease for small times while the decrease slows down for long times. The scalar dissipation rate confirms the previous fig-

ures, since this curve yields information on the slope of the scalar variance, it increases for small times and reaches a plateau,

and then, for long times, decreases and reaches another plateau.
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In conclusion, this example illustrates the flexibility and the potential of the volume penalization method for studying

turbulent mixing in complex and time varying geometries.

5. Conclusions

The volume penalization method is an immersed boundary method which enables to impose efficiently in Fourier

pseudo-spectral codes not only Dirichlet, but also Neumann boundary conditions. For the Neumann case we have shown
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theoretically and numerically, considering simple examples, that the exact solution of the penalized equation converges with
ffiffiffiffiffi

gh

p
to the exact solution of the equation satisfying Neumann boundary conditions. The convergence rate is thus the same as

for the volume penalization method imposing Dirichlet conditions [15]. However, in contrast to the Dirichlet case the main

advantage is that the penalization parameter gh can be chosen as small as desired without limiting the time step of the

numerical method while still using explicit time discretization. Thus the penalization error can be minimized without

imposing a stability limit to the numerical scheme. A drawback is the low regularity of the exact solution of the penalized

equation which determines the convergence rate of the spectral method. The considered examples showed convergence of

order O(N�1/2) and O(N�3/4) in one and two space dimensions, respectively.
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Nevertheless the method is robust and allows to simulate flows imposing no-slip walls for the fluid and no-flux condi-

tions for passive scalars in complexly shaped domains which even may vary in time. The volume penalization method is

an efficient way to implement Neumann boundary conditions into a Fourier pseudo-spectral solver, which is well optimized

using parallel fast Fourier transforms and widely used for turbulent flows. In addition no linear systems have to solved and

no additional numerical diffusion is added by the Fourier spectral discretization. The extension of the penalization method to

three-dimensional flows is straightforward and thus parallel computations of flows in complex domains are feasible using

available codes on massively parallel computers.

The further development of the volume penalization method for electrically conducting fluids is currently in progress.

First results for magnetohydrodynamic turbulence in confined domains are promising and can be found in [32].
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Appendix A. Summary of the proof for the convergence and error estimates theorem

In the following we present a short sketch of the proof of Theorem 2.1 which states convergence and error estimates of

the penalized solution for the unsteady advection–diffusion equation. Further details can be found in the manuscript [30].

The domain X 
 R
d (with d = 2 or 3) is considered to be an open bounded set, generally chosen convex and polygonal; its

boundary is denoted by C = @X. The boundaries of the disjoint subdomains, i.e., the fluid and solid domains, Xf and Xs,

respectively, are Lipschitz continuous.

We consider the following unsteady advection–diffusion equation

@thþ u �rh ¼ jr2
h for x 2 Xf ; t > 0 ðA:1Þ

completed with a homogeneous Neumann boundary condition, jr h � n = 0, for x 2 @Xf (where n denotes the outer normal

vector on @Xf) and a suitable initial condition, h(t = 0) = h0. The velocity u is supposed to be given and satisfies the incom-

pressible Navier–Stokes equations. In particular we have r � u = 0. The above problem is extended into the larger domain

X using the penalization technique, i.e., we consider Eq. (2), with penalization parameter gh.
The convergence proof and the derivation of the error estimates of the penalized problem can be sketched as follows: The

skew symmetry of the advection term, together with a weak formulation of the penalized problem in H1 allow to show the

coercivity of the elliptic operator. Then it can be verified that the assumptions of J.-L. Lions’ theorem for abstract parabolic

problems, see e.g. [Chap. 3.4 in J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, vol. 1, Dunod

(Paris), 1968.], are satisfied which ensures the existence and uniqueness of the solution of the weak penalized problem. The

error estimate of the homogeneous Neumann condition (
ffiffiffiffiffi

gh

p
) can be obtained from the energy estimate of the weak formu-

lation using Gronwall’s inequality. The error estimate (
ffiffiffiffiffi

gh

p
) in the solid domain Xs can then be directly deduced.

For the error estimate in the fluid domain Xf the situation is more complicated. Here the difference between the weak

penalized problem and the weak limit problem (gh? 0) is considered, which yields a weak equation for the error in the fluid

domain. Using a particular test function and the skew symmetry of the advection term it can be shown that the latter indeed

vanishes. Then applying successively different inequalities, i.e., the duality inequality, the trace inequality, mean Poincaré’s

and Cauchy–Schwarz inequalities, the time evolution of the error can be estimated and then bounded by applying Young’s

inequality. Integration of the estimate in time and using that the error of the initial condition vanishes, yields, by using the

error bound of the Neumann condition and by applying Gronwall’s inequality, the desired error estimate of order
ffiffiffiffiffi

gh

p
in Xf.
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