
ar
X

iv
:1

10
5.

46
73

v1
 [

m
at

h.
N

A
]

 2
4

M
ay

 2
01

1

Hierarchical fractional-step approximations and parallel

kinetic Monte Carlo algorithms

Giorgos Arampatzisa, Markos A. Katsoulakisb,∗, Petr Plecháčd, Michela
Taufer1, Lifan Xu1

aDepartment of Applied Mathematics, University of Crete and Foundation of Research and

Technology-Hellas, Greece
bDepartment of Mathematics and Statistics, University of Massachusetts at Amherst,

Amherst, MA 01003, USA
cDepartment of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA

dDepartment of Computer Science, University of Delaware, Newark, DE 19716, USA

Abstract

We present a mathematical framework for constructing and analyzing parallel
algorithms for lattice Kinetic Monte Carlo (KMC) simulations. The resulting
algorithms have the capacity to simulate a wide range of spatio-temporal scales
in spatially distributed, non-equilibrium physiochemical processes with complex
chemistry and transport micro-mechanisms. The algorithms can be tailored to
specific hierarchical parallel architectures such as multi-core processors or clus-
ters of Graphical Processing Units (GPUs). The proposed parallel algorithms
are controlled-error approximations of kinetic Monte Carlo algorithms, depart-
ing from the predominant paradigm of creating parallel KMC algorithms with
exactly the same master equation as the serial one.

Our methodology relies on a spatial decomposition of the Markov operator
underlying the KMC algorithm into a hierarchy of operators corresponding to
the processors’ structure in the parallel architecture. Based on this operator de-
composition, we formulate Fractional Step Approximation schemes by employ-
ing the Trotter Theorem and its random variants; these schemes, (a) determine
the communication schedule between processors, and (b) are run independently
on each processor through a serial KMC simulation, called a kernel , on each
fractional step time-window.

Furthermore, the proposed mathematical framework allows us to rigorously
justify the numerical and statistical consistency of the proposed algorithms,
showing the convergence of our approximating schemes to the original serial
KMC. The approach also provides a systematic evaluation of different processor
communicating schedules.We carry out a detailed benchmarking of the parallel
KMC schemes using available exact solutions, for example, in Ising-type systems

∗Corresponding author
Email addresses: garab@math.uoc.gr (Giorgos Arampatzis), markos@math.umass.edu

(Markos A. Katsoulakis), plechac@math.udel.edu (Petr Plecháč), taufer@cis.udel.edu
(Michela Taufer), xulifan@udel.edu (Lifan Xu)

Preprint submitted to Journal of Computational Physics November 28, 2021

http://arxiv.org/abs/1105.4673v1

and we demonstrate the capabilities of the method to simulate complex spatially
distributed reactions at very large scales on GPUs. Finally, we discuss work
load balancing between processors and propose a re-balancing scheme based on
probabilistic mass transport methods.

Keywords: Kinetic Monte Carlo method, Parallel Algorithms, Markov
semigroups, Operator Splitting, Graphical Processing Unit (GPU)

1. Introduction

Kinetic Monte Carlo algorithms have proved to be an important tool for the
simulation of out-of-equilibrium, spatially distributed processes. Such models
arise in physiochemical applications ranging from materials science and catal-
ysis, to complex biological processes. Typically the simulated models involve
chemistry and/or transport micro-mechanisms for atoms and molecules, e.g., re-
actions, adsorption, desorption processes and diffusion on surfaces and through
complex media, [19, 3, 7]. Furthermore, mathematically similar mechanisms
and corresponding Kinetic Monte Carlo simulations arise in agent-based, evo-
lutionary games problems in epidemiology, ecology and traffic networks, [35].

The simulation of stochastic lattice systems using Kinetic Monte Carlo (KMC)
methods relies on the direct numerical simulation of the underlying Continu-
ous Time Markov Chain (CTMC). Since such stochastic processes are set on a
lattice (square, hexagonal, etc.) ΛN with N sites, they have a discrete, albeit
high-dimensional, configuration space Σ and necessarily have to be of jump type
describing transitions between different configurations σ ∈ Σ. Mathematically,
CTMC are defined in terms of the transition rates c(x, ω;σ) which correspond
to an updating micro-mechanism that describes completely the evolution of the
stochastic process as a transition from a current configuration σ of the system
to a new configuration σx,ω by performing an update in a neighborhood of the
site x ∈ ΛN . In other words the probability of a transition over an infinitesimal
time interval δt is P (Stδt = σx,ω |St = σ) = c(x, ω;σ)δt + o(δt2). In turn, the
transition rates define the total rate

λ(σ) =
∑

x∈ΛN

∑

ω∈Sx

c(x, ω;σ) , (1)

which is the intensity of the exponential waiting time for a jump to be performed
when the system is currently at the state σ. Here ω ∈ Sx, where Sx is the set
of all possible configurations that correspond to an update at a neighborhood
Ωx of the site x. Once this exponential “clock” signals a jump, then the system
transitions from the state σ to a new configuration σx,ω with probability

p(σ, σx,ω) =
c(x, ω;σ)

λ(σ)
. (2)

Thus the full stochastic evolution is completely defined. We refer to the discus-
sion in Section 2 for a complete mathematical description of the KMC method.

2

The implementation of this method is based on efficient calculation of (1) and
(2), and was first developed in [6], known as a BKL Algorithm, for stochas-
tic lattice Ising models, and in [11] known as Stochastic Simulation Algorithm
(SSA) for reaction systems. However, as it is evident from formulas (1) and (2),
the algorithms are inherently serial as updates are done at one site x ∈ ΛN at
a time, while on the other hand the calculation of (1) depends on information
from the entire spatial domain ΛN . For these reasons it seems, at first glance,
that KMC algorithms cannot be parallelized easily.

However, Lubachevsky, in [22], proposed an asynchronous approach for par-
allel KMC simulation in the context of Ising systems, in the sense that different
processors simulate independently parts of the physical domain, while inconsis-
tencies at the boundaries are corrected with a series of suitable rollbacks. This
method relies on uniformization of the total rates over each processor, see also
[13] for the use of uniformization in the parallel simulation of general CTMC.
Thus the approach yields a null-event algorithm, [19], which includes rejected
moves over the entire domain of each processor. Furthermore, Lubachevsky
proposed a modification in order to incorporate the BKL Algorithm in his par-
allelization method, which was implemented and tested in [17]. This is a par-
tially rejection-free (still asynchronous) algorithm, where BKL-type rejection-
free simulations are carried out in the interior of each processor, while uniform
rates were used at the boundary, reducing rejections over just the boundary set.
However, in spite of the proposed improvements, these asynchronous algorithms
may still have a high number of rejections for boundary events and rollbacks,
which considerably reduce the parallel efficiency, [33]. Advancing processors in
time in a synchronous manner over a fixed time-window can provide a way to
mitigate the excessive number of boundary inconsistencies between processors
and ensuing rejections and rollbacks in earlier methods. Such synchronous par-
allel KMC algorithms were proposed and extensively studied in [9, 33, 25, 28].
However, several costly global communications are required at each cycle be-
tween all processors, whenever a boundary event occurs in any one of them, in
order to avoid errors in the inter-processor communication and rollbacks, [28].

As we will discuss further in this paper, many of the challenges in paral-
lel KMC can be addressed by abandoning the earlier perspective on creating a
parallel KMC algorithm with the exactly same rates (and hence the generator
and master equation) as the serial algorithm, see [24] for a discussion on exact
algorithms. This is a very natural idea in the numerical analysis of contin-
uum models such as Ordinary and Partial Differential Equations (ODE/PDE).
First, in [34] the authors propose an approximate algorithm, in order to cre-
ate a parallelization scheme for KMC. It was recently demonstrated [28, 4],
that this method is very promising: boundary inconsistencies are resolved in a
straightforward fashion, while there is an absence of global communications in
contrast to synchronous relaxation schemes discussed earlier. Finally, we note
that, among the parallel algorithms tested in [28], the approximate algorithm
had the highest parallel efficiency.

Here we develop a general mathematical framework for parallelizable ap-
proximations of the KMC algorithm.Our approach relies on first developing a

3

spatial decomposition of the Markov operator, that defines the Kinetic Monte
Carlo algorithm, into a hierarchy of operators. The decomposition is tailored
to the processor architecture. Based on this operator decomposition, we for-
mulate Fractional Step Approximation schemes by employing the Trotter prod-
uct formula. In turn these approximating schemes determine Communication
Schedule between processors through the sequential application of the operators
in the decomposition, and the time step employed in the particular fractional
step scheme. Here we discuss deterministic schedules resulting from Lie- and
Strang-type fractional step schemes, as well as random schedules derived by the
Random Trotter Theorem, [18]. We show that the scheme in [34] is a particu-
lar case of a random schedule and can be mathematically analyzed within the
proposed framework.We recall that the deterministic Trotter Theorem was first
proved in [36] for the approximation of semigroups corresponding to operator
sums, and it has found wide application in the numerical ODE/PDE analysis,
e.g., [12].

In Section 2 we show that the Fractional Step KMC schemes allow us to
run independently on each processor a serial KMC simulation (called a kernel)
on each fractional time-step window. Furthermore, processor communication is
straightforward at the end of each fractional time-step while no global commu-
nications or rollbacks are involved. In Section 5 we show that the hierarchical
structure of our methodology can be easily implemented for very general phys-
iochemical processes modeled by lattice systems, allowing users to input as the
algorithm’s KMC kernel their preferred serial algorithm. This flexibility and
hierarchical structure are key advantages for tailoring our framework to partic-
ular parallel architectures with complex memory and processor hierarchies, e.g.,
clusters of GPUs.

The proposed mathematical framework allows us to rigorously prove the
numerical and statistical consistency of the proposed algorithms, while on the
other hand it provides a systematic evaluation of different processor communi-
cation schedules. Indeed, in Section 3 the numerical and statistical consistency
of the proposed algorithms is rigorously justified by the Trotter Theorem, [36],
[12] showing the convergence of our approximating schemes to the original serial
KMC algorithm, interpreted as convergence to the underlying Markov opera-
tor. Using the Random Trotter Theorem [18] we show that the approximation
schemes with a random schedule, including the one in [34] as a special case, are
numerically consistent in the approximation limit; that is, as the time step in
the fractional step scheme converges to zero, it converges to a continuous time
Markov Chain that has the same master equation and generator as the original
serial KMC. In Section 4 we show that the proposed mathematical framework
can allow the study of controlled-error approximation properties of Fractional
Step KMC schemes, as well as the systematic evaluation of different processor
communicating schedules, comparing for instance the scheme in [34] to the Lie
scheme (12).

Finally, in Section 6 we discuss work-load balancing between processors and
propose a re-balancing scheme based on probabilistic mass transport methods,
[10], which is particularly well-suited for the proposed fractional step KMC

4

methods. In Section 7 we present detailed benchmarking of the proposed parallel
algorithms using analytically available exact solutions, for instance, in Ising-type
systems and demonstrate the capabilities of the method to simulate complex
spatially distributed molecular systems, such as CO oxidation on a catalytic
surface.

2. Fractional Step Kinetic Monte Carlo Algorithms

We first present the mathematical background of KMC in a more abstract
way in order to demonstrate the generality and the applicability of the proposed
method. We consider a d-dimensional lattice ΛN with N lattice sites. We
restrict our discussion to lattice gas models where the order parameter or the
spin variable takes value in a finite countable set Σ = {0, 1, . . . ,K}. At each
lattice site x ∈ ΛN an order parameter (a spin variable) σ(x) ∈ Σ is defined.
The states in Σ correspond to occupation of the site x ∈ ΛN by different species.
For example, if Σ = {0, 1} the order parameter models the classical lattice gas
with a single species occupying the site x when σ(x) = 1 and with the site being
vacant if σ(x) = 0. We denote {St}t≥0 the stochastic process with values in the
configuration space S = ΣΛN .

Our primary focus is on modeling the basic processes of adsorption, desorp-
tion, diffusion and reactions between different species. Thus the local dynamics
is described by a collection of the transition rates c(x, ω;σ) and by an updat-
ing mechanism such that the configuration σ of the system changes into a new
configuration σx,ω by an update in a neighborhood of the site x ∈ ΛN . Here
ω ∈ Sx, where Sx is the set of all possible configurations that correspond to an
update at a neighborhood Ωx of the site x. For example, if the modeled process
is a diffusion of the classical lattice gas a particle at x, i.e., σ(x) can move to
any nearest neighbor of x, i.e., Ωx = {y ∈ ΛN | |x− y| = 1} and Sx is the set of
all possible configurations Sx = ΣΩx . In other words the collection of measures
c(x, ω;σ) defines the transition probability from σ to σx,ω over an infinitesimal
time interval δt. More precisely, the evolution of the system is described by a
continuous time Markov jump process with the generator L : Cb(S) → Cb(S)
acting on continuous bounded test functions f ∈ Cb(S) according to

Lf(σ) =
∑

x∈ΛN

∑

ω∈Sx

c(x, ω;σ)[f(σx,ω)− f(σ)] . (3)

We recall that the evolution of the expected value for an arbitrary observable
f ∈ Cb(S) is given by the action of the Markov semigroup etL associated with
the generator L and the process {St}t≥0

〈etLµ0, f〉 = ES0 [f(St)] , (4)

where µ0 is the initial distribution of the process, i.e. of the random variable
S0, [20]. Practically, the sample paths {St}t≥0 are constructed via KMC, that
is through the procedure described in (1) and (2).

5

To elucidate the introduced notation we give a few examples relevant to
the processes modeled here. We refer, for instance, to [19, 3, 7] for a complete
discussion of the physical processes.

Examples.

1. Adsorption/Desorption for single species particles. In this case spins take
values in σ(x) ∈ Σ = {0, 1}, Ωx = {x}, Sx = {0, 1} and the update
represents a spin flip at the site x, i.e., for z ∈ ΛN

σx,ω(z) ≡ σx(z) =

{

σ(z) if z 6= x,

1− σ(x) if z = x.

2. Diffusion for single species particles. The state space for spins is σ(x) ∈
Σ = {0, 1}, Ωx = {y ∈ ΛN | |x − y| = 1} includes all nearest neighbors
of the site x to which a particle can move. Thus the new configuration
σx,ω = σ(x,y) is obtained by updating the configuration St = σ from the
set of possible local configuration changes {0, 1}Ωx using the specific rule,
also known as spin exchange, which involves changes at two sites x and
y ∈ Ωx

σx,ω(z) ≡ σ(x,y)(z) =











σ(z) if z 6= x, y,

σ(x) if z = y,

σ(y) if z = x.

The transition rate is then written as c(x, ω;σ) = c(x, y;σ). The result-
ing process {St}t≥0 defines dynamics with the total number of particles
(
∑

x∈ΛN
σ(x)) conserved, sometimes referred to as Kawasaki dynamics.

3. Multicomponent reactions. Reactions that involves K species of particles
are easily described by enlarging the spin space to Σ = {0, 1, . . . ,K}. If
the reactions occur only at a single site x, the local configuration space
Sx = Σ and the update is indexed by k ∈ Σ with the rule

σx,ω(z) ≡ σ(x,k)(z) =

{

σ(z) if z 6= x, y,

k if z = x.

The rates c(x, ω;σ) ≡ c(x, k;σ) define probability of a transition σ(x) to
species k = 1, . . . ,K or vacating a site, i.e., k = 0, over δt.

4. Reactions involving particles with internal degrees of freedom. Typically
a reaction involves particles with internal degrees of freedom, and in this
case several neighboring lattice sites may be updated at the same time,
corresponding to the degrees of freedom of the particles involved in the
reaction. For example, in a case such as CO oxidation on a catalytic
surface, [21], when only particles at a nearest-neighbor distance can react
we set σ(x) ∈ Σ = {0, 1, . . . ,K}, Ωx = {y ∈ ΛN | |x− y| = 1} and the set

6

of local updates Sx = ΣΩx . Such Sx contains all possible reactions in a
neighborhood of x. When reactions involve only pairs of species, the rates
can be indexed by k, l ∈ Σ, or equivalently Sx = Σ×Σ. Then the reaction
rate c(x, ω;σ) = c(x, y, k, l;σ) describes the probability per unit time of
σ(x) → k at the site x and σ(y) → l at y, i.e., the updating mechanism

σx,ω(z) ≡ σ(x,y,k,l)(z) =











σ(z) if z 6= x, y,

k if z = x,

l if z = y,

where |x− y| = 1.

2.1. Hierarchical structure of the generator

The generator of the Markov process {St}t≥0 given in a general form in (3) is
our starting point for the development of parallel algorithms based on geometric
partitioning of the lattice. The lattice ΛN is decomposed into non-overlapping
cells Cm, m = 1, . . . ,M such that

ΛN =

M
⋃

m=1

Cm , Cm ∩ Cn = ∅ , m 6= n . (5)

With each set Cm a larger set C̄m is associated by adding sites to Cm which
are connected with sites in Cm by interactions or the updating mechanism, see
Figure 1(a). More precisely, we define the range of interactions L for the set
Cm and the closure of this set

C̄m = {z ∈ ΛN | |z − x| ≤ L , x ∈ Cm} , where L = max
x∈Cm

{diamΩx} .

In many models the value of L is independent of x due to translational invariance
of the model. The boundary of Cm is then defined as ∂Cm = C̄m ∩ Cm. This
geometric partitioning induces a decomposition of the generator (3)

Lf(σ) =
∑

x∈ΛN

∑

ω∈Sx

c(x, ω;σ)[f(σx,ω)− f(σ)] (6)

=

M
∑

m=1

∑

x∈Cm

∑

ω∈Sx

c(x, ω;σ)[f(σx,ω)− f(σ)] (7)

=
M
∑

m=1

Lmf(σ) . (8)

The generators Lm define new Markov processes {Sm
t }t≥0 on the entire lattice

ΛN .

Remark: In many models the interactions between particles are of the two-
body type with the nearest-neighbor range and therefore the transition rates

7

c(x, ω;σ) depend on the configuration σ only through σ(x) and σ(y) with |x−
y| = 1. Similarly the new configuration σx,ω involve changes only at the sites
in this neighborhood. Thus the generator Lm updates the lattice sites at most
in the set C̄m = {z | |x − z| = 1 , x ∈ Cm}, see Figure 1(a). Consequently the
processes {Sm

t }t≥0 and {Sm′

t }t≥0 corresponding to Lm and Lm′ are independent
provided C̄m ∩ C̄m′ = ∅.

Therefore, splitting (6) allows us to define independent processes which yields
an algorithm suitable for parallel implementation, in particular, in the case
of short-range interactions when the communication overhead can be handled
efficiently. If the lattice ΛN is partitioned into subsets Cm such that the diameter
diamCm > L, where L is the range of interactions, we can group the sets
{Cm}Mm=1 in such a way that there is no interaction between sites in the sets
Cm that belong to the same group. For the sake of simplicity we assume that
the lattice is divided into two sub-lattices described by the index sets IE and
IO, (black vs. white in Fig. 1(a)), hence we have

ΛN = ΛE
N ∪ ΛO

N :=
⋃

m∈IE

CE
m ∪

⋃

m∈IO

CO
m . (9)

Other lattice partitionings are also possible and may be more suitable for specific
micro-mechanisms in the KMC or the computer architecture. Choice of the
partitioning scheme can reduce communication overhead, see for instance [34].
For the sake of simplicity in the presentation, here we consider the partitioning
depicted in (9) and Fig. 1(a), although our mathematical framework applies to
any other sublattice decomposition. Returning to (9), the sub-lattices induce a
corresponding splitting of the generator:

L = LE + LO :=
∑

m∈IE

LE
m +

∑

m∈IO

LO
m . (10)

This simple observation has key consequences for simulating the process {St}t≥0

in parallel, as well as formulating different related algorithms: the processes
{Sm

t }t≥0 corresponding to the generators LE
m are mutually independent for dif-

ferent m ∈ IE , and thus can be simulated in parallel; similarly we can handle
the processes belonging to the group indexed by IO. However, there is still com-
munication between these two groups as there is non-empty overlap between the
groups due to interactions and updates in the sets ∂Cm, ∂C′

m when m ∈ IE and
m′ ∈ IO and the cells are within the interaction range L. To handle this com-
munication we next introduce a Fractional Step approximation of the Markov
semigroup etL associated with the process {St}t≥0.

2.2. Fractional Step Kinetic Monte Carlo Algorithms

The deterministic Trotter Theorem was first proved in [36] for the approx-
imation of semigroups corresponding to operator sums, and it has found wide
application in the numerical ODE/PDE analysis, e.g., [12]. Similarly, the key

8

(a) (b)

Figure 1: (a) Lattice decomposition in (9) using the checkerboard scheme mapped onto a single
multi-threading processing unit (e.g., GPU). The integer cell coordinates also indicate com-
munication through boundary buffer regions. In practice other partitionings may result in a
lower communication overhead. (b) Hierarchical lattice partitioning on a cluster of processing
units.

9

tool for our analysis is a deterministic as well as a stochastic version of the
Trotter formula, [18], applied to the operator L = LE + LO

etL = lim
n→∞

[

e
t
n
LE

e
t
n
LO

]n

. (11)

The proposed parallel scheme uses the fact that the action of the operator LE

(and similarly of LO) can be distributed onto independent processing units.
Thus to reach a time T we define a time step ∆t = T

n for a fixed value of n and
alternate the evolution by LE and LO. More precisely, (11) gives rise to the Lie
splitting approximation for n ≫ 1:

eTL ≈
[

e
T
n
LE

e
T
n
LO

]n

. (12)

Since the simulated systems exhibit short-range interactions, the generators
LE
k ,L

E
l commute for k, l ∈ IE , k 6= l:

LE
k L

E
l − LE

l L
E
k = 0 , for all k, l ∈ IE , k 6= l .

Hence, [36], we have the exact formula

e∆tLE

e∆tLO

=
∏

m∈IE

e∆tLE
m

∏

m∈IO

e∆tLO
m . (13)

Then the expression (13) implies that the KMC solvers corresponding to the

semigroup e∆tLE

(resp. e∆tLO

) can be simulated exactly by breaking down
the task into separate processors/threads for each m ∈ IE (resp. m ∈ IO).
Therefore, this scheme allows us to run independently on each fractional time-
step window ∆t, and on every processor, a serial KMC simulation, called a
kernel . The resulting computational framework consisting of the hierarchical
decomposition (10) and (12) permits to input as the algorithm’s kernel any
preferred optimized serial KMC algorithm.

A single time step of the parallel algorithm is thus easily described in the
following stages:

Step 1–Evolution by LE: Simulate independent Markov processes {Sm
t }t≥0,

m ∈ IE by a kinetic Monte Carlo kernel running on non-communicating
processors that correspond to each Cm for time ∆t.

Step 2–Local Synchronization: communicate configurations σE from over-
lapping domains C̄E

m ∩ C̄O
n in order to update configurations σO.

Step 3–Evolution by LO: Simulate independent Markov processes {Sm
t }t≥0,

m ∈ IO by a KMC kernel on non-communicating processors that corre-
spond to each Cm for time ∆t.

We emphasize that the resulting process {S̃t}t≥0 is an approximation of the
process {St}t≥0 and we discuss it’s features and properties in the next two
sections.

10

3. Processor Communication Schedule and Random Trotter Products

A key feature of the fractional step methods is the Processor Communication
Schedule (PCS) that dictates the order with which the hierarchy of operators in
(6) are applied and for how long. For instance, in (12) the processors correspond-
ing to LE (resp. LO) do not communicate, hence the processor communication

within the algorithm occurs only each time we have to apply e
T
2nLE

or e
T
2nLO

.
Therefore we can define as the PCS the (deterministic) jump process X = X(t),
t ∈ [0, T], where [0, T] is the simulated time window and taking values in the
set X = {1, 2}, where we assign the value 1 (resp. 2) to O (resp. E):

X(t) = 1 ,
2kT

n
≤ t <

(2k + 1)T

n
, (14)

X(t) = 2 ,
(2k + 1)T

n
≤ t <

(2k + 2)T

n
. (15)

for all k = 0, . . . , n− 1. Processor communication occurs at jump times, while
in the remaining time the processors operate independently and do not com-
municate. In an analogous way we can define the PCS for the Strang splitting
scheme (16),

eTL ≈
[

e
T
2nLE

e
T
n
LO

e
T
2nLE

]n

, (16)

with the scheduling process

X(t) = 1 ,
2kT

2n
≤ t <

(2k + 1)T

2n
, (17)

X(t) = 2 ,
(2k + 1)T

2n
≤ t <

(2k + 3)T

2n
, (18)

X(t) = 1 ,
(2k + 3)T

2n
≤ t <

(2k + 4)T

2n
, (19)

for all k = 0, . . . , n− 1.

3.1. Random Fractional Step Methods

In both cases above (12) and (16), the communication schedule is fully de-
terministic, relying on the Trotter Theorem (11). On the other hand, we can
construct stochastic PCS based on the Random Trotter Product Theorem, and
as we show below the sub-lattice algorithm proposed in [34] is a fractional step
algorithm with stochastic PCS.

The Random Trotter Product Theorem, [18], extends (11) as follows: We
consider a sequence of semigroups eTLξ with corresponding operators Lξ where
ξ is in the index set X , assuming for simplicity X is finite, although a much
more general setting is possible, (25). Consider also a stochastic jump process
X = X(t) with X as its state space. For each of its trajectories we denote by
ξ0, ξ1, ...ξn the (typically random) sequence of states visited by the stochastic

11

process X(t) and τ0, τ1, . . . , τn the corresponding (also typically random) jump
times

X(t) = ξ0 , 0 ≤ t < τ0 , (20)

X(t) = ξ1 , τ0 ≤ t < τ1 , (21)

... (22)

X(t) = ξk , τk−1 ≤ t < τk . (23)

We additionally define as N(t) the number of jumps up to time t. We assume
that X(t) is selected so that it has an ergodic behavior, i.e., there is a probability
measure µ(dξ) such that for all bounded functions g we have that

lim
t→∞

1

t

∫ t

0

g(X(s)) ds =

∫

g(ξ)µ(dξ) . (24)

For example, if X(t) is a Markov process then under suitable conditions, (24)
will hold, where µ will be the stationary distribution of X(t), [20]. Conversely, it
is well-known that for a given µ we can construct in a non-unique way Markov
processes X(t) which satisfy the condition (24), [20]. Now we can state the
Random Trotter Product Theorem, [18], in analogy to (11):

eT L̄ = lim
n→∞

[

e
τ0
n
Lξ0 e

τ1−τ0
n

Lξ1 . . . e
nT−τN(nt)

n
LξN(nt)

]

, (25)

where the operator L̄ is defined on any bounded function as

L̄g =

∫

Lξµ(dξ) . (26)

It is clear that (12) is a special case of (25) when τk − τk−1 = 1 and ξ2k = 1,
ξ2k+1 = 2 for all k. Similarly, we can also view (16) as a deterministic analogue
of (25).

On the other hand, in the context of the parallel fractional step algorithms
for KMC introduced here, the random process (20) can be interpreted as a
stochastic PCS. For example, the sub-lattice (SL) parallelization algorithm for
KMC, introduced in [34], is a fractional step algorithm with stochastic PCS:
indeed, in this method the lattice is divided into sub-lattices, for instance as
in (9), ΛN = ΛE

N ∪ ΛO
N . Each sub-lattice is selected at random and advanced

by KMC over a fixed time window ∆t. Then a new random selection is made
and again the sub-lattice is advanced by ∆t, and so on. The procedure is
parallelizable as cells CE

m, CO
m within each sub-lattice do not communicate. This

algorithm is easily recast as a fractional step approximation, when in (20) we
select deterministic jump times τk and random variables ξk:

τk − τk−1

n
= ∆t , and P (ξk = 1) = P (ξk = 2) =

1

2
. (27)

12

As in (14), here we assign the value 1 (resp. 2) to the O (resp. E) sub-lattice.
Furthermore, we can easily calculate (26) to obtain

L̄g =
1

2

(

LE + LO
)

,

which is just a time rescaling of the original operator L. Thus the SL algorithm
is rewritten as the fractional step approximation with the stochastic PCS (27)
as

eT L̄ ≈ e
τ0
n
Lξ0 e

τ1−τ0
n

Lξ1 . . . e
nT−τN(nt)

n
LξN(nt) . (28)

From the numerical analysis viewpoint, our re-interpretation of the SL algorithm
in [34] as a fractional step scheme allows us to also provide a mathematically
rigorous justification that it is a consistent estimator of the serial KMC algo-
rithm, due to the Random Trotter Theorem (25). That is, as the time step in
the fractional step scheme converges to zero, it converges to the continuous time
Markov Chain that has the same master equation and generator as the original
serial KMC. Finally, the (deterministic) Trotter Theorem (11) also implies that
the Lie and the Strang schemes are, in the numerical analysis sense, consistent
approximations of the serial KMC algorithm.

4. Controlled Error Approximations of KMC

In this section we present a formal argument for the error analysis of the
fractional step approximations for KMC, which suggests the order of conver-
gence of the schemes, as well as the restrictions on the Fractional Step KMC
time step ∆t.In the decomposition (10) the operators are linear operators on
the high, but finite-dimensional configuration space S, hence by the standard
error analysis of splitting schemes, see [12], we have

e∆tL − e∆tLE

e∆tLO

= [LELO − LOLE]
(∆t)2

2
+O(∆t3) , (29)

where we readily see that the term [LE ,LO] := LELO−LOLE is the Lie bracket
(commutator) of the operators LE , LO. This Lie bracket captures the effect of
the boundary regions C̄E

m∩C̄O
n through which we have processor communication:

if there was no communication the Lie bracket would be exactly zero.
Furthermore, instead of (12) we can consider the Strang-type splitting (16).

As in the ODE case, [12], this is expected to yield a higher order error term
O(∆t3) instead of the second order approximation in (29), in the following sense:

e∆tL − e
∆t
2 LE

e∆tLO

e
∆t
2 LE

=
{ 1

12
[LO, [LO,LE]]

−
1

24
[LE , [LE ,LO]]

}

(∆t)3 +O(∆t4) . (30)

Such calculations suggest that the Strang splitting leads to a more accurate
scheme, which is balanced by more complicated boundary local communication
in the same time window ∆t, as is evident when comparing (12) and (16).

13

Next, we briefly comment on the error estimation suggested by the calcula-
tion (29) and return to the rigorous numerical analysis in [1]. In order to obtain
an estimate in the right-hand side of (29) which is independent of the system
size N , it is essential to obtain an upper bound on the total number of jumps
up to the time T . This is a key point related to the extensivity of the system
and to the fact that the weak error analysis is restricted (as it should be physi-
cally) to mesoscopic observables satisfying (44). We observe the dependence of
the error on mesoscopic observables in the following subsection. In the context
of coarse-graining, in [15] an analogous estimate was shown rigorously using a
Bernstein-type argument applied to the discrete derivatives, in the spirit of (44),
of the solutions to the backward Kolmogorov equation. We refer to such bounds
as “Bernstein-like” due to their similarity to gradient estimates for linear and
nonlinear parabolic PDEs.

4.1. Error Analysis and comparison between random and deterministic PCS

In this section we further demonstrate the use of the operator splitting for-
mulation as a numerical analysis tool by comparing the time-step of ∆t the
random PCS introduced in [34] to the deterministic Lie PCS introduced in
(12). A similar comparison can be made for the Strang scheme (16). A detailed
discussion including rigorous error estimates for mesoscopic observables such as
(44), which are independent of the lattice size N will be discussed in [1].

Here we focus on the example of adsorption/desorption discussed in Section
2. The generator in the one space dimension is decomposed as in (10)

LEf(σ) =
∑

x∈Λ

cE(x, σ)
(

f(σx)− f(σ)
)

,

and
LOf(σ) =

∑

x∈Λ

cO(x, σ)
(

f(σx)− f(σ)
)

,

where

cE(x, σ) =

{

c(x, σ), x ∈ ΛE
N

0, otherwise
cO(x, σ) =

{

c(x, σ), x ∈ ΛO
N

0, otherwise

and the sub-lattices ΛE
N ,ΛO

N are defined in (9). The rates c(x, σ) of the cor-
responding generator (3) for the case of Arrhenius adsorption/desorption are
given by

c(x, σ) = ca(1− σ(x)) + cdσ(x) exp
(

− βU(x, σ)
)

, (31)

where ca and cd are the adsorption and desorption constants respectively, [7].
The desorption potential U = U(x, σ) is defined as

U(x, σ) =
∑

y 6=x

J(x − y)σ(y) , (32)

where J = J(x− y) is the lateral interaction potential; for simplicity we assume
that the range of interactions is L, while in typical simplified nearest neighbor

14

models L = 1. Similarly we define diffusion dynamics with Arrhenius dynamics,
[14].

First we discuss the error analysis for the Lie splitting scheme. For given
finite lattice size N , in the decomposition (10) the operators are linear oper-
ators on the high, but finite-dimensional configuration space S, hence by the
standard error analysis of Lie splitting schemes, we obtain (29). A more careful
study of the commutator reveals that the generator decomposition (10) induces
significant cancellations in the evaluation of the generator: indeed, we define

Co
m = Cm \ ∂Cm , Cm = Co

m ∪ C∂
m ,

where in Section 2 we introduced ∂Cm = C̄m∩Cm and C̄m = {z ∈ ΛN | |z−x| ≤
L , x ∈ Cm} . Thus, in (10) we obtain the further decomposition

LE = LE,o + LE,∂ :=
∑

m∈IE

LE,o
m + LE,∂

m , (33)

where LE,o
m ,LE,∂

m is the restriction of LE on Co
m and C∂

m respectively. Analo-
gously we define LO = LO,o + LO,∂ . We now return to the evaluation of the
commutator

[LE ,LO] = [LE,∂ ,LO,∂] + [LE,o,LO,o] + [LE,∂ ,LO,o] + [LE,o,LO,∂] . (34)

However, due to the lack of communication between generators beyond the
interaction range, we have that

[LE,o,LO,o] = 0 , [LE,∂ ,LO,o] = 0 , [LE,o,LO,∂] = 0 ,

thus we readily get

[LE ,LO] = [LE,∂ ,LO,∂] =
∑

m∈IE

∑

l∈IO

|l−m|=1

[LE,∂
m ,LO,∂

l] . (35)

The formula (35) captures the processor communication between boundary re-
gions of C̄E

m, C̄O
n . But more importantly, when combined with (29), it suggests

the limitations on the time window ∆t of the Lie scheme (12), denoted for dif-
ferentiation by ∆tLie, in order to obtain a given error tolerance TOL. In that
sense it is useful to obtain an upper bound on (35). Indeed, we readily obtain:

[LE ,LO]f(σ) =
∑

m∈IE,l∈IO

|l−m|=1

∑

x,y

[

cE(x, σ)cO(y, σx)− cE(x, σy)cO(y, σ)
]

f
(

(σx)y
)

−
∑

x,y

cE(x, σ)
[

cO(y, σx)− cO(y, σ)
]

f(σx)

−
∑

x,y

cO(y, σ)
[

cE(x, σ) − cE(x, σy)
]

f(σy) (36)

15

where all summations are over x ∈ CE,∂
m , y ∈ C

O,∂
l . For mesoscopic observables,

such as the mean coverage f(σ) = 1
N

∑

x∈Λ σ(x) we obtain

[LE ,LO]f(σ) =
∑

m∈IE,l∈IO

|l−m|=1

∑

x,y

cO(y, σ)
[

cE(x, σ) − cE(x, σy)
]1− 2σ(x)

N

+
∑

x,y

cE(x, σ)
[

cO(y, σx)− cO(y, σ)
]1− 2σ(y)

N
,

(37)

where all summations are over x ∈ CE,∂
m , y ∈ C

O,∂
l . Therefore, due to the

cancellation of all interior components LE,o,LO,o in (35), we obtain the bound
for the case of the interaction range L = 1,

|[LE ,LO]f(σ)| ∼ O
(M · L

N

)

= O
(1

q

)

, (38)

where q is the size of each cell Cm, and O(1) depends on the physical parameters
in the rate (31). The local error analysis in (29), (38) can be propagated up to a
prescribed time T = NLie∆tLie Therefore, for the simulation of the mesoscopic
observable f up to the time T within a given error tolerance TOL, (29) and
(38) give the observable-dependent relation for the Lie time step

TOL ∼ T · |[LE ,LO]f(σ)|∆tLie ∼ T ·O
(1

q

)

∆tLie (39)

Next, using the fractional step formulation, we analyze in the same spirit
as for the Lie scheme, the random PCS (27) proposed in [34]. For notational
simplicity we set A1 = LO, A2 = LE . Then the local error operator E∆t can
also be calculated as in (29):

Local Error = E∆t :=e∆tAξ1 e∆tAξ2 − e∆t(A1+A2)

=
(

I + (Aξ1 +Aξ2)∆t+
1

2
(A2

ξ1 + 2Aξ1Aξ2 +A2
ξ2)∆t2

)

−

(

I + (A1 +A2)∆t+
1

2
(A1 +A2)

2∆t2
)

+O(∆t3) (40)

The mean value of the error over the sequence of independent random variables
ξ = (ξi , i = 1, ..., n) of the PCS (27) on an observable f = f(σ) , s ∈ S can be
explicitly evaluated:

Eξ[E
∆tf] =

1

4
(A1 −A2)

2f∆t2 +O(∆t3) =
1

4
(LE − LO)2f∆t2 +O(∆t3) .

As in (38), for the mesoscopic observable f(σ) = 1
N

∑

x∈Λ σ(x), we obtain, after
disregarding the higher order local error O(∆t3),

(LE − LO)2f(σ) ∼ O(1) , (41)

16

where O(1) depends on the physical parameters in the rate (31). Similarly to
(39), for the simulation of the mesoscopic observable f up to the same prescribed
time T = NRandom∆tRandom, within the same error tolerance TOL, (29) and
(41) give the observable-dependent relation for the random PCS time step

TOL ∼ T · |(LE − LO)2f(σ)|∆tRandom ∼ T ·O(1)∆tRandom (42)

Comparing the random and the Lie PCS through (39) and (42) implies that in
order the two schemes to conform (in the mean) to the same tolerance TOL,
their respective time steps should be selected so that

∆tLie ∼ O(q)∆tRandom (43)

This relation in turn suggests that the Lie scheme (12) is expected to parallelize
better than the random PCS (27) since it allows a q-times larger time step ∆t

for the same accuracy, keeping in mind that during each time step processors
do not communicate.

A similar analysis is possible for general mesoscopic observables f = f(σ) , s ∈
S, e.g., spatial correlations, that satisfy

∑

x∈ΛN

|f(σx)− f(σ)| ≤ C (44)

where C is a constant independent of N , see the formulation and estimates for
coarse-grained stochastic systems in [15]. We revisit this issue, as well as the rig-
orous derivation of N -independent error bounds in place of the expansions (29),
(30) in the upcoming publication [1]. Such estimates can also allow a detailed
analysis on the balance between accuracy and local processor communication
for PCS such as (12), (16) and (27).

5. Hierarchical structure of Fractional Step algorithms and imple-

mentation on GPUs

The fractional step framework allows a hierarchical structure to be easily
formulated and implemented, which is a key advantage for simulating in par-
allel architectures with complex memory hierarchies and processing units. The
Graphical Processing Unit (GPU) architecture is inherently different from a tra-
ditional CPU architecture. GPUs are massively parallel multi-threaded devices
capable of executing a large number of active threads concurrently. A GPU
consists of multiple streaming multiprocessors (MP), each of which contains
multiple scalar processor cores. For example, NVIDIA’s C2050 GPU architec-
ture contains 14 such multiprocessors, each of which contains 32 cores, for a
total of 448 cores which can handle up to 24k active threads in parallel. A GPU
has several types of memory which are differently organized compared to the
traditional hierarchical CPU memory, most notably the main device memory
(global memory) shared between all the multiprocessors and the on-chip mem-
ory shared between all cores of a single multiprocessor (shared memory). The

17

memory sizes and access speeds depend on the type of GPU. For instance, the
memory size of the NVIDIA C2050 GPU is 3GB while the memory size of the
NVIDIA C2070 GPU is 6GB.

From the perspective of a GPU programmer writing a code for NVIDIA
GPU’s, the GPU is treated as a co-processor to the main CPU. Programs are
written in C and linked to the CUDA libraries. A function that executes on
the GPU, called a GPU kernel, consists of multiple threads executing code in
a single instruction, multiple data (SIMD) fashion. That is, each thread in a
GPU kernel executes the same code, but on different data. Further, threads
can be grouped into thread blocks. This abstraction takes advantage of the fact
that threads executing on the same multiprocessor can share data via on-chip
shared memory, allowing some degree of cooperation between threads in the
same block [32]. A major drawback in GPU programming is the slow com-
munication between GPU global memory and the main memory of the CPU,
compared to the communication within a GPU. Programmers address this prob-
lem by maximizing the amount of arithmetic intensive computations performed
on GPU, minimizing the communication between CPU and GPU, and allowing
the communication latency to be hidden by overlapping with execution. Com-
munication among GPUs, although costly, is enabled by APIs such as OpenMP
and features available in CUDA 2.2+ such as portable pinned memory, when
the communication is among GPUs connected to the same shared-memory com-
puter node. When the communication takes place among GPUs across nodes of
a cluster, message passing paradigms such as MPI can serve the same scope.

In our parallelization of the KMC method, we redefine the data structures
to represent lattice sites in the simulation so that the whole simulated system
is cut into equal-sized black and white coarse cells like a chessboard in (9). For
instance, Fig. 1(a) shows a simple example in which we map a 4× 4 lattice sites
into 2× 2 cells, each cell containing 2× 2 sites. One GPU thread is assigned to
one cell. Coverage information of the whole lattice is stored in an array located
in the GPU global memory so that all the threads can access the information
related to their neighboring sites across MPs. The GPU kernel performing the
KMC simulation over the whole lattice by using the Lie scheme (12) and the
decomposition (10), is sequentially launched twice for each synchronization time
step ∆t to work on the black and white cells respectively. The execution times
for lattices of different sizes are compared in Fig 2, where we take as a reference
a sequential KMC-kernel, which is a direct numerical implementation of (1) and
(2). The same kernel is then used for the implementation on GPUs where we
compare times for different choices of ∆t. We remark that the KMC kernel is
not optimized by techniques such as the BKL algorithm, [6, 19], which is also
manifested in the scaling with respect to the size of the lattice N . However,
the same kernel is used in the Fractional Step algorithm thus here we present
comparisons between the same KMC algorithms, one serial and one parallelized
by the Fractional Step approach. Clearly any optimized KMC kernel can be
used without difficulty in our framework.

The size of lattices that can be simulated on a single GPU is limited by
memory, thus in order to simulate large systems it will be necessary to employ a

18

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

1.9

0.8

0.7
0.7

1.0

1.2

GPU and Sequential code execution time

lattice size

ex
ec

ut
io

n
tim

e
in

 s
ec

seq. alg.

dt=0.01 (fermi)

dt=0.1

dt=10.0

dt=0.01 (tesla)

dt=10.0

Figure 2: Execution time of the fractional step KMC for lattices of different sizes. The
comparison with the sequential algorithm (top curve) is based on the same SSA KMC imple-
mentation which, however, does not have the optimal complexity of the BKL algorithm. The
simpler implementation of the SSA algorithm was used. The simple implementation has the
complexity O(N2), where N is the total number of lattice sites. This complexity is reflected
in the indicated scaling (the slope in the log-log plot). Note that the due to partitioning of the
lattice in the fractional step algorithm the same KMC kernel will scale as O(N) only, which
is in agreement with the observed slope in the plots.

19

cluster of GPUs communicating, for instance, through an MPI protocol. We will
demonstrate next how Fractional Step KMC algorithms can be tailored to an
architecture that involves multiple GPUs. We return to the formulation in (10),
and consider the sub-lattice decomposition (9). In this formulation each one of
the coarse-cells CE

m or CO
m are simulated on a single GPU. Within each one of

the GPUs we have the same lattice decomposition as in (9), see Figure 1(b),
namely

CE
m = CEE

m ∪CEO
m :=

L
⋃

l=1

DEE
ml ∪

L
⋃

l=1

DEO
ml , (45)

and similarly we define a decomposition for CO
m. Each one of the (sub-)sub-

latticesDEE
ml and DEE

ml corresponds to individual threads within the GPU. Next,
(9) and (45) define nested sub-lattices, which yield a hierarchical decomposition
of the operator L into (10) and

LE
m = LEE

m + LEO
m :=

L
∑

l=1

LEE
ml +

L
∑

l=1

LEO
ml , (46)

and similarly we also define the decomposition for LO
m. Finally, schemes such as

(12) and (16) give rise to Fractional Step algorithms based on the nested decom-
positions (10) and (46). In this case, boundary communication, see Fig. 1(b),
plays a key role in the parallelization of our algorithm when multiple GPUs are
required. As we discussed earlier, this scenario happens when the lattice size
grows to the point that the lattice data structures no longer fit into a single GPU
global memory. In turn, this threshold depends on the type of GPU used, e.g.,
for a NVIDIA’s C2050 GPU the maximum lattice size is currently 8, 182×8, 182
cells. To simulate larger systems, we can decompose the domain into regular
sub-domains and distribute both the sub-domain cells and associated compu-
tation among multiple GPUs, as discussed in (46). Boundary communication
between two adjacent sub-domains are exchanged between GPUs, see Fig. 1(b),
and supported by either MPI or OpenMP, depending on the fact that the GPUs
are located on the same cluster node or across nodes. Thus, the multi-GPU par-
allel KMC algorithm is based on and benefits from the hierarchical structure of
the Fractional Step KMC algorithms discussed in (46). At the same time, it can
enable the scalability of our simulations to lattice sizes beyond the ones acces-
sible with a single GPU e.g., 8, 182× 8, 182 sites in a C2050 GPU. The study of
performance and scalability of our multi-GPU algorithm and code for different
lattice sizes and types of GPU clusters is beyond the scope of this paper.

6. Mass Transport and Dynamic Workload Balancing

Due to the spatially distributed nature of KMC simulations and the depen-
dence of jump rates on local coverage, (1), fractional step algorithms may have
an imbalance in the number of operations/jumps performed in each coarse cell
Cm in (9), as well as on the corresponding processors. In fact, formulas (1) and

20

Lattice Coverage (T=20)

100 200 300 400 500 600 700 800

0.5

1

1.5

0 10 20 30 40 50 60 70 80
0

20

40
Current Workload GPU nodes

1 2 3 4 5 6 7 8
0

0.2

0.4
Current Workload CPU nodes

(a)

Lattice Coverage (T=20)

100 200 300 400 500 600 700 800

0.5

1

1.5

0 10 20 30 40 50 60 70 80
0

20

40
Current Workload GPU nodes

1 2 3 4 5 6 7 8
0

0.1

0.2
Current Workload CPU nodes

(b)

Figure 3: (a) Workload imbalance in 1D unimolecular reaction system: the top figure depicts
local coverage, the bottom figure workload distribution; (b) Workload redistribution in Figure
(a) using the mass transport for re-balancing.

(2), and the very structure of the fractional step algorithms (10), allow us to
define the workload Wn∆t(σ) = Wn∆t(m;σ), 1 ≤ m ≤ M as

Wn∆t(m) = # jumps in Cm during [(n− 1)∆t, n∆t] , (47)

when the configuration at time (n − 1)∆t is σ. We also renormalize Wn∆t

(and still denote it with the same symbol) in order to obtain a histogram,
i.e., a probability density. Since different coarse cells Cm in the fractional step
algorithms such as (12) or (16) do not communicate during intervals of length
∆t the quantities (47) are easy to keep track on-the-fly during the simulations.
The possibility of workload imbalance is depicted in Figure 3, where many more
jumps are performed in the processors corresponding to cells of low coverage,
while the other processors remain idle.

In this Section we introduce a probabilistic strategy to re-balance the work-
load Wn∆t dynamically during the simulation based on the following idea from
Mass Transport methods, e.g., [10]. One wants to transport the “imbalanced”
density Wn∆t into an almost uniform density over the number of processors
used, in order to ensure that they remain as uniformly active as possible. The
mass transport connection and terminology refers to the mapping of a given
probability measure into a desirable probability measure. Typically, [10], this
problem is posed as an optimization over a suitable cost functional and is known
as the Monge-Kantorovich problem. In our context the cost functional could
reflect constraints related to various parallel architectures.

We can formulate and implement this strategy in several different ways:
probably the simplest approach, that serves mostly as an illustration, is to
assume that we have a number of processors P , where P ≪ M ; during the
interval [(n− 1)∆t, n∆t] a number of coarse cells Cm, 1 ≤ m ≤ M , which
are simulated independently in a fractional step algorithm, are allocated to

21

each processor. By the end of the simulation time n∆t the workload on all
processors is described similarly to (47), by a histogram Rn∆t(σ) = Rn∆t(l;σ),
1 ≤ l ≤ P . One wants to map (47) onto a histogram Rn∆t which is almost
uniform in 1 ≤ l ≤ P . One such function can be constructed by mapping the
mass corresponding to each value of the cumulative distribution function (cdf)
of (47), onto an equal mass on the uniform distribution over the P processors.
In another implementation of the mass transport method we can adjust the
size of the coarse cells Cm according to the workload redistribution strategy
discussed earlier, see Figure 3. This is effectively a one-dimensional example of
an adsorption/desorption process where the mass transport procedure is carried
out by mapping (47) into a new histogram Rn∆t(σ) = Rn∆t(l;σ) corresponding
to a new set of variable size coarse cells Cl, 1 ≤ l ≤ M ′. The cell size adjustment
ensures the uniformity of the new histogram by defining Rn∆t as a mapping of
the cdf corresponding to (47).

The mass transport mappings discussed above are not expected to be carried
out at every time step n∆t in order to reduce computational and communication
cost, but instead they should follow a rationally designed coarser-in-time sched-
ule, in analogy to processor communication scheduling, e.g., (20).The overall
implementation appears rather simple since here we demonstrated the method-
ology in a one-dimensional example. However, in higher dimensions, adjusting
the size and shape of coarse cells Cm can be much harder. Nevertheless the
structure of re-balancing procedure can remain one-dimensional even in higher
dimensional lattices if we pick a sub-lattice decomposition (5) into strips Cm.
We note that the mapping we constructed using cdf’s did not take into account
the processor architecture and a suitable cost functional formulation for the
mass transport to a uniform distribution, as in the Monge-Kantorovich prob-
lem, [10], may be more appropriate. We will revisit such issues in a future
publication.

7. Parallel Simulations: Benchmarks and Applications

Exactly solvable models of statistical mechanics provide a test bed for sam-
pling algorithms applied to interacting particle systems. We present benchmarks
for two important cases: (a) sampling of equilibrium distributions, i.e., long time
behavior of the simulated Markov process, and (b) weak approximations of the
dynamics. In the first set of tests we work with the classical Ising model on one
and two dimensional lattices where spins interact through a nearest-neighbor
potential. Thus the Hamiltonian of the system is

H(σ) = −
K

2

∑

x∈ΛN

∑

|y−x|=1

σ(x)σ(y) + h
∑

x∈ΛN

σ(x) ,

where K is a real parameter that defines the strength of the interaction and
h the external field. We work with the spin-flip Arrhenius dynamics with the
rates defined in the nearest-neighbor set Ωx = {z | |z − x| = 1} and the updates

22

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mean coverage

β=1
β=2
β=3
β=4
Exact solutions

(a) Coverage

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Spatial correlation

β=1
β=2
β=3
β=4
Exact solutions

(b) Two-point spatial correlations

Figure 4: (a) Comparison of the exact solution (51) (solid line) for the total coverage cβ(K,h),
K = 1, with the mean coverage obtained in simulations on the one-dimensional lattice with
N = 215 and ∆t = 1.0. (b) Two-point spatial correlation function estimated at h = 1 on the
same lattice and ∆t = 1.0 compared to the exact solution.

in Sx = {0, 1}.

c(x, σ) = c1(1 − σ(x)) + c2σ(x)e
−βU(x) , (48)

U(x) = K
∑

y∈Ωx

σ(x+ y) + h , (49)

with β is a given inverse temperature. The generator of (48) is a self-adjoint op-
erator on the space L2(S, µN) where µN (dσ) = Z−1e−βH(σ) dσ is the canonical
Gibbs measure of the system at the constant inverse temperature β. Conse-
quently the dynamics is reversible and the measure µt of the process {St}t≥0

converges to the Gibbs measure µN as t → ∞. Thus the dynamics (48) can be
used for computing expected values EµN

[f] by invoking ergodicity and averaging
on a single trajectory

EµN
[f] ≡

∫

S

f(σ)µN (dσ) = lim
T→∞

1

T

∫ T

0

f(St) dt .

In the simulations we estimate two observables:

mean coverage: c̄t =
1

|ΛN |
E[

∑

x∈ΛN

σt(x)] ,

2-point correlation function: λ̄t(x, y) = E[σt(x)σt(x+ y)] .

Due to translational invariance the function λ̄k(x, y) depends on the distance
|x− y| only. For exactly solvable one and two dimensional Ising models we have
explicit formulas which we summarize here for the spins in Σ = {0, 1}.

1D Ising model: The one-dimensional Ising model does not exhibit a phase
transition and thus presents a simple benchmark for accuracy. Working with
lattice gas models requires a simple transformation of the well-known exact
solution, [5], which for the Hamiltonian of the system given on the periodic

23

1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9
0.4

0.5

0.6

0.7

0.8

0.9

1

β

co
ve

ra
ge

Phase diagram: finite volume equilibrium sampling

Exact solution (infinite volume)

∆ t = 0.1

∆ t = 1.0

∆ t = 5.0

1.6 1.65 1.7 1.75 1.8 1.85
0

0.1

0.2

0.3

0.4

β

di
st

an
ce

Distance from the infinite volume solution

β
c
 = 1.7627

(a) Coverage

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

log(k)

lo
g(

G
(k

))

Log−Log plot of spatial 2−point correlation function

0 5 10 15 20
0

20

40

60

80

100

lag

re
l.

er
ro

r
%

Estimation error

∆ t = 1.0

∆ t = 10

β = 1.78 > β
c

β = 1.5 < β
c

β = 1.78 > β
c

(low temperature)

β = 1.5 < β
c

(high temperature)

β
c
 = 1.7627

Fitting tails:

G(k) = k
−α
 exp(−k/ξ)

β = 1.5 < β
c
: α = 0.77, ξ = 4.1

β = 1.78 > β
c
: α = 0.27, ξ = 105

(b) Two-point spatial correlations

Figure 5: (a) Comparison of the exact solution (54) (solid line) for the total coverage cβ(K,h),
h = 2, with mean coverage obtained in simulations on the one-dimensional lattice with N =
128 and various ∆t’s. (b) Spatial two-point correlation function in the two-dimensional Ising
model simulated on the lattice N = 5122 at a sub-critical temperature β > βc and supercritical
regime β < βc. The simulation confirms the behavior obtained from the infinite volume exact
solution: at high temperatures the decay is exponential while at temperatures below the
critical temperature the decay is algebraic. The dashed line represents the fitted function of
the form k−αe−k/ξ.

lattice

H(σ) = −K

N
∑

x=1

σ(x)σ(x + 1) + h

N
∑

x=1

σ(x) ,

yields the equilibrium mean coverage and the 2-point correlation function

c̄(h, β) =
1

2



1 +
sinh(h′)

(

sinh2(h′) + e−4K′
)1/2



 , (50)

λ̄(x, y) =
1

4

(

1 + e4K
′

sinh2(h′)
)

× (51)







eK
′

cosh(h′)− e−K′

(

1 + e4K
′

sinh2(h′)
)1/2

eK
′cosh(h′) + e−K′

(

1 + e4K
′sinh2(h′)

)1/2







(x−y)

, y ≥ x , (52)

where

K ′ =
1

4
βK , and h′ =

1

2
β(h−K) . (53)

Since the one-dimensional Ising model does not exhibit a phase transition it
allows us to assess the accuracy of the approximation for the phase diagram
calculation. The phase diagram depicting dependence of the coverage on the
external field for different values of β is shown in Figure 4(a). In this simulation
a rather conservative ∆t = 1.0 was chosen. The statistical errors (confidence in-
tervals) are below the resolution of the graph. As seen in the figure the isotherms

24

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

10

20

30

40

50

60

70
Probability density function of total coverage

β = 1.5

β = 1.78

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time lag

au
to

co
re

lla
tio

n

Autocorrelation function

∆ t = 0.1, β = 1.78

∆ t = 10.0, β = 1.78

∆ t = 10.0, β = 1.5

∆ t = 1.0, β = 1.5

∆ t = 0.1, β = 1.5

Figure 6: (a) Estimated equilibrium distributions of the coverage process at the two tem-
peratures simulated in Fig. 5(b). (b) Autocorrelation functions for the coverage process in
the two-dimensional Ising model simulated at β = 1.5 (high temperature above the critical
temperature βc and at β = 1.78 > βc (low temperature), see parameters in Fig. 5(b).

for the average equilibrium coverage are thus obtained with a good accuracy.
As a global observable the total coverage is less sensitive to statistical errors
therefore we also monitor the 2-point correlation function and its agreement
with the exact solution (52). The results for different values of β in Figure 4(b)
demonstrate good accuracy.

2D Ising model: The phase transition that occurs in two-dimensional Ising model
presents a more challenging test case. However, the celebrated exact solution
due to Onsager for spins Σ = {−1, 1}, [29], in the case with the zero external
field and further refinements yield closed formulas for the mean coverage and
two point correlation functions. We restrict our tests to the isotropic case, i.e.,
on the two-dimensional periodic lattice we have the Hamiltonian

H(σ) = −K
∑

x=(x1,x2)∈ΛN

(σ(x1, x2)σ(x1, x2 + 1)+

σ(x1, x2)σ(x1 + 1, x2)) + h
∑

x∈ΛN

σ(x) .

Transforming the exact solutions for the spins Σ = {0, 1} we obtain the equiv-
alent to the zero external field the value h = 2K at which value the critical
inverse temperature solves sinh(12βcK) = 1. The exact solution for the mean
coverage has the form

c̄(β) =

{

1
2

(

1 +
[

1− (sinh(12βK))−4
]1/8

)

, β > βc ,

1
2 , β < βc .

(54)

The exact solution for the 2-point correlation is available in [37], however, we

25

0 100 200 300 400 500 600 700 800 900 1000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

time

ob
se

rv
ab

le

Evolution of the total coverage

Mean value
95% confidence interval

800 820 840 860 880 900
0.498

0.499

0.5

0.501

0.502

0.503

0.504

800 820 840 860 880 900
0.497

0.498

0.499

0.5

0.501

0.502

0.503

0.504

0.505

0.506

∆ t=0.1

∆ t=1.0

(a) Sample path

0 10 20 30 40 50 60 70 80 90 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time lag

au
to

co
re

lla
tio

n

Autocorrelation function: the total coverage

0 10 20 30 40 50 60 70 80 90 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time lag

au
to

co
re

lla
tio

n

50 55 60 65 70
0

0.01

0.02

0.03

0.04

0 10 20 30 40 50 60 70 80 90 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time lag

au
to

co
re

lla
tio

n

0 10 20 30 40 50 60 70 80 90 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time lag

au
to

co
re

lla
tio

n

0 10 20 30 40 50 60 70 80 90 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time lag

au
to

co
re

lla
tio

n

0 10 20 30 40 50 60 70 80 90 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time lag

au
to

co
re

lla
tio

n

0 10 20 30 40 50 60 70 80 90 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time lag

au
to

co
re

lla
tio

n

0 10 20 30 40 50 60 70 80 90 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time lag

au
to

co
re

lla
tio

n

50 55 60 65 70
−0.01

0

0.01

0.02

0.03

0.04

∆ t = 1.0

∆ t = 0.1

(b) Autocorrelation function

Figure 7: (a) A sample path of the total coverage process {St} simulated at ∆t = 1.0 and
∆t = 0.1 on the one-dimensional lattice with N = 215 and ∆t = 1.0. (b) Autocorrelation
function of the coverage process. The means were obtained from M = 1000 independent
realizations of the process at β = 4 and h = 1. The inset shows error bars for the empirical
mean estimator.

use only the asymptotics in |x−y|, [5]. Introducing κ = (sinh(12βK))−2 we have

λ̄(x, y) =

{

(1 − κ2)1/4 +O(κ|x−y|) , β > βc ,

O(κ−|x−y|/2) , β < βc .
(55)

The phase diagram is computed at h = 2 which for K = 1 corresponds to
the regime when the second-order phase transition occurs at the critical temper-
ature sinh(12Kβc) = 1. Sampling the coverage exhibits well-known difficulties
close to the critical point βc which are not cured by the fractional step algo-
rithm. Instead, we demonstrate in Figure 5(a) that for wide range of choices
∆t the phase diagram is constructed accurately for β outside a neighborhood
of βc. Close to the critical point the algorithm provides approximations that
are in agreement with other Monte Carlo sampling approach. The finite-size
effects are pronounced at the neighborhood of the critical point due to algebraic
decay of correlations. Thus it is not expected that a good agreement with the
infinite volume exact solution will be observed in the finite size simulations.
Nonetheless, the presence of the second-order phase transition is indicated in
the computed phase diagram. Furthermore, the proposed algorithm provides
an efficient implementation that allows for simulations on large lattice. It is
shown in Figure 5(b) that algebraic decay of the 2-point correlation function is
well approximated in the low-temperature (sub-critical) regime, while at super-
critical temperatures the exponential decay is observed. Overall, we note that
such long-time sampling of the simulated CTMC is a particularly challenging
task since in principle, errors from any approximation may accumulate at long
times and contaminate the simulation.

26

Table 1: An Event in Ωx, xnn ∈ Ωx is a randomly selected site from the nearest-neighbor set
of x, and r2(x) =

1

4
(1 − σ(x)2)νx

0
, r3(x) =

1

8
σ(x)(1 + σ(x))νx

−1
, r4(x) =

1

8
σ(x)(σ(x) − 1)νx

1
,

where νxk is the number of nearest neighbors (n.n.) of x that are equal to k.

ω site σ(x) σx Rate c(x, ω;σ) Comment

1 vacant 0 0 → 1 k1(1− (σ(x))2) CO adsorb

2 vacant 0 0 → −1 (1− k1)r2(x) O2 adsorb

0 → −1, xnn

3 CO 1 1 → 0 k2r3(x) CO +O and desorb

−1 → 0, xnn

4 O −1 −1 → 0 k2r4(x) CO +O and desorb

1 → 0, xnn

Studying approximation properties of the stochastic dynamics poses a more
difficult task due to the lack of an exact solution for the evolution of ob-
servables. Certain guidance can be obtained from mean-field approximations,
however, those do not give sufficiently good approximation for Ising model in
low dimensions. Therefore we compare the evolution of the coverage obtained
from the traditional SSA algorithm with approximations generated by the pro-
posed fractional time step algorithm with different choices ∆t. In Figure 7(a)
we compare the expected value and variance of the total coverage process
Ct =

1
|ΛN |

∑

ΛN
St(x). Furthermore, it is also shown that the auto-correlation

function for the process Ct is well-approximated and approximations converge
as ∆t → 0, see Figures 7(b) and 6(b).

7.1. Examples from Catalysis and Reaction Engineering

In order to demonstrate the applicability of the proposed parallelization
methodology in systems exhibiting complex spatio-temporal morphologies at
mesoscopic length scales,e.g., islands, spirals, rings, etc., we implement a KMC
algorithm arising in the modeling of chemical reaction dynamics on a catalytic
surface. Here we focus on CO oxidation, which is a prototypical example for
molecular-level reaction-diffusion mechanisms between adsorbates on a surface.
We note that molecular dynamics simulations have also been employed to un-
derstand micro-mechanisms on surfaces such as reaction paths [30]. However,
reaction kinetics for mesoscale adsorbate structures cannot be simulated by us-
ing molecular dynamics because of spatio-temporal scale limitations of such
methods, while KMC methods, have the ability to simulate much larger scales
[23].

In KMC models for CO oxidation on a catalytic surface spatial resolution
is a critical ingredient of the modeling since in-homogeneously adsorbed O and
CO react on the catalytic surface only where the corresponding phases meet.
Sophisticated KMC models for CO oxidation on catalytic surfaces, where kinetic
parameters are estimated by ab initio density functional theory (DFT), [16],
were recently developed in [31] and later in [27], [21]. Such KMC models yield

27

Figure 8: Snapshot at different simulation times for the CO oxidation process, on a two-
dimensional lattice N = 10242.

a remarkable agreement with experiments, see also the review articles [26] and
[8].

Next we demonstrate the performance of parallel Fractional Step algorithms
for KMC simulation to heterogeneous catalysis. We implement a simplified CO
oxidation model known as the Ziff-Gulari-Barshad (ZGB) model, [39], which
was one of the first attempts towards a spatially distributed KMC modeling in
reaction systems. Although a simplified model compared to the ab initio KMC
models described earlier, it incorporates the basic mechanisms for the dynamics
of adsorbate structures during CO oxidation on catalytic surfaces: single site
updates (adsorption/desorption) and multi-site updates (specifically, reactions
with two sites being involved). The spins take values σ(x) = 0 denoting a vacant
site x ∈ ΛN , σ(x) = −1 for a molecule CO at x, and σ(x) = 1 representing a
O2 molecule. Depending on the local configurations of the nearest neighbors in
Σx = {y | |y−x| = 1} the events in Table 1 are executed. The rates of individual
events depend on the states in Ωx which are enumerated by ω = {1, 2, 3, 4} and
are summarized in Table 1.

The execution times for lattices of different sizes are compared in Figure 2,

28

0 2000 4000 6000 8000 10000 12000 14000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

co
nc

en
tr

at
io

n

Evolution of coverage for individual species

CO

O

vacant

Figure 9: Evolution of the mean coverage for species in the oxidation process (CO, O2, and
vacant sites).

while a snapshot of the spatial morphology is depicted in Figure 8. Here we take
as a reference the sequential KMC-BKL kernel. The same kernel is then used
for the implementation on GPUs where we compare times for different choices of
∆t. We remark that the KMC kernel is not optimized by techniques such as the
BKL algorithm, [19], which is manifested in the scaling with respect to the size of
the lattice N . However, the same kernel is used in the fractional step algorithm
thus we present fair comparisons between serial and parallel solvers, noting that
any optimized serial KMC algorithm can be used as a kernel in our Fractional
Step framework. It is worth noting that by partitioning of the problem into the
subproblems the O(N2) complexity of the simple implementation for the SSA
algorithm is reduced, which is also demonstrated in Figure 2 where the slope of
lines for simulations using GPUs suggest the reduced complexity of order O(N).
Hence the proposed approach also offers a simple but efficient implementation
of KMC simulators.

Finally, in our implementation (as well as in the original ZGB model) we
did not implement the fast diffusion mechanism of O adsorbates on the surface,
[21]. However, the scheme (16) can allow us to easily implement within our
parallelization framework schemes with disparate time-scales which turn out to
be important for the long-time adsorbate dynamics.

29

8. Conclusions

In this paper we proposed a new framework for constructing parallel algo-
rithms for lattice KMC simulations. Our approach relies on a spatial decompo-
sition of the Markov generator underlying the KMC algorithm, into a hierarchy
of operators corresponding to processors’ structure in the parallel architecture.
Based on this operator decomposition, we can formulate Fractional Step Ap-
proximation schemes by employing the Trotter product formula; these schemes
allow us to run independently on each processor a serial KMC simulation on
each fractional time-step window. Furthermore, the schemes incorporate the
Communication Schedule between processors through the sequential applica-
tion of the operators in the decomposition, as well as the time step employed in
the particular fractional step scheme. Here we discussed deterministic schedules
resulting from Lie- and Strang-type fractional step schemes, as well as random
schedules derived by the Random Trotter Theorem, [18]. We demonstrated that
the latter category includes the algorithm [34] as one particular example.

Some of the key features of the proposed framework and possible future
directions include: The hierarchical structure can be easily derived and imple-
mented for very general physiochemical processes modeled by lattice systems,
allowing users to input as the KMC kernel their preferred serial algorithm. This
flexibility and hierarchical structure allow for tailoring our framework to partic-
ular parallel architectures with complex memory and processor hierarchies, e.g.,
clusters of GPUs communicating, for instance, through an MPI protocol, and
using the nested generator decomposition (46). Moreover, multi-scale Trotter
algorithms for systems with fast and slow processes are widely used in Molecular
Dynamics, e.g., [12], and they can be recast along with the proposed methods
into a spatio-temporal hierarchy of operators that allow computational tasks to
be hierarchically decomposed in space/time. The numerical consistency of the
proposed algorithms is rigorously justified by Trotter Theorems, [36, 18] show-
ing the convergence of our approximating schemes to the original serial KMC
algorithm. Related numerical estimates are expected to provide insights on
the design and the relative advantages of various communication schedules and
architectures. We discussed work load balancing between processors through
a re-balancing scheme based on probabilistic mass transport methods that is
particularly well-suited for the proposed fractional step KMC methods. We
carried out detailed benchmarking using analytically available exact solutions
from statistical mechanics and applied the method to simulate complex spatially
distributed molecular systems, such as reaction-diffusion processes on catalytic
surfaces. Finally, we studied the performance and scalability of our algorithm
(46) and the resulting code for different lattice sizes and types of GPUs.

Concluding we note that there are some interesting conceptual analogies
between the parallelization and coarse-graining algorithms of KMC such as the
Coarse-Grained Monte Carlo (CGMC) method e.g., [14, 2]. In both methods we
decompose the particle system in components communicating minimally, e.g.,
(10), (12), or trivially as in coarse-graining methods, thus, local information is
represented by collective (coarse) variables, or computed on separate processors

30

within a parallel architecture. An early work towards parallelizing CGMC [14]
in problems with locally well-mixed particle interactions is [38], while further
progress towards understanding and exploiting the analogies and the comple-
mentarity of CGMC and parallel KMC has the potential to give efficient KMC
algorithms capable of simulating complex systems at mesoscopic length scales.

Acknowledgments: The research of M.A.K. was partially supported by the
National Science Foundation under the grant NSF-DMS-071512, by the Office
of Advanced Scientific Computing Research, U.S. Department of Energy under
DE-SC0002339 and the European Commission FP7-REGPOT-2009-1 Award
No 245749. The research of P.P. was partially supported by the National
Science Foundation under the grant NSF-DMS-0813893 and by the Office of
Advanced Scientific Computing Research, U.S. Department of Energy under
DE-SC0001340; the work was partly done at the Oak Ridge National Labora-
tory, which is managed by UT-Battelle, LLC under Contract No. DE-AC05-
00OR22725. The research of G.A. was partially supported by the National Sci-
ence Foundation under the grant NSF-DMS-071512 and NSF-CMMI-0835582.
The research of M. T. was partially supported by the AFOSR STTR Program,
the Army Research Office under the grant 54723-CS, and the NVIDIA Univer-
sity Professor Partnership Program. The research of L.X. was supported by the
National Science Foundation under the grant NSF-DMS-0813893.

References

[1] G. Arampatzis, M.A. Katsoulakis, P. Plecháč, L. Rey-Bellet, Error anal-
ysis for parallel kinetic monte carlo algorithms: accuracy and processor
communication, 2011. Preprint.

[2] S. Are, M.A. Katsoulakis, P. Plecháč, L. Rey-Bellet, Multibody interactions
in coarse-graining schemes for extended systems, SIAM J. Sci. Comput. 31
(2008) 987–1015.

[3] S.M. Auerbach, Theory and simulation of jump dynamics, diffusion and
phase equilibrium in nanopores., Int. Rev. Phys. Chem. 19 (2000).

[4] S.P.C. Battaile, M. Chandross, L. Holm, A. Thompson, V. Tikare, G. Wag-
ner, E. Webb, X. Zhou, C.G. Cardona, A. Slepoy, Crossing the mesoscale
no-man’s land via parallel kinetic Monte Carlo, Sandia report (2009).

[5] R.J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic
Press, 3rd edition, 1989.

[6] A.B. Bortz, M.H. Kalos, J.L. Lebowitz, A new algorithm for Monte Carlo
simulation of Ising spin systems, Journal of Computational Physics 17
(1975) 10–18.

[7] A. Chatterjee, D. Vlachos, An overview of spatial microscopic and acceler-
ated kinetic Monte Carlo methods, Journal of Computer-Aided Materials
Design 14 (2007) 253–308. 10.1007/s10820-006-9042-9.

31

[8] C.H. Christensen, J.K. Norskov, A molecular view of heterogeneous catal-
ysis, Journal of Chemical Physics 128 (2008).

[9] S.G. Eick, A.G. Greenberg, B.D. Lubachevsky, A. Weiss, Synchronous re-
laxation for parallel simulations with applications to circuit-switched net-
works, ACM Trans. Model. Comput. Simul. 3 (1993) 287–314.

[10] L.C. Evans, Partial differential equations and Monge-Kantorovich mass
transfer, in: Current developments in mathematics, 1997 (Cambridge,
MA), Int. Press, Boston, MA, 1999, pp. 65–126.

[11] D.T. Gillespie, A general method for numerically simulating the stochastic
time evolution of coupled chemical reactions, Journal of Computational
Physics 22 (1976) 403–434.

[12] E. Hairer, C. Lubich, G. Wanner, Geometric numerical integration, vol-
ume 31 of Springer Series in Computational Mathematics, Springer-Verlag,
Berlin, second edition, 2006. Structure-preserving algorithms for ordinary
differential equations.

[13] P. Heidelberger, D.M. Nicol, Conservative parallel simulation of continuous
time Markov chains using uniformization, IEEE Trans. Parallel Distrib.
Syst. 4 (1993) 906–921.

[14] M. Katsoulakis, A. Majda, D. Vlachos, Coarse-grained stochastic processes
for microscopic lattice systems, Proc. Natl. Acad. Sci 100 (2003) 782–782.

[15] M.A. Katsoulakis, P. Plecháč, A. Sopasakis, Error analysis of coarse-
graining for stochastic lattice dynamics, SIAM J. Numer. Anal. 44 (2006)
2270–2296.

[16] W. Kohn, Nobel Lecture: Electronic structure of matter-wave functions
and density functionals, Reviews of Modern Physics 71 (1999) 1253–1266.

[17] G. Korniss, M.A. Novotny, P.A. Rikvold, Parallelization of a dynamic
Monte Carlo algorithm: A partially rejection-free conservative approach,
Journal of Computational Physics 153 (1999) 488–508.

[18] T.G. Kurtz, A random Trotter product formula, Proc. Amer. Math. Soc.
35 (1972) 147–154.

[19] D.P. Landau, K. Binder, A guide to Monte Carlo simulations in statistical
physics, Cambridge University Press, Cambridge, 2000.

[20] T.M. Liggett, Interacting Particle Systems, volume 276 of Grundlehren
der mathematischen Wissenschaften, Springer-Verlag, New York, Berlin,
Heidelberg, Tokyo, 1985.

[21] D.J. Liu, J.W. Evans, Atomistic and multiscale modeling of CO-oxidation
on Pd(100) and Rh(100): From nanoscale fluctuations to mesoscale reac-
tion fronts, Surf. Science 603 (2009) 1706–1716.

32

[22] B.D. Lubachevsky, Efficient parallel simulations of dynamic Ising spin sys-
tems, J. Comput. Phys. 75 (1988) 103–122.

[23] J.J. Lukkien, J.P.L. Segers, P.A.J. Hilbers, R.J. Gelten, A.P.J. Jansen, Effi-
cient Monte Carlo methods for the simulation of catalytic surface reactions,
Physical Review E 58 (1998) 2598–2610.

[24] E. Mart́ınez, J. Marian, M.H. Kalos, J.M. Perlado, Synchronous parallel
kinetic Monte Carlo for continuum diffusion-reaction systems, J. Comput.
Phys. 227 (2008) 3804–3823.

[25] M. Merrick, K.A. Fichthorn, Synchronous relaxation algorithm for parallel
kinetic Monte Carlo simulations of thin film growth, Phys. Rev. E 75 (2007)
011606.

[26] H. Metiu, Preface to special topic: A survey of some new developments in
heterogeneous catalysis, Journal of Chemical Physics 128 (2008).

[27] M. Nagasaka, H. Kondoh, I. Nakai, T. Ohta, CO oxidation reaction on
Pt(111) studied by the dynamic Monte Carlo method including lateral in-
teractions of adsorbates, J. Chem. Phys. 126 (2007) 044704–7.

[28] G. Nandipati, Y. Shim, J.G. Amar, A. Karim, A. Kara, T.S. Rahman,
O. Trushin, Parallel kinetic Monte Carlo simulations of Ag(111) island
coarsening using a large database, Journal of Physics Condensed Matter
21 (2009) 084214.

[29] L. Onsager, Crystal statistics. I. A two-dimensional model with an order-
disorder transition, Phys. Rev. 65 (1944) 117–149.

[30] M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos,
Iterative minimization techniques for abinitio total-energy calculations -
molecular-dynamics and conjugate gradients, Reviews of Modern Physics
64 (1992) 1045–1097.

[31] K. Reuter, D. Frenkel, M. Scheffler, The steady state of heterogeneous
catalysis, studied by first-principles statistical mechanics, Physical Review
Letters 93 (2004).

[32] J. Sanders, E. Kandrot, CUDA by Example: An Introduction to General-
Purpose GPU Programming, Addison-Wesley Professional, Cambridge,
2010.

[33] Y. Shim, J.G. Amar, Rigorous synchronous relaxation algorithm for parallel
kinetic Monte Carlo simulations of thin film growth, Phys. Rev. B 71 (2005)
115436.

[34] Y. Shim, J.G. Amar, Semirigorous synchronous relaxation algorithm for
parallel kinetic Monte Carlo simulations of thin film growth, Phys. Rev. B
71 (2005) 125432.

33

[35] G. Szabo, G. Fath, Evolutionary games on graphs, Physics Reports 446
(2007) 97–216.

[36] H.F. Trotter, On the product of semi-groups of operators, Proc. Amer.
Math. Soc. 10 (1959) 545–551.

[37] T.T. Wu, B.M. McCoy, C.A. Tracy, E. Barouch, Spin-spin correlation func-
tions for the two-dimensional Ising model: Exact theory in the scaling re-
gion, Phys. Rev. B 13 (1976) 316–374.

[38] L. Xu, M. Taufer, S. Collins, D.G.P. Vlachos, Parallelization of Tau-Leap
Coarse-Grained Monte Carlo Simulations on GPUs, in: Proceedings of
the 2010 IEEE/ACM International Parallel and Distributed Processing,
International Parallel and Distributed Processing Symposium (IPDPS), ,
in press, 2010.

[39] R.M. Ziff, E. Gulari, Y. Barshad, Kinetic phase transitions in an irreversible
surface-reaction model, Phys. Rev. Lett. 56 (1986) 2553.

34

	1 Introduction
	2 Fractional Step Kinetic Monte Carlo Algorithms
	2.1 Hierarchical structure of the generator
	2.2 Fractional Step Kinetic Monte Carlo Algorithms

	3 Processor Communication Schedule and Random Trotter Products
	3.1 Random Fractional Step Methods

	4 Controlled Error Approximations of KMC
	4.1 Error Analysis and comparison between random and deterministic PCS

	5 Hierarchical structure of Fractional Step algorithms and implementation on GPUs
	6 Mass Transport and Dynamic Workload Balancing
	7 Parallel Simulations: Benchmarks and Applications
	7.1 Examples from Catalysis and Reaction Engineering

	8 Conclusions

