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Abstract
In this article, we present a computational multi-scale model of fully three-dimensional and
unsteady hemodynamics within the primary large arteries in the human. Computed tomography
image data from two different patients were used to reconstruct a nearly complete network of the
major arteries from head to foot. A linearized coupled-momentum method for fluid-structure-
interaction was used to describe vessel wall deformability and a multi-domain method for outflow
boundary condition specification was used to account for the distal circulation. We demonstrated
that physiologically realistic results can be obtained from the model by comparing simulated
quantities such as regional blood flow, pressure and flow waveforms, and pulse wave velocities to
known values in the literature. We also simulated the impact of age-related arterial stiffening on
wave propagation phenomena by progressively increasing the stiffness of the central arteries and
found that the predicted effects on pressure amplification and pulse wave velocity are in
agreement with findings in the clinical literature. This work demonstrates the feasibility of three-
dimensional techniques for simulating hemodynamics in a full-body compliant arterial network.

1. Introduction
Hypertension and aging are primary risk factors for many adverse cardiovascular conditions,
including heart attack, stroke, and end-stage renal disease. It is now widely recognized that
increased stiffening of the central arteries – that is, the aorta and carotids – is both a cause
and a consequence of hypertension [1, 2, 5, 9] and that there is a close association between
the increased arterial stiffening of hypertension and that of aging [16, 27, 29, 34]. Because
of the strong interactions between the evolving arterial wall properties and associated
hemodynamics, there is a pressing need to understand better the roles of biomechanics in the
progression of cardiovascular disease as well as to use biomechanics to design better
methods of diagnosis, prognosis, and treatment. In particular, hemodynamic metrics such as
central artery pulse pressure (cPP), augmentation index (AIx), and carotid-to-femoral pulse
wave velocity (CF-PWV) are now thought of as both initiators and indicators of disease and
disease susceptibility [25, 29]. It is also becoming increasingly evident, however, that
changes in wall mechanics may progress both spatially (e.g., from proximal to distal vessels
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[31] and temporally (i.e., via biological aging, not just chronological aging [7, 47]). Hence,
there is a need to understand how local changes in arterial stiffness can affect local and
global hemodynamics. Because of the complex geometry and material properties of the
central arteries, and the hemodynamics therein that also depend on effects arising from distal
conduit and resistance vessels, large-scale computational models of vascular mechanics are
needed to improve our ability to interpret current clinical findings and to advance our
fundamental understanding of the mechanisms of disease progression.

There have been several seminal computational studies of hemodynamics within the human
arterial network [44, 36, 4, 38, 28, 37, 33, 3]. These studies have described the physics of
flow and pressure wave propagation in a one-dimensional (1-D) setting. In this paper, we
present the first model of fully unsteady and three-dimensional (3-D) hemodynamics within
a deformable network of the primary large arteries, from head to foot, including important
effects arising from the distal resistance vessels. This model is built upon previous key
advances in multi-scale outflow boundary condition formulations [40, 41], efficient methods
for fluid-structure interaction (FSI) [11] and perivascular tissue support [24], and methods
for anisotropic field-driven mesh adaptation [35]. Resulting computational findings on local
pressure waves promise to allow common clinical measurements such as brachial pressures
to be directly related to the more important but less easily measured cPP, which has greater
prognostic value [43]. Similarly, computational findings on the effects of changes in wall
properties on global metrics such as CF-PWV promise to provide increased insight into
relationships between evolving wall properties and the temporal progression of hypertension
and aging-related changes in hemodynamics. Finally, detailed information on local pressure
and velocity fields promise to enable new mechanobiological hypotheses regarding large
artery disease to be formulated and tested. Whereas examination of these and other
important areas of vascular therapeutics and biology will be pursued in subsequent works,
the primary goal of this work is to set the stage by describing an underlying computational
framework and demonstrating the feasibility of building a 3-D full-body model.

The structure of this paper is as follows: After reviewing the medical image data and
geometric modeling techniques, we describe the modeling framework, specifically the
formulations for outflow boundary conditions, FSI and perivascular tissue support. We then
present the methodology adopted for vessel wall material parameter specification and
outflow boundary conditions. Then, in the results section, we report detailed hemodynamics
in two different arterial models: The first model represents the main arteries in the trunk,
including the aorta, subclavians, carotids, mesenterics, celiac circulation, and iliac
bifurcation, totaling 36 outflow faces. The second case is a full-body model representing the
large arteries of the human body, expanding the trunk model to include the main arteries in
the legs, arms, and head, for a total of 82 outflow faces. In the first model we highlight the
simulation results such as regional blood flow, pressure and flow waveforms, and pressure
wave propagation down the aorta. We also present a study of the impact of age-related
arterial stiffening on cPP and PWV. We conclude by discussing on the progress made thus
far in the field of multi-scale computational modeling of arterial hemodynamics, on the need
for techniques to measure pressure, flow and in vivo tissue mechanical parameters required
by the ever more sophisticated computational models, and on the potential of computational
modeling to identify improved indicators of early stiffening that may allow earlier
therapeutic interventions.

2. Methods
2.1. Image Data and Anatomical Reconstruction

To reconstruct a nearly complete network of the major arteries from the head to the lower
legs, we combined Computed Tomographic Angiography (CTA) image data from two
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different patients. Two datasets were used to obtain full coverage of the body from head to
foot The first image was acquired from a relatively healthy adult subject and encompasses
the major arteries of the head and neck. The second image volume is a neck-to-lower leg
CTA scan of a subject with peripheral vascular disease and encompasses the major arteries
below the neck, including those in the torso, arms, and legs. The head CTA consisted of a
512 × 512 × 709 voxel image with a resolution of 0.35 mm × 0.35 mm × 0.5 mm. The neck-
to-lower leg CTA consisted of a 512×512×1479 voxel image with a resolution of 0.89 mm ×
0.89 mm × 0.89 mm. We reconstructed separate geometric models from each image volume
using a segmentation procedure whereby the arterial lumen boundary is defined using a
combination of manual demarcation, image thresholding, and level-set segmentation [48]. A
set of vessel centerline paths and 2-D segmentations along each path are produced; from
these a 3-D geometric solid model is created. The final 3-D geometry was assembled by
scaling (due to a height difference between the patients), translating, and finally combining
the two separate 3-D models so that the common carotid and vertebral arteries are connected
in a smooth and continuous fashion (see Figure 1).

The neck-to-lower-body image of the subject with peripheral vascular disease revealed areas
of significant stenosis in the iliac and femoral arteries. In the interest of reproducing
hemodynamic features representative of a healthy individual, the narrowed regions were
dilated while keeping the relative calibers of the leg vessels consistent with reported
dimensions used in previous 1-D blood flow models [33]. Mesh generation is always an
important task when dealing with anatomically complex 3-D domains, and it is critical in
this case due to the scale and the large range of vessel diameters within the model (2.92 mm
diameter at the level of the aortic root versus 0.2 mm diameter at the tibial artery). We
adopted a two-step mesh generation strategy whereby a first stage of arbitrarily-specified
local curvature-based refinement is followed by a field-driven mesh refinement stage based
on steady-flow computations. In the first stage, the parameters of the local curvature-based
refinement (MeshSim, Simmetrix, Inc. Clifton Park, NY USA) were chosen to enhance
spatial resolution in the smaller branch vessels. Then, the field-based mesh refinement
process [35] adapted the mesh to increase element density in the directions of high velocity
gradients (see Figure 2).

2.2. Methods for Blood Flow Simulation
2.2.1. Multi-scale modeling approach—We employed the coupled multi-domain
method [40], an approach that is based on the Dirichlet-to-Neumann and variational multi-
scale methods. Briefly, the coupled multi-domain method employs a disjoint decomposition
of the spatial domain Ω̃f into an upstream “numerical” domain Ωf and a downstream

“analytical” domain Ω′f such that  and Ωf ∩ Ω′f = ∅. These two domains are
separated by the interfaces Γin and Γout [10]. Here, Ωf corresponds to the 3D geometry
reconstructed from medical image data in which the Navier-Stokes equations for an
incompressible Newtonian fluid are applied. Ω′f corresponds to the distal vascular networks
and microcirculation not included in the 3D geometric model and whose physics are
described using simpler theories such as 1D or lumped-parameter formulations. A similar
disjoint decomposition is applied to the solution Ṽ = {ṽ, p̃}: Ṽ = V + V′ with V|Ω′f = 0 and
V′|Ωf = 0 and V = V′ at the interface Γout. The unit normals at the interface Γout are such that
nf = −n′. Here, ṽ is the velocity and p̃ the pressure in the spatial domain. In the context of a
stabilized finite element formulation with equal-order interpolation functional spaces for
velocity and pressure, the variational equation for the blood flow problem is[45]:
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(1)

Here, q and q′ and w and w′ are the test functions for mass and momentum balance in Ωf

and Ω′f, respectively, and ρf is the blood density. Γin is a Dirichlet boundary where the test
functions w vanish. Γt is the boundary of Ωf representing the interface with the arterial wall
where a traction tf is specified via the FSI formulation of choice. The traction and velocity
terms on the interface Γout are given as a function of the solution v′ in Ω′f that can be
approximated by momentum and mass operators M = {Mm, Mc}T|Γout and H = {Hm,
Hc}T|Γout depending on the chosen model of the circulation in Ω′f. We have:

(2)

A lumped-parameter model was used to represent the circulation in the downstream domain.
Specifically, we adopted the standard three-component Windkessel model that requires the
definition of a proximal resistance Rp, compliance C, and distal resistance Rd. Considering
this, we have

(3)

(4)

(5)

2.2.2. Method for Fluid-Structure Interaction—The coupled-momentum method for
FSI was used to account for the deformability of the arterial network [11]. This method is
appropriate for modeling wave propagation phenomena in large arterial networks due to the
minimal additional computational effort that is required over the non-FSI, rigid wall
formulation. This monolithic, fixed-mesh configuration method embeds the elasto-dynamics
equations of the vessel wall into the variational form of the fluid problem via the definition
of a fictitious body force driving the motion of the wall. By using a thin-wall membrane
assumption, the fictitious body force is related to the traction tf at the fluid-solid interface Γt,
providing a closure for the term in equation (1):

(6)

where h and ρ are the vessel wall thickness and density, respectively, Γs represents the
reference (average) configuration for the position of the arterial wall over the cardiac cycle,

(P ) is the linearization of the first Piola-Kirchhoff stress tensor, and  is a boundary
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of the configuration Γs where a traction hs is prescribed [10]. (P ) may be obtained by
linearization of a non-linear constitutive law via the theory of Small on Large [6] and will be
used in subsequent works to assign experimentally-derived biaxial constitutive laws to the
arterial wall [14]. In this present work, however, we used a simple analog of arterial stiffness
given by a linear, isotropic constitutive model, characterized by the Young’s modulus, E. In
this case, (P ) = K ̃ε̃ + P ̃, with

(7)

(8)

where ν represents the Poisson’s ratio, k is a transverse shear factor, u is the displacement
vector, and P ̃ is a pre-stress tensor.

2.2.3. Model for Perivascular Tissue Support—To obtain physiologically realistic
vessel wall dynamics, it is necessary to account for the mechanical forces exerted by the
perivascular tissues and other organs on the arterial walls. Indeed, the major arteries of the
body are tethered to the surrounding tissue as opposed to being suspended in space. We thus
apply a simple traction boundary condition on the vessel wall boundary to represent the
mechanical behavior of the perivascular tissue [24] and to stabilize potential
nonphysiological oscillations in the movement of the unsupported arterial wall. This traction
boundary condition mimics the effect of a viscoelastic foundation and is added to equation
(1) via the following integral term:

(9)

Here, the parameters ks and cs control the stiffness and damping behavior, respectively.

2.3. Parameter Specification
2.3.1. Arterial Wall Material Properties—The manually generated centerline paths and
2-D segmentations obtained in the geometric reconstruction process were used to assign
non-uniform distributions of vessel wall stiffness (i.e. E) and thickness h according to the
following procedure: We first determined an equivalent radius r for each of the
segmentations along the centerline path. Since each 2-D segmentation is not necessarily
circular, the equivalent radius is simply obtained from the area of the segmented region. The
local thickness at the segmentation was then defined as ten percent of r [26]. The
distribution of E was assigned by first using an empirical formula derived by Reymond et al.
[33] from measurements relating pulse wave velocity (PWV) to vessel radius: PWV = α/
(2r)β, where α = 13.3 and β = 0.3. Here, r is given in mm and PWV in m/s. Then, using the
Moens-Korteweg formula we arrived at the following expression for E (given in MPa) as a
function of the local radius:
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(10)

where ρ and h are given in [cgs] units. The values of E and h at the segmentation locations
were interpolated linearly along the centerline and then projected on to the vessel wall by
finding the shortest distance from each surface triangle to the centerline (see Figure 3).

2.3.2. Outflow Boundary Condition Parameters—The resistance of each outlet,
which is the sum of the proximal and distal resistances (Rp + Rd) was adjusted in an iterative
manner so that the predicted flow distributions in each vascular region were within 3% of
reported values [46]. We defined a “total equivalent peripheral resistance”, RT, for each
color-coded vascular region (see Tables 1 and 2) where RT = (Σi 1/Ri)−1 and Ri is the
individual outlet resistance (Rp + Rd). Ri were computed using the relation: RT/Ri = Ai/AT
where Ai is the cross-sectional area of the individual outlet and AT is the total cross-
sectional area of the outlets in a vascular region. For each region, RT was adjusted to
achieve the desired regional flow. Similarly, we defined a “total equivalent peripheral
compliance,” CT = (Σi Ci), and computed the individual Ci using the relation: Ci/CT = Ai/
AT. Thus, we assumed that in each vascular region the amount of flow and the peripheral
compliance at each outlet are proportional to its area. We assumed that the ratio of the
proximal to total resistance, Rp/(Rp + Rd), is 0.056 [17], except for the outlets where no
reverse flow was expected. In such outlets (i.e., renals and cerebral vessels), we arbitrarily
assumed this ratio varied between 0.1 and 0.2.

3. Results
3.1. Trunk model: Baseline Conditions

As a precursor to the full-body simulation, we first focused on a subset of the full-body
geometry encompassing the vessels inferior to the carotids and superior to the femoral
arteries. This trunk model (see Figure 4), due to its smaller size, facilitated the process of
tuning the outflow boundary conditions and the distribution of arterial wall stiffness. The
Windkessel parameters used in this model are reported in Table 1. The vessel wall density
was ρ = 1.06 g/cm3, the Poisson’s ratio ν = 0.5, and the transverse shear factor k = 0.833.
We considered a distribution of stiffness representative of a younger subject by scaling
equation (10) by a factor of 0.4 (see Figure 5). We prescribed a representative ascending
aortic flow waveform (see Figure 7) with an average cardiac output of 5 L/min and a heart
rate of 60 beats per second. The finite element mesh consisted of 1,721,395 linear tetrahedra
and 368,170 nodes. We used a time step size of 0.1 ms and ran the simulation for three
cardiac cycles to achieve cycle-to-cycle periodicity in the results. Figure 5 shows peak
systolic maps for the wall shear stress and volume rendering of the velocity magnitude.
Figure 6 demonstrates good agreement between simulated regional flow distributions and
reported values in the literature [46], which were scaled to accommodate the absence of
coronary and intercostal arteries in the model.

Cross-sectional flow and pressure waveforms at multiple sites in the model (see Figure 7)
exhibit realistic qualitative characteristics; namely, a physiologically relevant range for flow
and pressure at each outlet, reverse flow in the abdominal aorta during diastole, and forward
flow throughout the cycle in the renal arteries [26]. Pressure waveforms are shown at six
sites along the aorta and into the left common iliac artery (Figure 8). Pressures ranged from
104/81 mmHg in the ascending aorta to 119/76 mmHg in the common iliac artery. The
pressure wave exhibited a large increase in amplitude as it traveled down the aorta. Such
pressure amplification is well known to occur most prominently in younger healthy subjects.
Pulse wave velocity (PWV) values were obtained by measuring the centerline distance
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between measurement sites and the time elapsed between the “feet” of the corresponding
pressure waves [7]. Figure 8 further shows an increase in PWV down the aorta. This is in
good qualitative agreement with experimental measurements of wave speed. PWV is
smallest in the ascending aorta (3.01 m/s), where the vessel wall is the most compliant, and
reaches a maximum value in the stiffer abdominal aorta (4.30 m/s) before declining again at
the iliac bifurcation level.

3.2. Trunk Model: Age-related Stiffening, Hypertension and Pressure Pulse Propagation
We next investigated the impact of temporal changes in wall mechanical properties on
pressure pulse propagation. To this end, we performed two additional simulations in which
arterial stiffness was increased to represent age-related changes in mechanical properties
(see Figure 9). These two additional cases, labeled “middle-aged” and “elderly”, were
obtained by scaling equation (10) by a factor of 0.8 and 1.2, respectively. This uniformly
multiplied the stiffness of the baseline “young” case by a factor of two and three. Figure 9
shows pressure waveforms at six sites in the aorta for all three cases. Numerical values for
the pulse pressure (the difference between systolic and diastolic pressures) and amplification
factor, defined as the ratio of the local pulse pressure to the pulse pressure at site 1, are
provided for each waveform. Results show that pulse pressure increased with increasing
stiffness at every site. However, the amplification factor between sites 1 and 6 decreases
with increased stiffness, ranging from 1.88 in the “young” case to 1.13 in the “elderly” case.
This is in agreement with experimental findings that report a decrease in pressure
amplification with age [26]. Lastly, the table at the bottom of Figure 9 compares PWV
amongst the three cases. As expected, PWV increased with increased levels of arterial
stiffness. These changes were not spatially uniform: the ascending aorta experienced the
smallest increase in PWV (from 3.01 m/s in the “young” case to 3.57 m/s in the “elderly”
case) whereas the abdominal aorta experienced the largest increase (from 4.30 m/s to 8.00
m/s). The “aortic-to-iliac” PWV between locations 1 and 6, analogous to the CF-PWV,
increased as the aorta stiffened.

3.3. Full Body Model
The full body model contains the primary large arteries of the human vasculature from head
to foot. Figure 10 shows the 82 outlets of the model, grouped together and colored-coded by
perfusion region. Closeup views depict the cerebral vasculature (A), subclavian branches
(B), arm arteries (C, D), mesenteric branches (E), branches from the celiac trunk and the
renal arteries (F), and the major leg arteries and their branches (I-N). All outflow vessels are
labeled with unique identifiers. The Windkessel parameters used in this model are reported
in Table 2. The vessel wall density was ρ = 1.06 g/cm3, the Poisson’s ratio ν = 0.5, and the
transverse shear factor k = 0.833. The distribution of mechanical wall properties was
obtained by scaling equation (10) by a factor of 1.2; therefore the full body model has a
similar level of arterial stiffness as the “elderly” trunk model. We prescribed the same
ascending aortic flow waveform as in the trunk model. The finite element mesh consisted of
14,438,720 linear tetrahedra and 2,674,545 nodes. We used a time step size of 0.05 ms and
ran the simulation for three cardiac cycles to achieve cycle-to-cycle periodicity in the
results. The run time was approximately 48 hours per cardiac cycle using 384 cores of a
cluster containing AMD Barcelona processors (Ranger at Texas Advanced Computing
Center). Figure 12 displays color maps of wall stiffness, peak systolic wall shear stress and a
volume rendering of velocity magnitude for this model.

Figure 11 shows cross-sectional flow and pressure waveforms at multiple sites in the model.
Reverse flow is mostly absent in the descending thoracic aorta, but develops in the infra-
renal region of the abdominal aorta and is also seen in the iliac and femoral arteries. Forward
flow is observed throughout the cardiac cycle in the renal arteries, common carotid arteries,
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and middle cerebral arteries. Flow waves in the subclavian and brachial arteries show a
sharp systolic peak followed by a secondary peak. In particular, the shape of the brachial
flow wave shows agreement with experimental measurements [12]. Pressures ranged from
151/81 mmHg in the ascending aorta to 163/73 mmHg in the tibial artery. Time-averaged
mean pressure dropped from 114 mmHg in the ascending aorta to 104 mmHg in the tibial
artery. The ratio of the tibial pulse pressure to ascending aortic pulse pressure was 1.30. The
table in Figure 11 shows PWV between individual sites down the aorta and the arteries of
the left leg. The carotid-to-femoral pulse wave velocity (CF-PWV), computed from pressure
waves at the right common carotid artery and the femoral artery was 8.81 m/s.

4. Discussion
In this article, we presented an analysis of unsteady three-dimensional hemodynamics within
two deformable arterial models: one containing the main arteries in the trunk region and the
other containing the main arteries of the entire body from head to foot. Due to the
complexity of these models, the following methodologies were required to produce a
physiologically realistic solution: a coupled-momentum method for fluid-structure-
interaction, a multi-domain method for outflow boundary condition specification, an
external tissue support boundary condition for representing perivascular tethering, and a
method for field-driven mesh adaptation. While these individual methodological approaches
have been previously published, this is the first combination of these separate methods to
build a model at the full-body scale. The simulations resulted in physiologically realistic
pressure and flow waveforms as well as realistic spatial variations in pulse wave velocity.
Furthermore, and consistent with the literature on arterial aging, the trunk model showed
that increased arterial stiffness resulted in a reduction of pressure wave amplification and
increased PWV values. In the following paragraphs, we discuss a few aspects regarding the
adopted methodological approach and the validity of the simulation results.

4.1. Multi-Scale vs. Multi-Resolution
The coupled multi-domain method for outflow boundary condition specification is a
variational multi-scale formulation that facilitates the coupling of different spatial scales
modeled in the upstream and downstream domains. The Navier-Stokes equations are used to
characterize 3-D blood flow in the large arteries at the continuum scale in the upstream
domain, whereas reduced-order models (in this case, zero-dimensional lumped-parameter
Windkessel models) are used to represent flow in the microcirculation (i.e., downstream
domain). While multiple spatial scales are not simultaneously considered within each
individual domain, the overall model is “multi-scale” since it accounts for the impact that
flow in the microcirculation has on the macrocirculation. However, one could also interpret
this approach as a “multi-resolution” method, since different parts of the domain are
modeled using different levels of spatial resolution (3-D vs 0-D).

4.2. FSI Solution Strategy
The coupled-momentum method for fluid-structure interaction assumes linearized
kinematics and constitutive behavior and is thus most appropriate when the arterial wall
deformations are small, as is the case for the majority of vessels in the full-body arterial
network. This method has been shown to be highly scalable [49] and to have a small
additional computational cost compared to that of rigid-wall formulations [11]. There are of
course a number of other methods for cardiovascular fluid-structure-interaction: extensive
work has been done in developing moving-domain formulations such as arbitrary-
Lagrangian-Eulerian (ALE) methods [30, 13, 24, 39, 8] that can accommodate large
deformations of the vessel wall. Although using an ALE method would allow us to
accurately capture the motion of the ascending aorta, the computational cost would be
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currently prohibitive for models of the scale presented in this paper. A hybrid strategy
whereby an ALE method is used in certain regions and the linear fixed-mesh coupled
momentum formulation is used elsewhere could provide the best of both worlds.

4.3. Arterial Stiffening and Wave Propagation
Arterial stiffening due to normal aging or disease results in increased PWV values in the
central arteries. An important consequence of increased stiffness is that reflected pressure
waves from the peripheral circulation arrive earlier at the ascending aorta and constructively
interfere with the incident waves, resulting in an “augmented” pressure waveform [26, 7].
The augmentation index (AIx) is a metric that quantifies the increase in pulse pressure due
to wave reflection and is commonly used as a surrogate for arterial stiffness. However, the
determination of AIx requires identifying a “shoulder” on the rising limb of the pressure
wave during systole. This feature is not always identifiable, and indeed, it was not clearly
seen in the simulation results. On the other hand, pressure amplification, which is simply a
ratio between peripheral pulse pressure and aortic pulse pressure (and thus inversely related
to AIx), can be measured more accurately and is therefore an alternative indicator of arterial
stiffness [1]. In the arterial stiffening analysis, it was apparent that increased stiffness altered
the timing of the reflected pressure waves arriving at the ascending aorta. Specifically,
whereas in the “young” case two peaks in the pressure waveform were clearly visible (the
late second peak corresponds to a reflected wave from the periphery), in the “elderly” case
there is a single peak (see location 1 in Figure 9) of larger magnitude, due to the earlier
arrival of the reflected waves at the ascending aorta.

4.4. Wave Propagation in the Full-Body model
The distribution of wall stiffness in the full-body model is comparable to that of the
“elderly” trunk case, and the aortic pulse pressures (70–80 mmHg) and pressure waveforms
in the two models are comparable. PWV increased moving from the ascending to the
descending aorta due to anatomical tapering and increasing arterial stiffness, but decreased
after the aortic bifurcation, as shown in Figure 11. These results are in line with the study
published by Latham et al. [18], in which aortic PWV was measured in human subjects
using a catheter with six manometers. Their findings showed a marked increase in PWV
moving down the aorta and a reduction in PWV after the aortic bifurcation.

4.5. Three-Dimensional Models vs. One-Dimensional Models
1-D models of wave propagation have been used extensively to investigate hemodynamics
in the human arterial tree. These models describe spatially-averaged quantities of pressure
and flow in the axial direction and therefore contain far fewer degrees-of-freedom in
comparison to a 3-D model (O(103) in 1-D versus O(106) in 3-D). Therefore, the required
computational cost of 1-D formulations is modest: an analysis of wave propagation in the
arterial tree can be produced within a clinically-relevant time frame using a laptop computer.

In contrast, 3-D analysis requires substantial computational resources. Parallel computing
using a large number of processors is needed to produce results in a clinically-relevant time
frame. Of course, the advantage of 3-D formulations is the ability to account for important
anatomical features such as curvature, bifurcations, sudden changes in cross-sectional area
and circumferentially-varying wall properties. None of these anatomical considerations can
be directly addressed in a 1-D setting. We thus emphasize that 3-D models avoid the
limitations of 1-D models while producing the same quantities, i.e. spatially-averaged
pressure and flow directly extracted from the 3-D velocity and pressure fields as illustrated
in the results above. The availability of the full 3-D velocity field (see Figure 12) enables
further examination of flow features and wall shear maps. Taking advantage of both 1-D and
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3-D approaches, an efficient modeling strategy would involve using 1-D models to quickly
estimate inflow and outflow boundary conditions for the 3-D model.

4.6. Limitations and Future Work
The task of assigning parameters for outflow boundary conditions and vessel wall material
properties in a subject-specific manner is nontrivial. Ideally, non-invasive clinical
measurements would be used to tune the model parameters. However, these measurements
usually provide partial information on the velocity field, such as flow waveforms at discrete
locations. Regarding the pressure, time-resolved non-invasive data can only be obtained for
superficial vessels using applanation tonometry and central pressure must be estimated
indirectly via transfer functions. Furthermore, certain tissue properties such as the internal
stress cannot be measured non-invasively. Experimental ex-vivo techniques have enabled
the characterization of biaxial non-linear material properties for the vessel wall by providing
adequate longitudinal stretching and pressure-perfusion to the specimen [14]. In subsequent
works, the task of boundary and material parameter specification can be improved by using
advanced time-resolved volumetric imaging techniques such as 4D-PC MRI that provide
velocity data in the entire volume of interest [20]. Furthermore, recently developed methods
for cardiovascular data assimilation [23] could be used to estimate model parameters from
time-resolved images of wall motion and non-invasive measurements of flow and pressure.

In this paper we computed the outflow boundary condition parameters for both the trunk and
full-body models in an ad-hoc manner, using the method described in section 2.3.2. This
resulted in several Windkessel coefficients in the common outlets to both models (i.e., the
arm and leg regions) to be different, even though the total equivalent peripheral resistance
and compliance (RT and CT respectively) of these regions were identical. In subsequent
works, a more systematic approach could be adopted to ensure consistency in boundary
condition parameters between a full-body scale model and an arbitrarily truncated model.

The resolution of the meshes presented here is insufficient to reach grid independence in the
wall shear stress fields [19]; results in Figure 12 are thus provided simply to illustrate
ultimate capability. Indeed, the goal of this current work was to characterize global wave
propagation phenomena and to demonstrate the feasibility of a 3-D framework for
calculating hemodynamics in full-body scale anatomical models. In subsequent works, a
two-step approach for accurately resolving wall shear in localized regions could be adopted.
In such an approach, a full body model with a moderate level of mesh resolution could
provide the boundary conditions for a truncated, more finely discretized model.

The full-body model presented here does not include the main coronary arteries and the
intercostal arteries. These branches carry a significant portion of the cardiac output and, in
the case of the intercostals, might impact wave propagation in the aorta. The inclusion of the
coronaries will be useful to investigate the impact of arterial stiffening on coronary blood
flow.

A further limitation of the current model is the use of a prescribed flow waveform at the
inlet. A lumped-parameter heart model [15] can be used to simulate the coupling between
the left ventricle and the arterial network, This approach will allow us to investigate the
effect of increased arterial stiffening on the workload of the heart.

In the age-related stiffening study we simply modified the values of the arterial stiffness in
going for the baseline “young” case to the “middle-aged” and “elderly” cases, and assumed
no changes in the anatomy. It is well-known however that the aorta becomes more tortuous
with aging, due to the loss of longitudinal tethering and decrease in height of the individual.
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A more rigorous study on arterial aging hemodynamics would include not only changes in
mechanical properties but also different arterial geometries for subjects of different ages.

Finally, validation is a crucial step for any modeling task. There have been several studies
that include validation for 1-D models using in vitro and subject-specific in vivo
measurements of flow and pressure [3, 32, 33]. The 3-D models presented in this work must
be validated in the same manner. Furthermore, a comparison between 1-D and 3-D modeling
approaches in full-body arterial networks is necessary to assess the differences in overall
hemodynamics between the two formulations.

4.7. Clinical Implications
Diverse clinically measurable metrics - pulse wave velocity, pulse pressure, augmentation
index, arterial distensibility, and so forth - have found considerable clinical acceptance as
indicators of cardiovascular function and predictors of cardiovascular risk [22, 9, 25, 5]. For
example, it has been shown empirically that the CF-PWV correlates very well with both risk
and disease [22], leading some to refer to CF-PWV as the “gold standard” of measurement
of arterial stiffness [25] and the NIH to concur that it is a “direct measure of arterial
stiffness” (RFA-HL-10-027). We emphasize, however, that CF-PWV is simply a convenient
clinical metric that reflects an underlying spatially-averaged structural stiffness of a tapering
arterial tree from the carotids to the femorals. There is a need to understand the CF-PWV
better from the perspective of mechanics as well as from the perspective of clinical
implications. Indeed, notwithstanding the increased clinical acceptance of CF-PWV as a
metric of changes in arterial stiffness, McEniery et al. suggested that “augmentation index
might be a more sensitive marker of arterial stiffening and risk in younger individuals (< 50
years of age) but aortic PWV is likely to be a better measure in older individuals (> 50 years
of age) [21]”, that is, only after marked and diffuse changes in stiffness have occurred.
Lakatta et al. wrote further that “Evaluation of the diastolic decay of pulse wave contour
may provide insights into the characteristics and pathology of more distal vessels in which
reflected waves originate [16].” Wang et al. similarly suggested that “Although aortic
stiffness indexed by carotid-femoral PWV is the gold standard measurement for arterial
stiffness, measurement of the intensity of wave reflection is also relevant to identify subjects
with early vascular aging… [42]”

Based on empirical findings, therefore, there is a pressing need to investigate more deeply
the utility of the many candidate clinical metrics of arterial aging as well as their potential in
reflecting the underlying structural mechanisms that lead to adverse cardiovascular diseases.
We submit that, via well designed parametric studies, computational models offer
considerable promise in contributing to this goal. In particular, there is a need to investigate
the hypothesis that increased arterial stiffening likely initiates in more proximal large
arteries, then propagates to more distal large arteries and eventually to the microvessels.
Modeling studies can facilitate the delineation of effects of spatially and temporally
progressive increases in large artery stiffening on system-level hemodynamics, with the
potential to identify improved indicators of early stiffening that may allow an earlier clinical
intervention that can prevent the longer-term irreversible changes to the microstructure that
otherwise inevitably occur.

Acknowledgments
This work was supported by the United States National Institutes of Health (NIH) grant R01 HL-105297. The
simulations were supported in part by a United States National Science Foundation (NSF) Grant CNS-0619926 and
by a NSF Extreme Science and Engineering Digital Environment (XSEDE) startup allocation. The authors
acknowledge financial support from the United Kingdom Department of Health via the National Institute for Health
Research (NIHR) comprehensive Biomedical Research Centre award to Guy’s & St Thomas’ NHS Foundation
Trust in partnership with King’s College London and King’s College Hospital NHS Foundation Trust.

Xiao et al. Page 11

J Comput Phys. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



References
1. Adji A, O’Rourke MF, Namasivayam M. Arterial stiffness, its assessment, prognostic value, and

implications for treatment. American journal of hypertension. Jan; 2011 24(1):5–17. [PubMed:
20940710]

2. Agabiti-Rosei E, Mancia G, O’Rourke MF, Roman MJ, Safar ME, Smulyan H, Wang J-G,
Wilkinson IB, Williams B, Vlachopoulos C. Central blood pressure measurements and antihy-
pertensive therapy: a consensus document. Hypertension. Jul; 2007 50(1):154–160. [PubMed:
17562972]

3. Alastruey J, Khir AW, Matthys KS, Segers P, Sherwin SJ, Verdonck PR, Parker KH, Peiró J. Pulse
wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations
against in vitro measurements. Journal of biomechanics. Aug; 2011 44(12):2250–2258. [PubMed:
21724188]

4. Avolio AP. Multi-branched model of the human arterial system. Medical & biological engineering
& computing. Dec; 1980 18(6):709–718. [PubMed: 7230917]

5. Avolio AP, Van Bortel LM, Boutouyrie P, Cockcroft JR, McEniery CM, Protogerou AD, Roman
MJ, Safar ME, Segers P, Smulyan H. Role of pulse pressure amplification in arterial hypertension:
experts’ opinion and review of the data. Hypertension. Aug; 2009 54(2):375–383. [PubMed:
19564542]

6. Baek S, Gleason RL, Rajagopal KR, Humphrey JD. Theory of small on large: Potential utility in
computations of fluidGsolid interactions in arteries. Computer Methods in Applied Mechanics and
Engineering. Jun; 2007 196(31–32):3070–3078.

7. Barodka VM, Joshi BL, Berkowitz DE, Hogue CW, Nyhan D. Review article: implications of
vascular aging. Anesthesia and analgesia. May; 2011 112(5):1048–1060. [PubMed: 21474663]

8. Bazilevs Y, Calo VM, Zhang Y, Hughes TJR. Isogeometric FluidGstructure Interaction Analysis
with Applications to Arterial Blood Flow. Computational Mechanics. Jun; 2006 38(4–5):310–322.

9. Boutouyrie P, Laurent S, Briet M. Importance of arterial stiffness as cardiovascular risk factor for
future development of new type of drugs. Fundamental & clinical pharmacology. Jun; 2008 22(3):
241–246. [PubMed: 18485143]

10. Figueroa CA, Baek S, Taylor CA, Humphrey JD. A computational framework for fluid-solid-
growth modeling in cardiovascular simulations. Computer Methods in Applied Mechanics and
Engineering. 2009; 198(45–46):3583–3602. [PubMed: 20160923]

11. Figueroa CA, Vignon-Clementel IE, Jansen KE, Hughes TJR, Taylor CA. A coupled momentum
method for modeling blood flow in three-dimensional deformable arteries. Computer Methods in
Applied Mechanics and Engineering. 2006; 195(41–43):5685–5706.

12. Gault JH, Ross JR, Mason DT. Patterns of brachial arterial blood flow in conscious human subjects
with and without cardiac dysfunction. Circulation. 1966:833–848. [PubMed: 5923846]

13. Gerbeau J-F, Vidrascu M, Frey P. Fluid-structure interaction in blood flows on geometries based
on medical imaging. Computers & Structures. Jan; 2005 83(2–3):155–165.

14. Gleason RL, Gray SP, Wilson E, Humphrey JD. A multiaxial computer-controlled organ culture
and biomechanical device for mouse carotid arteries. Journal of Biomechanical Engineering. 2004;
126(6):787–795. [PubMed: 15796337]

15. Kim HJ, Vignon-Clementel IE, Figueroa Ca, LaDisa JF, Jansen KE, Feinstein JA, Taylor CA. On
coupling a lumped parameter heart model and a three-dimensional finite element aorta model.
Annals of biomedical engineering. Nov; 2009 37(11):2153–2169. [PubMed: 19609676]

16. Lakatta EG, Wang M, Najjar SS. Arterial aging and subclinical arterial disease are fundamentally
intertwined at macroscopic and molecular levels. Medical Clinics of North America. 2009; 93(3):
583–604. [PubMed: 19427493]

17. Laskey WK, Parker HG, Ferrari VA, Kussmaul WG, Noordergraaf A. Estimation of total systemic
arterial compliance in humans. Journal of applied physiology (Bethesda, Md: 1985). Jul; 1990
69(1):112–119.

18. Latham RD, Westerhof N, Sipkema P, Rubal BJ, Reuderink P, Murgo JP. Regional wave travel
and reflections along the human aorta: a study with six simultaneous micromanometric pressures.
Circulation. 1985; 72(6):1257–1269. [PubMed: 4064270]

Xiao et al. Page 12

J Comput Phys. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



19. Les AS, Shadden SC, Figueroa CA, Park JM, Tedesco MM, Herfkens RJ, Dalman RL, Taylor CA.
Quantification of hemodynamics in abdominal aortic aneurysms during rest and exercise using
magnetic resonance imaging and computational fluid dynamics. Annals of biomedical engineering.
Apr; 2010 38(4):1288–1313. [PubMed: 20143263]

20. Markl M, Draney MT, Hope MD, Levin JM, Chan FP, Alley MT, Pelc NJ, Herfkens RJ. Time-
Resolved 3-Dimensional Velocity Mapping in the Thoracic Aorta. Journal of Computer Assisted
Tomography. 2004; 28(4):459–468. [PubMed: 15232376]

21. McEniery CM, Yasmin, Hall IR, Qasem A, Wilkinson IB, Cockcroft JR. Normal vascular aging:
differential effects on wave reflection and aortic pulse wave velocity: the Anglo-Cardiff
Collaborative Trial (ACCT). Journal of the American College of Cardiology. 2005; 46(9):1753–
1760. [PubMed: 16256881]

22. McEniery CM, Yasmin, Maki-Petaja KM, McDonnell BJ, Munnery M, Hickson SS, Franklin SS,
Cockcroft JR, Wilkinson IB. The impact of cardiovascular risk factors on aortic stiffness and wave
reflections depends on age: the Anglo-Cardiff Collaborative Trial (ACCT III). Hypertension. Oct;
2010 56(4):591–597. [PubMed: 20696989]

23. Moireau P, Bertoglio C, Xiao N, Figueroa Ca, Taylor Ca, Chapelle D, Gerbeau J-F. Sequential
identification of boundary support parameters in a fluid-structure vascular model using patient
image data. Biomechanics and modeling in mechanobiology. Jul.2012

24. Moireau P, Xiao N, Astorino M, Figueroa CA, Chapelle D, Taylor CA, Gerbeau J-F. External
tissue support and fluid-structure simulation in blood flows. Biomechanics and modeling in
mechanobiology. Feb; 2011 11(1–2):1–18. [PubMed: 21308393]

25. Najjar SS, Scuteri A, Shetty V, Wright JG, Muller DC, Fleg JL, Spurgeon HP, Ferrucci L, Lakatta
EG. Pulse wave velocity is an independent predictor of the longitudinal increase in systolic blood
pressure and of incident hypertension in the Baltimore Longitudinal Study of Aging. Journal of the
American College of Cardiology. Apr; 2008 51(14):1377–1383. [PubMed: 18387440]

26. Nichols, WW.; O’Rourke, MF. McDonald’s blood flow in arteries: theoretical, experimental, and
clinical principles. Arnold, Hodder, editor. Vol. 11. Distributed in the United States of America by
Oxford University Press; 1998.

27. Nilsson PM, Boutouyrie P, Laurent S. Vascular aging: A tale of EVA and ADAM in
cardiovascular risk assessment and prevention. Hypertension. Jul; 2009 54(1):3–10. [PubMed:
19487587]

28. Olufsen MS. Structured tree outflow condition for blood flow in larger systemic arteries. American
journal of physiology-Heart and circulatory physiology. 1999; 276(1):H257–H268.

29. O’Rourke MF, Hashimoto J. Mechanical factors in arterial aging: a clinical perspective. Journal of
the American College of Cardiology. Jul; 2007 50(1):1–13. [PubMed: 17601538]

30. Perktold K, Rappitsch G. Computer simulation of local blood flow and vessel mechanics in a
compliant carotid artery bifurcation model. Journal of biomechanics. Jul; 1995 28(7):845–856.
[PubMed: 7657682]

31. Redheuil A, Yu W-C, Wu CO, Mousseaux E, de Cesare A, Yan R, Kachenoura N, Bluemke D,
Lima JAC. Reduced ascending aortic strain and distensibility: earliest manifestations of vascular
aging in humans. Hypertension. Feb; 2010 55(2):319–326. [PubMed: 20065154]

32. Reymond P, Bohraus Y, Perren F, Lazeyras F, Stergiopulos N. Validation of a patient-specific one-
dimensional model of the systemic arterial tree. American journal of physiology Heart and
circulatory physiology. 2011; 301(3):H1173–82. [PubMed: 21622820]

33. Reymond P, Merenda F, Perren F, Rüfenacht D, Stergiopulos N. Validation of a one-dimensional
model of the systemic arterial tree. American journal of physiology. Heart and circulatory
physiology. Jul; 2009 297(1):H208–22. [PubMed: 19429832]

34. Safar ME. Arterial aging–hemodynamic changes and therapeutic options. Nature reviews.
Cardiology. Aug; 2010 7(8):442–449.

35. Sahni O, Muller J, Jansen KE, Shephard MS, Taylor CA. Efficient anisotropic adaptive
discretization of the cardiovascular system. Computer Methods in Applied Mechanics and
Engineering. Aug; 2006 195(41–43):5634–5655.

Xiao et al. Page 13

J Comput Phys. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



36. Schaaf BW, Abbrecht PH. Digital computer simulation of human systemic arterial pulse wave
transmission: a nonlinear model. Journal of Biomechanics. 1972; 5(4):345–364. [PubMed:
4666197]

37. Sherwin SJ, Franke V, Peiro J, Parker KH. One-dimensional modelling of a vascular network in
space-time variables. Journal of Engineering Mathematics. Dec; 2003 47(3):217–250.

38. Stergiopulos N, Young DF, Rogge TR. Computer simulation of arterial flow with applications to
arterial and aortic stenoses. Journal of biomechanics. Dec; 1992 25(12):1477–1488. [PubMed:
1491023]

39. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE. FluidGstructure Interaction Modeling
of Aneurysmal Conditions with High and Normal Blood Pressures. Computational Mechanics.
May; 2006 38(4–5):482–490.

40. Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA. Outflow boundary conditions for
three-dimensional finite element modeling of blood flow and pressure in arteries. Computer
Methods in Applied Mechanics and Engineering. 2006; 195(29–32):3776–3796.

41. Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA. Outflow boundary conditions for 3D
simulations of non-periodic blood flow and pressure fields in deformable arteries. Computer
methods in biomechanics and biomedical engineering. Oct; 2010 13(5):625–640. [PubMed:
20140798]

42. Wang K-L, Cheng H-M, Sung S-H, Chuang S-Y, Li C-H, Spurgeon HA, Ting C-T, Najjar SS,
Lakatta EG, Yin FCP, Chou P, Chen C-H. Wave reflection and arterial sti3ness in the prediction of
15-year all-cause and cardiovascular mortalities: a community-based study. Hypertension. Mar;
2010 55(3):799–805. [PubMed: 20065155]

43. Westerhof BE, Guelen I, Stok WJ, Lasance HAJ, Ascoop CAPL, Wesseling KH, Westerhof N,
Bos WJW, Stergiopulos N, Spaan JAE. Individualization of transfer function in estimation of
central aortic pressure from the peripheral pulse is not required in patients at rest. Journal of
applied physiology (Bethesda, Md: 1985). Dec; 2008 105(6):1858–1863.

44. Westerhof N, Bosman F, de Vries CJ, Noordergraaf A. Analog studies of the human systemic
arterial tree. Journal of biomechanics. 1969; 2(2):121–143. [PubMed: 16335097]

45. Whiting CH, Jansen KE. A stabilized finite element method for the incompressible Navier-Stokes
equations using a hierarchical basis. International Journal for Numerical Methods in Fluids. Jan;
2001 35(1):93–116.

46. Williams LR, Leggett RW. Reference values for resting blood flow to organs of man. Clinical
Physics and Physiological. 1989; 10(3):187–217.

47. Wilson JS, Baek S, Humphrey JD. Importance of initial aortic properties on the evolving regional
anisotropy, stiffness and wall thickness of human abdominal aortic aneurysms. Journal of the
Royal Society, Interface/the Royal Society. Apr.2012

48. Wilson, N.; Wang, K.; Dutton, R.; Taylor, CA. Medical Image Computing and Computer-Assisted
Intervention GMICCAI 2001. Springer; 2001. A software framework for creating patient specific
geometric models from medical imaging data for simulation based medical planning of vascular
surgery; p. 449-456.

49. Zhou M, Sahni O, Kim HJ, Figueroa CA, Taylor CA, Shephard MS, Jansen KE. Cardiovascular
flow simulation at extreme scale. Computational Mechanics. Dec; 2009 46(1):71–82.

Xiao et al. Page 14

J Comput Phys. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
The arterial geometry was reconstructed separately for the head/neck and the rest of the
body using CT image data from two subjects. Segmentations performed along manually
selected path lines were interpolated to produce a 3-D geometric solid model of each vessel.
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Figure 2.
The finite element mesh was generated by discretization of the 3-D solid model using
curvature-based and field-based adaptive mesh refinement. Close-up views demonstrate
greater element density in the smaller vessels.
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Figure 3.
Wall properties at discrete locations along the centerline were interpolated linearly and
projected to the triangular elements of the vessel wall mesh.
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Figure 4.
Schematic of the outlet faces in the trunk model grouped by perfusion region. Close-up
views depict the aortic arch vasculature (A), celiac trunk branches and renal arteries (B),
mesenteric arteries (C), and iliac arteries (D). All outflow vessels are labeled with unique
identifiers.
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Figure 5.
From left to right: Wall stiffness, systolic wall shear stress and systolic velocity magnitude
for the trunk model.
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Figure 6.
Comparison of regional flow distribution from literature data [46] with simulated regional
flow distribution in the trunk model.
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Figure 7.
Pressure and flow waveforms at multiple sites in the baseline “young” trunk model.
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Figure 8.
Amplification of the pressure pulse and pressure wave velocity (PWV) down the aorta of the
baseline “Young” trunk model.
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Figure 9.
Top Panel: Distribution of arterial wall stiffness for three trunk cases. The “middle-aged”
and “elderly” cases represent a 2x and 3x increase in arterial stiffness, respectively, over that
of the “young” case. Middle Panel: Pressure waveforms at six sites in the aorta for all three
cases. Bottom Panel: Comparison of pulse wave velocities between the three cases.
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Figure 10.
Schematic of all arteries in the full-body model grouped by perfusion region. Close-up
views depict the cerebral vasculature (A), subclavian branches (B), arm arteries (C,D),
mesenteric branches (E), branches from the celiac trunk and the renal arteries (F), and the
major leg arteries and their branches (I-N). All outflow vessels are labeled with unique
identifiers.
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Figure 11.
Pressure and flow waves at multiple sites in the full body model. Table shows PWV values
obtained by measuring the time between the “foot” of the pressure waves at two sites. The
calculated carotid-to-femoral pressure wave velocity (CF-PWV) is representative of typical
values found in experimental measurements.
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Figure 12.
From left to right: Regionally-varying wall stiffness, systolic wall shear stress and systolic
velocity magnitude for the full-body-scale model.
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