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Abstract
We present a fluctuating hydrodynamics approach and a hybrid approach combining fluctuating
hydrodynamics with generalized Langevin dynamics to resolve the motion of a nanocarrier when
subject to both hydrodynamic interactions and adhesive interactions. Specifically, using these
approaches, we compute equilibrium probability distributions at constant temperature as well as
velocity autocorrelation functions of the nanocarrier subject to thermal motion in a quiescent
Newtonian fluid medium, when tethered by a harmonic spring force mimicking a tether due to a
single receptor-ligand bond. We demonstrate that the thermal equipartition of translation, rotation,
and spring degrees of freedom are preserved by our formalism while simultaneously resolving the
nature of the hydrodynamic correlations. Additionally, we evaluate the potential of mean force (or
free energy density) along a specified reaction coordinate to faciltate extensive conformational
sampling of the nanocarrier motion. We show that our results are in excellent agreement with
analytical results and Monte Carlo simulations, thereby validating our methodologies. The
frameworks we have presented provide a comprehensive platform for temporal multiscale
modeling of hydrodynamic and microscopic interactions mediating nanocarrier motion and
adhesion in vascular targeted drug delivery.

1 Introduction
Multiscale modeling can complement experimental technologies in order to access the
mesoscale (10–100 nm). Traditional multiscale modeling involves bottom-up approaches of
systematically coarse-graining the atomistic description. Bridging techniques that seamlessly
integrate two distinct length scales in this category include mixed quantum mechanics/
molecular mechanics (QM/MM) [1], and integrated molecular mechanics/coarse-grained or
MM/CG approaches [2]. Alternatively, a top-down approach can be pursued, in which
models are constructed at the mesoscale based on phenomenological interaction potentials;
in prior work published in the literature, such an approach has been extensively employed,

© 2012 Elsevier Inc. All rights reserved.
*Corresponding author: David.Eckmann@uphs.upenn.edu.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
J Comput Phys. Author manuscript; available in PMC 2014 July 01.

Published in final edited form as:
J Comput Phys. 2013 July 1; 244: 252–263. doi:10.1016/j.jcp.2012.10.026.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and specific choices of the governing equations have been validated based on experimental
studies [3]. The top-down strategy is already proven to be a viable avenue for pursuing
models that provide physical insight as well as for enabling direct comparison with
experiments. Such methods involve continuum scale formalisms and often incorporate finer
length scales by considering spatial heterogeneities as inhomogeneous fields [4]. Bridging
methods integrating molecular mechanics or coarse-grained models with continuum
approaches have been achieved in two limits: (1) hierarchical bridging which involves
computing a property or a constitutive relationship at one (typically the molecular) scale and
employing (either pre- or on-the-fly-) computed values in the other (typically the continuum
scale) [5, 6, 7]; (2) domain decomposition bridging which involves performing molecular
scale modeling in one (typically a small domain) and integrating it with continuum modeling
in an adjoining (larger) domain, such that certain constraints (boundary conditions) are
satisfied self-consistently at the boundary separating the two domains. Such approaches
have been shown to be effective for various problems involving contact lines or points [8, 9,
10, 11, 12, 13, 14, 15, 16].

In situations where molecular interactions (due to biomolecular recognition) and
hydrodynamic interactions (due to fluid flow and boundary effects) are both significant, the
integration of disparate length- and time- scales does not fit the traditionally available
multiscale methods outlined above. The main source of complexity lies in integrating fluid
flow and memory for multiphase flow in complex and arbitrary geometries, while
simultaneously including thermal and stochastic effects to correctly simulate quasi-
equilibrium distributions to enable biomolecular (receptor-ligand) binding/unbinding
interactions at the physiological temperature. Such a scenario is ubiquitous in multivalent
binding or adhesive interactions between nanocarriers and cells or between two cells in the
vasculature. The former application, namely, the computational modeling of nanocarrier
binding to endothelium, is the subject of this article. The use of nanocarriers functionalized
with specific targeting antibodies enables precise and effcacious delivery of drugs to
diseased or inflamed target endothelial cells which often have a distinct pattern of
expression of biomarkers (such as increased intracellular adhesion molecule-1, ICAM-1, or
platelet endothelial cell adhesion molecule, PECAM, expression levels) [17, 18]. In order to
more broadly integrate this technology into clinical medicine, a model-based design and
optimization of nanocarrier transport in the vasculature and adhesion to target cells can
prove effective. Towards achieving this goal, an important step is to determine the motion of
a nanocarrier subject to hydrodynamic effects in the vasculature while simultaneously being
subject to a constant temperature; this is crucial to accurately model the biological reactions
(receptor-ligand interactions) mediating the adhesion of nanocarrier to the endothelial cell
surface lining the vasculature [19, 20, 21, 22].

In prior work, we have combined novel computational methodologies with experimental (in
vivo and in vitro) measurements in order to develop mesoscale continuum models for
nanocarrier motion and nanocarrier adhesion. We developed a computational methodology
to calculate the absolute binding free energy between functionalized nanocarriers and
endothelial cell surfaces based on Metropolis Monte Carlo and the weighted histogram
analysis method. We calculated nanocarrier binding free energy landscapes, which yielded
binding affinities that agreed quantitatively when directly compared with analogous
measurements of specific antibody-coated nanocarriers (100 nm diameter) to ICAM-1
expressing endothelial surfaces in in vitro cell-culture experiments as well as with in vivo
targeting of the anti-ICAM-1 coated nanocarriers to pulmonary endothelium in mice [22].
This model for nanocarrier binding was also extended and comprehensively validated to
predict the effects of multivalent binding under shear flow [23]; our results indicate that the
interplay between multivalent binding and shear force can reproduce the shear-enhanced
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binding phenomenon suggesting that under certain conditions this phenomenon can also
occur in systems that do not show a catch-bond behavior.

With the objective of developing a computational framework for nanocarrier Brownian
motion and hydrodynamic interactions in the presence of flow fields, in a recent study [24]
we employed the fluctuating hydrodynamics approach in an incompressible Newtonian fluid
medium. This is an inherently multi-scale problem in its own right with multiple
macroscopic and mesoscopic time scales governing the problem, including (i) a
hydrodynamic time scale; (ii) a Brownian relaxation time scale and (iii) a Brownian
diffusion time scale. Our formalism considers situations where both the Brownian motion as
well as the hydrodynamic interactions are important and our results for thermal equilibrium
were validated by comparing the predictions for the temperatures of the particle with those
obtained from the equipartition theorem. The nature of the hydrodynamic interactions was
verified by comparing the velocity autocorrelation functions and mean square displacements
with analytical [25] and experimental results where available [24]. In a recent study [26], we
extended our hydrodynamic model to include Brownian effects using the generalized
Langevin dynamics frame-work, where the hydrodynamic memory effects of the nanocarrier
fluid interactions and their relationship to thermal equipartition and equilibrium distributions
were delineated.

While the fluctuating hydrodynamics framework [24] captured the correct hydrodynamic
correlations, it conserved thermal equipartition (for a nanocarrier in an incompressible fluid)
only after the added mass correction was applied [25]; the generalized Langevin dynamics
method on the other hand yielded the correct thermal equipartition (without any corrections),
but modified the nature of the hydrodynamics correlations (due to the coupling of the fluid
equations with the thermostat degrees of freedom). Hence, in a recent study, we have
proposed a hybrid formalism combining fluctuating hydrodynamics and generalized
Langevin dynamics [27], where we have implemented a novel hybrid computational scheme
based on Markovian fluctuating hydrodynamics of the fluid and a non-Markovian Langevin
dynamics with the Ornstein-Uhlenbeck noise perturbing the translational and rotational
equations of motion of the nanocarrier. Using this approach, we validated the thermal
equilibrium between the particle and the fluid by comparing the numerically predicted
temperature of the nanocarrier with that obtained from the equipartition theorem. More
significantly, we have simultaneously verified the nature of the hydrodynamic correlations
(interactions) by comparing the velocity autocorrelation function (VACF) and mean square
displacement (MSD) with well-known analytical results [25]. Hence, our simulations
performed with this hybrid approach simultaneously satisfy the equipartition theorem and
the (short- and long-time) hydrodynamic correlations. This framework effectively produces
a thermostat that also simultaneously preserves the true hydrodynamic correlations [27].

The importance and significance of this result is that our hybrid algorithm provides a robust
computational approach to explore nanocarrier motion in arbitrary geometries and flow
fields, while simultaneously enabling us to study carrier adhesion mediated by biological
reactions (receptor-ligand interactions) at the vessel wall at a specified finite temperature
[22, 23]. In this article, we demonstrate that our fluctuating hydrodynamics approach [24]
and our hybrid approach [27] can indeed be employed when both hydrodynamic interactions
and adhesive interactions are present simultaneously. In section 2, we present the details of
our model and simulation methodologies. In section 3, we consider the equilibrium and
hydrodynamic correlations for a nanocarrier subject to thermal motion in a quiescent
Newtonian fluid medium, when tethered by a spring force (mimicking a single tether due to
one receptor-ligand bond). Since the tethering localizes the nanocarrier very close to the
cylindrical wall, significant hydrodynamic interactions between the nanocarrier and the wall
are also resolved in our model. We demonstrate that the thermal equipartition of translation,
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rotation, and spring degrees of freedom are preserved by our formalism while
simultaneously resolving the nature of the hydrodynamic correlations. Since the timescale of
integration of the fluid and particle (nanocarrier) equations needs to be smaller than the
fastest inherent timescale of our system (in order to achieve linear stability during numerical
integration) [28], the choice for the timestep of integration is limited to Δt < 10−10s (for a
nanocarrier of size 100–500 nm). This limits the total amount of time to be simulated in our
simulations to ten micro seconds (for 100000 timesteps). Leveraging the conservation of
thermal equipartition of our formalism, in section 3, we also demonstrate that we can
perform temporal multiscaling by evaluating the potential of mean force (or free energy
density) along a specified reaction coordinate. This enables the determination of probability
distributions and extensive conformational sampling of nanocarrier motion which is
prohibitive by conventional dynamics. In section 4, we present outlook for future extensions
of our approach in the broader context of temporal multiscale modeling and targeted drug
delivery.

2 Methods
A nanocarrier suspended in a fluid undergoes random motion due to the thermal fluctuations
in the fluid. In determining the translational and rotational motions of the nanocarrier in an
incompressible Newtonian fluid, there exist two methods to couple the thermal fluctuations
with the hydrodynamic interactions: the fluctuating hydrodynamics method and the
generalized Langevin dynamics method. The fluctuating hydrodynamics method essentially
consists of adding stochastic stresses (random stress) to the stress tensor in the momentum
equation of the fluid [29]. The stochastic stress tensor depends on the temperature and the
transport coefficients of the fluid medium [25, 30]. Numerical simulations of the fluctuating
hydrodynamics approach have been carried out employing the finite volume method [31, 30,
32, 33], lattice Boltzmann method (LBM) [34, 35, 36, 37, 38, 39, 40], finite element method
[41, 42, 24] and stochastic immersed boundary method [43]. In contrast, in the Langevin
dynamics method, the effect of thermal fluctuations are incorporated as random forces and
torques in the particle equation of motion [44, 45, 46, 47, 48, 49, 26]. The properties of these
forces depend on the grand resistance tensor. The tensor in turn depends on the fluid
properties, particle shape, and its instantaneous location such as its proximity to a wall or a
boundary.

Brownian particle trapped in a harmonic potential in an incompressible Newtonian
stationary fluid medium contained in a horizontal circular vessel (see Figure 1) is
considered. The fluid and particle equations are formulated in an inertial frame of reference
with the origin coinciding with the center of the cylindrical vessel (Figure 1). The diameter,
D, and the length, L, of the vessel are very large compared to the nanocarrier diameter, d.
Antigen of length 19nm is attached to the wall of the cylindrical tube (R = 2.5μm)
containing a quiescent Newtonian fluid and antibody of length 15nm is attached to the
surface of the neutrally buoyant solid spherical nanocarrier of radius a = 250nm. The
nanocarrier is placed close to the antigen such that the direction of antibody is initially
pointing towards the antigen and the distance between them is 2Å. The tips of the antigen
and the antibody are tethered by a simple harmonic (spring) potential with spring constant k.
Initially, the fluid and particle are at rest. No body force is assumed to be applied either on
the particle or in the fluid domain. Starting at time t = 0, the nanocarrier experiences
Brownian motion and harmonic motion. The motion of the nanocarrier is determined by the
hydrodynamic and spring forces and torques acting on the particle. The numerical results are
obtained from simulations of the fluid-particle system with physical parameters μ = 10−3 kg/
ms; ρ(f) = 103 kg/m3; ρ(p) = 103 kg/m3; kB = 1.3806503 × 10−23 kgm2/s2K; k = 1N/m. The
temperature of the fluid is initially set to T = 310K.
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2.1 Fluctuating Hydrodynamics Method
The motion generated in the incompressible Newtonian fluid satisfies the conservation of
mass and momentum as given by

(1)

(2)

where u and ρ(f) density of the fluid respectively. The stress tensor σ, for Newtonian fluid is
given by

(3)

where p is the pressure, J is the identity tensor, μ is the dynamic viscosity, and S is the
random stress tensor. S is assumed to be a Gaussian with

(4)

where 〈 〉 is the ensemble average, kB is the Boltzmann constant, T is the absolute
temperature, and δ(x–x′) denotes that the components of the random stress tensor are
spatially uncorrelated (Markovian). The right hand side of equation (4) denotes the mean
and variance of the thermal fluctuations chosen to be consistent with the fluctuation-
dissipation theorem [29, 25, 50, 51]. By including this stochastic stress tensor due to the
thermal fluctuations in the governing equations, the macroscopic hydrodynamic theory is
generalized to include the mesoscopic scales ranging from tens of nanometers to a few
microns.

For a rigid Brownian particle trapped in a harmonic potential in an incompressible
Newtonian fluid, the translational motion of the particle satisfies Newton’s second law,

(5)

and the roational motion satisfies the Euler equation,

(6)

where m is the mass of the particle, I is its moment of inertia, and U and ω are the
translational and angular velocities of the particle, respectively. The hydrodynamic force F
and the torque T acting on the particle are given by

(7)
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where X is the position of the centroid of the particle, (x – X) is a vector from the center of
the particle to a point on its surface, ∂Σp denotes the particle surface, and n∩ is the unit
normal vector on the surface of the particle pointing into the particle. The spring force Sf
and torque St acting on the particle are given by

(8)

where k is the spring constant, l is the length of the spring, d∩ is the unit vector pointing
towards the tip of the antigen attached to the wall.

The initial conditions for the problem are

(9)

and the boundary conditions are given by

(10)

(11)

(12)

where Σ0 is the domain occupied by the fluid and ∂Σi and ∂Σo are the inlet and outlet
boundaries, respectively. It is assumed that there is no body torque acting at any point in the
fluid and the viscous stress tensor, σ, is symmetric. The fluctuation-dissipation theorem for
the random stress tensor of the fluid requires that S is symmetric as well [51, 52].

2.2 Hybrid Formalism
Recently, we formulated a hybrid method where we combined Markovian fluctuating
hydrodynamics for the fluid with non-Markovian generalized Langevin approach for the
nanocarrier to show that the approach can simultaneously satisfy equipartition of energy
(and equilibrium probability distributions) in a thermal environment, as well as
hydrodynamic interactions imposed by the flow field [27]. This formalism was based on
modifying the particle equations of motion (5) and (6) similar to the generalized Langevin
equation [53, 54] resulting in

(13)

(14)

where the random force ξ and torque η are given by
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(15)

(16)

for the Ornstein-Uhlenbeck process. The time integral in equations (13) and (14) excludes
the frictional force and torque at the time instant t since it has already been accounted for in
the hydrodynamic force and torque terms, respectively. The characteristic memory time for
translational, τ1 = n1·Δt, and rotational, τ2 = n2·Δt, motions of the nanocarrier add certain
amounts of memory from the previous history of fluctuations to the system. Here, n1 and n2
correspond to the number of time steps required to adequately represent the memory effects.
These are variable quantities and are determined on the basis of satisfying the equipartition
theorem. The amount of memory required by translational and rotational motions of the
nanocarrier in order to satisfy the equipartition theorem are different. Hence τ1 = τ2 is not a
necessary condition for the temperature of the particle to attain the preset temperature of the
fluid. Equations (15) and (16) are the random force and torque acting on the nanocarrier at
time t′ (a previous time instant). Since the random stress S(x, t) is Gaussian, ξ(t′) and η(t′)
are also Gaussian with variance equivalent to the strength of the white noise in the Langevin
equation. In the limit of the characteristic memory times τ1, τ2 → 0 (i.e. in the absence of
memory), equations (13) and (14) reduce to the equations (5) and (6), respectively, which
correspond to the Markovian fluctuating hydrodynamics.

2.3 Numerical Discretization
The stochastic governing equations (1) – (6) (for hybrid method: equations (1) – (4), (13),
(14)) along with the initial and boundary conditions (9) – (12) are solved numerically. A
numerical simulation at a mesoscopic scale involving a particle in a fluid could be based on
a discretization of the equations (1) – (6). However, the discrete forms have to satisfy the
fluctuation-dissipation theorem [50, 51, 30, 32, 55, 31, 56]. Español and Zúñiga [41] and
Español et al. [42] have shown that a well behaved set of discrete equations obtained in
terms of the finite element shape functions based on the Delaunay triangulation conserves
mass, momentum and energy while ensuring thermodynamic consistency. Furthermore,
Español et al. [42] have cast their discrete hydrodynamic equations in the GENERIC
structure and observed that the resulting reversible matrix does not satisfy the Jacobi identity
and the degeneracy conditions of GENERIC structure [50, 51]. But, these conditions are of
the order of the cell size and vanish in the continuum limit [42]. In effect, Español et al. [42]
have shown that the finite element discretization procedure based on Delaunay triangulation
is an appropriate procedure for discretizing the compressible fluctuating Navier-Stokes
equations. In the present study, we obtain the discrete hydrodynamic equations using finite
element shape functions based on the Delaunay-Voronoi tetrahedrizations. The details of
combined fluid-solid weak formulation, generating random stress tensor for the tetrahedral
finite element mesh, spatial discretization, mesh movement techniques, and temporal
discretization of time derivatives are discussed in [24, 26]. These details will not be repeated
here for brevity. Briefly, the fluid domain is approximated by quadratic tetrahedral finite-
elements (10 nodes defined per tetrahedron with 10 basis functions that are second-order
polynomials). The discrete solution for the fluid velocity is approximated in terms of
piecewise quadratic functions, and is assumed to be continuous over the domain (P2
elements). The discrete solution for the pressure is taken to be piecewise linear and
continuous (P1 element). This P1/P2 element for the pressure and velocity is consistent with
the Ladyzhenskaya-Babuska-Brezzi (LBB) or inf-sup condition and yields convergent
solutions [57, 58].
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2.4 Time-scale Analysis
The time scales involved in this study are (i) τb = m/ζ(t) the Brownian relaxation time over
which velocity correlations decay in the Langevin equation, (ii) τd = a2ζ(t)/kBT, the
Brownian diffusive time scale over which the nanocarrier diffuses over a distance equal to
its own radius, (iii) τν = a2/ν, the hydrodynamic time scale for momentum to diffuse over a

distance equal to the radius of the nanocarrier, and (iv) , the harmonic time for a
single oscillation of spring, where ζ(t) = 6πμa is the Stokes dissipative friction force
coefficient for a sphere, a is the radius of the nanocarrier, and ν is the kinematic viscosity of
the fluid. The time scale Δt for the numerical simulation has been chosen to be smaller than
all the relevant physical time scales described above. The simulations presented in this study
have been carried out for long enough durations to allow for the temperature of the particle
to equilibrate; i.e., if N is the number of simulated time steps then N·Δt = t ≫ τν.

2.5 Potential of Mean Force
In order to determine average properties corresponding to a given equilibrium distribution at
a finite (fixed) temperature, we compute the potential of mean force (PMF) for the harmonic
(spring) interactions between antibodies and antigens. We choose a reaction coordinate y,
which is the vertical displacement between the tips of the antigen and the antibody; increase
in y allows the nanocarrier to be displaced away from the wall while still being bound by the
spring. Since, the maximum (and hence the average) displacements along y are limited by
temperature and by the total time of the simulation, we perform umbrella sampling in
multiple windows with harmonic biasing potentials to facilitate extensive sampling along y.
The window size of the umbrella sampling is chosen as Δy = 0.05nm and the harmonic
biasing potential in each window is chosen to be 0.5ku(y − y0,i)2, where 0.5ku(Δy)2 = 1.0 ×
10−20J, ku is the harmonic force constant and y0,i is the vertical coordinate of the center of
window i. By updating y0,is, the tip of the antibody (on the average) is slowly varied relative
to the antigen reaction tip. The weighted histogram analysis method (WHAM) algorithm
[59] is used to unbias and combine the histograms in different windows to form a complete
PMF (W(y)) profile using a tolerance factor of 10−6 in the WHAM method. For determining
the PMF profile using fluctuating hydrodynamics method, 3 realizations in each window
have been computed with up to 100, 000 time steps per realization, (hence yielding a total of
3 ×100, 000 = 300, 000 time steps per window). All the relevant parameters including the
window size Δy, strength of the biasing potential ku and the sampling size in each window
have been tested to ensure convergence.

2.6 Monte Carlo Simulations
Even though the PMF described above is being computed using a method that preserves
hydrodynamic correlations, the PMF itself is an equilibrium property which is independent
of dynamics. Therefore, as a check, we perform Monte Carlo simulations of the nanocarrier
bound to the wall by a harmonic spring to determine the equilibrium distributions in an
independent fashion. In our method, the spring interaction (mediated by a single antibody
bound to an antigen) is accounted for by the same harmonic potential as described above,

i.e., using the Bell model [60]: , where l is the distance between the tips of
the interacting antibody and antigen, k is the interaction bond force constant and ΔG0 the
free energy change at equilibrium state (l = 0). In our model, these parameters are chosen to
mimic the interactions between murine anti-ICAM-1 antibody and ICAM-1. From the
experimental measurements from Muro et al. [61], the equilibrium free energy change
between antibody and ICAM-1 is found to be −7.98 × 10−20 J, which we set as ΔG0 in our
simulations. We also set the bond spring constant k = 1N/m by fitting rupture force
distribution data reported from single-molecule force spectroscopy [62, 63]. In this work, for
simplicity (and to conform to the model employed in the fluctuating hydrodynamics above),
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we neglect the ICAM-1 flexural movement; therefore the ICAM-1s are always in upright
conformations. We also do not allow the antigen-antibody bond to rupture. However, as
discussed in our previous work [22, 23, 5], the flexural movement of the antigens and bond
formation/breaking can be easily implemented using orientational biased Monte Carlo (MC)
sampling technique [64]. Metropolis Monte Carlo steps are employed for nanocarrier
translation and rotation with an adaptive step size to ensure a Metropolis acceptance rate of
50%. In order to determine the PMF (W(y)), we divide up the windows using the same exact
specifications (and at the same temperature) as described above (for the fluctuating
hydrodynamics method). A total of 200 million Monte Carlo steps are performed in each
window and the histogram is saved. The PMF is independently computed by using the
WHAM algorithm as outlined above and compared with the previous estimate.

3 Results and Discussion
For a given nanocarrier of radius a, and tube radius R, a ‘realization’ consists of N time steps
(approximately 10s of wall-clock time is required for each time step). The number of time
steps for equilibration of particle temperature, and determination of VACFs is in the range
of 100,000 per realization, requiring a wall-clock time of ~11.5 days. In order to ensure the
uniqueness of the realizations, different initial seeds are chosen for a Gaussian random
number generator. In our simulations, we predict (i) the translational and rotational
temperatures of the nanocarrier, where the temperature calculation is carried out until
thermal equilibration is obtained for the particle; (ii) the translational and rotational velocity
distributions of the nanocarrier motion; (iii) the translational and rotational VACFs; (iv)
temperature of the spring. We compare the various numerical predictions with known
analytical results.

3.1 Thermal Equipartition
At thermal equilibrium, the probability density distribution of the velocity of the fluctuating
nanocarrier follows the Maxwell-Boltzmann distribution:

where, m* = m + m0/2 for the fluctuating hydrodynamics method and m* = m for the hybrid
method. The equilibrium statistics of the other two components Uy, Uz are the same as Ux,
and those for the components of ω are independent of each other.

In Figure 2, we plot the velocity distributions of the particle for each component of U
(Figures 2(a) and (c)) and ω (Figures 2(b) and (d)) using fluctuating hydrodynamics
((Figures 2(a) and (b))) and hybrid (Figures 2(c) and (d)) methods. For determining the
velocity distribution of the nanocarrier, 5 realizations in each coordinate direction consisting
of 5×100, 000 = 500, 000 time steps have been computed. Thus, a total of 1, 500, 000 time
steps have been computed. It is observed that each degree of freedom individually follows a
Gaussian distribution. In particular, the mean and the variance obtained by using the
fluctuating hydrodynamics approach agrees to within 5% to 11% statistical error with that of
the analytical Maxwell-Boltzmann distribution, whereas using hybrid scheme agrees to
within 6% error relative to that of the analytical Boltzmann distribution. The main difference
between the results of the fluctuating hydrodynamics method and the hybrid method is the
effective mass: in the case of the fluctuating hydrodynamics, we employ the added mass
correction, i.e. M = m + m0/2, where m0 is the mass of the fluid displaced by the particle; in
the case of the hybrid method, the added mass correction is not required and we simply use
the mass of the particle m.
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Figure 3 shows the probability distribution of spring length using fluctuating hydrodynamics
and hybrid methods. The equilibrium probability density of the displacement of spring in
each Cartesian direction follows a Gaussian distribution. The agreement with the analytical
Gaussian distribution with the mean zero and the variance kBT/k is to within 6% of
statistical error using both the methods. These results demonstrate that our dynamic
formalisms conserve the equilibrium distributions of the canonical (constant temperature)
ensemble. In the case of translational temperature, the fluctuating hydrodynamics requires
the added mass correction to satisfy the analytical Maxwell-Boltzmann distribution, whereas
in the case of the hybrid method, the Maxwell-Boltzmann distribution is satisfied based on
the actual mass of the particle m (i.e., without the added mass correction). In the case of
rotational and spring temperatures, there is no need for the added mass correction in both
methods.

3.2 Hydrodynamic Correlations
A nanocarrier experiencing Brownian motion in a fluid is influenced by the hydrodynamic
interactions. The fluid around the particle is dragged in the direction of motion of the
particle. On the other hand, the motion of the particle is resisted by viscous forces arising
due to its motion relative to the surrounding fluid. The momentum of the fluid surrounding
the particle at any instant is related to its recent history. The friction coefficient is time
dependent and is no longer given by the constant Stokes value. Zwanzig and Bixon [65]
have shown that for constant friction coefficient, the VACF of the particle in a simple fluid
obeys exponentially decaying behavior, which is valid at short times:

(17)

(18)

Here, ζ(t) = 6πμa, ζ(r) = 8πμa3 are the Stokes dissipative friction force and torque
coeffcients, respectively. Hauge and Martin-Löf [25] have analytically shown that the decay
of the translational and rotational VACFs at long time obeys a power-law:

(19)

(20)

where the values of constants a0 and b0 are 0.094 and 0.014, respectively; we note that M =
m + m0/2, where m0 is the mass of the fluid displaced by the particle. For determining the
VACF of the nanocarrier, 5 realizations in each coordinate directions have been employed
with total computation of 15 × 100, 000 = 1, 500, 000 time steps. Figure 4 shows the VACF
of the translational and rotational motions of a nanocarrier (a = 250 nm) in a quiescent fluid
medium in a circular vessel as obtained from our numerical simulations. It may be observed
that the translational and rotational VACFs of the Brownian particle have exponential and
power-law decays (~ t−5/2) over long times, respectively. We note that the exponential decay
of the translational velocity of the nanocarrier over long times is due to its proximity to the
wall (due to the confining harmonic potential), again indicating that hydrodynamic
correlations are correctly captured by our model. For a free nanocarrier the long-time
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behavior of the translational and rotational VACFs both follow algebraic decays with time,
as shown by us in previous studies [24, 27].

3.3 Comparison of Potential of Mean Force
Figure 5 shows the comparison of calculated PMF profile along y using MC and fluctuating
hydrodynamics methods at a temperature of 310 K. The excellent agreement between the
two methods reiterates the preservation of equilibrium distribution of the canonical
ensemble by our dynamics method. The successful validation of the computed PMF using
our fluctuating hydrodynamics method also highlights a concrete path for temporal
multiscaling; namely, to reach a y-coordinate value of 0.4nm corresponds to a PMF of W(y)
= 19kBT, requires a time-scale of ~ 0.1s, which is currently much outside the scope of
conventional dynamics; however, the umbrella sampling strategy enables us to evaluate
equilibrium probability distributions associated with rare-events.

4 Conclusions and Future Outlook
For a Brownian particle trapped in a harmonic potential in an incompressible Newtonian
stationary fluid medium contained in a horizontal circular vessel, we demonstrate that the
thermal equipartition of translation, rotation, and spring degrees of freedom are preserved by
our fluctuating hydrodyamics and hybrid formalisms, while simultaneously resolving the
nature of the hydrodynamic correlations. We also successfully demonstrate that we can
perform temporal multiscaling by evaluating the potential of mean force (or free energy
density) along a specified reaction coordinate. This enables the determination of probability
distributions and extensive conformational sampling of nanocarrier motion which is
prohibitive by conventional dynamics. The framework we have presented in this article
provides a comprehensive platform for temporal multiscale modeling of hydrodynamic and
microscopic interactions mediating nanocarrier motion in vascular targeted drug delivery.
The formalism integrates three distinct regimes: a macroscopic regime (nanocarrier transport
occurs in the flowing fluid medium subject to Brownian collisions); a lubrication regime
(the nanocarrier approaches the vessel wall); and an adhesion regime (ligands on the carrier
interact with cell surface receptors to mediate arrest). Possible extensions to our model to
represent more realistic interactions in each of the three regimes are outlined below. (1)
Macroscopic regime: while we have shown that the correct equipartition and hydrodynamic
correlations can be correctly captured using the fluctuating hydrodynamics and hybrid
formalisms, the hybrid formalism is more generally applicable for incorporating pre-
programmed memory into the nanocarrier motion. Several modeling approaches to
hemodynamics [66] have been proposed in the literature [67, 68, 69, 70]. These models take
into account the geometry of the blood particulates, the compliance of blood cells, the flow
field and the flow geometry. However, approaches that simultaneously resolve the stochastic
nature of the particulate collisions and the hydrodynamic interactions are limited. Towards
this objective, the hybrid formalism can be extended such that the random stresses are
modified as S = Sthermal + Sathermal in equation 4, where the temperature for the athermal
component can be adjusted iteratively to match the experimentally determined collision
characteristics under different conditions [21]. Therefore, this method enables us to
incorporate pre-programmed dynamic correlations and memory in nanocarrier transport due
to stochastic collisions with particulates of the blood plasma in a mean-field fashion, while
remaining consistent with experimental conditions. (2) Lubrication regime: It is possible to
incorporate the effect of glycocalyx through viscoelastic resistance models, and porous
media flow for the fluid in the glycocalyx layer for nanocarrier interaction with the
endothelium [22, 23]. The fluctuating hydrodynamics formalism will include the glycocalyx
layer by appropriately modifying the stochastic stress tensors to treat the non-Newtonian
nature of the fluid medium at the glycocalyx interface. In the presence of the glycocalyx
layer and/or to better model the hematocrit as a non-Newtonian fluid (such as using the
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Casson model), the fluctuating hydrodynamics equations need to be modified by
incorporating the desired constitutive equations for the viscosity in the weak formulation as
well as when evaluating the random stress tensors. (3) Adhesion regime: to mimic
multivalent interactions in the adhesion regime mediated by receptor-ligand bonds, more
realistic potentials such as the Bell model and flexural rigidity of the receptors [22, 23] can
be incorporated. The potential of mean force using these realistic potentials follow the same
strategy as the one we outlined in section 3 and can be employed to quantify the nanocarrier
binding affinity, which is experimentally observable [22, 23]. Moreover, this free energy
approach can be employed to probe nanocarrier binding under transient flow conditions
because our formalism captures the true hydrodynamic correlations. This framework is
important in the design of nanocarriers in order to define the adhesion landscape and to
determine effects of control variables such as receptor density, antibody density, antibody
type, and nanocarrier size/shape, on nanocarrier binding affinity.

The binding affinity is defined based on the probability for the nanocarrier to be bound to
the endothelium relative to being unbound. Hence, a potential of mean force approach to
compute the absolute binding free energy directly yields the binding affinity. Phenomenon
such as rolling, however, can be viewed as connecting two bound states of the nanocarrier
under steady or unsteady flow conditions. Since the process of rolling depends on the rate of
transitions between successive bound states, a formalism that is reaction coordinate free and
that is applicable in unsteady dynamic conditions is more appropriate for addressing rolling
behavior. Besides, the reaction coordinate mediating rolling can be quite complex and multi-
dimensional, involving multiple receptors and ligands. Such transient processes can be
readily treated by combining our methodology with methods for rare-events. Examples
include transition path sampling [71, 72], which aims to capture rare events (excursions or
jumps between metastable basins in the free energy landscape) in dynamic processes by
essentially performing Monte Carlo sampling of symplectic dynamics trajectories. These
methodological extensions can easily be integrated with our dynamics framework, thereby
vastly expanding the scope of our approach to study adhesive interactions in both steady and
unsteady flow conditions.
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Figure 1.
Schematic representation of a nanocarrier in a cylindrical vessel (tube) (not to scale).
Diameter of the tube: D = 5 μm; Length of the tube: L = 10 μm; Diameter of the
nanocarrier: d = 500 nm; Viscosity of the fluid: μ = 10−3kg/ms; Density of the fluid and the
nanocarrier: ρ(f) = ρ(p) = 103kg/m3; Spring constant: k = 1N/m.
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Figure 2.
Equilibrium probability density of the (a,c) translational and (b,d) rotational velocities of the
neutrally buoyant nanocarrier (a = 250 nm) trapped in a harmonic potential in a Newtonian
fluid using fluctuating hydrodynamics and the hybrid methods. MBD: Maxwell-Boltzmann
distribution; FHD: fluctuating hydrodynamics.
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Figure 3.
Equilibrium probability density of the displacement of spring length using (a) fluctuating

hydrodynamics and (b) hybrid methods, where the standard deviation .

Radhakrishnan et al. Page 18

J Comput Phys. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Translational ((a), (b), (c)) and rotational ((d), (e), (f)) VACFs of the Brownian particle of
radius a = 250 nm through a circular vessel of radius R = 2.5 μm obtained using fluctuating
hydrodynamics and hybrid methods. Here m* = M for the FHD method and m* = m for the
hybrid method. The constants a0 = 0.094 and b0 = 0.014 are determined from analytical
expressions [25]. Abbreviations, NR: numerical results; FHD: fluctuating hydrodynamics
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Figure 5.
The calculated PMF W(y) at a temperature of 310 K. Abbreviations, MC: Monte Carlo
method; FHD: fluctuating hydrodynamics method.
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