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Abstract

Pseudospectral collocation methods and finite difference methods have been used for
approximating an important family of soliton like solutions of the mKdV equation.
These solutions present a structural instability which make difficult to approximate
their evolution in long time intervals with enough accuracy. The standard numerical
methods do not guarantee the convergence to the proper solution of the initial value
problem and often fail by approaching solutions associated to different initial condi-
tions. In this frame the numerical schemes that preserve the discrete invariants related
to some conservation laws of this equation produce better results than the methods
which only take care of a high consistency order. Pseudospectral spatial discretization
appear as the most robust of the numerical methods, but finite difference schemes are
useful in order to analyze the rule played by the conservation of the invariants in the
convergence.
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1 Introduction

In this paper we study from a numerical point of view the so called breather
solutions of the focusing modified Korteweg-de Vries equation:

Opu + 02u + 20, (u?) = 0, z € R, (1)
u(z,0) = ug(x).

This equation is a canonical non-linear dispersive equation [I], and therefore it
appears as a good approximation of different physical problems as the motion
of the curvature of some geometric flux Ref. ([2], [3], [4]), the vortex patch,
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ferromagnetic vortices Ref. [5], fluid mechanics Ref. ([6], [7], [8], [9]), traffic
models, anharmonic lattices, hyperbolic surfaces, etc.

Travelling wave solutions that exhibit one isolated hump are easily found
either by direct integration of the corresponding o.d.e. or using the inverse
scattering method. In the case of the real line they are explicitly given by

u(z,t) = Bsech(B(z — B3t)), (2)

with 8 € R. Notice that the above expression could admit another two parame-
ters to consider the traslations in space and time. As we can see, the travelling
wave propagates to the right with speed 32. From the inverse scattering point
of view these solutions are characterized by the property that the reflexion co-
efficient has a single pole located at the imaginary axis. Solutions of more than
one hump can also be constructed and they correspond to a reflexion coefficient
with more than one pole in the imaginary axis. When these poles are differ-
ent, they represent humps (up or down) of different heights. Therefore, these
humps travel at different speed and they collide in an almost elastic way, see for
example [I0]. Tt is particularly interesting the degenerate case when we have
only one pole, which is double. In this paper we will pay considerable attention
to this situation considering solutions that evolve asymptotically in time as two
equal humps such that one is up and the other is down (Figure [Ib). It’s widely
used the term double pole solution to describe such solutions and we shall use
it in these pages. The numerical simulations that start with this family of ini-
tial conditions converge to solutions of different type depending on the method
chosen, and not all of them are satisfactory. It is of fundamental interest to
clarify why some conventional numerical methods turn an initial condition from
a family of solutions into a different one and which improvements in the method
might prevent these instabilities.

Another relevant family of solutions is the one formed by the so called
breathers (see Figure [[h). They were firstly obtained by M. Wadati in [I1]
and describe oscillating pulses that do not disperse. They are determined, up
to translation in time and space, by two real parameters («, ), which corre-
spond to the frequency of the pulse and the amplitude-width of the envelope.
The phase velocity of the pulse is given by 382 — a2, and the group velocity by
B2 —3a?%, a > 0, so that for o large with respect to 3 the pulse propagates to
the left with a velocity 3a2. In fact, in this case they can be approximated by

u(z,t) = —2ﬁ—2 sinfa(z — (36% — a?)t)]sech[B(z — (8% — 3a2)t)] (3)
) ~ a .

Wadati’s approach to construct these solutions is based on the inverse scat-
tering method. The breathers are characterized by the fact that the poles of
the reflexion coefficient, denoted as +a + i3, are symmetric with respect to the
imaginary axes. This family of solutions for a large o with respect to 8 was used
by Kenig, Ponce and Vega in [12] to prove discontinuity of the flowmaps associ-
ated to mKdV equation in the Sobolev spaces H® of functions with s derivatives
in L?(R). This lack of continuity comes from the fact that two breathers with
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different speeds can be very close at time zero in a Sobolev norm but, because
they don’t disperse, they will eventually separate and therefore the difference of
their Sobolev norms becomes very big. The point is that the time of separation
can be made arbitrary small by taking « large enough. The threshold for this
lack of continuity occurs for s = 1/4 that turns out to be sharp.
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Fig. 1. (a) Breather type solution of mKdV at time t=0 for & = 7 and 8 = 1.
(b) Double pole solution for § = 1 at time: ¢ = 0 (solid line), ¢t = 50
(dashed line) and ¢ = 5000 (doted line), after translation to the axis
origin to show the logarithmic spread in time.

As far as we know, these solutions exist for the mKdV equation but not for
the classical KdV equation (i.e. the nonlinearity u, is changed into wu,). This
fact gives us a reason to study mKdV better than KdV.

A natural question that comes up from the observations we have just made,
is what are the stability properties of these breather solutions when « is large.
Due to the high oscillations of the pulse, numerical methods based on finite
difference schemes do not look appropriate, and we will see later on that this
is the case. However the Fourier transform of the pulse is highly concentrated
around the frequency «, and therefore pseudospectral methods seem much more
natural in this case (Ref. [I3], [I4] and [I5]). We will see in the next sections
that they are in fact very robust.

One could wonder what happens when finite difference methods are used for
small a. Notice that the solution is real analytic, and that the available well-
posedness existence theory for the Cauchy problem (see for example [16]) allows
us to conclude that the regularity is preserved along the flow and in principle,
one shouldn’t expect any numerical instability. Nevertheless the construction
of the breather solution made by the inverse scattering method suggests that
some instability can arise when we get close to the degenerate case o = 0. The
reason is obvious. On one hand the double pole solution can be obtained from
the two soliton solution when the poles have real parts identically zero and the
imaginary parts tend to the same value. On the other hand, the same solution
is obtained [I1] by taking the limit of the breather solution when « goes to zero
(see section 2 below for the explicit expressions). In this case the poles have an
identical imaginary part while the real part is changing.

The main purpose of this paper is to see that these numerical instabilities
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do occur and even regular numerical methods as pseudospectral and finite dif-
ferences fail when the time simulations become long enough. In the case of
the finite differences, studied in section 4, two spatial discretizations have been
used, with different discrete invariants associated to each. The motivation is
to highlight that the numerical approximation to the two pole initial condition
separates from the right solution and chooses one of the two possible branches,
either two independent solitons or a breather. It is interesting to observe that
the pseudospectral method, presented in section 3, is the most efficient studied
here. It captures the logarithmic separation of the two humps for much longer
times than the finite difference schemes. Nevertheless if a choice of a low num-
ber of harmonics or a too big step in time is made, then a wrong behavior also
appears in the case of pseudospectral methods.

In the literature it is found that the accuracy of the numerical solutions
is directly related with the consistency order of the numerical approach. For
example the dynamical instability of the breather solutions of this equation as
well as the stability of the double pole was numerically studied for reasonable
long time intervals in Ref. [I7]. The convergence of the methods only guarantee
good approximation in short time simulations. But these limitations may be
overcome by fixing some invariant quantities, which are constant for the exact
solution, along the evolution in time. These quantities are the discrete equivalent
to the conservation laws of the continuous equation as the mean, the L, norm
or the energy.

There are several works concerning the stability of a soliton with one hump.
Also rather progress has been done in the case of multisolitons when the humps
are widely separated from each other, and even more recently about the collision
of two solitons, one fast and narrow and the other one slow and broad. However
very little is known in the case we are considering in this paper. The available
analytical techniques do not seem to apply in this case [I8]. We want to empha-
size that the instability observed in this work do not lie in the arbitrary growth
of the error, but in the incorrect behavior of the numerical solutions that fall
within the orbits corresponding to different solutions in the phase space. In this
paper we give numerical evidence that supports the difficulty of the problem.

2 Initial condition

We will study numerically some particular vanishing at infinity solutions of the
modified Korteweg-de Vries equation () in 1+1 dimension, (z,t) € [0,T] x R,

lim w(z,t) =0. (4)

z—+o0

We are interested in a two parameter family of exact solutions that were
first obtained by Wadati in Ref. [IT]. They can be written as

u(xz,t) = 2 - sech (B (x + ~t)) x
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cos [D(x,t)] — (g) sin (®(z, t)) tanh (5(x + 1))

3 (5)
1+ (g) sin® (®(x, t)) sech? (B(z + t))

with v = 3a? — 82, § = a®? — 38? and ®(z,t) = a(z + 6t) — tan~1(B8/a). They
can also be written as

u(z,t) = 20, tan™* (%) (6)

with the auxiliary functions F(x,t, «, 8) and G(x,t, «, 8) given by
F(z,t,a,3) = cosh (B (3ta? — 5% + 1)),
B sin (a (a: +t (on - 352)) —tan~! (g)) (7)

«

G(I’t7 a? ﬂ) =

Their shapes correspond to a breather with a group velocity —y = 52 — 3a2
when « # 0 (Figure [Th) that degenerates to a double pole solution when o = 0
(Figure [Ib). This second case is interesting because it behaves asymptotically
as a pair of independent solitons of the mKdV Eq. (), one facing up and the
other one facing down,

4 (cosh (B — B%t) + B (362t — ) sinh (Bx — f3t))
2 (Bx — 3/33t) + cosh (2082 — 263t) + 1 '

This double pole solution has three local extremes with one of them decaying

to 0 asymptotically in time. The other two extremes separate with a distance

() that becomes logarithmically large in time when ¢ is big enough, see Ref.
[,

(8)

u(z,t)

() ~ 2log[4B3 - 1]
g

This result is easily found by taking into account the point-wise convergence of

the function () to 0 when time goes to oo, and checking the position where the

derivative of the exponential dominant terms vanishes. The property (@) will

be very useful to check the accuracy of the numerical methods for ¢ big.

One of the most important properties of this type of partial differential
equations is the existence of infinite conservation laws. For example the solution
u of the mKdV equation on the real axis z € {2 = R preserves the mean in space
I(u), the mass ||ul|2 and the energy E(u) over time, as detailed below. These
statements are straightforward by integration by parts as well as taking into
account the boundary conditions (),

I(u):/u(:v,t)d:v,

¢
IIUII2=/U2(%t)dw7 (10)

E(u) = A [u4(:17,t) —u(z,t)] dz.

, t>>1. 9)
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In this paper we will show by computational experiments that in long time sim-
ulations the numerical schemes that preserve exactly some of these conservation
laws, Eq. (), are much more robust than the schemes that only take into
account the consistency order of the method. The numerical data have been
compared with the exact analytical expression for the travelling wave solutions,
written by (&) and (®), in order to measure its accuracy. In practice the ini-
tial condition provided by the experimental measurements, which have to be
investigated numerically, may differ from those functions. The use of a powerful
numerical scheme plays a crucial rule in long time experiments.

Due to the fact that the double pole initial condition (8] is very regular and
no oscillations are present, both type of methods seem to be appropriate to
simulate its evolution. On the other hand, when the highly oscillating initial
condition Eq. (@) is considered, we postulate that the pseudospectral method
will be the most powerful because an acceptable number of harmonics can rep-
resent with high accuracy the shape of the solution. In this case the finite
difference methods need a too high number of nodes to generate an acceptable
approximation of the solution, and the global error of the numerical approxi-
mation will increase exponentially due to the big Lipschitz constant induced by
the oscillations of the pulse.

3 pseudospectral method

As a general rule, the pseudospectral collocation methods, Refs. [19], [20] and
[21], are very suitable to approximate the travelling wave and breather type
solutions of a partial differential equation. The oscillating profile of a function
and its derivatives can be reproduced quite accurately by a manageable set of
harmonics Ref. [22]. Due to the limitations of the practical discretization in
space, the real axis R has been substituted by a long finite interval Q = [—L, L]
(the numerical simulations have been made for L = 40) and the boundary
conditions (@) by periodic ones,

u(—L) =u(L), uz(—L)=mu.(L). (11)

These conditions suggest to use an orthogonal basis made up of the complex
exponential periodic functions, {¢;(z) = €7}, with w; = 27j/(2L), j € Z.
The Fourier series expansion of a function u(x,t) € Lo is defined by

o0

1t —
u(w,t) = > @;(t)p;(z), where d;(t) = —/ u(z, t)g; (x)de.  (12)
= 2L | .
At initial time, ¢ = 0, the infinite expression ([I2]) is replaced by some trun-
cated series at the collocation points, x, = 2nL/N, n=-N/2,...,N/2 -1,
to adapt it to the discrete numerical scheme,

N/2—1 1 N/2-1

U =uoan) = D U 005wn), U =5 D wolan)Bslen) (13)

j=—N/2 n=—N/2
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Fig. 2: Theoretical separation I(t) of the humps of the double pole solution for
B =1 (solid line) compared with the result of pseudospectral approx-
imation for N = 28 (dots), N = 29 (triangles) and N = 20 (circles)
number of collocation points and time step At = 1073,

The advantage of this approximation is that it can be notoriously acceler-
ated by the well known FFT algorithm when N = 29, g € N, collocation points
are taken. In our work we have ran simulations for N = 28, N = 2° and
N = 210 points to check the precision of the discretization and the robustness
of the method. These calculations have been computed by a FORTRAN sub-
routine provided by Netlib repository [23]. Some authors [24] 25| 26] separates
the linear and the nonlinear parts of the right hand side of the equation () and
later on they introduce an exponential integrant factor in the solution to deal
with the linear part. The advantage of this reduction is that the only term to
be discretized by Fourier transform or by finite differences is the nonlinear one
and its norm has order O(N) instead of O(N?). In this context the mentioned
strategy would not produce significant improvement in the results because the
wave-number of the functions of the orthogonal basis used to approximate the
solutions is not necessary high. The situation is radically different when solu-
tions that involve high frequency radiations are investigated, then it is really
interesting to avoid the computation of the derivatives of the linear part by
using the mentioned integrant factor technique.

t
Let us define U = (UEOJ%/Q,...,UJ(\?/)QA) as the vector that stores the

initial data, and U®) ~ u(t) as the successive approximations of the solution
at time t;. Then, the discrete Fourier transform can be considered as a linear
operator Uk = Fu®) represented by a Vandermonde N x N matrix F with
components Fj , = pli=3—1)(n=5-1) and g = e—i27/N

Taking into account the orthogonality (¢;, ¢;) = d;; of the periodic functions
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Fig. 3: The same as Fig @ for 8 = 1, N = 2° and different time step sizes,
At = 1072 (dots), At = 1072 (triangles) and At = 10~* (circles).

¢; in Lo[—m, 7], and the expressions of their space derivatives, ¢ (z) = iw;¢; (),
we substitute the expansion ([2)) in the solutions of Eq. (Il) obtaining an ODE
system for the Fourier coefficients,

1 (t) — 2w;0; ==y ., ¥_
e I S

Here © = Fuv is the Fourier transform of the nonlinear term v = u3. Substituting
in Eq. () the continuous solution u and its power v = u? respectively by the
N-dimensional vectors U and V' with the values at the collocation points, we
obtain the equivalent matrix expression for (I4),

0, FU = — [D°FU + 2DFV] . (15)

The matrix D is diagonal with components d;; = iw; and represents the spatial
differentiation. Considering the linear antisymmetric operator J = F'DF,
where J' = — 7, the previous relation (IH) corresponds to the motion equation
of the Hamiltonian defined by

1 2 a 4
Hy(U) =5 | |IU] -y Uut]. (16)

Jj=1

Taking advantage of the conservation of the linear and the quadratic invariants
Eq. (@) by the symplectic integrators, as far as the consistency order of the
scheme, we suggest to use the implicit midpoint rule for discretization in time,
together with the pseudospectral method for discretization in space. We postu-
late that this property about the discrete method will lead to an improvement of
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Fig. 4: The group velocity of the approximated breather (&« = 5 and 8 = 1)
for At = 1073 and different number of points N = 2% (dots), N = 2°
(triangles) and N = 210 (circles), versus v = 3a? — 32 = 74.

the time interval where the numerical solution approaches the exact one. Even
though the midpoint rule is not a method with a high order of consistency, the
conclusions obtained from its results will be representative and clear for the
purpose of this paper. In addition the convergence for each time step is easily
fulfilled, contrary to the family of Newton’s type methods that are much faster
than the midpoint rule but they often require deep analysis in order to avoid
the problems caused by local minima.

Let U™ be the discrete Fourier transform of U®) | then the midpoint rule
applied to the pseudospectral discretization of Eq. (3] reads,

OO+ = 0® — AL (D01 1 app (), (17)

where (%) = (U® 4+ T*+1D) /2 and ykts) = (V®) 4 V(*+1)) /2 are the
interpolated vectors. Putting together the terms U®+1) at the left hand side
of Eq. (I1) the norm of the subsequent functional associated to the fix-point
scheme is considerably reduced. A successful implementation is provided for
time steps of size At ~ 1073, where an acceptably cheap computational cost is
involved. We get the following iteration formula

-1
g+ — (I + %ﬁ) KI - %D3> U® —oapy(k+2) | (18)

Notice that the matrix [I — (At/2)D?] is diagonal and its inversion is directly
made. The real and the imaginary part of the system (I8]) are separated in
different equations for the practical implementation.
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Fig. 5: The group velocity of the approximated breather (¢ = 5 and 8 = 1)
for N = 29 and different time step sizes At = 1072 (dots), At = 1073
(triangles) and At = 10~% (circles), versus v = 30 — 3% = 74 .

In the numerical simulations with the double pole initial condition we have
found a very long regular behavior of the evolution. The Figures 2l and [ show
the logarithmical evolution in time of the separation distance between the main
humps of the approximate solutions (@) with respect to the exact I(¢). The
increment of the number of points from N = 2% to N = 29 does not improve
the accuracy as much as the reduction of the step in time from At = 1073 to
At = 10~* which provides a good agreement with the exact solution. Only
when the number of harmonics is too low, N = 2%, then the double pole initial
condition can break on two independent solitons Eq. (@) as it is observed in
the doted trajectory of Figure 2l which is almost linear and corresponds to a
successive separation of the two main humps of the solution with different but
nearly constant velocities.

The results for breather initial conditions with o = 5 as internal oscillation
frequency have been summarized in Figures dl and The choice of relaxed
restrictions on the time and space steps At > 1072 or N < 29 breaks up on
the damage of the numerical solutions and the corresponding approximation
to the conservation laws of the continuum equation (0. However a not so
expensive conditions for the scheme ([I8)) as At ~ 107* or N = 2° guarantee
a very accurate behavior and preservation of (I0]) during long time intervals,
t € [0,500], as it can be observed in Figs. @ and

It is important to explain carefully the results captured on the figures (@) and
@) in order to avoid confusions on the interpretation. In the first one different
number of collocation points have been considered while in the second one it is
investigated the accuracy of the solutions for different time step sizes. In both
cases the decreasing of the number of points of the mesh leads to the same effect,
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which is the faster loss of the convergence to the exact solution because of the
jump to another family of solutions.

4 Finite difference methods and some discrete invariants

A wide number of papers have appeared in the last years investigating the
accuracy of finite difference methods Refs. [27], [8], [9] applied to nonlinear
dispersive partial differential equations and comparing them with other type of
discrete schemes as pseudospectral or Adomian decomposition. The goal of our
analysis is to give evidences of the connection between the conservation of some
invariants of the discrete scheme and the improvement on the convergence of
the numerical method to the exact solution, in order to avoid the instabilities
we mentioned in the introduction.

In order to implement a numerical method which approximates the solu-
tion of the initial value problem (dl) we first define a spatial discrete grid of
points &, = —L + nAz, n = 1,...,N, and the corresponding vector with
the approximation to the solution in that points, U(t) = (Ui(t),...,Un(t)),
where U, (t) = u(t,z,). Let’s be M(u) = —Su — B(u) the differential op-
erator that concentrates the spatial derivatives of the mKdV equation (),
where the linear part is assumed by S(u) = 82(u) and the nonlinear part by
B(u) = 3ud,(u?) = 20, (u?), there are several choices for an operator in finite
differences Mn(-) = —Sn() — Bn(+) that approximates M(-) with different
order of consistency. The time evolution of the components of the vector U is
governed by the following system of ODE,

8U = Mn(t,U), (19)

provided by the periodic boundary conditions ([l in [—L, L], that can be writ-
ten as
Unyjn =U,, VjeZ, 0<n<N. (20)

The accuracy of the numerical approximation U with respect to u depends
on the cousistency order of the operator Mn(+), which consists of the sum of
some suitable band matrices. Let’s define first the forward difference matrix D7,
where only nonzero components in each row are d; ;41 = 1/Ax = —d;;, @ =
1,...,N, and dy,1 = 1/Az in the corner due to periodic boundary conditions.
It represents an approximation of the spatial derivative, d,u ~ DU, of the
first order O(Ax). Using the expression of the matrix D we can define the
classical discrete approximations of the successive derivatives:

a) Backward differences, D7 = —(D7)7, which approximates 9, with order
O(Ax).

b) Central differences, D§ = (D + D7 )/2, which approximates 0, with order
O(A%x).

c) Central differences, D§ = DF - Dy, which approximates 92 with order
O(A%z).



4 Finite difference methods and some discrete invariants 12

d) Central differences, D§ = D$-DS, which approximates 92 with order O(A%z).

It is straightforward to check that D§ and D§ are antisymmetric matrices
and D§ is a symmetric matrix. This observation will be important to guarantee
the conservation of some invariants of the discrete schemes along the time. Now
we write the linear part as

SnU = D3U. (21)

However the nonlinear part Bn(U) admits some suitable alternatives as
BN(U)=2DSU?  or  B%(U) = 3UDSU>. (22)

Here the vectors U? and U? are defined respectively by U? = (UZ,...,U%) and
U3 = (U3,...,U3) and the matrix Ut is a diagonal matrix with the components
u;; = U;. From now on we will suppress the ¢ dependence in the notation of
Mn due to the autonomous structure of the mKdV equation.

Next we will choose a numerical scheme for the discretization in time, where
U,(lk) ~ u(x,,tr) approximates the exact solution at time ¢;. As we have
mentioned in the previous section, the use of a symplectic integrator in the
forward time step is suitable for this kind of evolution equations. They pre-
serve the linear and quadratic invariants of the continuous equation, as far as
the consistency order of the numerical method (Ref. [28], [[29]]). Because of
that we use the implicit midpoint rule that evaluates the flow of the equation
MX (U) = —SNU — B (U), r = 1,2, at the vector Ults) — (U™ Lyt /o
placed between the approximations at t; and tx41,

k) — k) _ Ay (SNU(’”%) +BY (U(H%))) . r=1,2, (23)

These are finally the two implicit numerical schemes in finite differences to be
analyzed.

4.1 Convergency analysis

The finite difference schemes proposed above will be C-stable (Ref. [28]) if the
logarithmic norm of the Jacobians, o (M”N’(U)) , 7 = 1,2, are bounded inde-
pendently of the grid spacing of the evolution operators for every U belonging
to the segment between Ukt and u(z,t + At/2). In both cases considered in
Eq. 23) this norm is bounded by p2 (M&'(U)) < maxn(U5+%)2. In Ref. [16]
it was proven that in the continuous case this is true for initial conditions U°
in L.

To prove the C-stability of this implicit method we consider two different
set of numerical approximations {U®} > and {U® 1,5, associated to two
slightly different initial conditions, and a bound for the squares of the numerical

1
solutions |(U,Ek+2))2| <, for all k> 0. Then

DD _ ) — ) _ k) 4 A (M”N (U(H%)) — M (U(k+%))) . (24)
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Now multiplying the expression [24]) by (U (k+3) _ @7 (kJr%)) and applying the
mean value theorem to My; one gets that
%|‘U(k+1) _ ﬁ(k+1)|‘2 — %HU(k) _ U(k)H2+
At (MrN (U(’H%)) — M, ((j(“%))) (U(k+%) _ 0(’”%)) < (25)
LHU® = 0®|2 4 AtuU+3) — Gl+D|2
Using the triangular and the Cauchy-Schwarz inequalities we deduce

| TR+ gD < |‘U<k>_0<k>||2+% (”U(m) —gE) 4 U - U<k>|\)2 '

2
(26)
To end the proof for the C-stability we consider the relation

”U(kJrl) _ U(kJrl)” ”U(k) _ U(k)H < maX{”U(kJrl) _ U(kJrl)H27 HU(k) _ Uv(k)H2}7
27)

and now we can take common factor of some terms to conclude that

~ 1+ pAt/2 ~
[U*RFD — ¢+ < \/ WHU(M -, 0 < 3uAt/2 <1. (28)

The consistency of the full scheme after one step in time is proven following
Ref. [28] defining U*+1 = (7(E+1) 4 AtMrN(U(’”%)) as the numerical solution
at time ¢y, being Uk = u(tx) the exact solution. Then the global error is

Bltrsr) = URD — u(tyey) (29)

By defining the truncation errors corresponding to the midpoint rule and the
trapezoidal rule respectively as

h{tk) = ultr) — u(tn) + A, (U E M=), ”
Baths1) = ultn) = i) + 5 MR (u(t)) + M (b)) ]

then the global truncation error can be written in the following manner

MX (u(tk) +2U(k+1)> — M (u ) +2U(tk+1))] :
(31)

Now using again the mean value theorem with the operator MY, multiplying
Eq. BI) by U*+Y — u(t11) and using the Holder’s inequality we obtain

B(try1) = di(ter1) + At

JT7AN

-1
04~ uuinll < (1-250)  latan)la pdr<2 (32
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To complete this argument it can be deduced by Taylor expansion that, for
sufficiently smooth u, the function d; can be bounded as ||d; (tx11)(2 = O(A3t+
AtA?z) and consequently for 0 < pAt < 1

18(tk+1)ll2

A = O((At)* + (Ax)?). (33)

This result finally gives us the proof of the convergence of these schemes for a
given time interval [0, 7] whenever the steps Az and At are chosen small enough
depending on T'. But, as we will see later, this statement does not prevent the
method to corrupt the solutions for longer time intervals.

4.2 Discrete invariants

In the literature there are many works that emphasize the importance of design-
ing numerical methods that preserve the invariants related to the conservation
laws of the continuous model. For this purpose different strategies as geomet-
ric integration [30] or projection methods [31I] have been developed. In this
section we investigate the transcendence of preserving some invariants by the
structure of the full discretization schemes (23] for improving the stability of
the numerical solution corresponding to the initial conditions, either (B or (g]).
We will focus our analysis on the conservation of the following quantities,

L1(U) = Az Uy = I(u),
Lo(U) = Az Yy (Un)* = (U, U) ~ |Jull?,
L3(U) = A:vzn: [(U)* = (U, = Un—1)?] = (U, U?) = (DU, D{U) =~ E(u).

(34)
These expressions are the discrete approximations to the continuum invariants
(@@ of the mKdV equation, by the discretizations (23] presented in the pre-
vious section. The previously proposed discrete schemes present interesting
advantages with respect to the conservation of the discrete invariants ([34]). The
first scheme, U*+tD = Uk 4 AtMll\I(U(]H'%)), preserves the linear quantity
Ly(U*), VE >0,

Ly (U<k+1>) - (U(k)) YA L (Ml{I (U(’”%))) =L (U®). (35)

Here we have used that the sum of the components of the columns of the
matrixes SN and By involved in the definition of My is 0, consequently
El(MI{I(U(kJF%))) = 0. This property is not satisfied by the second scheme
Uk = g®) 4 AtMZ,(U*+2)), however this discretization preserves Lo(UF),
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Vk > 0, as it can be easily shown,

52(U(7€+1)) = <U(’“+1), U(k+1)> = <U(k) + U)Wk k) 4 gktl) _ U(k)>

= Lo(UR) + <U(k+1) —Uu® gk 4 U(k+1)> 4 <U(’“), U+l _ U(k)>

4 <U(k+1) _ U(k),U(k)> _ 52(U(k)) + % <M2N (U(kJr%)) ,U(k+%)> = ﬁz(U(k

(36)
The last simplification arises from the skew-symmetry of the matrixes Sn and
B%,(U), which are involved in the definition of M%.

The linear and quadratic invariants shown above is all we can expect to
be preserved by a symplectic method along the time steps. Their numerical
precision will be of the same order as the tolerance imposed on the numerical
solution of the nonlinear system (23]). In addition we can prove that the exact
time integration of the spatial discretization 9, = Mz (U) would maintain
constant along the time the invariant L3(U),

0.L5(U) = 8, (U2, U?) — (DYU.DFUY) = 4(6,U,U) — 2 (D} 6,U, DU
= 4(0,U,U) +2((,UTD;),D{U) = 2(8,U, (2U% + DSU))

= —2(D§U + 2D§U%, (2U° + DSU))

~2(2(D§U,U%) + (D§U, DU + 4 (DU, U%) + 2 (DU, D§U))

)).

= -2 (2(D§U,U?) — (U, D§"D§U ) + 4 (DU, U%) + 2 (U, D§DSU) ) =0

(37)
The fact that D§ and D§TD§ are skew-symmetric matrixes and D' D§ =
—D${Dg = —D§ has been used to proceed with the cancelations in ([B7). The
approximation to the first spatial derivative in £3(U) by DY and the definition
of M} (U) are crucial for this purpose. However it is easy to prove that the
scheme 9;U = MZ%(U) will not reach the condition (B7).

Summarizing, the spatial discretization 9,U = Mx (U) preserves the invari-
ants £1(U) and L3(U). The first one of them is also preserved by the full dis-
cretization in time by the midpoint rule. On the other hand the full space-time
discretization corresponding to MZ(U) preserves L(U). The consequences of
these results on the stability of the numerical solutions of the type (§) on long
time intervals will be discussed in the next section.

4.3 Implementation of the numerical scheme

In this section we will describe the implementation of the schemes (23) that
give approximations to the double pole solutions (8) of the mKdV equation ().
The results will be compared with the exact solution in order to measure the
efficiency of the numerical methods and to obtain conclusions.

The implicitness of the schemes makes necessary to apply them together
with a numerical method for solving systems of nonlinear equations as a fix-
point iteration Ref. [32]. First we rewrite the general method (23] as a sum of
its linear and nonlinear part,

Uk = gk f ArME (U(’H%)) —U®_At [SNU(’H%) +B, (U(’H%))] "
(38)

=1,2.

)
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Fig. 6: (a) Finite difference approximation by M%; of the double pole (3 = 1)
for At =4-1072 and Az = 10! (dots) versus an exact breather of the
mKdV for o = 0.0982 and 8 = 1 (continuous line). (b) The same for
At = 11072 versus two exact solitons of the mKdV with amplitudes
v =0.95 and v = 1.05.

The time step At in (B8] should be chosen small enough to assure that the
operator AtM”N(Uk*‘%) is contractive with respect to U**1D . In practice the
grid size Az = 1/N imposes a very restrictive choice of At to guarantee that
the norm of |AtSn|| = O(N3At) is lower than 1. This circumstance suggests
to treat the implicit term w,,, replacing scheme (B8) by the following formula,
as was made in Ref [33],

—1
U+D = (I—i— %SN> KI - %SN) UM _ AtB, (U<’f+%>)] . (39)

Now the norm of the fix-point operator is independent on NN.

When a double pole initial condition (&) is chosen, the results of the simula-
tions fall into a very reach casuistic, and gives a strong hint about the instable
nature of this type of solutions in the continuum case. As it was mentioned in
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the introduction, this particular solution is related to the fact that the reflec-
tion coefficient that appears in the inverse scattering formulation has a second
order pole in the imaginary axis, Ref. [II]. This situation can be understood
as a limiting case of solutions either made as superposition of two independent
solitons (the poles are different and are locate on the imaginary axis, 514 ~ (21)
or as a breather of low frequency (the poles are different and symmetric with
respect to the imaginary axis, £a + fi, a << 1).

U (k+1)=U (k)+AtM h(u(k+l/2)) U (k+1):U (k)+AtM’2\l(U(k+l/2))
At At

0.1 0.1
0.08 0.08
0.06 0.06

.
0.04 0.04
0.02 0.02 =
n n n Lt n n n
50 100 150 200 50 100 150 200

Fig. 7: Evolution of the solution by finite differences (Az = 1071) for differ-
ent At and MY, discretization (left) or M% (right), from a double pole
(dark regions) to two independent solitons (gray regions) or a low oscilla-
tion breather (dashed region). The big dots indicates when L3 abruptly
oscillates.

This complex scenario, where structurally different type of solutions are
distinguished by the slight change on the choice of the parameters a and g, is
captured by the behavior of the approximations produced by finite difference
methods. We observed the following phenomena:

a) For long time experiments, the double pole solution is better approximated
by the scheme where the spatial discretization is approached by the operator
MZ; than the other choice (dark region in Figure [7). A time step as small as
At =~ 0.02 has to be taken to guarantee stability.

b) After reaching a transient time, the initial double pole shape is trapped
by the orbits of two independent solitons when My, spatial discretization is
used or M% with too small time step (gray region in Figure [[). An example
of this phase change is shown in Figure [B(b), where MZ; spatial discretization
with At = 1072, causes that the initial double pole shape is captured by two
independent solitons with amplitudes 8 = 0.95 and § = 1.05. A similar behavior
would have been obtained for the discretization My, with any time step after a
prudential time interval 7" > 50.

c) When M%; spatial discretization is used together with not so small time
step (At > 0.02), then the original double pole solution, after going through the
shape of two independent solitons for a short period of time, leads to a breather
solution with a small « parameter (dashed region in Figure [[). This jump on
the shape of the solution is detected at the same time by a breakdown of the
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energy L3(U) as is shown by the position of the big dots in the right diagram of
Figure [l The use of MY, discretization avoids this pathological behavior due
to the intrinsic preservation of the energy. An example of the trapping by the
orbit of the solution (&) with parameter oz = 0.0982 is shown in Figure [B}a).
The conclusion of this section suggests that the methods that conserve the
mean £; and the energy L3 preserve the numerical double pole solution from
jumping to the orbit of a breather in the phase space of solutions. This patho-
logical behavior is specially caused by the use of M%; discretization together
with a roughly choice of time step At. On the other hand the discretization
for M%; guarantees good results for a longer interval of time than M} when a
small enough At is chosen. It means that the conservation of the discrete Lo
is an important feature to be taken into account by a numerical method that
reproduces the exact behavior of the solution for long time simulations.

5 Conclusion

In this paper we have studied the response of the pseudospectral methods and
the finite difference methods when they are applied to a particular family of
solutions of the mKdV equation. These solutions, known as breathers, depend
on two parameters, o and 3, which control respectively the internal oscillations
as well as the effective group velocity of the waves. When the a parameter
vanishes, then a special type of solution called “double pole” appears. Its shape
is characterized by two main humps, one up and the other one down, which
progressively separates with a logarithmic velocity. This solution can be con-
sidered as a limiting case of the breather solution when o — 0 and also it can
be seen as the superposition of a soliton and an antisoliton. Therefore from the
the point of view of the inverse scattering theory the double pole solution has to
be seen as a degenerate case where three type of solutions are very close. This
circumstance explains that when perturbations are considered the correspond-
ing solutions are captured by any of the three possible orbits. The first two
branches are either to follow a breather with o > 0 or a soliton type solution
(o = 0). In this second possibility another two orbits are possible, either the
wrong branch where the amplitudes of the two humps become different and they
separate by a linear speed, or the right one where the amplitudes tend to the
same value and the separation is at a logarithmic rate.

The type of smooth solutions of the mKdV equation considered here clearly
suggests that pseudospectral methods are the most appropriate for describing
their dynamics. In fact, the functions of the basis of the Fourier discrete ex-
pansion adapt themselves very easily to the oscillations of the solution, and it
is not necessary a high amount of harmonic functions to obtain an accurate
approximation. However, this intrinsic oscillations of the breathers involve a
big Lipschitz constant even for o > 0 not necessarily large, and they make the
finite difference schemes not feasible to obtain good approximations in this case.
Therefore we have only used them for the simulations that have the double pole
as initial condition.
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It is well known that the mKdV equation has an infinite number of conserva-
tion laws. As a consequence of it, we propose numerical schemes that preserve
some of them with the aim of getting accurate approximations to the solu-
tions in long time intervals. In order to increase the possibilities of success, the
time advancing is reached by a symplectic method as the midpoint rule. This
implicit method involves a system of nonlinear equations that is conveniently
manipulated to be economically solved by using a fix-point procedure.

The results of the simulations made by finite difference methods bring to
light the relation between each family of solutions and the preservation of some
of the conservation laws. Keeping constant the discrete invariants equivalent to
L1(U) and specially to the energy L3(U). The discretization that keeps constant
the equivalent to the integral of the function prevents the initial condition to
degenerate from a double pole to a breather. Unfortunately after a short time
the solution drops in two independent soliton-antisoliton shape. However the
discretization that keeps constant the equivalent to the integral of the square
of the function, Lo(U), reproduces for a rather longer time the double pole
solution with a good accuracy. Nevertheless the approximation deteriorates for
later times and jumps either to a breather type solution when the time step is
rough At > 2-1072, or to a soliton-antisoliton solution when the step is small
enough.

The pseudospectral method has been successfully developed with both types
of initial conditions, the double pole as well as the breather. Taking At = 10~*
and N = 2° for a double pole, and At = 107® and N = 2° for a breather,
the method reproduces with extremely good efficiency the exact solution dur-
ing long intervals of time, ¢ € [0,500]. An important remark is that in these
conditions, the pseudospectral discretization keeps constant the three discrete
quantities investigated in this work, as far as the precision order of the method
allows. Considering implementations of comparable computational time for the
pseudospectral and finite difference methods, the first ones return good results
for time intervals of one order of magnitude longer than the second ones.
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