
A pseudospectral matrix method for
time-dependent tensor fields on a spherical shell

Bernd Brügmann

Theoretical Physics Institute, University of Jena, 07743 Jena, Germany

Abstract

We construct a pseudospectral method for the solution of time-dependent, non-linear partial differ-
ential equations on a three-dimensional spherical shell. The problem we address is the treatment
of tensor fields on the sphere. As a test case we consider the evolution of a single black hole in nu-
merical general relativity. A natural strategy would be the expansion in tensor spherical harmonics
in spherical coordinates. Instead, we consider the simpler and potentially more efficient possibility
of a double Fourier expansion on the sphere for tensors in Cartesian coordinates. As usual for the
double Fourier method, we employ a filter to address time-step limitations and certain stability
issues. We find that a tensor filter based on spin-weighted spherical harmonics is successful, while
two simplified, non-spin-weighted filters do not lead to stable evolutions. The derivatives and the
filter are implemented by matrix multiplication for efficiency. A key technical point is the construc-
tion of a matrix multiplication method for the spin-weighted spherical harmonic filter. As example
for the efficient parallelization of the double Fourier, spin-weighted filter method we discuss an
implementation on a GPU, which achieves a speed-up of up to a factor of 20 compared to a single
core CPU implementation.

Keywords: pseudospectral, double Fourier, spin-weighted spherical harmonics, GPU computing,
numerical relativity

1. Introduction

Spectral methods are applicable to a wide range of partial differential equations, e.g. [1]. We
consider the case of time-dependent tensor fields on a three-dimensional spherical shell. The field
equations are assumed to be non-linear without giving rise to shocks, hence we choose pseudospec-
tral collocation methods. Non-linearity and time-dependence may necessitate the use of filters (or
some alternative) to stabilize the method [1, 2]. Furthermore, as typical for spectral methods,
the domain influences the choice of basis functions, which in turn matters for the computation of
derivatives and for the construction of filters.

The specific application considered in this work is a test case for numerical general relativity,
a single Schwarzschild black hole. This is a vacuum solution of the Einstein field equations, which
in adapted coordinates is spherically symmetric and static. However, when implemented on a 3d
grid with the full evolution equations, some non-trivial time evolution including deviations from
sphericity can occur. In particular, unstable modes leading to a failure of the evolution after a finite
time can and do appear if the problem is not formulated with due care, which makes this example
a valuable test case, e.g. [3]. Here we study the formulation given in [4], which is a first order in
time and space reformulation of the Einstein equations in the generalized harmonic gauge (GHG).
The GHG system including modifications for stability is an example for the class of problems that
can be written in the form

∂tu
µ +Aiµν(u)∂iu

ν = Sµ(u), (1)

where uµ(t, xi) is the vector of variables, ∂i = ∂/∂xi, and a summation over up/down indices is
assumed (i = 1, 2, 3). The coefficient matrices Aiµν and Sµ may depend on uµ but not on its

Preprint submitted to Elsevier October 22, 2018

ar
X

iv
:1

10
4.

34
08

v1
 [

ph
ys

ic
s.

co
m

p-
ph

]
 1

8
A

pr
 2

01
1

derivatives. For the GHG equations, greek indices label the 50 fields (µ = 1, . . . , 50) representing
specific tensor components of the field degrees of freedom. Depending on how the gauge is treated,
this number increases to 54 or 58. Specifically, the GHG system involves rank 1, 2, and 3 tensors.
We collect the relevant details in App. A. Spectral methods in numerical relativity are reviewed
e.g. in [5, 6]. The computational method discussed in this work depends in part on the form of
(1), on that the fields are tensor components, and on the choice of a spherical shell as the domain.
Other details of the physics should only be of secondary importance and not affect the generality
of the discussion.

The specific domain under consideration, spherical shells, influences the choice of basis func-
tions. We choose a Chebyshev basis for the radial direction. For the two angular directions, the
standard choice for scalar fields is spherical harmonics, leading to a “CY”-basis on the 3d shell.
For tensor fields, one possibility is to employ spin-weighted spherical harmonics on the sphere, i.e.
a “CYn”-basis, where “Yn” indicates that spin-weighted spherical harmonics are used. A general
rank n tensor (a tensor with n indices) can be decomposed in a linear combination of spin-weight
0,±1, . . . ,±n spherical harmonics. For recent work on tensor expansions with a connection to
relativity, see [7].

However, especially for tensor fields, other choices of basis are possible and sometimes even
advantageous. In this work we explore the suitability of a CFF basis, where “FF” stands for a
double Fourier basis on the sphere [8, 9, 10, 11]. The double Fourier method includes a filter to
address the clustering of points near the poles. The basic choice is between the “ideal” filter of
spherical harmonic projection and simpler, less costly methods. A Y-filter is the projection on
a finite number of spherical harmonics consisting of a forward and backward spherical harmonic
transform. The CFF basis with a Y-filter can be equivalent to the CY method [10, 12]. For tensor
fields, in some cases a CY-basis with a Yn-filter is a possible solution, see [4] for the black hole
example. For a different formulation of the black hole problem, a CFF method with a Y-filter has
been considered in [13, 14], although with evolutions that are not as stable as in [4].

The goal and result of the present paper is a CFF method with a Yn-filter for tensor fields
on a shell. Our method results in long-term stable evolutions for the single black hole example
comparable to [4], although there remains some slow, residual linear growth that we do not study
further in this work.

Part of the rationale behind the CFF basis [12] is that computing partial derivatives is simpler
and usually more efficient than for a CYn or CY basis. While there exist fast Legendre transforms
to implement the spherical harmonic derivatives, they involve a higher overhead than fast Fourier
transforms, in particular for small transform sizes. However, although the CFF method avoids
spherical harmonics in the derivatives, we choose to apply spherical harmonics as a filter. Since the
FF basis on the sphere does not have uniform areal resolution, some type of spherical harmonic
filter can be essential to alleviate the severe time-step restrictions due to the clustering of points
near the poles in the FF basis. Comparing a CY method to a CFF with Y-filter method, the latter
can be more efficient since the spherical harmonic transform is only used on the fields, while for
the CY method a larger number of spherical harmonic transforms is required for the derivatives of
the fields. Also, it can be easier to optimize a Y-filter, or to find alternatives to Y-filters, rather
than to optimize spherical harmonic transforms per se.

For the particular treatment of tensor fields that we consider, a tensor Yn-filter plays one
further role, in addition to projecting onto a uniform area basis and to filtering for stability of the
non-linear field evolution. To avoid coordinate singularities, it is convenient to express the tensor
components with respect to global Cartesian coordinates, (x, y, z), while the collocation grid is
based on spherical coordinates, (r, θ, φ). For example, the Cartesian components of a smooth
vector field are smooth at the poles of the spherical grid, implying spectral convergence in a CFF
or CY basis, where each component of the vector is expanded as if it were a scalar field. While
spectrally convergent, the Cartesian components represent a mixture of different spin-weights that
is not properly handled by the scalar Y-filter. In particular, the CY method of [4] displays a long-

2

term instability linked to the combination of the Cartesian components with the Y-filter. This
instability was noted in a related context [15] and cured by a tensor spherical harmonic filter in
the examples of [15, 4], although details of the instability or the implementation were not given.

The main topic of the present work is the double Fourier method combined with a spin-weighted
spherical harmonic filter for tensor fields. Since we may need a Yn-filter for stability anyway, this
paper examines the question whether we can do away with the complications of Y-derivatives and
Yn-derivatives completely. Can we take two shortcuts (the FF basis and Cartesian components)
and clean up with one trick (the Yn-filter) later? In the example considered, the answer is yes, and
the method realizes the efficiency and simplicity bonus of the CFF method with Y-filter for scalar
fields. To our knowledge, while there is literature on both the CFF method and the construction
of Yn-filters, there is no description yet of a CFF method combined with a Yn-filter for |n| > 1.

An important aspect of the proposed CFF/Yn-filter method is its efficient implementation.
Since we consider a collocation method in 3d, say with N3 points, we cannot handle very large N
anyway. With regard to computing 1d derivatives on a 3d grid, our task is a small N problem, say
N . 100, in contrast to 2d or 1d problems with much larger N . Also, in our example exponential
convergence of the solution usually means that double precision round-off error is reached for
N ≈ 40, since there are no features on a smaller scale to be resolved. If there are local features
to be resolved (in the black hole example, waves of small wavelength travelling to infinity), the
recommended strategy for efficiency is not to use large N on a single domain, but rather to take a
step towards “spectral elements” and to decompose the domain into several nested spherical shells.
Therefore, with domain decomposition in mind for efficient 3d methods, one relevant test case to
consider is that of a single domain where the number of points in each direction is comparatively
small, with N . 100.

Given a small N problem, we are led to consider matrix methods for the computation of
derivatives and filters [16, 17]. The operation count of a typical implementation of the partial
differential equation (1) is dominated by the computation of the spectral derivatives. For the
Chebyshev and Fourier bases, we compute derivatives using Fourier transforms (FTs), where the
standard choice for an efficient algorithm is the fast Fourier transform (FFT). However, it is also
well-known that for sufficiently small N a FT by direct matrix multiplication can be faster than a
FFT, since it avoids a certain overhead, e.g. [16, 1]. Furthermore, fast methods for the Legendre
transform that is part of spherical harmonic filtering are not yet competitive with other methods
for N < 300 [18], so matrix multiplication is often used by default. Note also that the computation
of a derivative or a filter using two FTs can be combined into a single matrix multiplication. In
the example we consider here, an implementation of the FT via matrix multiplication is found to
be competitive or even faster than FFTs for about N . 100, see Sec. 4.2. Therefore, for the rather
small N that we want to consider, we focus on the matrix multiplication method.

This leads to the second topic of the paper. Since the proposed CFF method requires a Yn-filter
as an essential part for stability, we have to address the implementation and efficiency of Yn-filters.
We will show how Yn-filters can be implemented by a matrix multiplication method. That this is
possible, is clear (a Yn-filter is a linear transformation of a finite number of grid values), but we
give a prescription that is well-adapted to the present case. Even though various software libraries
for Y-transforms are in principle available for various platforms, this is in general not true for
Yn-transforms, so a simple prescription in terms of matrices should be of value. As a consequence
of the time-dependence of our problem, all the required matrices for differentiation and filtering
can be precomputed at negligible startup cost, and in our case (the Einstein equations with at
least 50 variables) also at low memory cost.

As a third and final topic, we address the parallelisation of the CFF/Yn-filter method on graph-
ics cards (GPU computing). Concretely, we discuss an implementation using NVIDIA’s CUDA
framework [19]. A key issue to address is that in order to avoid the bottleneck of host-device mem-
ory transfers, it is optimal to implement the entire calculation apart from input/output operations
on a single graphics card. Although BLAS is available in CUDA, several non-BLAS operations

3

are required. GPU computing gives us an additional reason for a matrix method, since on new
architectures, basic linear algebra can be expected to arrive earlier and to be better optimized than
FFTs (as was the case for CUDA during the last years). We present some performance results
for the CFF/Yn-filter method for the single black hole test case. The non-standard feature with
regard to matrix computations on graphics cards is that the matrix computations involve the mul-
tiplication of small-by-small matrices with small-by-large matrices, say a 40×40 times a 40×40000
matrix. That is, the product of small, square differentiation and filter matrices with rectangular
matrices representing the fields with one small and one much larger dimension. Optimization for
such matrices was found to be less advanced than the standard square matrix case using dgemm
for N & 1024. The required small/rectangular matrix products achieve about 50 − 100 Gflop/s,
compared to 300 Gflop/s for large matrices and a theoretical peak around 500 Gflop/s on the avail-
able NVIDIA hardware. The bottom line for the GPU implementation of the black hole example
is a speed-up of a factor of about 10− 20 compared to a single CPU implementation.

The paper is organized as follows. In Sec. 2, we describe the CFF collation method for a
spherical shell, in particular the computation of the pseudospectral derivatives. In Sec. 3, we
discuss the discrete transforms for the Fourier, spherical harmonic, and spin-weighted spherical
harmonic bases, and construct the corresponding filters. In Sec. 4, we discuss various numerical
features of the single black hole test case and present some benchmarks. We conclude in Sec. 5. In
App. A, we summarize the formulation of the black hole example, and App. B gives examples for
spin-weighted spherical harmonics.

2. Chebyshev-Fourier-Fourier collocation method

2.1. Coordinates and collocation grid for a spherical shell

Consider a spherical shell in three dimensions given in standard spherical coordinates by r ∈
[rmin, rmax], θ ∈ [0, π], and φ ∈ [0, 2π]. We introduce a discrete (Cartesian-product) grid on the
shell by

rk =
rmax + rmin

2
− rmax − rmin

2
cos

πk

Nr − 1
, k = 0, . . . , Nr − 1, (2)

θi =
π(i+ 1

2)

Nθ
, i = 0, . . . , Nθ − 1, (3)

φj =
2πj

Nφ
, j = 0, . . . , Nφ − 1. (4)

The radial grid is adapted to a Chebyshev spectral basis. There are Nr points in the radial
direction located at the Chebyshev extrema points plus the end points of the interval [rmin, rmax].
In latitude, there are Nθ equally spaced points that stagger the poles at half a grid spacing. In
longitude, there are Nφ equally spaced points.

The collection of fields uµ(t, r, θ, φ) on the sphere that defines the state vector of the physical
problem is represented by the spatially discrete values uµkij(t) = uµ(t, rk, θi, φj) at the collocation
points.

The collocation points in the angular direction are appropriate both for spherical harmonics,
which we use for filters, and for the double Fourier spectral basis, which we use for the computation
of derivatives. The double Fourier approach relies on periodicity in both angular coordinates.
This can be made explicit by a double covering of the sphere, i.e. by doubling the range of θ by
chosing i = 0, . . . , 2Nθ − 1 instead of i = 0, . . . , Nθ − 1 while keeping the grid spacing π/Nθ fixed.
Equivalently, we can use the identity (θ, φ) ≡ (2π − θ, π + φ) between points on the sphere, which
implies f(θ, φ) = f(2π − θ, π + φ) for any function f on the sphere. The fields have to be stored
only for the single cover, θ ∈ [0, π]. Only when the derivatives in the θ-direction are computed,
we temporarily introduce data for θ ∈ [π, 2π] by symmetry for convenience, so that the Fourier
derivative can be computed by the matrix multiplication discussed below. Concretely, Nθ data

4

points are expanded to 2Nθ points, and for the matrix multiplication we use half of the standard
matrix (a Nθ × 2Nθ matrix), since the result is only needed for the single cover.

For the CFF grid, we choose an even number Nφ of points in the φ-direction, so that both φj
and φj + π are part of the grid. For the spherical harmonic transform required for the filter, equal
angular resolution is appropriate, so we set

Nφ = 2Nθ. (5)

This is also the natural choice for a physics problem that requires roughly equal angular resolution
in θ and φ. Taking into account the staggering in θ, we choose Nθ odd so that there are points in
the x-y-plane. In this case, Nθ = 2k + 1 and Nφ = 4k + 2 for k an integer.

To illustrate that this is of course not the only way to define a double Fourier grid, in [14] the
θ-range is θ ∈ [0, 2π], θi = π(2i + 1)/Nθ for i = 0, . . . , Nθ − 1, and furthermore Nφ = 3Nθ/4 with
Nθ a multiple of 4. The filter of [14] removes approximately half the modes in the (double covered)
θ-direction and one-third of the modes in the θ-direction. In the present work, similar to [4], such
one-half or one-third rules are not used (and apparently not crucial for stability), and hence our
grid dimensions are not adapted to such filtering.

2.2. Cartesian tensors and smoothness

Since we consider not just scalar but tensor fields, we have to discuss the smoothness of the
tensor components in different coordinate systems. Given a tensor field with smooth components
in Cartesian coordinates (x, y, z), in general its components with respect to spherical coordinates
(r, θ, φ) are not smooth on the z-axis. Spherical coordinates introduce a non-physical coordinate
singularity through the Jacobian of the coordinate transformation. One possibility is to consider
an appropriate (non-smooth) spectral basis for spherical coordinates, for example, tensor spherical
harmonics. A simple alternative is to avoid the coordinate singularities by computing with Carte-
sian tensor components on the spherical coordinate grid (which is not uncommon in numerical
relativity, e.g. [4, 13, 20]). Introducing a global Cartesian coordinate system also simplifies the
treatment of varying coordinates in multiple grid domains.

For example, a vector vi = [vx, vy, vz](x, y, z) in Cartesian coordinates can be evaluated at
the grid points of the spherical coordinate grid, xkij = x(rk, θi, φj) etc. As part of the spectral
method, partial derivatives are computed along coordinate lines of spherical coordinates, that is,
the spectral derivative operators compute ∂r, ∂θ, and ∂φ. However, for the field equations the
result has to be expressed in Cartesian components, which is done using the chain rule. For the
example of a vector,

∂

∂xi
vk(x̃(x)) =

∂x̃j

∂xi
∂

∂x̃j
vk(x̃), (6)

where xi = (x, y, z) and x̃i = (r, θ, φ). The Jacobian matrix ∂x̃j

∂xi
is known analytically, with a pole

e.g. in ∂φ
∂x = − sinφ

r sin θ at θ = 0, π even if r > 0 for the shell. However, the Cartesian components

vk(x̃) are constant as functions of φ as θ → 0, π, hence ∂
∂φv

k(x̃) vanishes at the poles, and the
overall result is finite. In the numerical computation, it turns out that staggering points in the
θ-direction so that θ = 0, π is not part of the grid suffices for an exponentially convergent result.
Although ∂φ

∂x is within half a grid-spacing of a pole, it is finite, and the spectral accuracy of the
numerical derivatives is sufficient for the convergence of (6).

If we stored ṽj(x̃) = ∂x̃j

∂xi
vi(x̃), then there would be the additional issue that the 1

sin θ pole has to

be differentiated numerically. To avoid this, we could store dual vectors, w̃j(x̃) = ∂xi

∂x̃j
wi(x̃), where

the inverse Jacobian is finite. However, the inverse Jacobian is multi-valued (not continuous) at
the poles of the sphere, e.g. ∂x

∂θ (θ = 0) = r cosφ. For the Y-basis this is an issue, since spectral
convergence of the expansion is lost, while the Yn-basis addresses precisely this issue. The FF-
basis does not have an immediate problem, since ∂x

∂θ = r cosφ cos θ is fine as a periodic function
for (θ, φ) ∈ [0, 2π] × [0, 2π]. We did not explore whether the FF-basis with tensor components in

5

spherical coordinates can lead to spectral convergence for the tensor equations at hand, but rely
on Cartesian components and the chain rule for differentiation (6).

2.3. Computation of derivatives in 1d

For the CFF basis, the computation of derivatives reduces to three one-dimensional derivatives
in each of the three directions. (For CY, the spherical harmonic part is not a 1d operation.) We
compute derivatives with the matrix multiplication method, e.g. [16, 17]. For a function f(x) on a
1d grid with N points xi, the function values fi = f(xi) are multiplied by a N ×N differentiation
matrix Dij to obtain the approximate derivative,

(∂xf)i =
N−1∑
j=0

Dijfj . (7)

For the angular directions we assume that 2Nθ and Nφ are even and that the points are equally
spaced on a periodic grid, see (3) and (4) for the double cover. For N even, the Fourier differenti-
ation matrix is

FDij =
(−1)i+j

2 tan(
xi−xj

2)
for i 6= j, FDii = 0. (8)

The Chebyshev differentiation matrix for the extrema grid x ∈ [−1, 1], xi = − cos πi
N−1 , i =

0, . . . , N − 1, is

CDij =
ci
cj

(−1)i+j

xi − xj
for i 6= j, CDii = −

N−1∑
j=0,j 6=i

CDij , (9)

where ck = 2 if k = 0 or k = N − 1, and ck = 1 if 0 < k < N − 1. The explicit value on the
diagonal is known, but the sum in (9) is preferable for stability. For the radial direction, we assume
the Chebyshev extrema grid (2), so the differentiation matrix has to be rescaled according to the

linear transformation between r ∈ [rmin, rmax] and x ∈ [−1, 1], ĈDij = 2CDij/(rmax − rmin). For
additional details of the computation of differentiation matrices see [16, 17, 21].

We compute and store the 1d differentiation matrices of the CFF basis once during the initial-
ization of the time evolution.

2.4. Computation of derivatives in 3d

For three-dimensional grids there are various options for the storage layout of the data and for
the computation of partial derivatives in each of the three directions. We store the field values on
the grid as a one-dimensional array of size N4d = n1n2n3nv, where n1 = Nr, n2 = 2Nθ, n3 = Nφ,
and nv is the number of variables uµ, µ = 0, . . . , nv − 1. The relation between the 1d indices in
(2)–(4) and the linear 4d index is p = k + n1(i+ n2(j + n3µ)).

We denote the differentiation matrices in the three spatial directions by D1 = ĈDn1×n1 , D2 =
FDn2×n2 , D3 = FDn3×n3 . The basic task for differentiation given 3d data (or 4d data for several
variables) as a 1d array is to perform matrix multiplications with a stride of 1 for the first direction,
a stride of n1 for the second direction, and a stride of n1n2 for the third direction. This is
straightforward to implement, but for efficiency we want to resort to optimized library routines.
Unfortunately, BLAS for example does not provide strided matrix-matrix multiplication. There is
a strided matrix-vector multiplication, but calling this repeatedly is not efficient. Since our focus
is on emerging computing platforms like GPUs, choices for matrix libraries are rather limited, and
hence we look for alternative implementations.

One elegant way to proceed [17] is to construct 3d differentiation matrices acting on one-
dimensional arrays of size N3d = n1n2n3 using the Kronecker product,

D3d
1 = D1 ⊗ I2 ⊗ I3, D3d

2 = I1 ⊗D2 ⊗ I3, D3d
3 = I1 ⊗ I2 ⊗D3, (10)

6

where the Ik are the identity matrices of size nk × nk, and the D3d
k are of size N3d × N3d. The

computation of the spectral derivative of a 3d field given as a 1d vector u using (10) is given by
the matrix multiplication

∂ku = D3d
k u. (11)

The examples in [17] implement the D3d
k as sparse matrices in MATLAB. This leads to a very

straightforward and quite efficient implementation of (11).
The pseudospectral differentiation matrices D3d

k can be called “semi-sparse”. For the remainder
of this paragraph, let us set N3d = N3. A dense matrix would have N2

3d = N6 entries. For finite
differencing with a stencil of constant size s (independent ofN) there are s non-zero matrix elements
per row for a total of sN3d = sN3 elements for 3d differentiation matrices. For pseudospectral
differentiation matrices there are about N non-zero entries per row, and N4 of N6 elements of the
3d differentiation matrices are non-zero. Sparse matrix libraries probably offer varying degrees of
efficiency for the semi-sparse matrices given in (10). However, if the special sparse structure of
the D3d

k is not taken into account, then sparse matrix operations are expected to be slower than
strided matrix multiplication due to the overhead in the index manipulations of the sparse matrix
format (in particular, the additional memory transfer for the index data).

The implementation that we choose uses two elementary building blocks, BLAS matrix-matrix
multiplication and a general purpose matrix transpose. For the leading dimension of direction one,
the indexing is such that the vector u containing the data for the 3d grid for each of the variables
represents a vector with n1n2n3nv elements, but u can also be viewed as a n1×n2n3nv matrix. In
fact,

(u)n1n2n3nv = (u)n1×n2n3nv = (u)n1n2×n3nv = (u)n1n2n3×nv = (u)n1×n2×n3×nv (12)

as far as the memory layout is concerned, since the different matrix sizes only refer to different
ways to index the identical data. In our implementation (C and CUDA), this “reshape” operation
does not require any memory copies. There could be situations where a copy operation for special
memory alignment of the rows is required, which however would be a local copy as opposed to the
non-local copies of e.g. a transpose operation.

The spectral derivative in the first direction can therefore be written as the matrix multiplication

(∂1u)n1×n2n3nv = (D1)n1×n1(u)n1×n2n3nv , (13)

where with (12) the input and the result are 1d arrays of size n1n2n3nv.
For the derivatives in direction two and three, the data is not stored consecutively and we

cannot multiply directly by D2 or D3. We implement these derivatives by performing explicit
matrix transpositions. If direction three was the last dimension, then we could consider using
some of the built-in transpose operations in BLAS and multiply by D3 from the right. However,
we choose to combine all variables into one large array un1n2n3nv in order to coalesce the various
matrix operations. BLAS offers matrix multiplications with various transposes, AB, ABT , ATB,
and ATBT , but these are not the transposes we need.

For the derivative in the second direction, we transpose u so that direction two becomes the
leading dimension, multiply by D2 from the left, and then undo the tranpose,

(v)n2n3nv×n1 = (un1×n2n3nv)
T , (14)

(∂2v)n2×n3nvn1 = (D2)n2×n2(v)n2×n3nvn1 , (15)

(∂2u)n1×n2n3nv = ((∂2v)n2n3nv×n1)T , (16)

where (12) is assumed, and u and ∂2u are 1d arrays of size n1n2n3nv.
Similarly, for the derivative in the third direction,

(w)n3nv×n1n2 = (un1n2×n3nv)
T , (17)

(∂3w)n3×nvn1n2 = (D3)n3×n3(w)n3×nvn1n2 , (18)

(∂3u)n1n2×n3nv = ((∂3w)n3nv×n1n2)T . (19)

7

For the partial differential equations that we consider, we always need all three partial deriva-
tives. Therefore, the computation of the derivatives as written above consists of 4 transpose
operations and 3 matrix multiplications. In practice, we use CUBLAS and the transpose from the
CUDA SDK. It is likely that the transpose can be optimized, but as we will see the overall per-
formance is still dominated by the matrix multiplication. It is interesting to note that even in the
case of a MATLAB implementation along the lines of [17], using transposes and the effectively 1d
dense matrix multiplication for the derivatives is faster than the sparse, 3d matrix implementation
by roughly a factor of 2.

In terms of the operation count, the computational kernel of the pseudospectral CFF method
as formulated above is dominated by the matrix multiplications (13), (15), and (18). They are
given by the product of a small matrix Dk with a non-square matrix u, v, or w representing
the data. A typical grid size for our example is n1 = n2 = n3 = 40 and nv = 50, so for the
first direction the derivative is computed as the product of a 40 × 40 matrix and a 40 × 80000
matrix. Although this is a matrix size that is suited for parallelization, the CUBLAS 3.2 library,
for example, reaches its performance optimum for dimensions that are a multiple of 64, with double
precision performance dropping from about 300 GFlop/s to 100 GFlop/s if a dimension is not a
proper multiple. This is not optimal for a spectral problem where a reasonable set of convergence
runs may consist of steps n1 = 20, 24, 28, . . . , 40. The spectral method discussed here would benefit
most from the optimization of the matrix-matrix multiplication of a small square matrix times a
highly non-square matrix.

2.5. Numerical simulations

The solution of the time-dependent problem (1) proceeds as follows. First, the grid structure
is initialized and all required matrices are computed and stored. The grid does not change during
the evolution. Initial data for the physical fields uµ(0) is computed.

Second, time stepping is performed by the method of lines. We employ a simple fourth-order
Runge-Kutta (RK4) method. The allowed size of the time-step depends on the clustering of grid
points near the poles of the spherical shell. Depending on the relative grid dimensions, either
the clustering in the r- or in the θ-direction is more severe. A Runge-Kutta step consists of 4
evaluations of Sµ(u)−Aiµν(u)∂iu

ν . As part of each substep, boundary conditions are applied. In
our example, one RK4 time step involves 600 one-directional derivatives of individual fields plus
about 10000 additional floating point operations in the computation of the right-hand-side, where
overall the workload in the algebra is smaller than that of the derivatives. After one complete RK4
step, we apply the filter discussed in Sec. 3 to the fields.

The method is implemented in C/C++ in a package called BAMPS. It inherits several fea-
tures from the code BAM, which is a mature infrastructure for black hole simulations using finite
differences [20, 22, 23].

In the case of the GPU implementation, a bottleneck is the comparatively slow memory transfer
between host and device (about 30 times slower than for device-to-device copies). The initialization
step is performed on the host, and all data required for the evolution is copied onto the device.
The time evolution is carried out completely on the device. In our example this is possible due to
the low memory requirement of the spectral method. If more memory is required than the device
can provide, the performance assessment changes. Periodically, information about the evolution
is copied from the device back to the host for processing. For simulations aimed at computing
the physics of the system, the transfer bottleneck is not a major performance limitation, since the
physical time-scale is typically much larger than the time-step size required for numerical stability
of RK4.

8

3. Spherical harmonic filter for tensors

3.1. Discrete Fourier transform as matrix multiplication

As a first step we write the standard Fourier transform (e.g. [1]) and its inverse as matrix
multiplication transformations. Consider a real, periodic function f(φ) on the interval [0, 2π],
which is discretized by φj = 2π

J j and fj = f(φj) with j = 0, . . . , J − 1. The backward Fourier
transform (also called Fourier synthesis or expansion in Fourier modes) is written in terms of real
Fourier modes,

fj = a0 +
M−1∑
m=1

(am cosmφj + bm sinmφj), j = 0, . . . , J − 1. (20)

The forward Fourier transform (Fourier analysis, projection onto Fourier modes) is

a0 =
1

J

J−1∑
j=0

fj , am =
2

J

J−1∑
j=0

fj cosmφj , bm =
2

J

J−1∑
j=0

fj sinmφj , m = 1, . . . ,M − 1. (21)

When counting real degrees of freedom, the number of basis functions is odd since b0 is zero. This
suggests using an odd number J = 2M − 1 of sampling points in the φ coordinate so that the
transform is invertible. However, for the double covering of the sphere that we want to use, J
should be even, so that given any φj the point φj + π is part of the grid. We therefore set

J = 2M. (22)

When constructing filters, invertibility is not the goal anyway.
In matrix notation,

f = Aa+Bb, Aj0 = 1, Ajm = cos
2πjm

J
, Bjm = cos

2πjm

J
, (23)

a = Ãf, b = B̃f, Ã0j =
1

J
, Ãmj =

2

J
Ajm, B̃mj =

2

J
Bjm, (24)

where m ≥ 1. The matrix dimensions are given by fJ , aM , bM−1, AJ×M , and BJ×(M−1). The sine
and cosine parts can be combined,

f = Cc, c = C̃f, c =

(
a
b

)
, C = (A B), C̃ =

(
Ã

B̃

)
, (25)

with dimensions indicated by fJ , cJ−1, and CJ×(J−1). For the numerical implementation, we
precompute the transformation matrices for the backward and for the forward transform.

3.2. Discrete spherical harmonic transform by matrix multiplication

We introduce the discrete spherical harmonic transform along the lines of [12], and give an
implementation in terms of matrix multiplication that relies on the pseudo-inverse of the Legendre
transformation matrix computed via the singular value decomposition [24].

We consider functions on the sphere, f(θ, φ), with the inner product (f, g) =
∫
f̄gdω, dω =

sin θdθdφ. The spherical harmonics are denoted by

Ylm(θ, φ) = P̂ml (cos θ)eimφ, (26)

where the P̂ml are normalized associated Legendre polynomials such that (Ylm, Yl′m′) = δll′δmm′ . We
are looking for the discretized version of the backward and forward spherical harmonic transforms,

f(θ, φ) =

∞∑
l=0

l∑
m=−l

clmYlm(θ, φ), clm = (Ylm, f) =

∫
S2

dω Y lmf. (27)

9

We work on an equidistant two-dimensional grid of angles, for which different choices are
possible. We choose to stagger the poles, and we choose an even number of points in the φ direction
(because of the Fourier double cover used for derivatives, see above). Setting Nφ = 2Nθ = 2N ,
there are N × 2N = 2N2 grid points,

θi =
π

N
(i+

1

2
), i = 0, . . . , N − 1, φj =

π

N
j, j = 0, . . . , 2N − 1. (28)

For real basis functions the discrete backward transform (synthesis, expansion in spherical
harmonics) is written as

fij =
L∑
l=0

l∑
m=0

P̂ml (cos θi)(alm cosmφj + blm sinmφj). (29)

We set the maximal value of l (and hence also of m) to

L = N − 1. (30)

Exchanging the order of summation according to
∑L

l=0

∑l
m=0 =

∑L
m=0

∑L
l=m, spherical harmonic

synthesis can be written as a Legendre transform followed by a standard Fourier transform,

fij =
L∑

m=0

(Ajmam(θi) +Bjmbm(θi)), am(θi) =

L−m∑
k=0

(Pm)ik(am)k, bm(θi) =

L−m∑
k=0

(Pm)ik(bm)k

(31)
where Ajm and Bjm are the 2N ×N Fourier synthesis matrices defined in (23), with J = 2N and
M = N . For each m = 0, . . . , L we have defined the N × (N −m) matrix

(Pm)ik = P̂mm+k(cos θi) (32)

for the Legendre synthesis, where the entries are the normalized associated Legendre polynomials
for a given m evaluated for l = m+ k = m, . . . , L at the angles θi, i = 0, . . . , L.

The discrete forward transform (analysis, projection onto spherical harmonics) begins with a
discrete forward Fourier transform in φ, (24), leading to coefficients depending on θ,

am(θi) =
2N−1∑
j=0

Ãmjfij , bm(θi) =
2N−1∑
j=0

B̃mjfij , (33)

where m = 0, . . . , L, and i = 0, . . . , L.
For each m = 0, . . . , L, the forward Legendre transform (analysis) is, conceptually, the inverse of

the backward transform. Written in matrix notation, the backward Legendre transform (synthesis)
from the (am)k to the am(θi) in (31) becomes

sN = PN×(N−m)aN−m, (34)

where sN represents the synthesized N -vector am(θi), aN−m the N−m-vector of coefficients (am)k,
and PN×(N−m) is the transformation matrix.

Here we encounter the usual mismatch between the number of grid points of the rectangular θ-φ-
grid, which is 2N2, and the number of spectral coefficients (am)l and (bm)l, which for l = 0, . . . , N−1
and m = 0, . . . , l with (b0)l = 0 amount only to N2 coefficients. Put differently, in general (34)
cannot be inverted since for m > 0 the matrix PN×(N−m) is not even square. There are N equations
for N −m unknowns aN−m.

However, we can compute the analysis a = (P, s) by a sum over grid points, which looses
information, so that s̃ = Pa is an approximation of s. For the Gaussian collocation points of the
Legendre functions (which we do not use), all that would be needed are appropriate weights wi for

10

ak =
∑

iwiPiksi. For a general set of collocation points, we can define an (in general non-diagonal)
weight matrix W so that a = P TWs, see for example [12], which also discusses clever ways to
compute and store W and/or P TW .

In principle, one could generalize [12] or the method based on special collocation points to spin-
weighted spherical harmonics, at the cost of increased analytic complexity. However, especially in
the context of a matrix method, there is a straightforward alternative. As a simple, direct way to
invert s = Pa in the appropriate manner, we follow [24] and note that we can define

ãN−m = P+
(N−m)×NsN , (35)

where P+ denotes the Moore-Penrose pseudo-inverse of the matrix P .
The pseudo-inverse A+ of a real matrix A is the unique matrix satisfying AA+A = A, A+AA+ =

A+, (AA+)T = AA+, and (A+A)T = A+A, cmp. [25]. For example, the first relation means that
although AA+ is in general not the identity, it still maps A to A. AA+ is the orthogonal projector
onto the space spanned by the columns of A. If the inverse exists, then A+ = A−1. The fact
we need here is that even if we cannot solve a linear equation Ax = b because the inverse of A
does not exist, we can still look for vectors x that minimize ‖Ax− b‖. There may be several such
vectors. The pseudo-inverse defines the unique vector x = A+b that minimizes ‖Ax − b‖ and has
the smallest norm ‖x‖.

The pseudo-inverse can be computed using the singular value decomposition (SVD) of A, A =
USV T . Here U , S, V are matrices, and in particular S is diagonal (and in general non-square).
For this decomposition, we have A+ = V S+UT , and the pseudo-inverse of S is obtained by taking
its transpose and replacing non-zero entries Sii by 1/Sii.

In summary, the pseudo-inverse allows us to define the forward Legendre transform (35) as
the least-squares approximation to the inverse of the backward transform via the pseudo-inverse.
Written out in components, the forward Legendre transform of the discrete spherical harmonics
transform is

(am)k =

L∑
i=0

(P+
m)kiam(θi), (bm)k =

L∑
i=0

(P+
m)kibm(θi), (36)

with am(θi) and bm(θi) obtained from the forward Fourier transform, (33).
We can choose to precompute and store the matrices PN×(N−m) and P+

(N−m)×N for each m.
Since this is done once at startup time, parallelization of the SVD routine is not an issue. We use
the GSL for Legendre polynomials and the SVD [26].

3.3. Discrete spin-weighted spherical harmonic transform by matrix multiplication

Spin-weighted spherical harmonics are a generalization of spherical harmonics. The spin weight
refers to how a given function on the sphere transforms under the rotation of basis vectors. Spin-
weighted spherical harmonics were first discussed in terms of spin raising and lowering operators
in [27, 28], which also leads to a definition in terms of Wigner d-functions. Any tensor of degree k
on the sphere can be naturally decomposed as a linear combination of tensor spherical harmonics,
which are products of the basis vectors with the spin-weighted spherical harmonics [28, 29], see
Sec. 3.4.

Here we use the definition given in [30], see also [31, 32]. A spin-n function on the sphere,
f(θ, φ), transforms under a basis rotation by an angle ψ according to f = e−inψf . The sign
convention for n is opposite to the spin weight s = −n defined in [27, 28, 29], which however does
not matter for filters constructed as a forward-backward transform. The spin-weighted spherical
harmonics, Y n

lm(θ, φ), are spin-n functions on the sphere for a given n. They form an orthonormal
basis in the space of spin-n functions with orthonormality and completeness relations∫

S2

dωY n
lm(ω)Y n

l′m′(ω) = δll′δmm′ , (37)∑
l

∑
|m|≤l

Y n
lm(ω′)Y n

lm(ω) = δ(ω′, ω), (38)

11

where ω = (θ, φ) and δ(ω′, ω) = δ(cos θ′− cos θ)δ(φ′−φ). Hence, any spin-n function on the sphere
is uniquely given by

f(ω) =
∑
l

∑
|m|≤l

cnlmY
n
lm(ω), cnlm = (Y n

lm, f) =

∫
S2

dΩY n
lm(ω)f(ω). (39)

In the above l is assumed to be equal to or larger than |n|, which is implemented with the convention
that

Y n
lm(ω) = 0 and cnlm = 0 if l < |n| or l < |m|. (40)

The definition of the spin-weighted spherical harmonics (see below) gives

Y n
lm(ω) = (−1)n+mY −nl(−m)(ω). (41)

Spin-0 corresponds to the standard, non-weighted spherical harmonics, Y 0
lm(ω) = Ylm(ω), for which

we have the standard orthonormality and completeness relations as a special case of the relations
above.

For the numerical computation of the spin-weighted spherical harmonics we use recursion for-
mulas, as opposed to the non-recursive definition of the Wigner d-functions or the spin operators
that are also given in [30]. There are different ways to express the Y n

lm in terms of the Ylm, depend-
ing on which recursion relation is used for the θ-derivative of the associated Legendre polynomials,
compare [30, 31]. While [31] is simpler in the θ-dependence of the coefficients, [30] is simpler in
the range of l, in particular for band-limited functions on a given grid. (We note in passing that
the coefficients for negative spin weight in [31] have to be corrected since the normalization of the
spin-weighted spherical harmonics is non-standard and (41) does not hold.) A few simple examples
can be found in App. B.

The basic recursion formula employed in [30] is

Y n
lm = αnl

m
l − cos θ

sin θ
Y n−1
lm + βnlm

1

sin θ
Y n−1
l−1,m (42)

for decreasing n, and for increasing n it is

Y n
lm = α(−n)l

m
l + cos θ

sin θ
Y n+1
lm − β(−n)lm

1

sin θ
Y n+1
l−1,m, (43)

with coefficients

αnl =

(
l − n+ 1

l + n

) 1
2

, βnlm =
1

l

(
2l + 1

2l − 1

(l + n− 1)(l2 −m2)

l + n

) 1
2

. (44)

As before, Y n
lm = 0 for l < max(|m|, |n|).

This is a two-term recursion in l. Since the coefficients are functions of θ, the integration
for analysis changes. Starting with n > 0, there are n + 1 terms involving Y 0

lm multiplied by
cotp θ/ sinq θ with p + q = n. However, the overall behavior at the poles is regular. Furthermore,
since we stagger the grid no extra measures at the poles should be necessary. The result of the
recursion can be written

Y n
lm(θ, φ) =

n∑
p=0

γnplm(θ)Y(l−p)m(θ, φ). (45)

The usual way to proceed is to compute the expansion coefficients with respect to the Y n
lm using

some existing implementation of the spherical harmonic transform. The coefficients in (45) depend
on θ, which means when considered as functions of θ the terms of the expansion are not spherical
harmonics. However, when computing the transform we can move the additional θ dependence into
the function that is to be transformed, e.g. (Ylmsin θ , f) = (Ylm,

f
sin θ). As a result, the Y n

lm-transform
is computed as the linear combination of |n|+ 1 Ylm-transforms of the rescaled function f .

12

In our application we implement the spin-n spherical harmonic transform as a matrix mul-
tiplication (in particular since l is appropriately small). Rather than computing |n| + 1 spin-0
transforms based on (45), we use the recursion (42)–(44) directly to compute a single transforma-
tion matrix for the Legendre-part of the transform. For |n| ≤ 3, this avoids a factor of up to 4 in
the number of transforms.

Analytically, when computing (42)–(44) or (45) it does not matter which type of recursion
is used ([30] or [31]). However, when computing associated Legendre polynomials from standard
Legendre polynomials numerically, certain recursions in l are stable, while some recursions in m
are not as stable. To our knowledge a corresponding large n study has not been carried out for
spin-n spherical harmonics and different recursions. But note that in our case n corresponds to
the tensor-degree of the physical fields and is therefore a small, fixed number (that in particular
does not increase like m and l when increasing the accuracy of the spectral approximation). Still,
the numerically implementations may differ in accuracy.

More importantly, we have to ask whether the pseudo-inverse method is applicable to the
computation of the analysis matrices. That the pseudo-inverse exists is more or less clear, since
for each n we have the same orthogonality and completeness relations that hold for the n = 0 case.
Numerically, it is not clear a priori how well the pseudo-inverse/SVD algorithm for the analysis
matrices handles the differences in the θ-dependence.

We summarize the actual computation. For spin-weighted spherical harmonics we define

Y n
lm(θ, φ) = P̂nml(θ)e

imφ, (46)

where the P̂nml are directly related to the Wigner d-functions, P̂nml = (−1)n
√

2l+1
4π dlm(−n). These

“spin-n associated Legendre polynomials” are computed by the recursion formulas (42)–(44). In
principle we are looking for a numerical implementation of the Wigner d-functions, but this is not
readily available on most platforms. Given a code-library function for the computation of the nor-
malized associated Legendre polynomials P̂ml (θi), the recursion formulas are directly implemented
by recursive function calls that increase or decrease n until n = 0. In our case, n = −3, . . . ,+3,
with n an integer. For n < 0, we can also use

P̂nlm = (−1)n+mP̂−nl,−m. (47)

The result is the N × (N −m) synthesis matrix

(Pnm)ik = P̂n(k+m)m(θi) (48)

for each m and n, in analogy to the spin-0 case, (32). For the spectral analysis we use the pseudo-
inverse

(Qnm)ki = ([Pnm]+)ki (49)

of (Pnm)ik, where as for the spherical harmonics k = 0, . . . , L−m and the (Qnm)ki are (N −m)×N
matrices.

The spin-weighted spherical harmonic transform defines a projection filter Fn(f) for functions
f of definite spin-weight n. Given f , we compute the discrete forward transform followed by the
discrete backward transform for some finite l ≤ L, cmp. (39). Note that Fn is a linear operation,
and using (41) we have

Fn(f) = F−n(f̄). (50)

For n 6= 0 we have for non-trivial f that Fn(f) 6= F−n(f), so even if f = f̄ we have Fn(f) 6= Fn(f).
Hence, even if f is real, in general the projection Fn(f) is complex.

The discrete spin-n spherical harmonic transform and the corresponing filter is computed in
complete analogy to the standard (n = 0) case. The matrices Pnm and Qnm are precomputed.
For our main application we only store the filter matrix Fnm(nf) as defined in (62) of Sec. 3.5
on filters. We need |n| ≤ 3 and 0 ≤ m ≤ N . During the evolution of the physical fields, the

13

filter is computed by computing the discrete Fourier analysis (33), followed by the discrete spin-n
associated Legendre projection (62), followed by the discrete Fourier synthesis (31). The Fourier
transforms are independent of n.

3.4. Spin-weight decomposition of tensors with respect to a tetrad or triad

In preparation for the construction of spin-weighted filters, we decompose tensors according
to their spin weight. Consider Minkowski space with coordinates (t, x, y, z) and metric ηab =
diag(−1, 1, 1, 1). We also consider basis vectors aligned with spherical coordinates (t, r, θ, φ), but
with components in the Cartesian basis (t, x, y, z). We define the right-handed, orthonormal tetrad
(ta, ra, θa, φa) by

ta = (−1, 0, 0, 0), θa = (0, cos θ cosφ, cos θ sinφ,− sin θ),
ra = (0, sin θ cosφ, sin θ sinφ, cos θ), φa = (0,− sinφ, cosφ, 0).

(51)

The basis vectors tangential to the coordinate spheres are replaced by the two complex vectors

ma =
1√
2

(θa + iφa), ma =
1√
2

(θa − iφa), (52)

where ma is the complex conjugate of ma. The orthonormality relation of the complex tetrad
eaµ = (ta, ra,ma,ma) with respect to the Minkowski metric is

tata = −1, rara = 1, mama = 1, mama = 1, others zero. (53)

In terms of eaµ, orthonormality and completeness read ηabe
a
µe
b
ν = ηµν and ηµνeaµe

b
ν = ηab. Intro-

ducing the conjugate dual of the complex tetrad, fµa = ηµνηabe
b
ν , this becomes fµa eaν = δµν and

fµa ebµ = δab .
Any tensor on Minkowski space can be written in terms of the complex tetrad. For a vector

va, the expansion is va = ṽµeaµ with coefficients ṽµ = (eµ, v) = ηµνηabe
a
νv
b = fµa va. For eaµ =

(ta, ra, θa, φa), this can be written as

vt = −tava, vr = rav
a, vm = mav

a, vm = mav
a, (54)

va = vtta + vrra + vmma + vmma. (55)

A tensor of degree k is expanded as

T̃µ1...µk = fµ1a1 . . . f
µk
ak
T a1...ak , T a1...ak = T̃µ1...µkea1µ1 . . . e

ak
µk
. (56)

This construction simplifies trivially to the case of three-dimensional Euclidean space by dropping
ta and replacing the indices by i = 1, 2, 3 and µ = 1, 2, 3.

The key property of the complex tetrad that concerns us here is its transformation under
rotations about a given radial direction ra. The vectors ra and ta do not change. The vector ma

is chosen for its simple transformation under such rotations,

m′a = eiψma, (57)

where ψ is the angle of the rotation. The spin weight of a function f constructed from a tensor by
contractions with the tetrad refers to its behavior under rotations of the tetrad vectors. If such a
function transforms under tetrad rotations as

f ′ = e−iψnf, (58)

we call it a function with spin-weight n. Referring to (55), we have n(vr) = 0, n(vm) = +1,
and n(vm) = −1. For the tetrad vectors themselves, we define n(ta) = n(ra) = 0, n(ma) = −1,
and n(ma) = +1. According to (58), for products of spin-weighted functions we have n(f1f2) =

14

n(f1) + n(f2). For products of tetrad vectors, n(ea1µ1 . . . e
ak
µk

) =
∑k

j=1 n(e
aj
µj). For example, rarb,

ramb, mamb, and mamb have spin-weights 0, −1, −2, and 0, respectively. Products of tetrad
vectors have a well defined spin-weight, but the sum of spin-weighted tensors is in general a tensor
without well-defined spin weight.

Note the distinction between coordinate rotations and tetrad rotations. By definition, any ten-
sor is covariant under coordinate transformations, but here we have introduced additional structure,
the tetrad, and discuss how functions that are constructed from the tetrad and tensors transform
when the tetrad is transformed. The physics of the problem we consider is rotation invariant, i.e.
it does not refer to a preferred choice of z-axis or tetrad vector ma. Concretely, if ma is not part of
the construction of a physical field va, then n(va) = 0. If we choose to expand va in terms of the
tetrad, then its components acquire specific spin weights, but each term of the sum in va = vµeaµ
has spin-weight 0.

3.5. Filters defined by spherical harmonic projection

In this work, the main application of the discrete (scalar and spin-weighted) spherical harmonics
transform is its use as a filter. It is unclear a priori what type of filtering is needed or optimal for
the Einstein equations implemented with the particular CFF method that we consider, and any
filtering scheme has to be carefully evaluated.

First of all, in order to suppress high-frequency modes near the poles, we expand fij by the
forward transform in spherical harmonics up to degree L, i.e. we project onto the spherical har-
monics basis. The backward transform results in an approximation f̃ij of the original fij with
equiangular resolution over the sphere, which in particular means that the high frequencies that
can be represented on the θ-φ grid but are unwanted near the poles have been eliminated. This
removes certain restrictions on the time step size due to clustering of points near the poles in
the φ-direction. Transforming to and from spherical harmonics for a finite L defines a projection
filter. In the context of the double Fourier spectral method on the sphere (for scalar fields), the
projection filter ensures equivalence to the more standard spherical harmonics method to compute
derivatives.

We assume that L is the maximal degree of spherical harmonics represented on the grid, and
we define additional filtering by explicitly removing the top nf of the highest degree l-modes, i.e.
l ≤ L−nf . In our case there are two unrelated reasons to do so. For non-linear problems, there is a
large variety of approaches [1] to deal with the non-linear mode mixing. For example, for quadratic
non-linearities the two-thirds rule can be helpful for one-dimensional intervals, while on the sphere
this may become a one-half rule since the basis is not ’reflective’. It is unclear a priori what type
of filtering is needed or optimal for the Einstein equations, which are worse than quadratically
non-linear. As in [15, 4], but in contrast to [14] which uses a different formulation of the Einstein
equations, we do not resort to filtering one-half or one-third of the modes. This does not appear to
be necessary, neither in the radial nor in the angular direction, and we have not investigated this
here. However, the residual linear growth discussed in Sec. 4.1 might be addressed with additional
filtering (or alternatively by improved boundary conditions).

A second issue is the tensor character of the fields in combination with the Cartesian coordi-
nates. This leads to the observation that a small nf > 0 is required for stability (here nf = 4),
which depends on the rank of the tensors but not on the grid size (e.g. nf = N/3 for filtering the top
third). To examine the Cartesian tensor issue, we consider three types of filters based on scalar and
spin-weighted spherical harmonics, which we call the scalar Y-filter, the tensor Yn-filter, and the
graded Yg-filter. For the Y-filter, we apply the standard, non-weighted spherical harmonics filter
to each field uµ, ignoring the tensor character of the fields. The Y-filter addresses some of the clus-
tering issues of the double Fourier method, but there remains a strong instability, which however
appears to be cured when the Yn-filter using projection onto spin-weighted spherical harmonics is
used, see Sec. 4.1.

One view of the problem is that Cartesian components introduce additional angular dependence
compared to spherical coordinates, which effectively increases the order of a spherical harmonic

15

expansion by one for each spatial tensor index. Consider the spherically symmetric scalar function
f(x, y, z) = r, which requires only l = 0 in a spherical harmonic expansion. Its first derivative
∂xf = x/r = sin θ cosφ is the component of a Cartesian vector, which corresponds to l = 1. Its

second derivative ∂x∂xf = 1
r (1− x2

r2
), which is the component of a 2-tensor, requires l = 0 and l = 2.

Analogously, referring to (51)–(56), each contraction with mi to compute components of a tensor
in the spherical basis multiplies the Cartesian component by a first order polynomial in sin θ etc.,
which increases the l required in a spherical harmonic basis by one. Since on the numerical grid
we can only represent a finite, maximal degree L, for each spatial index of a tensor in Cartesian
components the available degree L is effectively lowered by one compared to spherical coordinates.

Let us denote by d(uµ) the spatial degree of the Cartesian tensor component, i.e. the number
of spatial indices of the variable uµ. For example, d(gtt) = 0, d(gtx) = 1, d(gxx) = 2. Then the
effective maximal degree Leff represented on the grid is L− d(uµ). In the evolution equations and
the constraints, the different spatial degrees are coupled, e.g. dijk ' ∂igjk. This suggests that the
tensor Yn-filter should be used with nf ≥ 3 so that each spin-weight mode is representable at the
same maximal order Leff on the grid.

On the other hand, from this point of view the scalar Y-filter is problematic, since for a given
nf it does not project onto a basis at the same Leff. For example, suppose we want to project
some given 3d data onto spherically symmetric data. If we choose the Y-filter with nf = L, then
a scalar function is correctly projected onto its spherically symmetric monopole, but for a vector
we have to use nf = L− 1, and e.g. for dijk it should be nf = L− 3. This leads us to consider an
improved version of the scalar filter, which was also (and possibly for the first time) considered in
[14]. We define

nf (µ) = nf − d(uµ), (59)

and introduce what we call a “graded” Y-filter, or Yg-filter, where the top nf (µ) components in the
Y-basis are zeroed. The Yg-filter improves on the Y-filter since the highest order l-modes are now
treated consistently across the different spatial ranks of the tensor components. However, since the
Cartesian components are actually a mixture of different spin-weights, compared to the Yn-filter
the Yg-filter does not treat the intermediate spin-weights correctly. As we show in Sec. 4.1, the
Yg-filter cures one type of instability present in Y-filter simulations. Yet an additional, more slowly
growing instability is left over, which however the Yn-filter is able to handle.

The actual implementation of the filters is as follows. Given a general tensor, we cannot apply
the Yn-filter directly. First, the tensor is decomposed according to (56). Each component function
in the expansion is filtered according to its spin weight. The result is recombined again as in (56).
Note that (50) is compatible with the mi and mi vectors of the tetrad. For the tetrad components
of a real vector vi, Fn(vm) = F−n(vm), which is just as it should be since the spin-weights of vm and
vm have opposite sign. Denoting the general filter operation by F and the specific spin-n version
by Fn, we have for example F (gtt) = F0(gtt) and F (gtm) = F1(gtm). With (50) and linearity of F ,
we can reexpress the filter operation in terms of non-complex basis vectors. For example,

F (gtθ) =
1√
2

(F1(gtm) + F−1(gtm)) =
√

2Re(F1(gtm)) = Re(F1(gtθ) + iF1(gtφ)). (60)

The projection filter is implemented as a forward Fourier transform in the φ-direction, followed
by the projection filter

s̃N = (PP+)N×N sN (61)

onto the Legendre basis for each m in the θ-direction, followed by a backward Fourier transform
in the φ-direction. Here P and P+ ≡ Q refer to the matrices appropriate for either the standard
or spin-weighted Legendre transforms. This can be generalized to additional filtering by

s̃N = FN×NsN , FN×N = PN×(N−m)fdiag(N−m)P
+
(N−m)×N , (62)

where the elements of the diagonal matrix f are one for modes that are to be maintained and
zero for the nf or nf (µ) modes that are to be removed. The standard choice considered in the

16

literature is to remove the top 4 modes [15, 4], in which case f = diag(1, . . . , 1, 0, 0, 0, 0). Recall
that PN×(N−m) stands for (Pm)ik with k = 0, . . . , L−m, with the entries obtained for l = m+k =

m, . . . , L. Therefore, zeroing the top 4 components of the (N −m)-vector P+
(N−m)×NsN removes

the components l = L− 3, L− 2, L− 1, L.
If storage is not an issue, we can precompute and store the different FN×N for each m, which

requires O(N3) storage. For the Einstein equations in GHG form on a spherical shell, storage is
not much of an issue since the filter is applied to each of about 50 variables for every value of
the radius, and FN×N is independent of r. In our example, storing FN×N is roughly equivalent
to requiring storage for 51 instead of 50 variables, with somewhat more storage required if the
matrices for each spin-weight are stored.

4. Numerical results

In this section we first present numerical experiments for the single black hole test case in
Sec. 4.1, and then evaluate the computational efficiency of the pseudospectral matrix method in
Sec. 4.2,

4.1. Test case of a single, evolving black hole

As a non-trivial application of the CFF/Yn-filter method, we consider the basic example of
a static, spherically symmetric single black hole. Analytically, the time derivatives ∂tu

µ(t, x, y, z)
all vanish. The discretization error of the numerical method leads to a non-trivial time evolution,
which in particular can depart from spherical symmetry. The numerical method is successful if the
system settles down in a stable stationary state of the discretized equations that approximates the
analytical solution, where all the ∂tu

µ have dropped to the level of the round-off error.
We discuss a set of time evolutions on a single spherical shell. The initial data is the same in

each case, see Appendix A.3, but approximated on different grids of size Nr×Nθ×Nφ. For all runs
discussed here, the radial coordinate extends from r = 1.8 to 11.8, which we label configuration
R10. We begin our discussion with examples that are numerically stable for long times, i.e. the
full CFF/Yn-filter method, and then discuss the effect of using different filters and different time
step sizes. Part of the default configuration is the Yn-filter with nf = 4 and a time step with
λ = ∆t/∆xmin = 4.0 (see below).

In Fig. 1, we consider the evolution on a grid with dimension 25×9×18. Shown are the metric
components gtt, gtx, and gxx and some of their time derivatives on the x-axis at different times t. In
the top left, we show the initial data at t = 0 and the data at t = 1000. On this scale, no evolution
is discernible, that is the lines for t = 1000 fall on top of the lines for t = 0. In the top right,
we show the numerical right-hand-side (rhs) for the variables, i.e. the numerical approximation to
∂tgtt, ∂tgtx, and ∂tgxx. At t = 0, they are non-zero at around 10−8. This indicates that already for
the small grid with 25×9×18 points the spectral method gives a rather accurate approximation to
the analytic solution, for which the time derivatives vanish. In the bottom left and right of Fig. 1,
the time evolution of rhs(gtt) is shown for vertical scales of 10−8 and 10−11. The color/gray-scale
coding shows progressing time from dark to lighter colors. There is an oscillation that is largest
for small r. For the black hole, many quantities follow an approximate 1/rp dependence, with
gravity being strongest near the inner boundary and falling off for large radii. The amplitude of
the oscillation decreases with time.

In Fig. 2, we show how the oscillations are damped with time and how the solution converges
with resolution. As a representative example for the time dependence of the system, we consider
a norm of the right-hand-side of gtt. We plot the logarithm of the infinity-norm as a function of
time, i.e. log10(max |rhs(gtt)|)(t), where the maximum is computed on the innermost sphere of the
grid where the fields are strongest. We vary the radial resolution from Nr = 13 to 37 while keeping
the angular resolution fixed at Nθ = 9 and Nφ = 18.

Fig. 2 shows that, as expected, the analytic initial data leads to a finite error that depends
on the spatial resolution of the grid. Key feature of these runs is stability and convergence, and

17

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

 0 2 4 6 8 10 12

x

R10 25x09x18, gtt t=0
 gtx t=0
 gxx t=0

 gtt t=1000
 gtx t=1000
 gxx t=1000

-1e-08

 0

 1e-08

 0 2 4 6 8 10 12

x

R10 25x09x18, rhs gtt t=0
 rhs gtx t=0
 rhs gxx t=0

-1e-08

-5e-09

0

5e-09

1e-08

 0 2 4 6 8 10 12

x

R10 25x09x18, rhs gtt, t=0 to 700

-1e-11

-5e-12

0

5e-12

1e-11

 0 2 4 6 8 10 12

x

R10 25x09x18, rhs gtt, t=200 to 700

Figure 1: Single BH, grid R10. Some variables on the x-axis for different times. Top left: Variables gtt, gtx, and gxx
at time t = 0 and t = 1000. Top right: Time derivative of gtt, gtx, and gxx at t = 0. Bottom left and right: Time
derivative of gtt during the evolution at two different scales. There is an oscillation in gtt that is largest for small
r. The color coding indicates early times in dark, later times in brighter colors. The amplitude of the oscillation
quickly decreases with time.

that during the time evolution the system settles down in an approximately stationary state of the
discretized equations. While settling down, the system oscillates with a frequency and amplitude
that is independent of the resolution. The time dependence dies out exponentially. Exponential
convergence with radial resolution is evident. Round-off error is reached around 10−12 to 10−13.
In this simple case, Nr ≈ 40 suffices to approximate the initial data and the evolution at round-off
accuracy.

In Fig. 3, on the left we examine the dependence of rhs(gtt) on angular resolution. Although the
initial data is spherically symmetric, since the numerical method is fully 3d deviations from spheric-
ity occur. The initial, damped oscillations do not depend on the angular resolution. However, the
level of the round-off error increases when the number of grid points is increased.

In Fig. 3, right panel, we vary the time step size looking for the largest allowed time step
giving a stable evolution. For stability of the time integration, the rule of thumb is that the
eigenvalues of the pseudospectral spatial operator have to lie in the stability region of the method
of line integrator, although in general this is not a sufficient condition and the pseudospectra
have to be considered [17]. The argument about domains of dependence leading to a Courant-
Friedrich-Lewy condition v∆t/∆x ≤ const, where v is the propagation speed, does not apply
directly to pseudospectral methods since the spatial stencil covers the entire domain. Here we only
investigate stability by numerical experiment. Tab. 1 shows the result of a numerical, iterative
search for the largest allowed time step ∆t. We find that this is directly related to the smallest
spatial distance on the grid. For the 3d spherical grid defined in (2)–(4) with Nφ = 2Nθ, it

18

-14

-12

-10

-8

-6

-4

-2

 0

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

lo
g

 l
in

f

time

rhs gtt, R10 13x09x18
19x09x18
25x09x18
31x09x18
37x09x18

Figure 2: Single BH, grid R10. Shown is the logarithm of the infinity-norm of the right-hand-side of the evolution
equation for the variable gtt versus time. The number of grid points in the radial direction is varied from Nr = 13 to
37 while keeping the angular resolution fixed at Nθ = 9 and Nφ = 18. The analytic initial data leads to a finite error
that depends on the spatial resolution of the grid. Key feature of these runs is the exponential convergence with
radial resolution, and that the system settles down in an approximately stationary state of the discretized equations.

-14

-12

-10

-8

-6

-4

-2

 0

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

lo
g
 l

in
f

time

rhs gtt, R10 25x09x18
25x15x30
25x21x42

-14

-12

-10

-8

-6

-4

-2

 0

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

lo
g
 l

in
f

time

 rhs gtt, R10 13x09x18 λ=0.25
λ=1.00
λ=2.00
λ=3.00
λ=4.00
λ=5.00
λ=6.00

Figure 3: Single BH, rhs of gtt. Left: Different angular resolutions at fixed radial resolution. The oscillations do not
depend on angular resolution, but the round-off floor rises with resolution. Right: For the given grid, varying the
time step size, ∆t = λmin(∆x), leads to stable runs for λ . 4 and to unstable runs for λ & 5. The stable runs settle
down within t = 1000 of evolution time. The oscillations in the rhs (both the period and amplitude) are independent
of λ down to 10−12, i.e. the discretization error associated with RK4 is less than 10−12. The larger the number of
time steps, the larger the error for the stationary regime beyond 1000M , ranging from 10−12 for λ = 0.25 to 10−13

for λ = 4.0. The run for λ = 5.0 is borderline unstable, with a comparatively slow exponential growth. The run for
λ = 6.0 fails within 50M .

depends on the number of grid points in the different directions whether the clustering of points in
the radial or in the φ-direction is more severe. We either have min(∆x) = min(∆r) = r1 − r0, or
min(∆x) = min(2r sin(θ) sin(∆φ/2)) ≈ r0 sin(θ0)(φ1 − φ0). It turns out that the “Courant factor”
defined by

λ = ∆t/min(∆x), (63)

determines stability, i.e. we should choose a time step ∆t = λmin(∆x) with λ < λmax. Based
on Tab. 1, λmax ≈ 6 for grids with Nr ≥ 19, even though the smallest ∆x may occur in different
directions. As a default, we choose λ = 4 in standard runs.

In Fig. 4, we show how the evolution depends on the degree of tensor spherical harmonic

19

Nr ×Nθ ×Nφ ∆tstab
∆tunst
−∆tstab

∆tstab
min(∆r)

∆tstab
min(ρ∆φ) λmax = [∆tstab

min(∆x)]

13× 09× 18 0.4881 0.0036 2.865 4.497 4.4
19× 09× 18 0.4489 0.0060 5.910 4.135 5.9
19× 15× 30 0.2325 0.0030 3.060 5.910 5.9
25× 09× 18 0.2651 0.0015 6.198 2.442 6.1
25× 15× 30 0.2397 0.0031 5.603 6.093 6.0
31× 09× 18 0.1734 0.0009 6.332 1.598 6.3
31× 15× 30 0.1734 0.0009 6.332 4.409 6.3

Table 1: Single BH. Empirical time-step size for stable evolutions with RK4. The data is based on a bisection search
bracketed by values of the time step ∆t for stable and unstable runs. Runs are called stable if they do not fail within
t = 10000. The largest stable time step size found is denoted ∆tstab, while ∆tunst is the smallest time step found
for an unstable run. The result can be related to the smallest grid spacing in space, which depending on Nr and
Nφ = 2Nθ may be obtained for the points in the radial direction, with clustering due to the Chebyshev grid, or for
the φ-direction, with points clustering near the poles. In this example, if min(∆r) is less than min(r sin θ∆φ), then
∆tstab is independent of Nφ, and the time step can be chosen up to roughly 6 times larger than the smallest grid
spacing, λmax . 6.

-14

-12

-10

-8

-6

-4

-2

 0

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

lo
g
 l

in
f

time

rhs gtt, R10 13x09x18 nf=0
 nf=1
 nf=2
 nf=3
 nf=4
 nf=5
 nf=6

-6

-5

-4

-3

-2

-1

 0 20 40 60 80 100 120 140

Figure 4: Single BH, rhs of gtt. Dependence on nf , the number of spin-weighted spherical harmonics removed from
the top for filtering. For nf = 0, 1, 2, the runs fail very quickly within t = 110. For nf ≥ 3, the runs appear stable,
although for long runs, there are some cases where nf = 3 fails earlier than the others. In most cases we set nf = 4.

filtering, with nf indicating the number of modes that are set to zero in the spherical harmonic
projection. For nf = 0, projection onto tensor spherical harmonics is performed without additional
filtering, which nevertheless removes certain high-frequency components of the double Fourier basis
near the poles. For nf = 0, 1, 2, the runs become unstable on a very short time-scale. For nf ≥ 3,
the runs appear stable, although for long runs, there are some cases where nf = 3 fails earlier than
the others. Our default choice is therefore nf = 4. This behavior is consistent with the expectation
that the tensor rank of the fields determines the minimal nf required for stability. In our example,
the highest rank for the components in uµ is 3, which implies that spin-weights 0, . . . ,±3 occur in
the tensor spherical harmonic decomposition. For consistent filtering, it is not sufficient to only
filter for weights < 3. Furthermore, we also require the derivatives ∂ku

µ, which raises the rank
to 4. Apparently, since we filter the fields, even nf = 3 has a chance to work. In [4], the filter
is applied to the right-hand-sides which are of rank 4, so in that case nf ≥ 4 may be strictly
necessary. Finally, we note that for the given experiment we do not seem to require a filter based
on, say, a 2/3 or 1/2 rule, due to the non-linearity of the fields. Independent of the grid size, a
constant nf = 4 suffices to obtain rather long-term numerical stability.

Runs without the spin-weighted Yn-filter are not as stable for the two alternatives that we

20

-14

-12

-10

-8

-6

-4

-2

 0

 2

 0 1000 2000 3000 4000 5000 6000

lo
g
 l

in
f

time

Y-filter, rhs gtt, R10 13x09x18 λ=1.0
 λ=2.0
 λ=3.0
 λ=4.0
 λ=5.0
 λ=6.0

-14

-12

-10

-8

-6

-4

-2

 0

 2

 0 5000 10000 15000 20000

lo
g
 l

in
f

time step

Y-filter, rhs gtt, R10 13x09x18 λ=1.0
 λ=2.0
 λ=3.0
 λ=4.0
 λ=5.0
 λ=6.0

-14

-12

-10

-8

-6

-4

-2

 0

 0 500 1000 1500 2000 2500 3000

lo
g
 l

in
f

time

Y-filter, rhs gtt, R10 13x09x18 λ=2.0
 a20 λ=2.0

 λ=4.0
 a20 λ=4.0

 λ=6.0
 a20 λ=6.0

Figure 5: Single BH, rhs of gtt. Runs with the scalar Y-filter fail within a time of a few thousand. Top: Runs for
different Courant factors λ = ∆t/∆xmin versus time (left) and versus number of time steps (right). Runs for larger
λ last longer. The exponential growth depends on the number of time steps, but it is not a simple proportionality.
Bottom: The instability is directly related to the a20 mode, which starts growing exponentially at about t = 0 from
around 10−14.

tried. First, we consider the basic scalar Y-filter. This filter ignores the tensor character of the
components of uµ, but each component is smooth and the approximation is spectrally convergent.
In Fig. 5, runs with the Y-filter and nf = 4 are seen to fail within a time of about 7000. Although
the initial damped oscillation is exactly that of the Yn-filter runs, at about t = 1000, there is
exponential growth at a constant rate that leads to the failure of the run. For nf ≤ 2, the runs
are much shorter lived, while increasing nf to 4, 5, or 6 does not change the picture, similar to
the Yn-filter runs. This does not appear to be a time-step instability due to choosing λ too large,
i.e. smaller λ fail earlier. The exponential growth depends on λ, but it is not simply proportional
to the number of time steps, see the top right panel of Fig. 5. We also investigate the behavior
of individual alm and blm modes in the expansion of rhs(gtt) in non-weighted spherical harmonics,
(29). The bottom panel of Fig. 5 demonstrates that the instability is directly related to the a20

mode, which starts growing at about t = 0 from around 10−14, overtaking the decay of the overall
function at around t = 1000. Other modes grow as well, but we only show the largest mode. In
other words, already at early times there is a small error at round-off accuracy that is not visible
in rhs(gtt), which seeds an unstable, unphysical mode that is not kept in check by the Y-filter.

As an inbetween alternative to the Y- and Yn-filters, we consider the graded Yg-filter with
nf (µ) = nf − d(uµ), see the discussion around (59), which takes into account the shift between
tensors with a different number of spatial indices. Fig. 6 shows results at five different resolutions.
The runs settle down in the same manner as before within t = 1000. The exponentially growing
modes shown for the Y-filter in Fig. 5 do not occur. After t = 1000, there is some slow linear

21

-16

-14

-12

-10

-8

-6

-4

 0 5000 10000 15000 20000 25000 30000

lo
g
 l

in
f

time

Yg-filter, rhs gtt, R10 13x09x18
 25x09x18
 25x15x30
 37x09x18
 37x15x30

-16

-14

-12

-10

-8

-6

-4

 0 5000 10000 15000 20000 25000 30000

lo
g
 l

in
f

time

Yg-filter, rhs gtt, R10 25x09x18
 a00
 a10
 a11
 b11
 a20
 a21
 b21

Figure 6: Single BH, rhs of gtt. The graded Yg-filter allows simulations that last until about t = 70, 000. On the
left, we see how the run settles down exponentially by t = 1, 000, which is followed by a slow linear growth until
about t = 10, 000 to 20, 000, followed by exponential growth that eventually crashes the run. The rates of decay and
growth are independent of radial resolution. On the right, we show for a medium resolution how growth in certain
scalar spherical harmonic modes starts dominating the behavior of the field.

growth. Computing rhs(gtt) for t ≤ 10, 000 it may even appear that there is no additional instability.
However, there is another type of exponential growth occuring at a slower rate than for the Y-filter,
which is also starting at round-off at early times. On the right in Fig. 6, we show how various scalar
harmonic modes behave during the run at some particular resolution. After the initial phase, the
modes a00, a10, a11, and b11 remain below 10−13. The main instability is visible in a20, a21, and
b21. It appears to start at t = 0 at around 10−15, and then grows at a constant exponential rate.
Notice how the unstable modes overtake the regular feature at about t = 15, 000 in the plot on the
left.

The Yn-filter cures both exponential modes that occur for the Y-filter and the Yg-filter. We
compare the Yg-filter and the Yn-filter for t ≤ 200, 000 in Fig. 7. The Yn-filter runs do not exhibit
any exponential growth, although some linear growth remains, see the bottom panels. The linear
growth is roughly the same for both filters, and it decreases with radial resolution. As far as the
tensor character of the fields is concerned, the Yn-filter with nf ≥ 3 should remove all instabilities
due to an inconsistent treatment of tensors. However, other instabilities may well occur at a later
time. If so, they are not yet visible in the mode decomposition by t = 200, 000, compare Fig. 8.

It may be worth recalling that the target of state-of-the-art binary black hole simulations is the
last 10 or perhaps 20 orbits before merger, which corresponds to t . 10, 000. If the limitations of
the present example would carry over, the method would comfortably satisfy the numerical stability
requirement. Note also that typical code tests only report evolution times of up to t = 400 in [15],
t = 10, 000 in [4], or t = 5, 000 in [14]. However, there is no reason that the simplest black hole test
should not yield unlimited stability. In fact, the main limitation of our test case is that we ignore
the available sophisticated outer boundary conditions for the GHG system, e.g. [4, 33, 34, 35]. As
it turns out, simply increasing the radial dimension of the shell by moving the outer boundary
from rmax ≈ 12 to 22 makes the runs fail in a way that appears to signal a breakdown due to
the boundary condition. We leave the investigation of proper outer boundary conditions to future
work since our focus here is on the construction of the CFF/Yn-method.

4.2. Computational efficiency

The choice of matrix multiplication methods for both the spectral derivatives and filters can
be viewed as one of convenience, since it simplifies the implementation of spectral methods on the
sphere, in particular for the tensor spherical harmonic filter. However, a priori it is not clear what
the difference in performance is compared to the fast Fourier transform. If there was a significant
performance penalty due to the O(N2) operations of matrix-vector multiplications compared to the

22

-14

-12

-10

-8

-6

-4

-2

 0

 0 50000 100000 150000 200000

lo
g

 l
in

f

time

Yg-filter, rhs gtt, R10 25x09x18
Yn-filter, rhs gtt, R10 25x09x18
Yg-filter, rhs gtt, R10 37x09x18
Yn-filter, rhs gtt, R10 37x09x18

0.0e+00

1.0e-12

2.0e-12

3.0e-12

 0 5000 10000 15000 20000

l in
f

time

Yg-filter, rhs gtt, R10 25x09x18
Yn-filter, rhs gtt, R10 25x09x18
Yg-filter, rhs gtt, R10 37x09x18
Yn-filter, rhs gtt, R10 37x09x18

0.0e+00

5.0e-12

1.0e-11

1.5e-11

2.0e-11

 0 50000 100000 150000 200000

l in
f

time

Yg-filter, rhs gtt, R10 25x09x18
Yn-filter, rhs gtt, R10 25x09x18
Yg-filter, rhs gtt, R10 37x09x18
Yn-filter, rhs gtt, R10 37x09x18

Figure 7: Single BH, rhs of gtt. Long term stability, comparison between the graded Yg-filter and the tensor Yn-
filter. Top: The Yg-filter runs fail around t = 70, 000, with an unstable mode visible at t = 15, 000 around 10−12.
The Yn-filter runs last beyond t = 200, 000. Bottom: For both filters there is a linearly growing mode. Its slope is
roughly the same for both filters, and it is smaller for higher radial resolution.

-16

-14

-12

-10

-8

-6

-4

 0 50000 100000 150000 200000

lo
g
 l

in
f

time

Yn-filter, rhs gtt, R10 13x09x18
 25x09x18
 25x15x30
 37x09x18
 37x15x30

-16

-14

-12

-10

-8

-6

-4

 0 50000 100000 150000 200000

lo
g
 l

in
f

time

Yn-filter, rhs gtt, R10 25x09x18
 a00
 a10
 a11
 b11
 a20
 a21
 b21

Figure 8: Single BH, rhs of gtt. Long-term behavior for the tensor Yn-filter. Shown are the same quantities as
in Fig. 6. The runs last for at least t = 200, 000. A residual linear growth is visible, which is less than 10−10 per
∆t = 100, 000, depending on resolution.

O(N logN) of FFTs, then we should aim for a fast transform implementation (with the possible
exception of the Legendre transform). However, as argued above, the 3d physics problem that we
consider leads to transforms with N . 50. For such small N , the matrix multiplication method
can be even faster than the FFT [16, 1].

23

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

 0 20 40 60 80 100 120 140

ru
n
 t

im
e

n1 x 20x20x54

fft cpu
matrix cpu

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

 0 20 40 60 80 100 120 140

ru
n
 t

im
e

n1 x 20x20x54

cufft gtx580
cufft m2070

cublas gtx580
cublas m2070

Figure 9: Example for the performance of matrix multiplication and the fast Fourier transform relevant for pseu-
dospectral differentiation on a CPU (left) and on two different GPUs (right). Shown is the runtime versus the
leading dimension n1. We compare the multiplication of a n1 × n1 matrix and a n1 × (20×20×54) matrix with
the corresponding two Fourier transforms. As is typical for FFT implementations, performance depends strongly on
the problem size. In this concrete example, on the CPU the matrix multiplication offers comparable performance
for n1 . 70, while on the GPU n1 . 100 comparing with the n1 for which the peak performance is compared.
Considering all n1, on average matrix multiplication is significantly faster than the FFT for the GPUs even beyond
n1 = 150.

Fig. 9 shows a representative benchmark for our specific method. Part of the pseudospectral
algorithm is the 1d transform of several variables on a 3d grid, see (13) for the derivative ∂x and
(24) for the Fourier analysis in the φ-direction. In Fig. 9, we compare the run time as a function
of the leading dimension n1 (assumed contiguous in memory) for different implementations of the
matrix multiplication of a n1 × n1 matrix and a n1 × (20×20×54) matrix. For simplicity, we
consider only this operation and do not include the computation of actual derivatives (the FFT
method requires a transformation in Fourier space) or the generalization to all three directions. As
example for CPU performance, we show results for a single core of a i7-870 CPU using FFTW 3.2.2
for the Fourier transform and ATLAS 3.8.3 (sse3) for the matrix multiplication. As example for
GPU performance, we consider NVIDIA’s GTX580 and M2070 Fermi/Tesla cards running CUDA
3.2 versions of CUBLAS and CUFFT. Notice in Fig. 9 that the Tesla card can outperform the
GTX card only in special cases and only for the matrix multiplication.

As expected, the performance of the matrix multiplication scales approximately like N2, while
FFT performance depends strongly on the size of the transform (i.e. on the prime factors of n1).
We vary n1 in steps of two, n1 = 4, 6, For the CPU, the matrix multiplication offers comparable
performance for n1 . 70. For the GPUs, comparable performance is obtained for n1 . 100, but
only when comparing with the optimal values of n1. Optimization for arbitrary n1 is currently not
as even with CUFFT as with FFTW3. Although it might be feasible to eventually restrict physics
runs to the available fast n1-FFTs, we note that on the GPUs on average matrix multiplication is
significantly faster (by a factor of more than 10) than the FFT method even beyond n1 = 150. We
therefore focus exclusively on the the matrix multipliation method in this work.

In Tab. 2, we quote some results for the performance in Gflop per second of the three matrix-
matrix multiplications required for the computation of 3d partial derivatives, see Sec. 2.4. Opti-
mization for the new Fermi chips was included in the transition from CUDA 3.1 to 3.2. Certain
small matrix multiplications [36] started working on Fermi with CUDA 4.0rc. The Tesla cards
C2050 and M2070 have four times the number of floating point units compared to the GTX se-
ries. However, for the specific matrix sizes considered, a multiple of 64 is required in the leading
dimension to benefit from the additional FPUs. For the small grids of the black hole example,
we obtain around 50 to 100 Gflop/s. For somewhat larger grids the performance approaches 200
Gflop/s, reaching roughly 300 Gflop/s on the Tesla cards when the leading dimension is 64. This is

24

MatMul Gflop/s
40×20
×20×54

40×40
×40×54

60×60
×60×54

64×64
×64×54

GTX285 2.3 33 43 52 70
GTX480 3.2rc1 – 101 88 163
GTX580 3.2 – 117 104 192
GTX580 4.0rc 77 99 94 177
C2050 3.1 48 64 73
C2050 3.2rc1 – 108 103 284
M2070 3.2 – 109 104 294

Table 2: Performance of dgemm on GPUs/CUBLAS for the three matrix multiplications of pseudospectral deriva-
tives. Numbers are in Gflop per second. For the small grids of the black hole example, we obtain around 50 to
100 Gflop/s. For somewhat larger grids the performance approaches 200 Gflop/s, reaching 300 Gflop/s on the Tesla
cards when the leading dimension is 64.

Transpose, MatMul
Gbyte/s

40×20
×20×54

40×40
×40×54

60×60
×60×54

64×64
×64×54

bandwidthTest

GTX285 2.3 46 5.0 45 4.3 53 3.5 21 4.4 124
GTX580 3.2 71 – 78 12 78 6.9 77 12 139
M2070 3.2 34 – 40 11 38 6.9 42 18 85

Table 3: Performance of the matrix transpose on GPUs/CUDA for the four transposes used to implement the 3d
pseudospectral derivatives. Numbers are in Gbyte/s. For comparison, the device-to-device copy operation from the
CUDA SDK (bandwidthTest) is given. The combined transpose-matmul-transpose operation is dominated by the
matrix multiplication.

Grid
GPU

Algebra
GPU

MatMul
GPU CPU CPU/GPU

25× 09× 18 18% 80% 16s 165s 10.0
37× 15× 30 25% 74% 49s 823s 16.7
49× 21× 42 23% 77% 133s 2903s 21.8

Table 4: Performance of the spectral evolution of a single black hole on a GPU (GTX580, CUDA 4.0rc) compared
to one core of a CPU (i7-870). For a given grid size, 1000 RK4 evolution steps are performed. The startup time is
not counted. The matrix multiplications of the derivatives and the filter amount to about 75% of the runtime on
the GPU, while the remainder is mostly due to the (simple but memory intensive) algebra of the right-hand-side of
the Einstein equations. For the largest grid, the GPU implementation is about 20 times faster than the single core
CPU implementation.

close to the maximal performance reported for large square matrices in [37], on which the current
CUBLAS/Fermi optimization is based. The theoretical peak for these Tesla GPUs is around 500
Gflop/s.

Tab. 2 does not include the four transpose operations of the derivative calculation. In Tab. 3,
we give memory transfer rates in Gbyte/s for the transposes. The Tesla card had ECC memory
activated. Its transfer rate is only about half that of the GTX580 card. For the medium grid
sizes the GTX580 and the M2070 both achieve about 100 Gflop/s, so it appears that the M2070
compensates for the lower memory speed with its larger number of floating point units. We also
compare with the bandwidth test for device-to-device copies included in the SDK, which results
in lower numbers than the peak one-directional memory bandwidth of the cards (159, 192, and
150 Gflop/s, respectively). The transposes are out-of-order copies that on the Fermi cards reach
half the speed of the direct device-to-device copies. There probably is room for optimization of the
transpose, but the derivative calculation mostly depends on the speed of the matrix multiplication.
In Tab. 3, we also quote Gbyte/s for the matrix multiplication considered as a matrix to matrix copy
operation, and these numbers are lower by a factor of 4 to more than 10 than for the transposes.

In Tab. 4, we give benchmark results for the black hole example. For a given grid size, 1000

25

RK4 evolution steps are performed. The startup time is not counted, but all other parts of the
calculation except input/output are included. The CFF/Y-filter method is a combination of matrix
multiplications and transposes for the derivatives, and a collection of matrix multiplications of
varying size for the filter. One other costly part of the computation is the algebra that is required
in addition to the derivatives on the right-hand-side of the evolution equation. For the Einstein
equations, this is a sizable problem with about 10000 floating point operations per grid point per
RK4 update. Furthermore, there are about 200 variables (50 fields and their derivatives) plus a
correspondingly large number of temporary variables used during the calculation, which exceeds
by far the number of registers of the Fermi cards (less than 64 are available per thread). On a
CPU, the algebra amounted to less than 10% of the overall calculation, but on the GPU the matrix
part is more efficiently parallelized in the current implementation.

The bottom line is that the GPU implementation is 21.8 times faster than the (single core)
CPU implementation for the largest grid. For smaller grids the speedup is still on the order of 10
to 17. A quad-core implementation using a BLAS library led to a speed up of 2 to 3 for the part of
the matrix multiplication. Extrapolated for the complete algorithm for the largest grid, this would
still leave a speed-up of 7 to 11 on the GPU.

5. Conclusion

We discussed the construction of a pseudospectral method for non-linear, time-dependent tensor
fields on a spherical shell. The proposed CFF/Yn-method, i.e. a Chebyshev-double-Fourier basis
combined with a spin-weighted spherical harmonic filter, was successfully implemented for the
model problem of a single black hole. We demonstrated that a matrix method for both the spectral
derivatives and the filter resulted both in analytic simplicity and also in ease and efficiency of the
numerical implementation. To this end, we developed a matrix method for the discrete spin-
weighted scalar harmonic projection for arbitrary spin weight. The parallelization of the CFF/Yn-
method was evaluated for a GPU implementation. Numerical results for three different filter
strategies were given, showing that the simple Y-filter and the improved, graded Yg-filter lead to
instabilities, that however are cured by the tensor Yn-filter.

In future work we intend to report on the generalization of the method to domain decomposi-
tions. For example, the method as described here has already been successfully applied to multiple
nested shells for scalar waves. Spherical shells are one of the building blocks for more general
grids that are needed, for example, for two black holes. A key feature to implement for general
applications in numerical relativity is the incorporation of appropriate outer boundary conditions.
In our example, a single black hole could be easily simulated in the device memory of one GPU.
Spectral methods may be able to realize an appealing local optimum in computational efficiency,
if two black holes can be simulated on a single graphics card due to the memory efficiency of the
spectral method.

The GPU implementation is promising, giving speed-ups on the order of 10 to 20 compared to
a single core of a CPU. A next step in the optimization would be to use parallel kernels (which
recently has become possible for CUDA) for the different small matrix operations in the spherical
harmonic filter. Although we focused on CUDA, the important step is the organisation of the
algorithm in terms of matrix operations, which should be equally helpful for other platforms. In
general, pseudospectral matrix methods would benefit most from further optimization of a subclass
of matrix multiplications that is somewhat outside the mainstream, i.e. the product of small, square
matrices with large, highly non-square matrices.

Appendix A. Formulation of the Einstein evolution problem

In this section we collect the equations for the generalized harmonic gauge (GHG) system and
the single black hole test case. The GHG system that we focus on here is the version introduced
in [4], which is a first order in time and first order in space reformulation of the Einstein equations.

26

A first order harmonic system of this type was first considered in [38], although well-posedness
and numerical stability requires the modifications introduced by [4], in particular constraint damp-
ing [39, 40]. The generalized harmonic gauge was introduced in [41]. It played a major role in the
binary black hole evolutions of [42, 43, 44], which used a second order harmonic formulation. See
[45, 46] for further applications. We give a short synopsis for the test case of a single black hole,
which nevertheless is quite complicated since the stability tests are performed for the full Einstein
equations in 3d. Although much of the material is contained or at least implicit in [4], it should
be helpful to readers not familiar with numerical relativity to spell out some of the details. The
notation is adapted to the 3+1 decomposition of [47].

Appendix A.1. Einstein equations in generalized harmonic gauge

The goal is to solve the Einstein equations of classical general relativity in vacuum,

Rab(g, ∂g, ∂
2g) = 0, (A.1)

for the 4-metric gab. The Ricci tensor Rab is constructed from first and second derivatives of the
metric. The construction of the GHG system starts with the observation that the Ricci tensor can
be written as

Rab = −1

2
gcd∂c∂dgab + ∂(aΓb) − gcdΓcabΓd + gcdgef (∂egac∂fgbd − ΓaceΓbdf), (A.2)

where we have introduced the Christoffel symbol of the metric and one of its contractions,

Γcab =
1

2
(∂agbc + ∂bgac − ∂cgab), Γc = gabΓcab. (A.3)

Note that in (A.2) the second derivatives of the metric are conveniently separated into gcd∂c∂dgab
and ∂(aΓb). The first term represents a standard wave operator, while the second does not.

We can choose harmonic coordinate functions xa for which Γa = −∇b∇bxa = 0. In this gauge
the principal part of the Ricci tensor consists only of the wave operator, leading to a symmetric
hyperbolic system. Generalized harmonic coordinates satisfy Γa = −Ha for some given gauge
source functions Ha that may depend on the coordinates and the metric, but not on the derivative
of the metric. Since Ha does not contribute to the principal part, we again arrive at a second
order symmetric hyperbolic system. The GHG is based on a modified Einstein equation, where the
coordinates are incorporated through the constraint function Ca = Ha + Γa, see in particular [39]
on the Z4 system. This suggests a constraint damping scheme which is essential for the stability
of the GHG system [40].

In order to discuss the GHG system as a Cauchy problem, we assume that the coordinates
naturally split into time and space, xa = (t, xi). The spacetime normal to the hypersurfaces of
constant time t is given by na = −α∇at, with the lapse function α chosen such that nan

a = −1.
The time-flow vector field ta = (1, 0i) is given by ta = αna + βa, where the shift vector βa is
tangential to the hypersurface, naβ

a = 0. We have

na = (−α, 0i), na = gabnb = (
1

α
,−β

i

α
). (A.4)

The 4-metric gab induces a 3-metric γij in the hypersurface, and determines lapse and shift,

γij = gij , βj = gtj , βi = γijβj , α =
√
βiβi − gtt. (A.5)

The inverse 4-metric is denoted by gab, and the inverse 3-metric is denoted by γij . Notice that
gij = γij , but gij = γij − βiβj/α2. Raising and lowering indices for 4d indices is done with the
4-metric, and for 3d indices the 3-metric is used.

27

A first order version of the GHG system can be obtained straightforwardly by introducing new
variables for the first derivatives of the metric,

diab = ∂igab, kab = − 1

α
(∂tgab − βi∂igab), (A.6)

where the time derivative is in direction of the hypersurface normal, kab = −nc∂cgab. The resulting
first order system was first discussed in [38]. The modifications of [4] for stability involve constants
γ0, γ1, γ2, and γ3. Choose γ3 = γ1γ2 to obtain symmetric hyperbolicity for all γ1 and γ2. Choose
γ1 = −1 to avoid certain shocks. Less clear is the choice of γ0, which controls the Gundlach-type
constraint damping involving the gauge constraint Ca = Γa + Ha, and the choice of γ2, which
appears as a coefficient of the constraint Ciab = ∂igab − diab due to the introduction of first order
variables. We choose γ0 = 1 and γ2 = 1, which is reported to lead to stable evolutions in standard
numerical experiments [4].

The GHG system in first order form including the modifications for stability takes the form

∂tu
µ = −Akµν∂kuν + Sµ, (A.7)

where uµ = {gab, kab, diab} is the vector of variables, and where Akµν and Sµ depend on uµ but not
its derivatives. Written out explicitly,

∂tgab = −αkab + βidiab, (A.8)

∂tdiab = βk∂kdiab − α∂ikab + α∂igab +
1

2
αncnddicdkab + αγjkncdijcdkab − αdiab, (A.9)

∂tkab = βk∂kkab − αγik∂kdiab − βk∂kgab + 2αgcd(γijdiacdjbd − kackbd − gefΓaceΓbdf)

−2α∇(aHb) −
1

2
αncndkcdkab − αnckciγijdjab

+α(2δc(anb) − gabn
c)(Hc + Γc) + βidiab. (A.10)

These equations assume that Ha is given, for example through an additional evolution equation.
The complete system involves a state vector uµ = {gab, kab, diab, Ha} or even uµ = {gab, kab, diab,
Ha, ∂tHa}, if the evolution of Ha is specified by an equation that is second order in time. Since
gab and the other variables are symmetric in a and b, there are 50, 54, or 58 variables in uµ,
respectively.

Since constraint conservation is non-trivial, once a set of independent variables has been chosen
we have to strictly distinguish between dependent and independent variables. For example, the
variable diab and the first spatial derivative of the variable gab are treated separately, since they
are only equal if the corresponding constraint Ciab = 0 is satisfied. We collect the relations needed
to compute the dependent quantities appearing in (A.8)–(A.10) from the uµ. Quantities obtained
from the 3+1 split of gab are na, α, βi, and γij , see (A.4)–(A.5). The inverse metrics gab and γij are
computed as inverses from the component matrices. The “covariant” derivative of Ha is defined
as ∇aHb = ∂aHb− gcdΓcabHd. The Christoffel symbols Γabc and Γa are computed from (A.3) using
the following expressions for ∂cgab in terms of undifferentiated dynamical variables,

∂igab = diab, ∂tgab = −αkab + βidiab, (A.11)

compare (A.6) and (A.8). All other partial derivatives appearing in (A.8)–(A.10) including ∂aHb

are computed directly (e.g. numerically) as derivatives of the uµ, as required for the formulation
(A.7).

Appendix A.2. Boundary conditions

The boundary conditions imposed on the evolution system play a crucial role in achieving
well-posedness and numerical stability. The topic has received a lot of attention, and there is a
number of usually rather complicated boundary conditions. These are often more complicated

28

than the evolution equations themselves since e.g. for constraint conservation at the boundary the
time evolution of the constraints is needed, which requires higher than second order derivatives
of the metric. For the investigation of boundary conditions, we summarize the characteristic
eigenvalue problem of the GHG system following [4, 15]. Consider a normalized spatial vector si

with sis
i = γijs

isj = 1. When considering 2d boundaries within constant time hypersurfaces, the
vector si is the outward pointing unit normal to the boundary. The eigenvalue problem associated
with (A.7) in direction si is

eα̂µskA
kµ
ν = v(α̂)e

α̂
ν , (A.12)

where the characteristic matrix is skA
kµ
ν , the left eigenvectors are denoted by eα̂µ, and the eigen-

values by v(α̂). The index α̂ labels eigenvalues and eigenvectors (and is not summed over on

the right-hand-side). eα̂µ depends on si, which typically depends on space and time due to the
normalization with respect to γij .

We derive some explicit expressions for the first order GHG system (A.8)–(A.10), where we
suppress the ten components in the symmetric tensor indices. With b = skβ

k,

uµ =

 g
k
di

 , skA
kµ
ν =

 0 0 0
b −b αsi

−αsi αsi −b

 . (A.13)

Mathematica finds, considering the (sA)T right eigenvector equation, transposing the result to
obtain the left eigenvector matrix with the eigenvectors written in the rows, scaling the eigenvectors
for convenience, and ordering the eigenvalues and eigenvectors to correspond more closely to [4],

v(α̂) =


0

+α− b
−α− b
−b
−b

 , eα̂µ =


1 0 0 0 0
−1 1 s1 s2 s3

−1 1 −s1 −s2 −s3

0 0 −s3 0 s1

0 0 −s2 s1 0

 . (A.14)

This representation assumes that s1 6= 0. The two eigenvectors for eigenvalue −b are orthogonal
to si. Alternatively, [4] write u2̂

i = P kidk for three fields obtained by orthogonal projection, all
with eigenspeed −b. We introduce the projection onto directions tangential to the boundary and
orthogonal to the boundary normal, P ki = δki − sksi.

The standard way to impose boundary conditions for symmetric hyperbolic systems is to impose
conditions on the characteristic fields. To this end, we split the partial derivatives in (A.7) with
δki = P ki + sksi and project (A.7) onto eigenvectors, resulting in

eα̂µ∂tu
µ = −v(α̂)e

α̂
µs
k∂ku

µ − eα̂µP kiAiµν∂kuν + eα̂µS
µ. (A.15)

In other words, we obtain an advection equation in the direction of si with characteristic speeds
given by the eigenvalues, plus terms involving derivatives tangential to the boundary. Equation
(A.15) allows us to specify boundary conditions that distinguishes between incoming and outgoing
modes according to v(α̂) < 0 and v(α̂) > 0, respectively.

Here we focus on the simplest condition that is successful for the single black hole test case. For
the case of a Schwarzschild black hole, [4] reports that freezing the incoming characteristic fields,

eα̂µ∂tu
µ
∣∣∣
boundary

= 0 for v(α̂) < 0, (A.16)

gives stable evolutions. Therefore the most basic stability test does not involve the complicated
constraint characteristics. Since we evolve the uµ and not the characteristic fields, a boundary
condition on the characteristic fields cannot be implemented directly. Instead, we transform (A.7)
with eα̂µ, set some of the time derivatives to zero according to (A.16), and transform back with the
inverse of eα̂µ. This procedure can be combined into a transformation by a single matrix E−1ZE,
where Z is a diagonal matrix with 0 on the diagonal if v(α̂) < 0 and 1 on the diagonal if v(α̂) ≥ 0.

29

Appendix A.3. Test case of a single, spherically symmetric and static black hole

As test case we consider the Schwarzschild spacetime, which describes a single, spherically
symmetric and static black hole [48]. We write the Schwarzschild metric in Kerr-Schild form,

gab = ηab + flalb, f =
2M

r
, la = (1,

xi
r

), (A.17)

where ηab is the Minkowski metric in coordinates (t, xi), r = (δijxixj)
1
2 = (x2 +y2 +z2)

1
2 , and M is

the mass of the black hole. The horizon is located at r = 2M . A specific feature of the Kerr-Schild
form is that the vector la is null (lal

a = 0) with respect to both ηab and gab. We have chosen to
scale la such that lil

i = ηijlilj = 1, so li = δijlj is the normalized radial vector with respect to the
Euclidean 3-metric.

The metric (A.17) solves the Einstein equations, and all coordinate time derivatives vanish,
∂tgab = 0. We have chosen geometrical units, G = c = 1. Furthermore, we set the black hole mass
to one, M = 1, so all quantities including length and time are dimensionless. The numerically
experiment consists of posing initial data based on (A.17) for t = 0, and to study the numerical
evolution of this data.

Initial data uµ = {gab, kab, diab} at t = 0 is computed from gab(t, xi), (A.17), using the definition
of the first order variables, (A.6). We compute the spatial derivatives in (A.6) numerically from
(A.17). In general, kab requires in addition the time derivative of the metric. However, for our
example, ∂tgab = 0.

We perform the evolution in the generalized harmonic gauge, where the gauge source function
is initialized based on the Kerr-Schild metric (A.17), which is a non-constant function of the xi,
and which is left constant during the evolution,

Ha(t = 0) = −Γa(t = 0), ∂tHa = 0. (A.18)

In [4], the gauge condition for this test case is not stated explicitly, but based on [33] we assume
that (A.18) was used, since it is equivalent to initializing Ha with the condition that ∂tα = 0 and
∂tβ

i = 0. We note in passing that in a different formulation for the same type of Kerr-Schild black
hole it was found that the gauge functions α and βi have to be allowed to evolve in order for a
numerically stationary solution to be found [3]. In the present case, the gauge source Ha is static,
but nevertheless lapse and shift can evolve.

We conclude with a comment on the characteristic speeds of the GHG system for the Kerr-Schild
metric. In terms of 3+1 variables, the Kerr-Schild metric becomes

γij = δij + flilj , α =
1

(1 + f)1/2
, βi = li

f

1 + f
. (A.19)

The outward pointing normal si to a boundary surface of constant r is proportional to li, but
normalized with respect to γij . Since γij = δij − f

1+f l
ilj , we have si = li/

√
γijlilj = li

√
1 + f , and

b = siβ
i = f/

√
1 + f = fα. According to (A.14), the characteristic speeds v(α̂) assume values 0,

±α − b = (±1 − f)α, and −b = −fα. For r → ∞, b → 0 and α → 1. Asymptotically for large
distances, the speeds are therefore 0 and ±1. Only the mode with speed α− b can be positive for
the given data. It vanishes at the horizon at r = 2, and α − b > 0 for r > 2. At the horizon and
actually for all r < 2, all speeds are ≤ 0, so at and below the horizon there are no incoming modes
and no extra boundary condition is required. Since the eigenvalues are linked to the time-stepping
stability, we note that in the numerical example rmin = 1.80, and the eigenvalues range from −1.45
to some value less than +1 at the outer boundary. For rmin = 2.00, the fastest eigenspeed is
−
√

2 = −1.41, for rmin = 1.50 it is −1.53.
At the outer boundary, the modes for α̂ = 2, 3, 4 with v(α̂) = −α − b,−b,−b are incoming.

These are the modes that we freeze for the simplistic boundary condition (A.16). In this special

30

case, the combined transformation E−1ZE becomes

B(∂tgab) = ∂tgab, B(∂tkab) =
1

2
(+∂tgab + ∂tkab + sk∂tdkab), (A.20)

B(∂tdiab) =
1

2
si(−∂tgab + ∂tkab + sk∂tdkab), (A.21)

where B denotes the boundary values for the right-hand-sides determined by freezing the incoming
modes.

Appendix B. Examples for spin-weighted spherical harmonics

We write the spin-weighted spherical harmonics as Y n
lm = P̂nlm(cos θ)eimφ. The P̂nlm are nor-

malized Wigner d-functions, which in this context could also be called normalized spin-weighted
associated Legendre polynomials. The first few P̂nlm for n >= 0 are:

P̂ 0
0,0 = 1

2
√
π

P̂ 1
0,0 = 0 P̂ 2

0,0 = 0

P̂ 0
1,−1 = 1

2

√
3

2π sin(θ) P̂ 1
1,−1 = −1

2

√
3
π cos2

(
θ
2

)
P̂ 2

1,−1 = 0

P̂ 0
1,0 = 1

2

√
3
π cos(θ) P̂ 1

1,0 = 1
2

√
3

2π sin(θ) P̂ 2
1,0 = 0

P̂ 0
1,1 = −1

2

√
3

2π sin(θ) P̂ 1
1,1 = −1

2

√
3
π sin2

(
θ
2

)
P̂ 2

1,1 = 0

P̂ 0
2,−2 = 1

4

√
15
2π sin2(θ) P̂ 1

2,−2 = −
√

5
π cos3

(
θ
2

)
sin
(
θ
2

)
P̂ 2

2,−2 = 1
2

√
5
π cos4

(
θ
2

)
P̂ 0

2,−1 = 1
2

√
15
2π cos(θ) sin(θ) P̂ 1

2,−1 = −1
2

√
5
π cos2

(
θ
2

)
(2 cos(θ)− 1) P̂ 2

2,−1 = −
√

5
π cos3

(
θ
2

)
sin
(
θ
2

)
P̂ 0

2,0 = 1
8

√
5
π (3 cos(2θ) + 1) P̂ 1

2,0 = 1
2

√
15
2π cos(θ) sin(θ) P̂ 2

2,0 = 1
4

√
15
2π sin2(θ)

P̂ 0
2,1 = −1

2

√
15
2π cos(θ) sin(θ) P̂ 1

2,1 = −1
2

√
5
π (2 cos(θ) + 1) sin2

(
θ
2

)
P̂ 2

2,1 = −
√

5
π cos

(
θ
2

)
sin3

(
θ
2

)
P̂ 0

2,2 = 1
4

√
15
2π sin2(θ) P̂ 1

2,2 =
√

5
π cos

(
θ
2

)
sin3

(
θ
2

)
P̂ 2

2,2 = 1
2

√
5
π sin4

(
θ
2

)
(B.1)

For n < 0, we have P̂nlm = (−1)n+mP̂−nl,−m. For example, P̂−1
lm = −(−1)mP̂+1

l,−m. If n = 0, we can
avoid the computation for m < 0, but in general we need either the m < 0 or n < 0 computation
in order to obtain the other terms through a simple sign flip.

There is no orthogonality for different spin weights, i.e. (Y n′
l′m′ , Y

n
lm) can be non-zero even though

n′ 6= n. For example,

(Y −1
11 , Y 1

11) =
1

2
, (Y 0

11, Y
1

11) =
3π

8
√

2
, (Y 1

11, Y
1

11) = 1, (Y 1
11, Y

2
21) =

5
√

15π

64
. (B.2)

As an example for expanding a vector component, consider the unit vector in the x-direction,
vi = δi1. One of its tetrad components is vimi = mx, which has the expansions

mx =
1√
2

(cos θ cosφ− i sinφ) =

√
2π

3

(
Y 1

1,1 − Y 1
1,−1

)
(B.3)

=
1

128

√
3π3/2

(
16(Y 0

1,−1 + Y 0
1,1) + 4

√
5(Y 0

2,−1 − Y 0
2,1) +

√
14(Y 0

3,−1 + Y 0
3,1) + . . .

)
. (B.4)

mx is a two term linear combination of the Y 1
lm, but an infinite series in terms of the Y 0

lm (and
also the Y −1

lm). The vector component θx = 1√
2
(mx +mx) = cos θ cosφ does not have a finite series

representation for any specific n, since it is the linear combination of two vectors with different
spin weight. Not only do we obtain infinite series in specific cases, but they typically converge only
slowly because terms like cos θ cosφ are not continuous as functions on the sphere. However, the
spin-weighted harmonics are defined in such a way that the specific discontinuities introduced by
the complex tetrad vectors are exactly resolved, e.g. as in (B.3).

31

Acknowledgments

It is a pleasure to thank David Hilditch, Andreas Weyhausen, Gerhard Zumbusch, and also
Marcus Ansorg and Wolfgang Tichy for discussions. This work was supported in part by DFG
grant SFB/Transregio 7 “Gravitational Wave Astronomy”.

References

[1] J. P. Boyd, Chebyshev and Fourier Spectral Methods (Second Edition, Revised), Dover Publications, New York,
2001.

[2] J. S. Hesthaven, S. Gottlieb, D. Gottlieb, Spectral Methods for Time-Dependent Problems, Cambridge Univer-
sity Press, Cambridge, 2007.

[3] M. Alcubierre, B. Brügmann, Simple excision of a black hole in 3+1 numerical relativity, Phys. Rev. D 63
(2001) 104006.

[4] L. Lindblom, M. A. Scheel, L. E. Kidder, R. Owen, O. Rinne, A new generalized harmonic evolution system,
Class. Quantum Grav. 23 (2006) S447–S462.

[5] S. Bonazzola, J. Frieben, E. Gourgoulhon, J.-A. Marck, Spectral methods in general relativity – toward the
simulation of 3D-gravitational collapse of neutron stars, in: Proceedings of the Third International Conference
on Spectral and High Order Methods, Houston Journal of Mathematics, University of Houston, 1996.

[6] P. Grandclément, J. Novak, Spectral methods for numerical relativity, Living Reviews in Relativity 12 (2009).
[7] J. Novak, J.-L. Cornou, N. Vasset, A spectral method for the wave equation of divergence-free vectors and

symmetric tensors inside a sphere, J. Comput. Phys. 229 (2010) 399–414.
[8] P. E. Merilees, The pseudospectral approximation applied to the shallow water equations on the sphere, Atmo-

sphere 11 (1973) 13–20.
[9] B. Fornberg, A pseudospectral approach for polar and spherical geometries, J. Sci. Comp. 16 (1995) 1071–1081.

[10] W. F. Spotz, M. A. Taylor, P. N. Swarztrauber, Fast shallow-water equation solvers in latitude-longitude
coordinates, J. Comp. Phys. 145 (1998) 432–444.

[11] H.-B. Cheong, Double Fourier series on a sphere: applications to elliptic and vorticity equations, J. Comput.
Phys. 157 (2000) 327–349.

[12] P. N. Swarztrauber, W. F. Spotz, Generalized discrete spherical harmonic transforms, J. Comp. Phys. 159
(2000) 213–230.

[13] W. Tichy, Black hole evolution with the BSSN system by pseudo- spectral methods, Phys. Rev. D74 (2006)
084005.

[14] W. Tichy, Long term black hole evolution with the BSSN system by pseudo-spectral methods, Phys. Rev. D80
(2009) 104034.

[15] L. E. Kidder, L. Lindblom, M. A. Scheel, L. T. Buchman, H. P. Pfeiffer, Boundary conditions for the Einstein
evolution system, Phys. Rev. D 71 (2005) 064020.

[16] B. Fornberg, A Practical Guide to Pseudospectral Methods, Cambridge University Press, Cambridge, UK, 1998.
[17] L. N. Trefethen, Spectral methods in MATLAB, Society for Industrial and Applied Mathematics, 2000.
[18] W. F. Spotz, P. N. Swarztrauber, A performance comparison of associated legendre projections, J. Comp. Phys.

168 (2001) 339–355.
[19] CUDA, NVIDIA, 2011. http://www.nvidia.com/object/cuda home.html.
[20] B. Brügmann, Binary black hole mergers in 3D numerical relativity, Int. J. Mod. Phys. D 8 (1999) 85.
[21] J. A. Weideman, S. C. Reddy, A MATLAB differentiation matrix suite, ACM Trans. Math. Softw. 26 (2000)

465–519.
[22] B. Brügmann, W. Tichy, N. Jansen, Numerical simulation of orbiting black holes, Phys. Rev. Lett. 92 (2004)

211101.
[23] B. Brügmann, J. A. González, M. Hannam, S. Husa, U. Sperhake, W. Tichy, Calibration of Moving Puncture

Simulations, Phys. Rev. D77 (2008) 024027.
[24] P. N. Swarztrauber, W. F. Spotz, Spherical harmonic projectors, Math. Comp. 73 (2003) 753–760.
[25] A. Ben-Israel, T. Greville, Generalized inverses, Springer-Verlag, New York, 2003.
[26] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken, M. Booth, F. Rossi, GNU Scientific Library

Reference Manual, Network Theory Ltd., 3rd edition edition, 2009.
[27] E. T. Newman, R. Penrose, Note on the Bondi-Metzner-Sachs group, J. Math. Phys. 7 (1966) 863–870.
[28] J. N. Goldberg, A. J. MacFarlane, E. T. Newman, F. Rohrlich, E. C. G. Sudarshan, Spin-s spherical harmonics

and eth, J. Math. Phys. 8 (1967) 2155–2161.
[29] W. B. Campbell, Tensor and spinor spherical harmonics and the spin-s harmonics y-s-lm(theta, phi), J. Math.

Phys. 12 (1971) 1763–1770.
[30] Y. Wiaux, L. Jacques, P. Vielva, P. Vandergheynst, Fast directional correlation on the sphere with steerable

filters, Astrophys. J. 652 (2006) 820–832.
[31] P. Kostelec, D. K. Maslen, D. Rockmore, D. Healy, Computational harmonic analysis for tensor fields on the

two-sphere, J. Comp. Phys. 162 (2000) 514–535.

32

[32] Y. Wiaux, L. Jacques, P. Vandergheynst, Fast spin +-2 spherical harmonics transforms, J. Comput. Phys. 226
(2007) 2359–2371.

[33] M. Ruiz, O. Rinne, O. Sarbach, Outer boundary conditions for einstein’s field equations in harmonic coordinates,
Class. Quant. Grav. 24 (2007) 6349–6378.

[34] O. Rinne, L. Lindblom, M. A. Scheel, Testing outer boundary treatments for the Einstein equations, Class.
Quant. Grav. 24 (2007) 4053–4078.

[35] O. Rinne, L. T. Buchman, M. A. Scheel, H. P. Pfeiffer, Implementation of higher-order absorbing boundary
conditions for the Einstein equations, Class. Quant. Grav. 26 (2009) 075009.

[36] The present work identified and reported an issue with the CUDA/CUBLAS 3.2 implementation of dgemm for
the product of small matrices with matrices with one small and one large dimension. This was fixed in CUDA
4.0rc, 2011.

[37] R. Nath, S. Tomov, J. Dongarra, An improved magma gemm for fermi graphics processing units, IJHPCA 24
(2010) 511–515.

[38] K. Alvi, First-order symmetrizable hyperbolic formulations of Einstein’s equations including lapse and shift as
dynamical fields, Class. Quant. Grav. 19 (2002) 5153–5162.

[39] C. Bona, T. Ledvinka, C. Palenzuela, M. Žáček, General-covariant evolution formalism for numerical relativity,
Phys. Rev. D 67 (2003) 104005.

[40] C. Gundlach, J. M. Martin-Garcia, G. Calabrese, I. Hinder, Constraint damping in the Z4 formulation and
harmonic gauge, Class. Quantum Grav. 22 (2005) 3767–3774.

[41] H. Friedrich, On the hyperbolicity of Einstein’s and other gauge field equations, Comm. Math. Phys. 100 (1985)
525–543.

[42] F. Pretorius, Numerical relativity using a generalized harmonic decomposition, Class. Quant. Grav. 22 (2005)
425–452.

[43] F. Pretorius, Evolution of binary black hole spacetimes, Phys. Rev. Lett. 95 (2005) 121101.
[44] F. Pretorius, Simulation of binary black hole spacetimes with a harmonic evolution scheme, Class. Quantum

Grav. 23 (2006) S529–S552.
[45] D. Garfinkle, Harmonic coordinate method for simulating generic singularities, Phys. Rev. D 65 (2002) 044029.
[46] B. Szilágyi, D. Pollney, L. Rezzolla, J. Thornburg, J. Winicour, An explicit harmonic code for black-hole

evolution using excision, Class. Quant. Grav. 24 (2007) S275–S293.
[47] J. W. York, Jr., Kinematics and dynamics of general relativity, in: L. Smarr (Ed.), Sources of Gravitational

Radiation, Cambridge University Press, Cambridge, 1979, pp. 83–126.
[48] C. W. Misner, K. S. Thorne, J. A. Wheeler, Gravitation, W. H. Freeman, San Francisco, 1973.

33

	1 Introduction
	2 Chebyshev-Fourier-Fourier collocation method
	2.1 Coordinates and collocation grid for a spherical shell
	2.2 Cartesian tensors and smoothness
	2.3 Computation of derivatives in 1d
	2.4 Computation of derivatives in 3d
	2.5 Numerical simulations

	3 Spherical harmonic filter for tensors
	3.1 Discrete Fourier transform as matrix multiplication
	3.2 Discrete spherical harmonic transform by matrix multiplication
	3.3 Discrete spin-weighted spherical harmonic transform by matrix multiplication
	3.4 Spin-weight decomposition of tensors with respect to a tetrad or triad
	3.5 Filters defined by spherical harmonic projection

	4 Numerical results
	4.1 Test case of a single, evolving black hole
	4.2 Computational efficiency

	5 Conclusion
	Appendix A Formulation of the Einstein evolution problem
	Appendix A.1 Einstein equations in generalized harmonic gauge
	Appendix A.2 Boundary conditions
	Appendix A.3 Test case of a single, spherically symmetric and static black hole

	Appendix B Examples for spin-weighted spherical harmonics

