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Institut de Mathématiques de Toulouse ;

F-31062 Toulouse, France.
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Abstract

A continuum model for self-organized dynamics is numerically investigated. The
model describes systems of particles subject to alignment interaction and short-
range repulsion. It consists of a non-conservative hyperbolic system for the density
and velocity orientation. Short-range repulsion is included through a singular pres-
sure which becomes infinite at the jamming density. The singular limit of infinite
pressure stiffness leads to phase transitions from compressible to incompressible dy-
namics. The paper proposes an Asymptotic-Preserving scheme which takes care of
the singular pressure while preventing the breakdown of the CFL stability condition
near congestion. It relies on a relaxation approximation of the system and an elliptic
formulation of the pressure equation. Numerical simulations of impinging clusters
show the efficiency of the scheme to treat congestions. A two-fluid variant of the
model provides a model of path formation in crowds.
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1 Introduction

The modeling of self-organized dynamics is at the core of an intense scientific activity.
Self-organized dynamics occurs in systems of active agents such as bacterial suspensions
and sperm [38], insect swarms [13], fish schools [1, 19], bird flocks [4, 41], mammal herds
or pedestrian crowds [34, 37, 44]. These systems exhibit large-scale coherent structures
that spontaneously emerge from the interactions between the agents but are not directly
encoded in the interaction rules. Many mathematical models have been proposed to
account for the emergence of large-scale order [1, 9, 13, 18, 19, 30, 33, 42, 48, 49]. One
of the most paradigmatic models is the Vicsek particle system [51] which consists of self-
propelled particles interacting through alignment interaction. Each particle moves with a
constant speed and updates its direction so as to align with its neighbors up to a certain
noise level. The Vicsek model exhibits phase transitions from disordered to fully aligned
states when the noise is decreased or when the density is increased.

In practice, more refined flocking models must be used to reproduce flocking behavior
observed in nature. Among these refined models, the three zone model [1, 19] offers a
good compromise between physical accuracy and simplicity. It considers three kinds of
interactions: long-range attraction, medium-range alignment ’à la Vicsek’ and short-range
repulsion. In particular, short-range repulsion is believed to play a key role in the observed
morphogenetic features of self-organized dynamics. The flock can indeed be seen as the
region where all the particles are as close as they can be, given the short range repulsion,
i.e. as the region where the particle density reaches a maximum value. The existence of
a maximal allowed value of the density resulting from volume exclusion is referred to as
the congestion constraint.

Macroscopic models of fluid type (or hydrodynamic models) are particularly well suited
to the modeling of large-scale self-organized structures by contrast to particle models (also
known as ’Individual-Based Models’ or IBM) which focus on the inter-particle interaction
scale. Indeed, the numerical complexity of IBM’s increases with the number of individ-
uals faster than linearly. They become computationally very intensive for large particle
systems which are the most relevant ones for the observation of self-organization. Addi-
tionally, in some cases, self-organization can be directly encoded into the fluid model and
facilitates the observation of the resulting morphogenetic features. In particular, this can
be realized with the congestion constraint which results in a clear-cut phase transition
between compressible and incompressible fluid regions, the latter being those where the
congestion constraint is reached.

The goal of the present work is to study a hydrodynamic model of self-organized
dynamics with a congestion constraint. The starting point is the hydrodynamic model of
[25], which will be referred to as ’Self-Organized Hydrodynamics’ or in short, SOH. This
model is derived through a macroscopic limit of the Vicsek particle system [51]. The SOH
model resembles the isentropic compressible Euler equations with two major differences.
First, the local mean velocity Ω is constrained to have unit norm |Ω| = 1 (specifically, Ω
is the mean velocity direction rather the mean velocity itself), and second, the pressure
gradient term in the momentum balance equation is projected onto the plane normal to

2



Ω, in order to preserve the norm constraint. This makes the system non-conservative and
non-classical since the state variables belong to a curved manifold.

The SOH model only takes into account the alignment interaction. In the present work,
we take into account the short-range repulsion by considering a singular pressure when the
density ρ approaches the congestion density ρ∗. The SOH model with volume exclusion
constraint has been theoretically investigated in [27] where the limit of an increasingly
steeper singular pressure has been studied. This limit process results in a model where
clear-cut phase transitions between uncongested and congested areas occur, the former
corresponding to a compressible model and the latter, to an incompressible one. In [27],
the dynamics of the boundary between these areas (or boundary of the flock) has been
studied.

The present work is devoted to the derivation and study of adequate numerical meth-
ods for this model. In [22], a numerical method for the classical isentropic compressible
Euler equations with congestion constraint has been derived. The key point is the use of
an ’Asymptotic-Preserving’ (AP) scheme previously developed for the small Mach-number
limit of compressible flows [17, 28, 47]. Here, we adapt this scheme to the constrained
SOH model. This adaptation is not straightforward, because of the non-conservative
character of the SOH model and of the unit norm constraint on the velocity. In [43], it
has been shown that a relaxation method is best suited to the numerical resolution of the
unconstrained SOH model. The present paper shows that the relaxation method of [43]
and the AP methodology of [22] can be combined in order to resolve the constrained SOH
model.

As an application of the presented methodology, a model of path formation in crowds
is presented. The spontaneous emergence of trails in pedestrian counterflows in corridors
is a well documented phenomenon [37, 44]. It has inspired several kinds of modeling
approaches, both at the discrete [34, 45] and continuous [2, 12] levels. Our model intends
to describe path formation in a crowd of people heading towards opposite directions.
It requires a two-fluid extension of the model to account for the existence of two kinds
of pedestrians having opposite target directions. Our model shows that the congestion
constraint prevents the flow to cross through high density regions, forcing the emergence
of paths of oppositely moving fluids.

Throughout the paper, the key property of the developed scheme is the Asymptotic-
Preserving (AP) property. It is defined as follows. Consider a continuous physical model
Mε which involves a perturbation parameter ε (here, ε is the parameter describing the
stiffness of the pressure and Mε represents the SOH with stiffened pressure) which can
range from ε = O(1) to ε � 1 values. Let M0 be the limit of Mε when ε → 0 (here
M0 is the constrained SOH model). Let nowMε

∆ be a numerical scheme which provides
a consistent discretization of Mε with discrete time and space steps (∆t,∆x) = ∆.
The scheme Mε

∆ is said to be Asymptotic-Preserving (AP) if its stability condition is
independent of ε and if its limit M0

∆ as ε→ 0 provides a consistent discretization of the
continuous limit modelM0. The AP property is illustrated by the commutative diagram
of fig. 1. The literature about AP schemes is recent, yet increasingly abundant and
applied to various contexts (see e.g. [14, 35, 36]).
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Mε M0

Mε
∆ M0

∆

ε→ 0

∆→ 0 ∆→ 0

ε→ 0

Figure 1: Asymptotic-Preserving (AP) property: the upper horizontal arrow translates
the assumption that the continuous modelMε tends to the limit modelM0 when ε→ 0.
The left vertical arrow expresses that Mε

∆ is a consistent discretization of Mε when the
discretization parameter ∆ → 0. The lower horizontal arrow indicates that the scheme
Mε

∆ has a limit M0
∆ when ε→ 0 for fixed ∆. Finally, the right vertical arrow expresses

the AP-property: it says that the limit scheme M0
∆ is a consistent discretization of the

limit model M0 when ∆→ 0.

Constrained hydrodynamic models obtained as limits of hydrodynamic models involv-
ing a singular non-linear pressure have first been proposed in [11] and studied in [7] for the
compressible Euler equations. They have then been extended to traffic flow to describe
the dynamics of traffic jams [8]. The SOH model is derived from a kinetic formulation of
the Vicsek model [25]. This kinetic description has been shown to be a valid description
of the particle system in [6]. Variants of the SOH model taking into account non-isotropic
observation [31], phase transitions [21, 32], viscosity [24, 29], trajectory control by curva-
ture [26] and precession [23] can be found. Alternate hydrodynamic models derived from
the Vicsek system can be found in [20, 46] as well as related models in [15, 16].

The paper is organized as follows. The model framework is given in section 2. Then,
the numerical method is introduced in section 3. Numerical results are given in section
4. The application to path formation in crowds is reported in section 5. A conclusion is
drawn in section 6. Finally, for the reader’s convenience, the expression of the scheme in
the two-dimensional framework is exposed in Appendix 1.

2 Model framework

The Self-Organized Hydrodynamics (SOH) model is written as follows:

ρt +∇x · q = 0, q = ρΩ, (2.1)

ρ
(
Ωt + c(Ω · ∇x)Ω

)
+ λ (Id−Ω⊗Ω)∇x

(
pε(ρ)

)
= 0, (2.2)

|Ω| = 1, (2.3)

where ρ(x, t) ∈ R+ denotes the mass density, Ω(x, t) ∈ R2, the mean velocity and
q(x, t) ∈ R2 the momentum density, depending on the spatial position x ∈ R2 and the
time t > 0. The constants are such that λ > 0 and c ∈ R. The term pε(ρ) = εp(ρ) is the
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pressure, with a function p(ρ) specified below. We denote by ⊗ the tensor product of two
vectors. The matrix (Id−Ω⊗Ω) is the orthogonal projection onto the plane orthogonal
to Ω. We do not specify any boundary conditions for the time being and suppose that
initial conditions ρ0 and Ω0 are provided such that |Ω0| = 1 and ρ0 > 0.

Eq. (2.1) is the mass conservation (or continuity) equation while (2.2) is the momen-
tum balance equation. We note that the model is similar to the isentropic compressible
Euler model of gas dynamics but for two important differences. First, the velocity Ω is
constrained to have unit norm, i.e. Ω ∈ S1, where S1 is the one-dimensional sphere. As
a consequence, Ωt + c(Ω · ∇xΩ), which is a derivative of Ω, is orthogonal to Ω. This
is why the pressure gradient term λ∇x(pε(ρ)) is multiplied by the projection operator
(Id−Ω⊗Ω). In this way, the constraint (2.3) is satisfied at all times provided it is
satisfied at initial time. This constraint expresses that Ω should be seen as the veloc-
ity direction, or polarization vector (see [5] for another example of an active fluid model
written in terms of its polarization vector). The actual velocity is a constant times the
velocity direction. After some time rescaling, this constant can be chosen equal to unity
(see [25] for details).

The second difference is the presence of the constant c in front of the velocity transport
term (Ω·∇x)Ω. In the isentropic Euler equations, c = 1, i.e. the coefficient of the velocity
transport term is the same as that of the mass transport term ∇x · (ρΩ). In the SOH
model, these coefficients are different, and may even be of different sign [31]. The difference
reflects that, in swarming systems, velocity is not simply transported along with the fluid
velocity itself. If c ≤ 1, velocity propagates upstream the fluid. This situation occurs in
car traffic, where drivers update their velocity according to the state of the flow in front
of them. One may also find c > 1, which occurs when particles update their velocity
according to the flow behind them [31]. This occurs e.g. in locust swarms because locusts
want to prevent themselves from being bitten by their congeners behind them. These
considerations illustrate the loss of Galilean invariance of the model when c 6= 1 and the
consecutive anisotropy of wave propagation described by these models. A discussion of
the lack of Galilean invariance in flocking models and its consequences on the propagation
of sound waves can be found in [50].

In the SOH model derived in [25], the pressure is just a linear function of the density.
However, short-range repulsion can be included by introducing a non-linear pressure which
blows up at the congestion density ρ∗. This non-linear pressure relation has been derived
from a microscopic dynamics involving finite-sized particles undergoing short-range repul-
sion in [27]. The congestion density ρ∗ corresponds to the jammed state where particles
are in contact to each other. Additionally, we assume that the intensity of the repulsion
force is very small unless the density ρ is very close to ρ∗. The parameter ε characterizes
the width of the density range where the pressure is finite: pε(ρ) is supposed almost zero
except in small neighborhood of ρ∗ and becomes infinite at exactly ρ = ρ∗. This sudden
’turn-on’ of the repulsion force results in a sharp phase transition between uncongested
and congested regions as shown below.
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These modeling hypotheses are translated in the following way: pε(ρ) is defined by

pε(ρ) = εp(ρ), (2.4)

where p(ρ) is such that p(ρ)→∞, when ρ→ ρ∗. To be more specific, we consider:

p(ρ) =
1(

1
ρ
− 1

ρ∗

)γ , γ > 0, (2.5)

i.e. p behaves like usual isentropic fluid pressure at low density: p(ρ) ∼ ργ when ρ → 0.
From (2.4), (2.5), it follows that pε(ρ) = O(ε) for ρ � ρ∗ while pε(ρ) = O(1) for ρ close
to ρ∗ (more precisely for ρ = ρ∗−O(ε1/γ)). Fig. 2(a) displays typical functions p and pε.
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(a) p(ρ) and pε(ρ)
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(b) pε0(ρ) and pε1(ρ)

Figure 2: Left: the pressure p and the rescaled pressure pε as functions of the density ρ.
Right: the two components pε0(ρ) and pε1(ρ) as functions of the density ρ (see section 3.2).

Solutions of (2.1)-(2.3) depend on ε and are denoted by (ρε,Ωε, qε). Their formal
limits as ε→ 0 are supposed to exist and are denoted by (ρ,Ω, q):

(ρε,Ωε, qε)→ (ρ,Ω, q) as ε→ 0.

When ε → 0, the singular pressure term pε(ρε) tends to different values according to
whether the limit satisfies ρ < ρ∗ (uncongested region) or ρ = ρ∗ (congested region). We
denote by C(t) and U(t) the congested and uncongested regions respectively and by I(t)
the interface between these two regions:

U(t) = {x ∈ R2, ρ(x, t) < ρ∗},
C(t) = {x ∈ R2, ρ(x, t) = ρ∗},
I(t) = ∂U(t) = ∂C(t).

Uncongested region: We consider a point x ∈ U(t), i.e. such that ρ(x, t) < ρ∗.
In this case, p(ρε) → p(ρ) < ∞ and consequently pε(ρε) = εp(ρε) → 0. Therefore, the
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formal limit is the presureless gas dynamics with norm-one constraint on the velocity: in
U(t), (ρ,Ω, q) satisfies:

ρt +∇x · q = 0, q = ρΩ, (2.6)

ρ (Ωt + c(Ω · ∇x)Ω) = 0, (2.7)

|Ω| = 1. (2.8)

Congested region: We now consider a point x ∈ C(t), i.e. such that ρ = ρ∗. In this
case, p(ρε)→∞ and limε→0(εp(ρε)) is undetermined. We assume that

lim
ε→0

εp(ρε) = p̄ with 0 ≤ p̄ <∞ almost everywhere. (2.9)

Now, p̄ becomes an additional unknown of the limit system: in C(t), (ρ,Ω, q, p̄) satisfies:

ρ = ρ∗, q = ρ∗Ω, (2.10)

∇x ·Ω = 0, (2.11)

ρ∗ (Ωt + c(Ω · ∇x)Ω) + λ (Id−Ω⊗Ω)∇xp̄ = 0, (2.12)

|Ω| = 1. (2.13)

The vector field Ω is divergence-free and of unit-norm. Smooth vector fields like Ω have
a remarkable geometry (see Fig. 3(a) and [27]): curves normal to Ω are straight lines
and Ω is constant along these lines. We denote by N the family of straight lines normal
to Ω. The quantity p̄ is now an unknown like the pressure in standard incompressible
models. The governing equation for p̄ is obtained by taking the divergence of (2.12) and
using (2.11) to eliminate the time derivative. It is written for x ∈ C(t) :

− λ∇x · ((Id−Ω⊗Ω)∇xp̄) = cρ∗∇x ((Ω · ∇x)Ω) . (2.14)

This leads to a family of one-dimensional elliptic equations for p̄ posed along the lines of
the family N . Their inversion requires the knowledge of the boundary values of p̄ on I(t).
These boundary values, as well as the velocity of the interface I(t) have been determined
in [27]. They are linked to the jumps of ρ and Ω across I(t) and are found by solving a
Riemann problem in the direction normal to I(t), supposing I(t) is smooth. However, if
I(t) is not smooth, which happens for instance at times when its topology changes, these
quantities cannot be analytically known from [27]. Since we target a general situation
where topology changes can occur, we will not use the conditions of [27] and do not need
to recall their expression.

The SOH model (2.1)-(2.3) is hyperbolic, with characteristic speeds given by:

ξ± = cos θ +
1

2

(
(c− 1) cos θ ±

√
(c− 1)2 cos2 θ + 4λεp′(ρε) sin2 θ

)
, (2.15)

where θ is the angle between Ω and the propagation direction. If ρε → ρ∗ such that (2.9)
holds, then, using (2.5), we get

εp′(ρε) = O(ε−1/γ)→∞. (2.16)
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I(t)
C(t)

Ω(x, t)

Lines of the family N (t)

(a) Congestion region

Ω(x, t)

(b) Singularity of Ω

Figure 3: The congestion region C(t) at a given time t is enclosed by the curve I(t). Left:
the vector field Ω(x, t) is constant along lines normal to itself. These lines form the family
N (t). The quantity p̄(x, t) satisfies one-dimensional elliptic equations posed along these
lines. It requires boundary conditions along the interface I(t). Right: a situation where
the vector field Ω(x, t) has singularities

Therefore, the characteristic speeds (2.15) tend to ±∞. This explains why the limit
problem (2.11)-(2.12) has elliptic characteristics, reflected in the elliptic equation (2.14)
for p̄. The second term of (2.15) is the sound speed

cs =
1

2

(
(c− 1) cos θ ±

√
(c− 1)2 cos2 θ + 4λεp′(ρε) sin2 θ

)
,

while the first term is the fluid velocity projected on the propagation direction u = cos θ.
We can define the Mach number as the ratio of these two velocities

M =
u

cs
=

cos θ

1
2

(
(c− 1) cos θ ±

√
(c− 1)2 cos2 θ + 4λεp′(ρε) sin2 θ

) .
Due to (2.16), we generically have M → 0 when ε → 0. Thus, in the congested region,
the ε→ 0 limit is a small Mach-number limit. We note that in the SOH model, the sound
speed is anisotropic and depends on the angle between Ω and the propagation direction.
This has already been noticed in [50] for other hydrodynamic models of flocks.

The uncongested and congested models can be unified by writing the limit system in
the following way: for x ∈ R2,

ρt +∇x · q = 0, q = ρΩ, (2.17)

ρ (Ωt + c(Ω · ∇x)Ω) + λ (Id−Ω⊗Ω)∇xp̄ = 0, (2.18)

|Ω| = 1, (2.19)

(ρ− ρ∗)p̄ = 0. (2.20)

However, this expression does not specify what happens when the constraint (2.20) shifts
from p̄ = 0 (in U(t)) to ρ = ρ∗ (in C(t)) at the interface I(t). Therefore, it must be
complemented by interface conditions like those of [27].
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Remark 2.1 The pressureless gas dynamics model is not strictly hyperbolic. This results
in some unpleasant features such as the formation of singularities or the generation of
weak instabilities [10]. According to the physical context, it is possible that a non-zero
pressure prevails in the uncongested region U . This is easily modeled by considering a
pressure pε(ρ) of the form

pε(ρ) = εp(ρ) + pB(ρ), (2.21)

where p is given by (2.5) as previously and the background pressure pB(ρ) is independent
of ε and has finite limit pB(ρ∗) when ρ→ ρ∗. For instance, we can take

pB(ρ) = κργ, (2.22)

with the parameter κ controlling the strength of the background pressure. In this case, the
limit problem (2.6)-(2.8) in the uncongested region U is changed to the following form :

ρt +∇x · q = 0, q = ρΩ,

ρ (Ωt + c(Ω · ∇x)Ω) + λ (Id−Ω⊗Ω)∇xpB(ρ) = 0,

|Ω| = 1,

which is nothing but the SOH model with pressure pB. In the congested region C, there is
no change to system (2.10)-(2.13) except that now the pressure p̄ satisfies the inequality
pB(ρ∗) ≤ p̄ <∞ instead of (2.9).

The numerical resolution of problem (2.17)-(2.20) is quite challenging since the inter-
face I(t) is a moving free boundary. It requires two different fluid solvers: a compressible
one in the congested region C(t) and an incompressible one in the uncongested region U(t).
The numerical discretization of the interface I(t) must be matched with the mesh used
inside each of the domains C(t) and U(t). Since I(t) is a moving interface, some remeshing
must be performed at each time step. Alternate methodologies such as level-sets may be
envisionned. In all cases, these methods are computationally intensive and necessitate
fine parameter tuning. Additionally, interface motion is induced by fluid motion, which
itself is determined by the boundary conditions for p̄ along the interface. However, in
the case where I(t) changes topology, the formal asymptotic procedure of [27] does not
provide any information about these boundary conditions. In this circumstance, it is not
known what interface motion takes place. Then, there is no other possibility than solving
the original perturbation problem (2.1)-(2.3), with a very small value of ε. This is the
strategy developed in the present work.

To solve the perturbation problem (2.1)-(2.3) with an arbitrarily small value of ε, an
Asymptotic-Preserving (AP) scheme is necessary. Indeed, the limit ε→ 0 corresponds to
a small Mach-number limit. With a classical scheme (such as a shock-capturing scheme),
the CFL stability condition leads to a time-step constraint ∆t ≤ Cε∆x with Cε → 0
as ε → 0. Therefore, a classical scheme is impracticable for small values of ε. The AP
property recalled in Figure 1 guarantees that, for small values of ε, the scheme provides
a consistent solution to the limit system (2.17)-(2.20).
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In this work, we adopt the AP-method of [17, 28, 47] which has already been used for
the Euler system with congestion in [22]. However, the SOH model is a non-conservative
model. In general, non-conservative models may have multiple weak solutions of the shock-
wave type. Additional information is necessary to single out the correct shocks: a suitable
path in state space connecting the two states on each side of the shock must be defined
[39]. The choice of the correct path depends on some microscopic information which is not
included in the macroscopic model and which, in general, is not available. Here, we look
for solutions of the SOH model which provide good approximations of the underlying
microscopic Vicsek model [25]. Such solutions are considered as being the physically
consistant solutions. In [43], it is shown that these solutions are well-captured by a
relaxation model. It consists of a gas-dynamics type conservative system for the density
and momentum supplemented by a relaxation right-hand side which drives the velocity
towards a vector of unit norm. In the present work, we rely on this relaxation model as
the one which produces the physically consistant solution and propose a modification of
the method of [43] which makes it AP in the small Mach-number limit. This modification
is based on [22, 28]. This numerical method is presented in the next section.

3 The numerical method

3.1 Relaxation method and splitting

We first present the relaxation method of [43]. We consider the following relaxation
system:

∂tρ
ε,β +∇x · qε,β = 0, (3.1)

∂tq
ε,β + c∇x ·

(
qε,β ⊗ qε,β

ρε,β

)
+ λ∇x

(
pε(ρε,β)

)
=

1

β
(1− |q

ε,β

ρε,β
|2)qε,β, (3.2)

where the geometric constraint |Ω| = 1 is removed. System (3.1), (3.2) is a conservative
model with a relaxation term. We have:

Proposition 3.1 [43] The relaxation model (3.1)-(3.2) formally converges to the SOH
model (2.1)-(2.3) as β → 0.

The left-hand side of (3.1), (3.2) coincides with the isentropic Euler system if and only if
c = 1. If c 6= 1, the characteristic speeds are given by

c
q

ρ
, c

q

ρ
±

√
(c2 − c)q

2

ρ2
+ λεp′(ρ). (3.3)

where q is the component of the momentum along the propagation direction. These
characteristic speeds are real and distinct if c ≥ 1 (provided that ρ > 0) and may be
complex if c < 1 for small values of εp′(ρ). Therefore, although the limit system (the
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SOH model) is always hyperbolic, the relaxation system (3.1), (3.2) is strictly hyperbolic
only for c ≥ 1. We will see that, in spite of being non-hyperbolic, the relaxation system
leads to a valid numerical solution of the SOH model in the relaxation limit when c < 1.

Remark 3.1 In [43], a linear pressure was used and the relaxation system could stay
hyperbolic even with c < 1 for suitable choices of the parameter λ. Here, the non-linear
pressure and the smallness of the parameter ε require c ≥ 1 to guarantee hyperbolicity of
the relaxation system for all values of ρ > 0.

The plan is therefore to discretize the relaxation system (3.1), (3.2) with arbitrarily
small values of β. To this aim, we use the splitting method of [43]. Let ∆t be the time
step and (ρn,Ωn, qn = ρnΩn) be an approximation of (ρ,Ω, q) at time tn = n∆t. To pass
from (ρn,Ωn, qn) to (ρn+1,Ωn+1, qn+1), we first solve the following conservative equation
with singular pressure pε:

∂tρ+∇x · q = 0, (3.4)

∂tq + c∇x ·
(
q ⊗ q

ρ

)
+ λ∇x (pε(ρ)) = 0, (3.5)

over the time-step ∆t with the AP-scheme developed in [22] and initial conditions (ρn, qn).
This leads to intermediate values (ρn+1/2, qn+1/2). Then, the relaxation system:

ρt = 0, (3.6)

qt =
1

β

(
1−

∣∣∣∣qρ
∣∣∣∣2
)
q, (3.7)

is solved over the time-step ∆t with initial condition (ρn+1/2, qn+1/2) and yields (ρn+1, qn+1).
Finally, we set Ωn+1 = qn+1/ρn+1.

3.2 Time semi-discrete scheme

We first focus on the time semi-discretization of the conservative step (3.4), (3.5). Fol-
lowing [22], it is written as follows:

ρn+1/2 − ρn

∆t
+∇x · qn+1/2 = 0, (3.8)

qn+1/2 − qn

∆t
+ c∇x ·

(
qn ⊗ qn

ρn

)
+ λ∇x(pε0(ρn)) + λ∇x(pε1(ρn+1/2)) = 0. (3.9)

Here, we split the pressure pε (see Fig. 2(b)) into

pε = pε0 + pε1, (3.10)
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with

pε0(ρ) =



1

2
εp(ρ), if ρ ≤ ρ∗ − δ,

ε
1

2

{
p(ρ∗ − δ) + p′(ρ∗ − δ)(ρ− ρ∗ + δ)

+
1

2
p′′(ρ∗ − δ)(ρ− ρ∗ + δ)2

} , if ρ > ρ∗ − δ,
(3.11)

and δ = ε
1

γ+2 . We treat the pε0 component of the pressure force explicitly and the pε1
component implicitly. The implicit treatment of the pressure force in (3.9) as well as that
of the mass flux in (3.8) provides the AP property in the small Mach-number limit [28].
However, if the full pressure force pε is treated implicitly, some instabilities may appear
[28]. Keeping the pε0 part explicit removes these instabilities [22]. The explicit part pε0
is chosen to be pε/2 except and in a neighborhood [ρ∗ − δ, ρ∗] of ρ∗ with δ adequately
chosen. In this interval pε0 is a quadratic function. Matching of pε0 and of its derivatives

up to second order is ensured at ρ∗ − δ. The choice δ = ε
1

γ+2 guarantees that pε
′′

0 (ρ∗ − δ)
remains finite and consequently that pε0 itself remains finite over the whole range [0, ρ∗]
uniformly as ε→ 0.

Remark 3.2 When a background pressure pB(ρ) prevails (see Remark 2.1), the splitting
(3.10) is replaced by (2.21) i.e. we let pε0(ρ) = pB(ρ) and pε1(ρ) = εp(ρ).

Now, following [22, 28], we insert (3.9) into (3.8) to get an elliptic equation for ρn+1/2.

ρn+1/2 − ρn

∆t
−∆tλ∆x(pε1(ρn+1/2))

=−∇x · qn + ∆tc∇2
x :

(
qn ⊗ qn

ρn

)
+ ∆tλ∆x (pε0(ρn)) .

(3.12)

Instead of solving (3.12) for ρn+1/2, we solve it for p
n+1/2
1 and then, deduce ρn+1/2 by

inverting the relation p1 = pε1(ρ), which is possible thanks to the monotonicity of pε1. This
procedure is more stable and satisfies the congestion constraint ρn+1 ≤ ρ∗ automatically.
Once ρn+1/2 is known, qn+1/2 is computed by solving (3.9).

We now consider the second (relaxation) step (3.6), (3.7). We first note from (3.6)
that the density is unchanged: ρn+1 = ρn+1/2. Then, |Ω(t)|2 = |q(t)|2/|ρ(t)|2 is a solution
of:

1

2
∂t|Ω|2 =

1

β
(1− |Ω|2)|Ω|2,

which can be solved analytically. We easily deduce that:

Ωn+1 =

(∣∣∣Ωn+1/2
∣∣∣2 +

(
1−

∣∣∣Ωn+1/2
∣∣∣2) e−

2
β

∆t

)− 1
2

Ωn+1/2. (3.13)
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When β → 0, (3.13) leads to a simple renormalization of the velocity field:

Ωn+1 =
Ωn+1/2∣∣∣Ωn+1/2

∣∣∣ .
3.3 Fully discrete scheme

The full space-time discretization is presented in the 1D case. For the sake of completeness,
the 2D discretization is given in Appendix 1. Since the second step does not involve any
spatial derivative, we focus on the first compressible step. For simplicity, we consider the
domain [0, 1] and a uniform spatial mesh of step ∆x = 1

M
, where M is a positive integer.

We denote by Un
j = (ρnj , q

n
j )T the approximations of U = (ρ, q)T at time tn = n∆t and

positions xj = j∆x, for j = 0, 1, . . . ,M . We discretize (3.8), (3.9) with a semi-implicit
version of the local Lax-Friedrichs (or Rusanov) method [40] as follows:

ρ
n+1/2
j − ρnj

∆t
+

1

∆x

[
Qj+1/2(Un

j , U
n
j+1, U

n+1/2
j , U

n+1/2
j+1 )

−Qj−1/2(Un
j−1, U

n
j , U

n+1/2
j−1 , U

n+1/2
j )

]
= 0,

(3.14)

q
n+1/2
j − qnj

∆t
+

1

∆x

[
Fj+1/2(Un

j , U
n
j+1)− Fj−1/2(Un

j−1, U
n
j )
]

+
1

2∆x

[
λpε1(ρ

n+1/2
j+1 )− λpε1(ρ

n+1/2
j−1 )

]
= 0.

(3.15)

where the fluxes are given by:

Qj+1/2 =
1

2

[
q
n+1/2
j + q

n+1/2
j+1

]
− 1

2
Cn
j+1/2(ρnj+1 − ρnj ), (3.16)

F n
j+1/2 =

1

2

[
c
(qnj )2

ρnj
+ c

(qnj+1)2

ρnj+1

+ λpε0(ρnj+1) + λpε0(ρnj )

]
− 1

2
Cn
j+1/2(qnj+1 − qnj ). (3.17)

The numerical fluxes consist of the sum of centered fluxes and decentering terms introduc-
ing diffusion. The latter are evaluated explicitly while some of the former are evaluated
implicitly. More precisely, the central part of the mass flux in (3.16) and of the pε1 pres-
sure contribution to the momentum flux in (3.15) are solved implicitly. By contrast, the
central part of the velocity transport flux and of the pε0 pressure flux in the momentum
flux (3.17) are kept explicit. This level of implicitness is sufficient to guarantee the AP
character of the scheme [28] in the small Mach-number limit. The quantity Cn

j+1/2 is the
local diffusion coefficient and is given by:

Cn
j+1/2 = max{Cn

j , C
n
j+1}, Cn

j =

∣∣∣∣qnjρnj
∣∣∣∣+

√
(c2 − c)

∣∣∣∣qnjρnj
∣∣∣∣2 + λ(pε0)′(ρnj ). (3.18)
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It is defined as the local maximal characteristic speed related to the explicit pressure pε0.
Therefore, it remains bounded as ε goes to zero, thanks to the fact that pε0 itself remains
uniformly bounded when ε → 0. By contrast, if a fully explicit scheme was used, Cn

j in
(3.18) would involve pε0 +pε1 and would not remain bounded as ε→ 0. The quantity Cn

j+1/2

provides the numerical viscosity which is needed to ensure the stability of the scheme.
Based on this discretization, we can apply the same strategy as described in section

3.2 to get a discrete elliptic equation for ρ. We substitute (3.15) into (3.14) and obtain:

ρ
n+1/2
j − ρnj

∆t
+
qnj+1 − qnj−1

2∆x
− ∆t

4∆x2
λ
[
pε1(ρ

n+1/2
j+2 )− 2pε1(ρ

n+1/2
j ) + pε1(ρ

n+1/2
j−2 )

]
− 1

2∆x

[
Cj+1/2(ρnj+1 − ρnj )− Cj−1/2(ρnj − ρnj−1)

]
− ∆t

2∆x2

[
F n
j+3/2 − F n

j+1/2 − F n
j−1/2 + F n

j−3/2

]
= 0.

This equation is consistent with the time semi-discrete case (3.12). Then we get a non-
linear equation for p1:

ρ((p1)
n+1/2
j )− ∆t2

8∆x2
λ
[
(pε1)

n+1/2
j+2 − 2(pε1)

n+1/2
j + (pε1)

n+1/2
j−2

]
= ρnj −

∆t

4∆x
(qnj+1 − qnj−1) +

∆t

4∆x

[
Cj+1/2(ρnj+1 − ρnj )− Cj−1/2(ρnj − ρnj−1)

]
+

∆t2

4∆x2

[
F n
j+3/2 − F n

j+1/2 − F n
j−1/2 + F n

j−3/2

]
.

We use Newton iterations to solve this nonlinear equation and get p
n+1/2
1 . The density

ρn+1/2 is then obtained by inverting the nonlinear function p1 = pε1(ρ) with another series
of Newton iterations. Once ρn+1/2 is solved, qn+1/2 can be obtained by (3.15), which
yields:

q
n+1/2
j = Φ(Un

j−1, U
n
j , U

n
j+1)− ∆t

4∆x
λ
[
pε1(ρ

n+1/2
j+1 )− pε1(ρ

n+1/2
j−1 )

]
,

with

Φ(Un
j−1, U

n
j , U

n
j+1) = qnj −

∆t

2∆x

[
F n
j+1/2 − F n

j−1/2

]
.

Remark 3.3 (i) in the case where a background pressure prevails, we replace the splitting
(3.10) by pε0(ρ) = pB(ρ) and pε1(ρ) = εp(ρ) (see Remark 3.2).
(ii) In the case where c < 1, the previous scheme can be used as well. The only place
where hyperbolicity is used is in the definition of the diffusion coefficient (3.18). In the
case c < 1 and when the quantity inside one of the square roots is negative, we replace it
by its absolute value, i.e. the second formula of (3.18) is replaced by

C̃n
j =

∣∣∣∣qnjρnj
∣∣∣∣+

∣∣∣∣∣(c2 − c)
∣∣∣∣qnjρnj
∣∣∣∣2 + λ(pε0)′(ρnj )

∣∣∣∣∣
1/2

.
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4 Numerical results

4.1 Riemann problem test

In the one-dimensional case, ρ and Ω only depend on a one-dimensional variable x and on
time t. The vector field Ω can be described by its angle θ with respect to the x-direction,
i.e. Ω = (cos θ, sin θ). Then, the SOH system can be written as follows:

ρt + cos θ ρx − ρ sin θ θx = 0, (4.1)

θt − λ
pε′(ρ)

ρ
sin θ ρx + c cos θ θx = 0. (4.2)

This system is hyperbolic with the characteristics speeds given by (2.15). However, this
system is non-conservative, and shock waves are not uniquely defined [39]. A simple
conservative form can be found [27] and is written as follows:

ρt + (ρ cos θ)x = 0, (4.3)

∂tf1(θ)− ∂x (cf2(θ)− λg(ρ)) = 0, (4.4)

where

f1(θ) = ln

∣∣∣∣tan

(
θ

2

)∣∣∣∣ , f2(θ) = ln| sin θ|, g′(ρ) =
pε′(ρ)

ρ
.

From this conservative formulation, the solutions of the Riemann problem can be analyti-
cally derived. Indeed, by eliminating the shock speed in the Rankine-Hugoniot conditions
associated to the conservative form (4.3), (4.4), the equation of the shock curves can be
determined [40]. These equations relate the right state (ρr, θr) to the left state (ρ`, θ`) of
the shocks. It is easy to see that for a given left state, there are two such curves and that
they are given by the following equation:

(ρr − ρ`)(cf2(θr)− cf2(θ`)− λg(ρr) + λg(ρ`)) = (ρ cos(θr)− ρ` cos(θ`))(f1(θr)− f1(θ`)).
(4.5)

This equation can be solved locally.
However, conservative forms of the SOH model (4.1), (4.2) are non unique. Other

conservative forms than (4.3), (4.4) can possibly be found. Therefore, the analytical
solutions of the Riemann problem derived from (4.5) may not be correct.

The SOH model provides an approximation of the Vicsek particle model, as shown
in [25]. Therefore, physically valid solutions of (4.1), (4.2) are those which are close
to the underlying Vicsek particle model. In [43], it is shown that the relaxation model
provides such a consistant approximation. By contrast, some other numerical methods
(such as standard shock-capturing methods) select physically ’wrong’ solutions, which
are different from those of the Vicsek particle model. Therefore, the numerical method
developed in the present paper, which relies on the relaxation model of [43], provides a
consistant approximation of the physically correct solution. In order to determine whether
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the analytic solutions of the Riemann problem based on (4.5) are the physically correct
ones, we can compare them to a reference solution obtained by the present numerical
method.

We test a shock of the first family (i.e. associated to the smallest characteristic speed)
under the condition c = λ = 1. Since the conservative form requires that sin θ 6= 0, the
test example can be defined as follows:

(ρ`, θ`) = (0.8, 0.14), (ρr, θr) = (0.9969, 1.4502),

with the shock speed deduced from the Rankine-Hugoniot relation and given by

σ = −3.4136. (4.6)

The numerical simulation also yields a shock wave, as can be seen on Fig. 4 obtained
with parameters ε = 10−4, β = 10−7, mesh sizes ∆x = 0.005, ∆t = 0.0005 at time
t = 0.05. In these simulations, one-dimensional simulations have been performed using
a two-dimensional code by imposing periodic boundary conditions along the top and
bottom horizontal boundaries. The initial condition has been set independent of the y-
coordinate. Fig. 4(a) shows the density map in the two-dimensional domain, with a color
coding (brown for ρ = 0.8 and black for ρ = 0.9969). Fig. 4(b) represents the vector
field Ω with blue arrows. Arrows are almost horizontal for θ = 0.14 and almost vertical
for θ = 1.4502. Fig. 5 displays cross-sections of the various components of the solution
along the axis y = 0.5 as functions of x at times t = 0 (left figures) and t = 0.5 (right
figures). Figs. 5(a) and 5(b) show the density ρ and figs. 5(c) and 5(d) show the x and
y-components of the momentum q (top and bottom pictures respectively). By recording
the position of the shock at time t = 0.5, it is possible to determine the physical shock
speed. By inspection of Fig. 5, it is found to be σ̂ ≈ −3.5714. This is different from the
prediction (4.6) and the difference is significant, given the fine mesh size. Indeed, if the
shock speed was given by (4.6), the shock would reach the boundary at time t = 0.1465.
This is different from what we observe in Fig. 5 by more than 10 time steps.

These numerical evidences show that the conservative form (4.3)-(4.4) does not provide
the true physical solution, while the relaxation method, as shown in [43], does.

4.2 2D simulations of collisions of herds

4.2.1 Initial conditions

In this section, we show simulation results in a truly 2D setting. Our main focus is the
dynamics of the interaction of two clustered regions, which cannot be studied theoretically
with the methods of [27], as explained at the end of section 2. The initial datum describes
two clusters with densities close to the congestion density moving towards each other,
inside a lower density fluid. Since the speed of the flow must be of norm one everywhere,
the lower density fluid (background flow) is supposed to adopt a swirling motion around
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(a) density ρ (b) velocity Ω

Figure 4: Shock-wave test problem. Density ρ (Fig. 4(a)) and vector field Ω (Fig. 4(b))
as functions of x and y at time t = 0.05. The density is color-coded, with color map
indicated to the right of Fig. 4(a). The field Ω is indicated by blue arrows.

(a) density ρ at t = 0 (b) density ρ at t = 0.14

(c) momentum q at t = 0 (d) momentum q at t = 0.14

Figure 5: Shock-wave test problem. Cross-section along the axis y = 0.5 of the density
ρ (figs 5(a) and 5(b)), x-component of the momentum q (figs 5(c) and 5(d), top) and y-
component of momentum q (figs 5(c) and 5(d), bottom) at time t = 0 (left) and t = 0.14
(right) as functions of x.
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the center of the domain D = [0, 1]× [0, 1]. This leads to the following initial condition:

ρ(x, 0) = 0.8× 1A∪B + 0.7× 1D\(A∪B),

Ω(x, 0) = 1A

(
1
0

)
+ 1B

(
−1
0

)
+ 1D\(A∪B)v(x),

A =

[
1

6
,
1

2

]
×
[

1

3
,
2

3

]
, B =

[
1

2
,
10

12

]
×
[

1

3
,
2

3

]
,

v(x) =
1√

(x− 0.5)2 + (y − 0.5)2

(
−(y − 0.5)
x− 0.5

)
,

where 1A denotes the indicator function of the set A. The definition of v corresponds
to a background flow rotating around the center of the domain P = (0.5, 0.5)t counter-
clockwise. The initial data can be seen in Figure 6. Fig 6(a) shows the density ρ in
the two-dimensional domain, in color coding (larger densities are shown in darker brown
color, and lower densities, in lighter brown color). The dark inner rectangle shows the
large density clusters, surrounded by lower density regions in lighter brown. Fig. 6(b)
provides a view of the vector field Ω represented by blue arrows, in the two-dimensional
domain. Inside the large density rectangle, the arrows are horizontal, and point towards
the right in the left-hand half of the rectangle and to the left in the right-hand half of
the rectangle. This shows that the inner rectangle is formed by two high density clusters
moving one towards each other. The arrows outside the inner rectangle indicate that the
flow is circulating counterclockwise around the inner rectangle.

The numerical parameters are chosen as follows:

ε = 10−4, β = 10−7, λ = 1, ∆x = 0.005, ∆t = 0.0005. (4.7)

The presence of a relatively large background density is necessary otherwise instabilities
develop and generate negative pressures [22]. Developments are currently undertaken to
prevent these instabilities and ensure the positivity of the pressure in all cases. We first
investigate the case where c = 1, without background pressure (in this case, we use the
decomposition (3.10) of the pressure). Then, we add a background pressure, and use
the decomposition (2.21) instead. Then, we keep a background pressure, and investigate
successively the cases c = 2 and c = 0.5. In the latter case, the relaxation system is
not hyperbolic, and we use the method described in Remark 3.3 (ii) to overcome the
appearance of complex valued characteristic speeds.

4.2.2 Case c = 1, without background pressure

Figure 7 displays the density ρ and the vector field Ω at time t = 0.05, using the same
representation as in figure 6. As we can see on Fig 7(a), the two clusters initially located
in the inner rectangle are moving one towards each other and generate a congestion region
(displayed in black color) between them. The congestion constraint generates a deflected
wave which propagates in the vertical direction and compress the background flow, also
bringing it close to the congestion density. This compression occurs in the central parts
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of the top and bottom horizontal boundaries of the high density rectangle, as indicated
by the black and dark brown colors in this areas. Finally, due to its rotation about
the high density inner rectangle, the background flow impinges against the high density
clusters along the top left and bottom right horizontal boundaries of the high density
inner rectangle. This also produces some congestion there, as indicated by the black and
dark brown colors in these areas. The two moving clusters leave a vacuum region behind
them, which is shown by the light beige color along the outer vertical edges of the high
density rectangle. Similarly, due to the rotation of the background flow, a vacuum region
is created along the bottom left and top right horizontal boundaries of the high density
inner rectangle shown in light beige color in these areas.

Figure 7(b) highlights the geometrical features of the vector field Ω. Except in the
congested regions, the vector field is not affected. Therefore, the swirling pattern of the
background flow away from the inner rectangle is clearly visible. Similarly, Ω is not
changed in the lower left part of the left cluster and upper right part of the right cluster:
it is directed in the horizontal direction and points to the right in the left cluster and
to the left in the right cluster. However, Ω is strongly affected in the congested region.
The flow abruptly changes direction towards a globally vertically directed flow in the
central part of the clustered region. This flow is directed downwards in the left cluster
and upwards in the right cluster. This is consistent with the direction of the swirling
flow, which seems to force the circulation inside the congested region to adopt a similar
counterclockwise rotation as for the background flow. As a result, an S-shaped shock line
appears inside each cluster, separating the regions of unperturbed horizontal motion to
those of vertical motion. The upwards and downwards vertical motions are separated by
a slip line located in the middle between the two clusters. This slip line is almost vertical
(slightly tilted in the south-east to north-west direction). This slip line ends up with
two counterclockwise rotating vortices. These vortices are generated by the vertical flows
inside the clusters that short-circuit the swirling motion. They are located where the
vertical slip line rejoins the swirling motion at the upper left and lower right horizontal
boundaries of the high density clusters. The vertical circulation which takes place in the
inner part of the clusters penetrate the background flow on the sides of the vortices and
generates a shock line with a hemi-circular shape. This hemi-circular shape reproduces
the shape of the transition between congested and uncongested densities that can be
oberved in Fig. 7(a), near the central parts of the top and bottom horizontal boundaries
of the high density inner rectangle.

From these observations, we deduce that Ω is not smooth. The constraint |Ω| = 1
contributes to generating complex patterns. Their geometric features are outlined in
section 2 and in Fig. 3(a). Indeed, as a consequence of the fact that Ω is constant
along straight lines normal to itself, its integral lines are parallel curves to each other.
This feature is clearly seen on Fig. 7(b). However, at singularities, the parallel curves
are interrupted (see Fig. 3(b)). Here, due to the collision of the two clusters, vortex
singularities, discontinuities and slip lines form. The resulting topology takes a form
that is reminicent of domain walls in micromagnetism. Due to the time dynamics, these
domain walls evolve in the course of time and can change topology.
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As time goes on, the two herds interact and form a larger congestion region that
spreads towards the low density zones. This can be seen in Figure 8, which shows the
solution at time t = 0.1 (see density ρ in Fig. 8(a) and vector field Ω in Fig. 8(b), with
the same representation as in the previous figures). In Fig. 8(a), we note that, due to
wave dispersion, the densities inside the congested regions of the background flow and
of the cluster tails have decreased below the congestion density (the color in Fig 8(a)
is brown and not black in these regions). Congestion becomes strictly restricted to the
compression region between the two clusters. The vacuum region following the tail of
the clusters has also widened, because the clusters have moved further, leaving a region
devoid of particles behind them. The general flow structure discussed above for Fig. 7(b)
still remains on Fig. 8(b). However, the slip line at the interface between the two clusters
in the middle of the high density region has been transformed into a saddle singularity.
Simultaneously, the horizontal flow inside the clusters seem to be more strongly affected. A
splay field structure appears near the center of the clusters close to the saddle singularity.
There, the horizontal flow splits into upwards and downwards components. The roughly
straight top and bottom horizontal boundaries of the congestion region, which can be
seen in Fig. 8(a) as an abrupt transition from black to brown corresponds to a contact
discontinuity. Indeed, in Fig. 8(b), along the same line, there is no discontinuity of the
field Ω. Therefore, across this line, the density suffers an abrupt discontinuity while the
velocity is continuous. Finally, the entire structure of the high density inner rectangle
has rotated by an angle of about 10 degrees in the counterclockwise direction, i.e. in the
same rotation direction as the background swirling flow.

4.2.3 Case c = 1, with background pressure

We now investigate how the presence of a background pressure modifies the density pat-
terns and the flow structure. We change the pressure relation to (2.21) and we take pB
as (2.22) with κ = 1 (see also remark 2.1). The other parameters are given by (4.7).
The simulation is more robust since the background pressure prevents the appearance of
negative densities.

The results at time t = 0.1 are shown in Fig. 9 (see density ρ in Fig. 9(a) and
vector field Ω in Fig. 9(b), with the same representation as in the previous figures).
This figure must be compared with Fig. 8, where the results without background density
are displayed, the other parameters being the same. We can see that the effect of the
background pressure is to smear out the vacuum regions and to propagate the compression
wave faster. Indeed, on Fig. 9(a), we remark that the vacuum regions have partially filled
up due to the development of rarefaction waves at the outer vertical boundaries of the high
density rectangle. These rarefaction waves bring the fluid from the backgound low density
regions into the vacuum regions, as can be seen on Fig. 9(b). Indeed, in these vacuum
regions, the direction of the vector field Ω is oblique and points from the background
flow towards the vacuum region. By contrast, the direction of Ω for the corresponding
pressureless case in Fig. 8(b) is vertical. Like in the pressureless case (Fig. 8(a)), a
vertical flow is created by the collision of the clusters. It arises from the deflection of the
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cluster velocities into the vertical direction by the congestion constraint. This vertical flow
impinges on the background flow and creates a hemi-circular wave-front (see Fig. 9(a):
middle part of the top and bottom horizontal boundaries of the high-density rectangle).
However, by contrast to the pressureless case, the wave front propagates further and has
a more regular circular shape. This is obviously due to acoustic wave propagation in
the low-density background flow, which conveys information about velocity and modifies
the flow direction downstream. Indeed, in Fig. 9(b), it can be seen that the direction
of Ω is abruptly changed along the shock curve that bounds the region of compression.
The acoustic wave conveys information about the vertical velocity of the cluster into the
low density background. These changes of flow direction contribute to pre-compress the
gas, far downstream the congestion region. Similar to the pressureless case, we notice
that the nearly straight top and bottom horizontal boundaries of the congestion region
(see transition from black to brown on Fig. 9(a)) are contact discontinuities. Indeed,
across this line, there appears no discontinuity of Ω on Fig. 9(b). The density in the
cluster tails (Fig. 9(a)) is smaller than in the pressureless case (Fig. 8(a)). This is
also due to the development of rarefaction waves that contribute to fill in what was the
vacuum region in the pressureless case. We notice that the two counterclockwise rotating
vortices and the saddle singularities in the middle of the cluster interaction region remain
(compare Figs. 9(b) and 8(b)). Therefore, the general structures of the flow are similar
in the background or no-background pressure cases, but the details of these structures
are quantitatively affected in a perceivable way by the presence or not of the background
pressure.

4.2.4 Case c 6= 1, with background pressure

Influence of c: theoretical analysis. Before investigating the influence of the parame-
ter c on the simulation results, we perform some analysis of the effect of this parameter on
the propagation of waves. We first digress on the physical significance of the characteristic
speeds (2.15).

The characteristic speeds (2.15) are the propagation speeds of the waves generated
by a small perturbation (δρ, δΩ) of a uniform state (ρ,Ω), in the linear approximation.
Since these waves are independent of the spatial coordinate normal to the propagation
direction, it is legitimate to consider the one-dimensional system (4.1), (4.2). Introducing
the variable u = cos θ ∈ [−1, 1], this system can be written in terms of the unknowns
(ρ, u) in matrix form as follows:(

ρ
u

)
t

+ A(ρ, u)

(
ρ
u

)
x

= 0, (4.8)

with

A(ρ, u) =

(
u ρ

−λ̄(1− u2) cu

)
, (4.9)

where x is the coordinate along the propagation direction and λ̄ = λp
ε′(ρ)
ρ

. The quantity
u is the projection of the vector Ω along the propagation direction. The characteristic
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speeds ξ± are the two eigenvalues of A(ρ, u), i.e. the roots of the polynomial P (ξ) =
det(A(ρ, u)− ξ Id). Their expression, deduced from (2.15), is recalled here for the sake of
convenience:

ξ± =
1

2

(
(1 + c)u±

√
∆
)
, ∆ = (1− c)2u2 + 4λ̄ (1− u2). (4.10)

Now, the perturbation waves (δρ, δu) are not arbitrary, but are colinear to the asso-
ciated eigenvectors. In other words, a simple wave propagating with velocity ξ± is such
that (

δρ
δu

)
‖ Ξ±,

where Ξ± is the eigenvector of A associated to ξ±. This condition leads to the following
relations between δρ and δu:

1

2

(
(1− c)u∓

√
∆
)
δρ+ ρδu = 0. (4.11)

In (4.11), the minus sign is associated to ξ+ and vice-versa.
The special case u = 1 is particularly simple. It corresponds to an unperturbed state

such that the vector Ω is parallel to the propagation direction. In this case, we have
ξ± = 1

2

(
(1 + c)u ± |c − 1|u

)
. To simplify further, we must discuss the position of c with

respect to 1.

- If c > 1, we have:
ξ− = u, ξ+ = cu,

and the associated waves are such that

δu− = 0, ρ δu+ = (c− 1) δρ+, (4.12)

where the indices ’+’ and ’−’ refer to the wave associated to ξ+ and ξ−.

- If c < 1, we have:
ξ− = cu, ξ+ = u,

and the associated waves are such that

ρ δu− = −(1− c) δρ−, δu+ = 0. (4.13)

We notice that, in both cases, one characteristic speed coincides with the velocity u
and that the associated wave is a contact discontinuity: the velocity is continuous on both
sides of the waves and the density varies arbitrarily.

The other characteristic speed corresponds to the velocity cu. Therefore, it is the
velocity associated to the transport of Ω. The corresponding eigenvector shows that
velocity perturbations associated to this wave affect the density. Suppose that initially,
δu is decreasing with respect to x. This corresponds to a situation where particles in the
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rear are faster than particles in the front. In usual fluids, this contributes to stiffening the
velocity front, ultimately leading to a shock, like in the Burgers equation. Simultaneously,
a density bump forms in the region where the velocity fronts stiffens. Let us examine how
density perturbations behave in the presence of a decreasing velocity perturbation profile
in the situation where c 6= 1. In the case c > 1, the second relation (4.12) shows that
δρ+ has the same sign as δu+ and is therefore, decreasing. Therefore, the influence of
c > 1 is to lower the density increase due to the stiffening of the shock. In the case c > 1,
we thus expect a lowering of the amount of congestion generated by the dynamics. By
contrast, in the case c < 1, the first relation (4.13) shows that δρ− has the opposite sign
to that of δu− and is therefore, increasing. Therefore, the influence of c < 1 is to raise
the density increase due to the stiffening of the shock. In the case c < 1, we thus expect
an amplification of the amount of congestion generated by the dynamics.

Case c > 1. We now illustrate this analysis by numerical simulations. In Fig. 10,
we show simulation results obtained with c = 2, the other parameters being given by
(4.7). Again, we consider a background pressure given by (2.22) with κ = 1. The
density ρ is shown in Fig. 10(a) and the vector field Ω, in Fig. 10(b), with the same
representation as in the previous figures. This figure must be compared with Fig. 9,
where the case c = 1 with the same background pressure is displayed. As expected from
the analysis of the role played by the constant c above, the size of the congested area is
smaller than in the case c = 1 (compare the surface occupied by the black regions on Fig.
10(a) and Fig. 9(a)). The vertical flow created by the deflection of the clusters due to
the congestion constraint impacts the background flow more deeply. The hemi-circular
structure generated by this impact extends almost up to the top and bottom horizontal
boundaries of the domain. But simultaneously, the area where the congestion density is
reached is smaller. Therefore, most of the compression is due to the fast propagation of
the velocity information, due to the large value c = 2. This propagation pre-compress the
fluid downstream the congestion and contributes to reducing the amount of congestion.
Again, we observe that the horizontal boundary of the congested region is a contact
discontinuity as no associated discontinuity can be observed on the chart of Ω, in Fig.
10(b). The two counterclockwise vortices have transformed into unstable nodes as seen
from the flow patterns in Fig. 10(b), and simultaneously, the area near these unstable
nodes has emptied from particles. This area appears in light beige color in Fig. 10(a),
indicating that the density is very small there. The central saddle point has remained
and the congested area adopts a remarkable X-pattern around this point. The vacuum
regions along the vertical boundaries and bottom left and top right horizontal boundaries
of the initially high density inner rectangle have been almost completely filled and are
hardly noticed on Fig. 10(a).

Case c < 1. We now turn to the opposite case, namely the case c = 0.5. The case
c < 1 is of broader significance than the case c > 1. The case c < 1 covers traffic systems
and a larger class of biological swarming systems such as fish schools, mammal herds,
. . . [25, 31]. By contrast, the case c > 1, which occurs with backwards vision [31], would
apply e.g. to locust swarms. As discussed in Sec. 3.1, the relaxation approximation is
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not hyperbolic in general, although the SOH is. To bypass this problem, we adopt the
strategy described in Remark 3.3 (ii). In Fig. 11, we show the simulation results with
c = 0.5 in the presence of a background pressure, the other parameters being given by
(4.7). The density ρ is shown in Fig. 11(a) and the vector field Ω, in Fig. 11(b), with the
same representation as in the previous figures. This figure must be compared with Figs. 9
and 10, where the cases c = 1 and c = 2 with the same background pressure are displayed.
The qualitative features of the solution in Figs. 9, 10 and 11 are fairly similar. This is a
strong indication that the solution obtained with c = 0.5 is correct and this validates the
strategy consisting in using the relaxation system, in spite of its non-hyperbolic character.
Unfortunately, there are no analytical solutions available for this model. So, we cannot
provide a better validation than through this analogy for the time being.

Again, the analysis of the role played by the constant c above is confirmed by the
inspection of Fig. 11(a). Indeed, the size of the congested areas is larger than in the
case c = 1. For instance, in Fig. 11(a), we notice that there remains a congested area
(black color) in the part of the cluster which has not yet been deflected (region just below
(resp. above) the upper (resp. lower) vortex), while the same region in Fig. 9(a) is
no more congested. The vertical flow created by the deflection of the clusters due to the
congestion constraint penetrates the background flow less deeply. But, on the other hand,
all the area included in the hemi-circular structure generated by this impact is very close
to congestion (dark brown color on Fig. 11(a)), while only one side of this region is close
to congestion in Fig. 9(a). Propagation of velocity information is slow, due to the small
value c = 0.5. Therefore, the pre-compression of the fluid downstream the congestion is
less efficient. The uncompressed downstream fluid does not oppose to the propagation
of the congestion and therefore, the amount of congestion is larger. Again, the feature
that the horizontal boundary of the congested region is a contact discontinuity can still
be observed by comparing the density chart (Fig. Fig. 11(a)) and the chart of Ω (Fig.
11(b)). The two counterclockwise vortices are there (Fig. 10(b)), but the vacuum area
close to these vortices is almost non-existing (see Fig. 11(a)). The central saddle point
is also there. The vacuum regions along the vertical boundaries and bottom left and top
right horizontal boundaries of the initially high density inner rectangle are fairly visible
on Fig. 11(a).

4.2.5 Conclusion of the two-dimensional tests

From these tests, we first conclude on the validity of the numerical strategy developed
here. This strategy, consisting of the combination of the relaxation model of [43] and
of the AP-method of [22] proves its effectiveness, even in the cases where the relaxation
model is not hyperbolic. The second conclusion of these tests is that the density and
flow patterns generated by the SOH model can be very complex. The parameter c, which
tunes the speed of propagation of velocity information with respect to the material flow
propagation plays a key role in the type of structures that are generated. The lower value
of c, the stiffer the dynamics is, with the generation of large congested areas and stiff
density and velocity gradients. The constraint of the norm one velocity generates various
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types of singularities such as vortices, nodes, slip lines, shock waves and saddle points.
These structures are subject to topological changes as time evolves. It is also a remarkable
feature that the method is able to reproduce these singularities and follow their evolution
in time efficiently.

(a) density ρ (b) Ω

Figure 6: Initial data for ρ (Fig. 6(a)) and Ω (Fig. 6(b)), as functions of x and y. The
density is color-coded, with color map indicated to the right of Fig. 6(a). The field Ω is
indicated by blue arrows.

5 Application: a model of path formation in crowds

In this section, we show how the relaxation model with congestion (3.1), (3.2) can be
used to simulate path formation in crowds. To this aim, we extend it to two-fluid flows
to model different groups of pedestrians heading towards opposite directions. We denote
by (ρ+, q+) (respectively (ρ−, q−)) the density and momentum of pedestrians heading to
the right (respectively to the left). The desired velocity of each group of pedestrians is
denoted by w±. The system satisfied by (ρ+, q+, w+, ρ−, q−, w−) is written as follows:

ρ+,t +∇x · q+ = 0, (5.1)

q+,t +∇x ·
(
q+ ⊗ q+

ρ+

)
+∇x(pε(ρ)) =

1

β
(ρ+w+ − q+), (5.2)

(ρ+w+)t +∇x ·
(
w+ ⊗ q+

)
= 0, (5.3)

ρ−,t +∇x · q− = 0, (5.4)

q−,t +∇x ·
(
q− ⊗ q−
ρ−

)
+∇x(pε(ρ)) =

1

β
(ρ−w− − q−), (5.5)

(ρ−w−)t +∇x ·
(
w− ⊗ q−

)
= 0, (5.6)

ρ = ρ+ + ρ−. (5.7)
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(a) density ρ (b) Ω

Figure 7: Cluster collision. No background pressure and c = 1. Density ρ (Fig. 7(a)) and
velocity Ω (Fig. 7(b)) at t = 0.05, as functions of x and y. The density is color-coded,
with color map indicated to the right of Fig. 7(a). The field Ω is indicated by blue arrows.

(a) density ρ (b) Ω

Figure 8: Cluster collision. No background pressure and c = 1. Density ρ (Fig. 8(a)) and
velocity Ω (Fig. 8(b)) at t = 0.1, as functions of x and y. The density is color-coded, with
color map indicated to the right of Fig. 8(a). The field Ω is indicated by blue arrows.
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(a) density ρ (b) Ω

Figure 9: Cluster collision with background pressure and c = 1. Density ρ (Fig. 9(a)) and
velocity Ω (Fig. 9(b)) at t = 0.1, as functions of x and y. The density is color-coded, with
color map indicated to the right of Fig. 9(a). The field Ω is indicated by blue arrows.

(a) density ρ (b) Ω

Figure 10: Cluster collision with background pressure and c = 2. Density ρ (Fig. 10(a))
and velocity Ω (Fig. 10(b)) at t = 0.1, as functions of x and y. The density is color-
coded, with color map indicated to the right of Fig. 10(a). The field Ω is indicated by
blue arrows.
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(a) density ρ (b) Ω

Figure 11: Cluster collision with background pressure and c = 0.5. Density ρ (Fig. 11(a))
and velocity Ω (Fig. 11(b)) at t = 0.1, as functions of x and y. The density is color-
coded, with color map indicated to the right of Fig. 11(a). The field Ω is indicated by
blue arrows.

Eqs. (5.1), (5.4) are the continuity equations and eqs. (5.2), (5.5), the momentum balance
eqs. for each species of pedestrians. The left-hand side of these equations form two systems
similar to the compressible isentropic gas dynamics equations. However, they are coupled
by a single pressure pε(ρ) inside the momentum balance equation, where ρ given by (5.7)
is the total density of pedestrians. The pressure has a stiff profile when the density reaches
the congestion density ρ∗ given by (2.4), (2.5). The tendency for pedestrians to rejoin
their target velocity is modeled by the relaxation terms at the right-hand sides of the
momentum balance eqs. (5.2), (5.5), with relaxation rate β−1. The desired velocity is a
quantity attached to the pedestrians, and is therefore passively transported by the flow.
This is expressed by eqs. (5.3), (5.6). Indeed, using the continuity eqs. (5.1), (5.4), these
eqs. can be written in non-conservative forms as

w±,t + (u± · ∇x)w± = 0, u± =
q±
ρ±
,

which express a passive transport of w± by the velocity u±. This model bears analogies
with the the Aw-Rascle model of car traffic [3, 8] and its extension to pedestrian traffic
[2].

The following test problem shows how two flows with opposite desired directions in-
teract. The initial data correspond to a flow at rest with a random perturbation on the
density. The steady flow at rest is defined as follows:

ρs+(x) = 0.4, qs+(x) = 0, ws+(x) = ex,

ρs−(x) = 0.4, qs−(x) = 0, ws−(x) = −ex,

where pedestrians heading to the right (resp. left) have desired velocity along the x axis
pointing in the positive (resp. negative) direction. We perturb the density in the square
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[1/3, 2/3] × [1/3, 2/3] by a random noise to model some inhomogeneities in the crowd.
The perturbation ρr+ is sampled out of a uniform distribution in the interval [−0.19, 0.19]
and is constant on squares grouping 25 cells of the simulation mesh (i.e. squares made of
5 spatial steps on each side). Finally, the initial conditions are set up such that

ρ+(x, 0) = ρs+(x) + ρr+(x), ρ(x, 0) = 0.8, ρ−(x, 0) = ρ(x, 0)− ρ+(x, 0),

q±(x, 0) = qs±(x), w±(x, 0) = ws±(x).

The non-uniform initial densities allow for some non-uniform motion to develop. The
low density regions give room to pedestrians to pass through while, due to the den-
sity constraint, the high density regions act as bottlenecks preventing pedestrians to go
through. To illustrate the process more clearly, we choose a relatively slow relaxation
process β = 0.5. The mesh size is chosen to be such that ∆x = ∆y = 0.005 and the
time step is ∆t = 0.0005. Fig. 12 provides a representation of the initial densities of
the right-going pedestrians ρ+ (fig. 12(a)) and of the left-going ones ρ− (fig. 12(b)) in
the two-dimensional domain, using a color code. The perturbation of the uniform initial
densities inside the inner rectangle takes the form of a checkerboard with cells of random
color ranging from light beige color (small densities) to dark brown ones (large densities).

To solve this system, the splitting method is used in the same way as described in
section 3. During the conservative step, the equations for (ρ, q) and w are decoupled and
are written as follows:

ρ+,t +∇x · q+ = 0, (5.8)

q+,t +∇x ·
(
q+ ⊗ q+

ρ+

)
+∇x(pε0(ρ)) +∇x(pε1(ρ)) = 0, (5.9)

(ρ+w+)t +∇x ·
(
w+ ⊗ q+

)
= 0, (5.10)

ρ−,t +∇x · q− = 0, (5.11)

q−,t +∇x ·
(
q− ⊗ q−
ρ−

)
+∇x(pε0(ρ)) +∇x(pε1(ρ)) = 0, (5.12)

(ρ−w−)t +∇x ·
(
w− ⊗ q−

)
= 0, (5.13)

where the pressure is decomposed into pε(ρ) = pε0(ρ) + pε1(ρ) as in (3.10), (3.11). We can
add (5.8) to (5.11) and (5.9) to (5.12) and get the following conservation eqs. for the total
density ρ and total momentum q = q+ + q− as follows:

ρt +∇x · q = 0,

qt +∇x ·
(
q+ ⊗ q+

ρ+

)
+∇x ·

(
q− ⊗ q−
ρ−

)
+ 2∇x(pε0(ρ)) + 2∇x(pε1(ρ)) = 0.

In a similar way as in the previous sections, we can implement the AP schemes for this
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system. The semi-discretization can be written as follows:

ρn+1 − ρn

∆t
+∇x · qn+1 = 0, (5.14)

qn+1 − qn

∆t
+∇x ·

(
qn+ ⊗ qn+
ρn+

)
+∇x ·

(
qn− ⊗ qn−
ρn−

)
+ 2∇x(pε0(ρn))

+2∇x(pε1(ρn+1)) = 0. (5.15)

The strategy for solving this system is the same as before. The elimination of qn+1 between
(5.14) and (5.15) leads to an elliptic equation for the pressure pε,n+1

1 . From pε,n+1
1 , the

total density ρn+1 can be obtained by inverting the relation pε1(ρn+1) = pε,n+1
1 . Then, the

momenta q± can be updated thanks to the discrete, semi-implicit versions of (5.9) and
(5.12). Finally, the densities ρ± can be updated thanks to the discrete, implicit version of
(5.8) and (5.11). The equations for w± (5.10) and (5.13) are decoupled and can be solved
easily by standard shock capturing methods. We leave the details to the reader.

The second step of the splitting method is the relaxation step. It is written as follows:

ρ±,t = 0, w±,t = 0, q±,t =
1

β
(ρ±w± − q±),

and can be solved easily.
The right-going pedestrian density ρ+ is shown in Fig. 13 at two different times (fig.

13(a): t = 0.025 ; fig. 13(b): t = 0.05) in the two-dimensional domain, using a color
code. Due to the relaxation to the desired velocities, the flow is set into motion. The
sharp edges between the checkerboard squares in the initial density ρ+ (see Fig. 12(a))
progressively fade away in Figs. 13(a) and 13(b) as the two species of pedestrians mix
together.

In order to highlight the flow structure, we compute the following two quantities which
measure which of the left or right going flows is dominant:

Dρ = ρ+ − ρ−, Dq1 = q+,1 + q−,1,

where q±,1 is the first component of q±. The quantity Dρ measures which pedestrian
species is dominant (Dρ > 0 if there are more right-going than left-going pedestrians at
this point, and vice-versa if Dρ < 0). The quantity Dq1 measures which flow is dominant
(Dq1 > 0 if the right-going flow is dominant and vice-versa if Dq1 < 0). We expect
that Dρ and Dq1 fluctuate about zero since initially ρ+ ≈ ρ− up to random fluctuations
and the initial desired velocities are opposite. But the morphology of the fluctuations
results from the dynamics. In particular, we expect that alternating regions where right-
or left-going pedestrians dominate will form. In these regions, the dominant flow will be
right-going or left-going respectively.

In Fig. 14 and 15, Dρ and Dq1 are plotted at different times as functions of x and
y using a color code (Fig. 14(a): t = 0 ; Fig. 14(b): t = 0.025 ; Fig. 15(a): t = 0.05 ;
Fig. 15(b): t = 0.075). In each of these figures, the top picture shows Dq1 and the
bottom picture, Dρ. The color code is indicated by the color bar next to the figures
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(the zero value is green, red colors show positive values, while blue colors, negative ones).
This figures show the emergence of a phenomenon of path formation. Paths appear as
elongated patches of the same color in Dq1 (top pictures). Blue (resp. red) regions
materialize paths of pedestrians moving from right to left (resp. from left to right). Path
formation indeed results from the balanced influence of the relaxation towards the target
velocity which forces pedestrians to move in one given direction and congestion avoidance
which drives pedestrians towards the regions of lower density. Alternating regions of high
densities of right-going and left-going pedestrians are materialized in the bottom figures
by patches of red and blue colors. These patches reproduce the structure of the patches
of Dq1 but not exactly, meaning that some pedestrians are forced to adopt a motion in
the transverse direction (y-direction) because their desired motion is impeded by large
density clusters of opposite pedestrians. These simulations show the ability of the model
to generate paths from initial random density fluctuations.

(a) Density ρ+ at t = 0 (b) Density ρ− at t = 0

Figure 12: Crowd model: Initial densities ρ+ (Fig. 12(a)), ρ− (Fig. 12(b)) as functions
of x and y. The densities are color-coded, with color map indicated to the right of the
figures.

6 Conclusion

In this paper, we have investigated the Self-Organized Hydrodynamic (SOH) model de-
rived in [25]. Short-range repulsion is modeled by a singular pressure which becomes
infinite at the congestion density. The singular limit of an infinite pressure stiffness leads
to phase transitions from compressible to incompressible dynamics. We have proposed
an Asymptotic-Preserving scheme which allows to treat the singular pressure with a very
small but finite value of the stiffness parameter. We have performed numerical simula-
tions which illustrate the efficiency of the scheme to treat the occurrence of congestions.
A two-fluid variant has been proposed to model path formation in crowds.

Future work will be devoted to the physical enrichment of the model. It will make it
quantitatively more accurate for the modeling of herds of gregarious animals like ovine
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(a) density ρ+ at t = 0.025 (b) density ρ+ at t = 0.05

Figure 13: Crowd model: Density ρ+ as a function of x and y at times t = 0.025 (Fig.
13(a)) and t = 0.05 (Fig. 13(b)). The densities are color-coded, with color map indicated
to the right of the figures.

(a) Dq1 and Dρ at t = 0 (b) Dq1 and Dρ at t = 0.025

Figure 14: Crowd model: (a)-(b) x-component of the momentum difference Dq1 (top) and
density difference Dρ (bottom) as functions of x and y at times t = 0 (Fig. 14(a)) and
t = 0.025 (Fig. 14(b)). The numerical values are color-coded, with color map indicated
to the right of the figures.
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(a) Dq1 and Dρ at t = 0.05 (b) Dq1 and Dρ at t = 0.075

Figure 15: Crowd model: (a)-(b) x-component of the momentum difference Dq1 (top) and
density difference Dρ (bottom) as functions of x and y at times t = 0.05 (Fig. 15(a)) and
t = 0.075 (Fig. 15(b)). The numerical values are color-coded, with color map indicated
to the right of the figures.
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or bovine. It will also allow a more precise description of pedestrian flow and crowd
behavior. To this aim, more detailed information from ethology and cognitive sciences
will be included in the model. Another direction of improvement concerns the ability
of the numerical method to treat vacuum regions and to provide sharp transitions from
uncongested to congested areas free of any spurious oscillations.

Appendix 1: The two dimensional full time and space

discretization

We consider the 2D case with domain Ω = [0, 1] × [0, 1]. We denote by (xi, yj) =
(i∆x, j∆y), i = 0, · · · ,M1, j = 0, · · · ,M2, where M1 = 1/∆x, M2 = 1/∆y. Let
U = (ρ, q)T , q = (q1, q2)T and Ui,j = U(xj, yj). To simplify the exposition, we define

F (U) =

(
c
q21
ρ

+ λpε0(ρ)

c q1q2
ρ

)
, G(U) =

(
c q1q2

ρ

c
q22
ρ

+ λpε0(ρ)

)
.

Then the left-hand side of (3.4) and (3.5) can be written as

∂tρ+ ∂xq1 + ∂yq2 = 0,

∂tq + ∂xF (U) + ∂yG(U) + λ∇x(pε1(ρ)) = 0.

We denote by

F n =

(
c

(qn1 )2

ρn
+ λpε0(ρn)

c
qn1 q

n
2

ρn

)
, Gn =

(
c
qn1 q

n
2

ρn

c
(qn2 )2

ρn
+ λpε0(ρn)

)
,

∇i,j(p
ε
1)n+1 =

(
Dx
i,j(p

ε
1(ρ))n+1

Dy
i,j(p

ε
1(ρ))n+1

)
=

(
Dx
i,j(p

ε
1(ρn+1))

Dy
i,j(p

ε
1(ρn+1))

)
,

where Dx
i,ju, Dy

i,ju are the centered difference operators, which, for any scalar function u,
are defined as follows:

Dx
i,ju =

ui+1,j − ui−1,j

2∆x
, Dy

i,ju =
ui,j+1 − ui,j−1

2∆y
.

We also define the eigenvalues of the Jacobian matrix for two one-dimensional hyperbolic
system as follows:

λ(1) = c
q1

ρ
, c
q1

ρ
±

√
(c2 − c)q

2
1

ρ2
+ λ(pε0)′(ρ), λ(2) = c

q2

ρ
, c
q2

ρ
±

√
(c2 − c)q

2
2

ρ2
+ λ(pε0)′(ρ).

With these notations, the full discretization of the scheme takes the following form in 2D:

ρn+1
i,j − ρni,j

∆t
+

1

∆x

(
Q
n+ 1

2

i+ 1
2
,j
−Qn+ 1

2

i− 1
2
,j

)
+

1

∆y

(
Q̃
n+ 1

2

i,j+ 1
2

− Q̃n+ 1
2

i,j− 1
2

)
= 0,

qn+1
i,j − qni,j

∆t
+

1

∆x

(
F n
i+ 1

2
,j − F n

i− 1
2
,j

)
+

1

∆y

(
Gn
i,j+ 1

2
−Gn

i,j− 1
2

)
+∇i,j(p

ε
1)n+1 = 0,
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where the fluxes are

Q
n+ 1

2

i+ 1
2
,j

=
1

2

{
(q1)n+1

i+1,j + (q1)n+1
i,j

}
− 1

2
Ci+ 1

2
,j(ρ

n
i+1,j − ρni,j),

Q̃
n+ 1

2

i,j+ 1
2

=
1

2

{
(q2)n+1

i,j+1 + (q2)n+1
i,j

}
− 1

2
Ci,j+ 1

2
(ρni,j+1 − ρni,j),

F n
i+ 1

2
,j =

1

2

{
F n
i+1,j + F n

i,j

}
− 1

2
Ci+ 1

2
,j(q

n
i+1,j − qni,j),

Gn
i,j+ 1

2
=

1

2

{
Gn
i,j+1 + Gn

i,j

}
− 1

2
Ci,j+ 1

2
(qni,j+1 − qni,j),

and

Ci+ 1
2
,j = max{|λ(1)

i,j |, |λ
(1)
i+1,j|, |λ

(2)
i,j |, |λ

(2)
i+1,j|},

Ci,j+ 1
2

= max{|λ(1)
i,j |, |λ

(1)
i,j+1|, |λ

(2)
i,j |, |λ

(2)
i,j+1|}.

Similarly to the one-dimensional case, by inserting the momentum equation into the
density equation, we can get the following discrete elliptic equation:

ρn+1
i,j −

∆t2

4

{
1

∆x2

[
pε1(ρn+1

i+2,j)− 2εp1(ρn+1
i,j ) + εp1(ρn+1

i−2,j)
]

+
1

∆y2

[
pε1(ρn+1

i,j+2)− 2pε1(ρn+1
i,j ) + pε1(ρn+1

i,j−2)
]}

= ρni,j −∆t(Dx
i,jq

n
1 +Dy

i,jq
n
2 )

+
∆t2

2

{
1

∆x2

[
(F n

i+3/2,j)
(1) − (F n

i+1/2,j)
(1) − (F n

i−1/2,j)
(1) + (F n

i−3/2,j)
(1)
]

+
1

∆x∆y

[
(Gn

i+1,j+1/2)(1) − (Gn
i+1,j−1/2)(1) − (Gn

i−1,j+1/2)(1) + (Gn
i−1,j−1/2)(1)

]
+

1

∆x∆y

[
(F n

i+1/2,j+1)(2) − (F n
i−1/2,j+1)(2) − (F n

i+1/2,j−1)(2) + (F n
i−1/2,j−1)(2)

]
+

1

∆y2

[
(Gn

i,j+3/2)(2) − (Gn
i,j+1/2)(2) − (Gn

i,j−1/2)(2) + (Gn
i,j−3/2)(2)

]}
+

∆t

2∆x

[
Ci+ 1

2
,j(ρ

n
i+1,j − ρni,j)− Ci− 1

2
,j(ρ

n
i,j − ρni−1,j)

]
+

∆t

2∆y

[
Ci,j+ 1

2
(ρni,j+1 − ρni,j)− Ci,j− 1

2
(ρni,j − ρni,j−1)

]
.

Here (F n
i+1/2,j)

(1) is the first component of the vector F n
i+1/2,j. Also, like in the one-

dimensional case, we solve the above elliptic equation to get first pn+1
1 then ρn+1. Once

ρn+1 is known, we can get qn+1 explicitly by solving

qn+1
i,j = qni,j −

∆t

∆x

(
F n
i+ 1

2
,j − F n

i− 1
2
,j

)
− ∆t

∆y

(
Gn
i,j+ 1

2
−Gn

i,j− 1
2

)
−∆t∇i,j(p

ε
1)n+1.
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