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A discontinuous Galerkin finite element method (DGFEM) has been developed and tested
for the linear, three-dimensional, rotating incompressible Euler equations. These equations
admit complicated wave solutions, which poses numerical challenges.

These challenges concern: (i) discretisation of a divergence-free velocity field; (ii) dis-
cretisation of geostrophic boundary conditions combined with no-normal flow at solid
walls; (iii) discretisation of the conserved, Hamiltonian dynamics of the inertial-waves;
and, (iv) large-scale computational demands owing to the three-dimensional nature of
inertial-wave dynamics and possibly its narrow zones of chaotic attraction. These issues
have been resolved, for example: (i) by employing Dirac’s method of constrained Hamilto-
nian dynamics to our DGFEM for linear, compressible flows, thus enforcing the incompress-
ibility constraints; (ii) by enforcing no-normal flow at solid walls in a weak form and
geostrophic tangential flow along the wall; and, (iii) by applying a symplectic time discret-
isation.

We compared our simulations with exact solutions of three-dimensional incompressible
flows, in (non) rotating periodic and partly periodic cuboids (Poincaré waves). Additional
verifications concerned semi-analytical eigenmode solutions in rotating cuboids with solid
walls. Finally, a simulation in a tilted rotating tank, yielding more complicated wave
dynamics, demonstrates the potential of our new method.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

In the geophysical context, wave motion plays a very important role in energy and angular momentum transport within
the oceans and lakes, in particular in the interior of the fluid. These waves often cause mixing, and this mixing forms a very
important part of the ocean circulation. Internal gravity (e.g., [42]) and ‘gyroscopic’ waves, further on referred to as inertial
waves (e.g., [17]), are the main representatives of transverse ocean waves which have their maximum particle displacement
not at the free surface, but in the interior of the fluid domain. In contrast to internal gravity waves, where density stratifi-
cation is the main restoring mechanism, inertial waves exist solely due to the angular momentum stratification. Coriolis
forces caused by the rotation of the Earth act as a restoring force on the wave motion. While the influence of rotation in com-
parison with stratification in geophysical applications is weaker, inertial waves remain of importance in several cases. Iner-
tial waves influence the liquid outer core of the Earth ([23,2,3,34]), orbiting and/or spinning spaceships and satellites
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carrying liquid payload ([3,24]), relatively homogeneous parts of the ocean ([19,4,12]), lake hydrodynamics ([11]), and are
important in some astrophysical applications ([9]). An important property of these inertial waves is that their propagation
direction is determined by ratio of the wave frequency and Coriolis frequency (at twice the rotation rate), and is not altered
by the reflection from the boundaries of the fluid domain. The latter results in wave focussing and defocussing phenomena in
the absence of a ‘‘local reflectional symmetry’’, in which case the domain walls are asymmetric, i.e., neither parallel nor per-
pendicular to the rotation axis. Repeated reflection in which wave focusing is dominating gives in general rise to wave attrac-
tors: narrow regions onto which the wave energy converges. In a limited set of geometries these attractors were theoretically
predicted ([33,40,41,35,21]) and experimentally observed ([25]), especially in quasi-2D set-ups. The purpose of this work is
to provide numerical tools such that we are able to increase our understanding of inertial waves via numerical simulations of
a rotating homogeneous fluid.

Inertial waves are best studied in isolation, in a homogeneous fluid, in the absence of viscosity and nonlinearity. We
therefore focus on the development and testing of finite element numerical solution techniques for the linear, three-dimen-
sional incompressible Euler equations in rotating (closed) domains, instead of focussing directly on the more complex Na-
vier–Stokes equations.

It is useful to contrast two types of waves admitted by the linear, incompressible Euler equations: (a) inertial waves
in closed rotating domains, and (b) surface-trapped waves in half-closed domains with the free surface of the liquid act-
ing under gravity. Surface waves arise due to the restoring force of gravity at the interface between a heavier fluid (e.g.,
sea water) and a lighter fluid or vacuum. Linear surface waves in the absence of Coriolis forces only involve the poten-
tial-flow component, while the vortical components of the velocity or the vorticity (the three-dimensional curl of the
velocity vector) are zero. In contrast, inertial waves involve nonzero vortical components of the velocity and exhibit mul-
ti-scale behaviour, especially when wave focusing occurs. These inertial-wave solutions are thus challenging to compute,
either analytically or numerically. In addition, the linear three-dimensional Euler equations form a Hamiltonian system.
The wave dynamics of both wave types thus concern geometric, Hamiltonian dynamics, as an initial value problem, in
which invariants such as mass, energy and phase-space volume derive from this geometric structure. Furthermore, the
Hamiltonian system is constrained since the total density is constant and the divergence of the velocity field is zero.
Preservation of these discrete invariants in the numerical discretisation ensures numerical stability without any loss
of wave amplitude due to artificial numerical damping. The compatible numerical discretisation we aim to develop
for these linear incompressible Euler equations should therefore preferably inherit a discrete analogue of this character-
istic Hamiltonian geometric structure.

To wit, our goal is to develop and test a Hamiltonian discontinuous Galerkin finite element method (DGFEM) for inertial-
wave dynamics of the linear, incompressible, three-dimensional, rotating Euler equations. The features of the inertial waves
indicate that the following mathematical and numerical challenges should be met: (i) The constraint of incompressibility of
the flow, or the zero divergence of the velocity, needs to be inherited by the discretisation in a weak or strong form. This is a
classical issue in computational fluid dynamics, in which the pressure acts as a Lagrange multiplier to ensure time consis-
tency of the secondary constraint of incompressibility (namely the zero divergence). The zero perturbation density acts here
as primary constraint. (ii) The discretisation needs to satisfy the geostrophic balance relations along the wall together with
the no-normal flow condition imposed either weakly or strongly. Rotation in combination with the no-normal flow require-
ment at solid walls yields geostrophic balance conditions on the tangential velocity components. It is nontrivial to satisfy
these consistency boundary conditions discretely (e.g., see [1]). (iii) A discrete analogue of the geometric Hamiltonian struc-
ture needs to be established to ensure conservation properties of the system. In particular, it would guarantee preservation
of wave amplitude and phase space volume, such that long-time calculations remain stable and relevant over many wave
periods [18,20]. The use of stable dissipative, time integrators would destroy the carefully preserved geometric structure
of the spatial discretisation designed for Hamiltonians in classical mechanics. Hence, symplectic time integrators are
required.

The need to deal with local fine scales and the presence of strong gradients led to our choice for discontinuous Galer-
kin finite element methods in the first place. Furthermore, DGFEM permits large gradients and hp-refinement. The com-
putational linear algebra demands are handled by using PETSc [38,39] in our versatile DGFEM software environment
hpGEM [32].

The outline of the paper is as follows and concerns all four challenges. In Section 2, we review the equations of mo-
tion for the linear compressible and incompressible Euler equations and their Hamiltonian formulations. It also includes
an exposition of Dirac’s method of constraints for the linear compressible Euler equations, with zero perturbation den-
sity as primary constraint [7,26,36]. Concerning challenges (i)–(ii), in Section 3, we derive the general Hamiltonian
DGFEM for an incompressible flow from the Hamiltonian structure for a compressible flow via Dirac’s theory. Concerning
challenge (iii), in Section 4, we present a proper time integrator for the presented Hamiltonian dynamics and discuss
some of the properties of the resulting time and space discrete numerical schemes. Numerical verifications are given
in Section 5, where DGFEM simulations are compared with exact solutions of incompressible flow in a rotating triple-
periodic domain and a partially closed cuboid with periodicity in one direction, and with semi-analytical series solutions
for incompressible flow in closed cuboids. Additionally, numerical results on wave attractors are presented. Conclusions
are drawn in Section 6.
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2. Continuum theory for (in)compressible fluid

2.1. Governing equations

Compressible fluid flow in a domain D is governed by the non-linear compressible Euler equations in a rotating frame
with angular velocity X ¼ ðX1;X2;X3ÞT :
@û
@t
¼ �2X� û� ðû � rÞû� q̂�1rbPðq̂Þ; ð1aÞ

@q̂
@t
¼ �r � ðq̂ûÞ; ð1bÞ
where û ¼ ûðx; y; z; tÞ ¼ ðû; v̂ ; ŵÞT is the three-dimensional velocity field, q̂ ¼ q̂ðx; y; z; tÞ a scalar density field, and bP ¼ bPðq̂Þ
the barotropic pressure. Cartesian coordinates x ¼ ðx; y; zÞ and time t are used; the three-dimensional differential operator
is given by r ¼ ð@=@x; @=@y; @=@zÞT . The boundaries of the domain D are denoted by @D ¼ [i@Di.

We linearise the compressible Euler equations (1) around a rest state with u0 ¼ 0 and q0 ¼ const., such that û ¼ 0þ �u
and q̂ ¼ q0 þ �q, where u and q are the perturbation velocity and density fields, respectively. Linearisation yields the linear
compressible Euler equations in a rotating domain
@u
@t
¼ �rðc

2
0

q0
qÞ � 2X� u; ð2aÞ

@q
@t
¼ �r � ðq0uÞ; ð2bÞ
where c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@bP=@qq

jq¼q0
is the constant, acoustic wave speed. Two types of boundary conditions will be discussed: periodic

and solid-wall boundary conditions. For fixed, solid-wall boundary conditions the normal component of the velocity field at
the boundaries is zero u � n̂ ¼ 0, with n̂ the outward normal vector at the boundary. If we multiply both sides of the momen-
tum Eqs. (2a), restricted to the domain boundary, with the normal vector n̂,
@ðu � n̂Þ
@t

¼ �rðc
2
0

q0
qÞ � n̂� ð2X� uÞ � n̂ ð3Þ
and apply the no-normal flow condition u � n̂ ¼ 0, we obtain a restriction on the density gradient
c2
0

q0
rq � n̂ ¼ �ð2X� uÞ � n̂: ð4Þ
In the absence of domain rotation, the right side of (4) is zero at the boundary, which indicates that the normal component of
the density gradient is also zero at the boundary. In contrast, with rotation the normal component of the density gradient is
balanced by the projected components of the velocity field. This balance between the density/pressure gradient force and the
Coriolis force is called geostrophic balance. Implementation of the boundary condition therefore becomes more challenging
due to the mandatory satisfaction of geostrophic balance.

In the limit of zero Mach number, M0 ¼ V0=c0 ! 0, with V0 a reference velocity of the fluid, the linear incompressible Eu-
ler equations arise from (2) as
@u
@t
¼ �2X� u�rP; ð5aÞ

r � u ¼ 0; q ¼ 0; ð5bÞ
where P is the pressure. Note that the constraint on the perturbation density q ensures that the total density is constant for
all time.

2.2. Hamiltonian framework

In the following sections we introduce the Hamiltonian framework for linear compressible and incompressible fluid
flows, including the connection with the corresponding partial differential equations (PDEs). In general, a Hamiltonian sys-
tem consists of a phase-space and two geometric objects, an energy functional H and a Poisson bracket {,} [5,28,37]. The
Hamiltonian dynamics is given by the time evolution of a general state functional F via the bracket form
dF
dt
¼ fF ;Hg ð6Þ
for a specific Hamiltonian functional, or energy, H. This (generalised) Poisson bracket fF ;Hg has to satisfy the following
properties:
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(i) skew-symmetry: fF ;Hg ¼ �fH;Fg,
(ii) linearity in the first component: faF þ bG;Hg ¼ afF ;Hg þ bfG;Hg,

(iii) the Jacobi identity: fF ; fG;Hgg þ fG; fH;Fgg þ fH; fF ;Ggg ¼ 0, and:
(iv) the Leibniz identity: fFG;Hg ¼ FfG;Hg þ fF ;HgG, where a and b are constants, and F ;G and H arbitrary functionals.
The skew-symmetry of the bracket automatically results in energy conservation: dH=dt ¼ fH;Hg=0.

2.2.1. Bracket for linearised compressible flow
Hamiltonian dynamics of compressible fluid flow, cf., [8,29] governed by the linear equations (2) in D � R3 is given by
dF
dt
¼ fF ;Hg ¼

Z
D

dH
dq
r � dF

du
� dF

dq
r � dH

du
� 2X

q0
� dH

du
� dF
du

� �
dx; ð7Þ
with Hamiltonian energy functional
H ¼ H½u;q� �
Z

D

1
2

q0u2 þ c2
0

q0
q2

� �
dx: ð8Þ
The definition of the functional derivative is
dH � lim
�!0

H½uþ �du;qþ �dq� � H½u;q�
�

¼
Z

D

dH
du
� duþ dH

dq
dq

� �
dx: ð9Þ
The functional derivatives of H follow from (8) and (9), and are
dH
du
¼ q0u;

dH
dq
¼ c2

0

q0
q: ð10Þ
The Poisson bracket f; g in (7) satisfies all properties: skew-symmetry is easy to spot from the structure of the bracket; the
bracket is obviously bilinear, thus the linearity and Leibniz identity are automatically satisfied; and, the Jacobi identity can
be checked directly, given suitable boundary conditions.

To specify Hamiltonian dynamics in the domain D one has to specify appropriate boundary conditions. Mathematical
models based on PDEs usually specify boundary conditions on the relevant variables at the boundary. Similarly, in the Ham-
iltonian formulation boundary conditions can be imposed by choosing appropriate function spaces for the arbitrary func-
tional F .

As an example, we will show the equivalence between the Hamiltonian framework (7),(8) and the PDE representation (2)
of compressible fluid flow in a rotating domain D bounded by solid walls. The momentum and continuity equations can be
obtained if the following functionals are chosen as follows
Fu �
Z

D
uðx; tÞ �UðxÞdx ð11aÞ

Fq �
Z

D
qðx; tÞ/ðxÞdx; ð11bÞ
with / 2 Q and U 2 Y arbitrary test functions, where
Q ¼ f/ 2 L2ðDÞg ð12Þ
Y ¼ fU 2 ðL2ðDÞÞ3 and r �U 2 L2ðDÞ : n̂ �U ¼ 0 at @Dg ð13Þ
and L2ðDÞ is the space of square integrable functions on D. To incorporate slip flow boundary conditions at @D we restrict the
space for the test functions U at the boundary. Corresponding functional derivatives of (11a) and (11b) thus become
dFq

dq
¼ /ðxÞ and

dFu

du
¼ UðxÞ; with

dFu

du
� n̂ ¼ 0 at @D: ð14Þ
Using functionals (11a) and (11b), with corresponding functional derivatives (14) and (10), in the bracket formulation (7)
yields the momentum (2a) and continuity (2b) equations for linearised compressible flow, respectively. We also used Gauss’
law combined with (14). The restricted test function arising from functional Fu ensures the satisfaction of the boundary con-
ditions at the PDE level.

2.2.2. Construction of a Dirac-bracket for linearised incompressible flow
Dirac’s theory of constrained Hamiltonian systems ([10,36,43]) is used to derive the linearised incompressible Euler equa-

tions as the limit of the Hamiltonian structure of the linearised compressible Euler equations. Basically, Dirac’s theory en-
forces a constant density constraint via Lagrange multipliers onto the derived compressible Hamiltonian framework [7,8].

Due to linearisation, the constant total density constraint q̂ ¼ const transforms into the perturbation density constraint
qðxÞ ¼ 0: ð15Þ



506 S. Nurijanyan et al. / Journal of Computational Physics 241 (2013) 502–525
It will act as a primary constraint, to be incorporated into the compressible Hamiltonian dynamics (7) via a Lagrange mul-
tiplier field. In a consistent theory, the constraint must be preserved by the evolution of the system. This leads to several
possible outcomes: (i) the consistency requirement results into, modulo constraints, an equation of essentially the form
1 ¼ 0; (ii) it leads to an equation of the form 0 ¼ 0; (iii) we obtain an equation which resolves the unknown Lagrange mul-
tiplier, or (iv) it yields a secondary constraint. Case (i) implies inconsistent equations of motion; they do not posses any solu-
tion. Case (ii) is the desired outcome. Case (iv) introduces new secondary constraints, preservation of which must be checked
by repeating the procedure until either we encounter case (i) or all constraints lead to case (ii). This is the main idea of Dirac’s
algorithm.

A Lagrange multiplier kqðx; tÞ is introduced to enforce the primary constraint. This constraint, or any arbitrary functional
F½q� thereof, must be preserved in time. Hence, the evolution of such a functional must remain naught, i.e.,
dF½q�
dt

¼ 0 ¼ fF½q�;Hg þ
Z

D
kqðx0ÞfF ½q�;qðx0Þgdx0: ð16Þ
From Poisson bracket (7), we deduce that fF½q�;qðx0Þg ¼ 0 and, therefore, the Lagrange multiplier remains undetermined. It
gives, however, rise to a secondary constraint
0 ¼ fF½q�;Hg ¼ �
Z

D

dF½q�
dq
r � ðq0uðxÞÞdx: ð17Þ
Since the functional F½q� is arbitrary in (17), it follows that
r � u ¼ 0 ð18Þ
should hold as well. Note that dF½q�=dq serves as arbitrary test function and that the secondary constraint implies that the
velocity is divergence-free. Next, both constraints
qðxÞ ¼ 0 and DðxÞ ¼ r � uðxÞ ¼ 0 ð19Þ
will be enforced simultaneously as primary constraints, also in time.
For this reason, we introduce Lagrange multipliers kq ¼ kqðx; tÞ and kD ¼ kDðx; tÞ. The two consistency requirements are

stated in weak form by using two (different) arbitrary functionals F½q� and F½D�, as follows
dF½q�
dt

¼ 0 ¼ fF½q�;Hg þ
Z

D
kDðx0ÞfF ½q�;Dðx0Þgdx0; ð20aÞ

dF½D�
dt

¼ 0 ¼ fF½D�;Hg þ
Z

D
kqðx0ÞfF½D�;qðx0Þgdx0 þ

Z
D

kDðx0ÞfF ½D�;Dðx0Þgdx0; ð20bÞ
where we omitted stating the explicit time dependence. An elaborate calculation of the brackets in (20a) yields
0 ¼
Z

D

dF
dq

�r � ðq0uÞ þ r2kD

� �
dx�

Z
@D

dF
dq

n̂ � rkDdS ð21Þ
with surface element dS. By using the secondary constraint in (21), and the arbitrariness of the functional F½q� in the interior
and at the boundary, we find that
r2kD ¼ 0 with n̂ � rkD ¼ 0: ð22Þ
Its solution is kD ¼ cst.
To analyse (20b), we first relate the functional derivative of F½D� with respect to D to the one with respect to u, as follows
dF½D� ¼
Z

D

dF½D�
dD

dDdx ¼ �
Z

D
r dF½D�

dD
� dudx; ð23Þ
where we used that n̂ � du ¼ 0. The last term in (20b) cancels after an integration by parts, by using the additional boundary
conditions n̂ � rkD ¼ 0 and n̂ � rðdF½D�=dDÞ ¼ 0 at @D. We subsequently find that (20b) becomes
0 ¼
Z

D

dF
dD
r � ð2X� uÞ þ r2kq

� �
dx�

Z
@D

dF
dD

n̂ � 2X� uþrkq
	 


dS: ð24Þ
The arbitrariness of F½D� in (24), in the interior and at the boundary, then implies that
r � ð2X� uÞ þ r2kq ¼ 0 on D with 2X� uþrkq
	 


� n̂ ¼ 0 on @D: ð25Þ
Details in the above calculations have been relegated to Appendix A.
The bracket formulation for incompressible flow is now given by
dF½u�
dt

¼ fF ;Hg þ
Z

D
kqðx0ÞfF ;qðx0Þgdx0: ð26Þ
The dynamics is then obtained from (26) combined with (24) for the Lagrange multiplier (k ¼ kq)
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dF
dt
¼ fF ;Hginc �

Z
D
�2X

q0
� dH

duðxÞ �
dF

duðxÞ þ kðxÞr � dF
duðxÞ

� �
dx; ð27aÞ

0 ¼
Z

D

dF
dD
r � ð2X� uÞ þ r2k
� �

dx�
Z
@D

2X� uþrkð Þ � n̂ dF
dD

dS; ð27bÞ
with constrained energy functional
H ¼
Z

D

1
2
q0u2dx: ð27cÞ
It is obtained after application of the primary constraint q ¼ 0. The incompressible, linear Euler equations can be derived
from (27) by choosing functionals
Fu �
Z

D
uðx; tÞ �UðxÞdx and FD �

Z
D

Dðx; tÞe/ðxÞdx; ð28Þ
where UðxÞ 2 Y and e/ðxÞ 2 Q with the additional requirement that n̂ � re/ ¼ 0. The functionals in (28) lead to the system of
equations
@u
@t
¼ �rk� 2X� u and r2k ¼ �r � ð2X� uÞ; ð29Þ
with slip flow u � n̂ ¼ 0 and geostrophic balance 2X� uþrkð Þ � n̂ ¼ 0 at the solid-wall boundary. Notice that the Lagrange
multiplier k ¼ P plays the role of the pressure P.

3. Discrete Hamiltonian formulation

Discretisations of the earlier derived compressible and incompressible continuous Hamiltonian formulations will be de-
rived next. There are two possible choices for a derivation of discrete Hamiltonian dynamics for incompressible fluid flow:
direct discretisation of the continuous bracket formulation (27) for incompressible fluid flow, or application of Dirac’s theory
on the discretised Hamiltonian formulation of compressible flow. The latter approach is preferable for several reasons: (i) a
discretisation of the compressible Hamiltonian formulation is becoming an intermediate check point for the introduced dis-
cretisation algorithm; (ii) avoidance of dealing with discontinuities of unknown Lagrange multipliers simplifies the process;
and, (iii) the relatively easy incorporation of boundary conditions which are set automatically by Dirac’s theory given the
proper boundary conditions for the compressible case. A detailed explanation of the key aspects of the algorithm can be
found in [31], where we demonstrate the main steps on a finite volume (FV) discretisation of the compressible Hamiltonian
formulation with consecutive application of Dirac’s theory on a discrete level. This FV discretisation is equivalent to a DG
discretisation with constant basis functions.

3.1. Discontinuous Galerkin FEM discretisation for the linearised Euler equations

In this section, we will introduce a discontinuous Galerkin FEM discretisation that preserves the Hamiltonian structure of
linear, compressible and incompressible flows. The FV discretisation of the Hamiltonian system from [31] can be used as a
guide in the choice of the numerical flux.

3.1.1. Finite element space
Let Ih denote a tessellation of the domain D with elements K. The set of all edges in the tessellation Ih is C, with Ci the set

of interior edges and CD the set of edges at the domain boundary @D. Additional notation is introduced for the numerical flux,
to be introduced shortly. Let e be a face between ‘‘left’’ and ‘‘right’’ elements KL and KR, respectively, with corresponding out-
ward normals nL and nR. When f is a continuous function on KL and KR, but possibly discontinuous across the face e, let
fL ¼ ðf jKL

Þje and fR ¼ ðf jKR
Þje denote the left and right traces, respectively. Let PpðKÞ be the space of polynomials of at most

degree p on K 2 Ih, with p P 0. The finite element spaces Qh and Yh required are
Qh ¼ fq 2 L2ðDÞ : qjK 2 PpðKÞ;8K 2 Ihg; ð30aÞ
Yh ¼ fY 2 ðL2ðDÞÞ3 : Y jK 2 ðPpðKÞÞ3;8K 2 Ihg: ð30bÞ
The number of degrees of freedom on an element is denoted by NK ¼ dimðPpðKÞÞ. Hereafter, we use a scaled version of (7,8),
with q0 ¼ 1 and c0 ¼ 1.

The discrete energy on the tessellated domain, cf. (8), thus becomes
H ¼ 1
2

X
K

Z
K

u2
h þ q2

h

	 

dK; ð31Þ
where qh 2 Qh and uh 2 Yh. Corresponding variational derivatives are
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dH
duh
¼ uh and

dH
dqh
¼ qh: ð32Þ
There is some abuse of notation here, because we use functions F and H for functionals. However, if approximations uh and qh

are viewed as finite-dimensional expansions, then function derivatives with respect to the expansion coefficients emerge.

3.1.2. Hamiltonian DGFEM discretisation for linearised compressible flow
In this section, we derive a DGFEM discretisation of the Hamiltonian structure for linearised compressible flow (7). The

specific functional F½uh� �
R

D uh �Udx is chosen to obtain the discretised momentum equations in a Hamiltonian framework,
with U 2 Yh an arbitrary test function. The functional derivative with respect to the velocity thus equals
dF
duh
¼ U: ð33Þ
Likewise, a functional F½qh� �
R

D qh/dx is needed, with / 2 Qh an arbitrary test function. Its functional derivative equals
dF
dqh
¼ /: ð34Þ
Our starting point is to simply limit functionals in the Poisson bracket (7) on tessellation Ih to ones on the approximate finite
element space, as follows
dF
dt
¼ ½F;H� �

X
K

Z
K

dH
dqh
rh �

dF
duh
� dF

dqh
rh �

dH
duh
� 2X� dH

duh
� dF
duh

� �
dx ð35Þ
with element-wise differential operator rh. After integration by parts of the first two terms on the right-hand-side of (35)
and introduction of numerical fluxes, we obtain
dF
dt
¼
X

K

Z
K
�rh

dH
dqh
� dF
duh
þ dH

duh
� rh

dF
dqh
� 2X

q0
� dH

duh
� dF
duh

� �
dK þ

X
K

Z
@K

dH
dqh

n �
ddF
duh
�
ddH
duh
� n dF

dqh

 !
dC; ð36aÞ
with element boundaries @K. Wide hats on the expressions in the boundary integrals indicate numerical fluxes. We chose the
following numerical fluxes
ddF
duh
¼ ð1� hÞ dF

duL
h

þ h
dF
duR

h

and
ddH
duh
¼ ð1� hÞ dH

duL
h

þ h
dH
duR

h

; ð36bÞ
where L and R indicate the traces from the left and right elements connected to the faces, and 0 6 h 6 1. We emphasise the
equivalence of the numerical fluxes used in (36) and in the FV discretisation [31] for the case with constant basis and test
functions on each element.

We use numerical fluxes (36b) and rewrite the sum over element boundaries into a sum over all faces. Together with (31),
it yields the following DGFEM discretisation for linear, compressible Hamiltonian dynamics
dF
dt
¼
X

K

Z
K
�rh

dH
dqh
� dF
duh
þ dH

duh
� rh

dF
dqh
� 2X� dH

duh
� dF
duh

� �
dK þ

X
e2Ci

Z
e

dH
dqL

h

� dH
dqR

h

� �
n � ð1� hÞ dF

duL
h

þ h
dF
duR

h

� �

þ dF
dqR

h

� dF
dqL

h

� �
n � dH

duR
h

hþ dH
duL

h

ð1� hÞ
� �

dC: ð37Þ
Here n ¼ nL is the exterior normal vector connected with element KL.
Technically speaking, periodic boundary conditions can be specified in ghost cells (denoted with subscript R), where val-

ues of the variables exactly coincide with the face-adjacent cell values (denoted with subscript Lp) at the other side of the
periodic boundary
dH

dUR � n ¼
dH

dULp
� n and

dH
dqR
¼ dH

dqLp
; ð38Þ
with n the normal to the boundary face. Geometrically speaking, there are of course only internal cells in a periodic domain.
In the case of a three-dimensional cuboid bounded by solid walls, the numerical fluxes on both the test functions and the
Hamiltonian derivatives must vanish, cf. our specifications in (14). In terms of ghost cells, it implies that
ð1� hÞ dF
duL

h

þ h
dF
duR

h

¼ 0 and ð1� hÞ dH
duL

h

þ h
dH
duR

h

¼ 0 at CD: ð39Þ
We will use, or rather assume, shortly that boundary conditions for incompressible flow should automatically be satisfied by
using Dirac’s theory, given that those boundary conditions are satisfied for the discrete, compressible Hamiltonian
discretisation.
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By construction, the bracket (37) remains skew-symmetric. Unconventional is that the numerical flux is also acting on the
test functions dF=duh. We refer to [45] for a proof that the bracket (37) can be transformed to a classical, discontinuous
Galerkin finite element weak formulation with alternating fluxes, provided h ¼ 1=2 at boundary faces and for constant mate-
rial parameters. When material parameters are a function of space, then the Hamiltonian formulation with its division be-
tween bracket and Hamiltonian becomes crucial. Not only the skew-symmetric or alternating fluxes matter then but also the
dual, Hamiltonian projection. The DG discretisation with a polynomial approximation of order zero will exactly coincide
with our FV discretisation [31]. Note that for h ¼ 1=2 the well-known image boundary condition emerges from (39). We
emphasise, though, that for h – 1=2 our general condition (39) still applies, but that it seems no longer quite equivalent
to the standard, alternating flux formulation applied directly to the PDEs.

Variables are expanded on each element K in terms of local basis functions such that: uh ¼ /bub and qh ¼ /bqb. Both coef-
ficients and test functions require elemental superscripts, which we silently omit. Greek numerals are used locally on each
element K and we apply the summation convention over repeated indices. Variational and function derivatives are then re-
lated as follows
dF ¼
X

K

Z
K

dF
duh

duh þ
dF
dqh

dqhdK ð40aÞ

¼
X

K

Z
K

dF
duh

/bdK
� �

dub þ
Z

K

dF
dqh

/bdK
� �

dqb ð40bÞ

¼
X

K

@F
@ub

dub þ
@F
@qb

dqb: ð40cÞ
Similarly, by starting from (40c) and using the relation
Mabub ¼
Z

K
/auhdK; ð41Þ
with local mass matrix Mab ¼ MK
ab, one can derive
dF
duh
¼ M�1

bc
@F
@ub

/c and
dF
dqh
¼ M�1

bc
@F
@qb

/c: ð42Þ
By substitution of (42) into (37), we immediately derive the desired form of the finite-dimensional Hamiltonian
discretisation
dF
dt
¼
X

K

@H
@ub

@F
@qa
� @F
@ub

@H
@qa

� �
� EclM�1

bc M�1
al � 2X� @H

@ua
� @F
@ub

M�1
ab þ

X
e2Ci

ð1� hÞ @H
@qL

a

@F
@uL

b

� @F
@qL

a

@H
@uL

b

 !

� GLL
clM�L

alM�L
bc þ h

@H
@qL

a

@F
@uR

b

� @F
@qL

a

@H
@uR

b

 !
� GLR

clM�L
alM�R

bc � ð1� hÞ @H
@qR

a

@F
@uL

b

� @F
@qR

a

@H
@uL

b

 !
� GRL

clM�R
alM�L

bc

� h
@H
@qR

a

@F
@uR

b

� @F
@qR

a

@H
@uR

b

 !
� GRR

clM�R
alM�R

bc ð43Þ
with elemental (vector) matrices Ecl and GLR
cl etc. These read
Ecl ¼
Z

K
/crh/ldK and GLR

cl ¼
Z

e
n/L

l/R
cdC; ð44Þ
with similar relations for other terms. Finally, after substitution of the expansion into Hamiltonian (31), it becomes
H ¼ 1
2

X
K

Mab ua � ub þ qaqb

� �
: ð45Þ
A global formulation is useful for the incompressible case. We therefore introduce a reordering into global coefficients
Ui ¼ UiðtÞ ¼ ðU;V ;WÞTi and RkðtÞ, instead of the elemental ones, in the finite element expansion of uh and qh with indices run-
ning over their respective, global ranges. It turns out that the local matrices Mab and Ecl in (43) and (45) readily extend to
global matrices Mij and Eij. These have a block structure in which each elemental matrix fits in separation from the others.
The contribution of the numerical fluxes leads to coupling between the elements, which can be incorporated into a global
matrix Gij. The latter is straightforwardly defined computationally by a loop over the faces, and we will therefore not provide
an explicit expression. The resulting, global Hamiltonian formulation then becomes
dF
dt
¼ ½F;H�d �

@H
@Uj

@F
@Ri
� @F
@Uj

@H
@Ri

� �
� DIVklM

�1
ik M�1

jl � 2X� @H
@Ui
� @F
@Uj

M�1
ij ð46aÞ
with the divergence vector operator DIVkl � Ekl � Gkl and global Hamiltonian
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H ¼ 1
2

Mij Ui � Uj þ RiRj
	 


: ð46bÞ
The resulting equations of motion arising from (46) are
_Uj ¼ �M�1
jk RlDIVkl � 2X� Uj ð47aÞ

Mkl
_Rl ¼ Uj � DIVjk ð47bÞ
with the dot denoting a time derivative.

3.1.3. Hamiltonian DGFEM discretisation for linearised incompressible flow
In close analogy with the continuous case and the FV-case [31], Dirac’s theory is applied to the Hamiltonian dynamics

(46). The density expansion coefficients are all restricted in every local element such that the resulting density in the element
is zero. The following primary constraints are imposed on the discrete density field
Dk ¼ MklRl: ð48Þ
Preservation of the constraints in time leads to the following consistency relation
0 ¼ _Dk ¼ ½Dk;H�d þ kl½Dk;Dl�d: ð49Þ
Using (48) in the bracket (46a) shows that ½Dk;Dl�d ¼ 0. The Lagrange multipliers kl in (49) thus remain undetermined, but
the consistency requirement gives rise to secondary constraints Lk ¼ ½Dk;H�d ¼ 0. Analogous to the continuous and FV-case,
the secondary constraint is the discrete version of the divergence-free velocity field property (18). To wit
Lk ¼ ½Dk;H� � DIVlk � Ul; ð50Þ
with the discrete divergence operator DIVlk. We start again with both primary constraints and require these to remain pre-
served under the Hamiltonian dynamics. We obtain
0 ¼ _Dk ¼ ½Dk;H�d þ ll½Dk; Ll�d; ð51aÞ
0 ¼ _Lk ¼ ½Lk;H�d þ kl½Lk;Dl�d þ ll½Lk; Ll�d: ð51bÞ
Application of the primary constraint implies that Lk ¼ ½Dk;H� ¼ 0 in (51a). Hence,
ll½Dk; Ll� ¼ llDIVmlM
�1
jm � DIVjk ¼ 0: ð53Þ
The matrix acting on ll is a discrete Laplacian. It is nonsingular, whence ll ¼ 0. Consequently, (51b) reduces to
0 ¼ _Lk ¼ ½Lk;H�d þ kl½Lk;Dl�d ð53aÞ
¼ �DIVjk � 2X� Uj � klDIVjkM�1

jm � DIVml; ð53bÞ
which is the discrete equivalent of the Poisson equation in (29). Finally, the resulting discrete, linear, incompressible Ham-
iltonian dynamics is given by
dF
dt
¼ ½F;H�inc � �

@F
@Uj
� 2X� @H

@Ui
M�1

ij þ klM
�1
jk DIVkl

� �
ð54aÞ
with energy function
H ¼ 1
2

MijUi � Uj: ð54bÞ
The final system consists of the ordinary differential equations following directly from (54) after using F ¼ Uj, as follows
_Uj ¼ �2X� Uj � klM
�1
jk DIVkl; ð55Þ
combined with (53):
klDIVjkM�1
jm � DIVml ¼ �DIVjk � 2X� Uj: ð56Þ
4. Time integrator

We consider a symplectic time integrator for the time discretisation of linear compressible (47) and incompressible (55)
Hamiltonian dynamics. Symplectic time integrators form the subclass of geometric integrators which, by definition, are
canonical transformations. The modified midpoint time integrator was chosen amongst other symplectic schemes [18]. It
is implicit, which requires more computation, but that pays off in dealing with the momentum and continuity equations
in a rotating frame of reference.
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4.1. Linear, compressible flow

Applying the modified midpoint scheme to the discrete compressible Hamiltonian dynamics (46) or (47), one gets
Unþ1
j � Un

j

Dt
¼ �M�1

jk
ðRnþ1

l þ Rn
l Þ

2
DIVkl �X� ðUnþ1

j þ Un
j Þ ð57aÞ

Mkl
ðRnþ1

l � Rn
l Þ

Dt
¼

Unþ1
j þ Un

j

2
� DIVjk: ð57bÞ
Proposition 1. The numerical scheme for linear, compressible fluid flow given by (57) is exactly energy conserving, such that
MijðUnþ1

i � Unþ1
j þ Rnþ1

i Rnþ1
j Þ ¼ MijðUn

i � U
n
j þ Rn

i Rn
j Þ.
Proof. Multiply Eqs. (57) with MijU
nþ1
i ;Rnþ1

k and MijU
n
i ;R

n
k . Thereafter, add them up. After some manipulation, the Hamilto-

nian on the ðnþ 1Þ-th time level can be shown to equal the Hamiltonian on the n-th level. h
4.2. Incompressible flow

The midpoint time integrator is also applied to the incompressible discrete Hamiltonian dynamics (54) or (55), giving
ðUnþ1
j � Un

j Þ
Dt

¼ �X� ðUnþ1
j þ Un

j Þ � knþ1
l M�1

jk DIVkl ð58aÞ

knþ1
l DIVjkM�1

jm � DIVml ¼ �DIVjk �X� ðUnþ1
j þ Un

j Þ: ð58bÞ
Proposition 2. The numerical scheme for linear, incompressible fluid flow given by (58) exactly conserves energy and the discrete
zero-divergence property in time, such that DIVjm � Unþ1

j ¼ 0 given that DIVjm � U0
j ¼ 0 and MijU

nþ1
i � Unþ1

j ¼ MijU
n
i � U

n
j .
Proof. Firstly, we present the proof for the conservation of the discrete zero-divergence, under the assumption that the cur-
rent velocity of the n-th-time level is discretely divergence free, i.e., Lm ¼ DIVjm � Un

j ¼ 0. We apply the discrete divergence
operator on both sides of (58a) and use that the present velocity is divergence free, to obtain
DIVjm � Unþ1
j =Dt ¼ �DIVjm �X� ðUnþ1

j þ Un
j Þ � DIVjm � knþ1

l M�1
jk DIVkl: ð59Þ
The right hand side of (59) exactly coincides with (58b) and therefore DIVjm � Unþ1
j ¼ 0.

Secondly, energy conservation means that the discrete Hamiltonian energy functional (54b) stays unchanged in time.
Multiplication of (58a) with MijU

nþ1
i and MijU

n
i , followed by summation of both equations yields
Mij
ðUnþ1

i � Unþ1
j � Un

i � U
n
j Þ

Dt
¼ �knþ1

l DIVil � ðUnþ1
i þ Un

i Þ ¼ 0; ð60Þ
since the terms involving rotational effects cancel and in the last step we use that present and future time velocities are
divergence free, as shown in the first part of this proof. Hence, the difference of the energy at the ðnþ 1Þ-th and n-th level
is zero. h
4.3. Initial conditions

As proven above, the discontinuous Galerkin discretisation for linearised incompressible fluid flow conserves energy and
is divergence free at the discrete level. The proofs require a discrete, divergence-free initial condition, i.e., DIVjm � U0

j ¼ 0. This
condition is not guaranteed automatically, since the projection of the initial, divergence-free velocity field on the chosen dis-
continuous Galerkin finite element space only satisfies discrete zero-divergence up to the order of accuracy. We therefore
require a preprocessing step on this projected velocity U. We are looking for a U� for which DIVjm � U�j ¼ 0 exactly and
kU� � Uk is minimal. Note that the matrix DIVjm is not square. Hereafter, we denote the associated, global matrix by DIV
and the vector of velocity unknowns as U (so without indices). Basically, the latter problem transforms into a well-known
problem in vector calculus: find a projection of the vector U on the space A: the null-space of discrete divergence matrix
operator DIV , defined as



Fig. 1. Projection of vector U on the null-space of matrix DIV .

Fig. 2. A structure of the resulting square sparse matrix with more than 108 non-zero elements and X1 ¼ X2 ¼ 0, and X3 ¼ 1. K denotes the vector of
unknown Lagrange multipliers.
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A ¼ fQ 2 R3Ndof : DIVQ ¼ 0g ð61Þ
with Ndof the degrees of freedom per velocity component (assuming them to be equal for simplicity).
From linear algebra [14,13], we obtain that the closest vector from the A-space will be the projection of vector U on the

space (see Fig. 1), which is
U� � projAU ¼ Uþ U?: ð62Þ
Applying the DIV–operator on (62), we find
0 ¼ DIVU� ¼ DIVUþ DIVU?; ð63Þ
which results in
DIVU? ¼ �DIVU: ð64Þ
The latter equation is solved for U? via a least-square approximation [16] up to machine precision. Hence, the projected
velocity is preprocessed using (62), and the resulting velocity field has become exactly discrete divergence free, as required.
4.4. Other properties of the algebraic system

A direct DGFEM discretisation of the incompressible Navier–Stokes equations (or the Euler equations as special case) gen-
erally requires the inf–sup condition to be satisfied to attain numerical stability [15,27]. In order to get a stable pressure
approximation, two different strategies are often pursued: either a pressure stabilisation term is used or the approximation
spaces for velocity and pressure are chosen (differently) such that an inf–sup compatibility condition is fulfilled.
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Nonetheless, our numerical discretisation for linear, incompressible flow does not suffer from those drawbacks. The exact
preservation of the Hamiltonian dynamics as well as the constraints makes the system unconditionally stable.

Furthermore, the three-dimensionality of the problem results in a large algebraic system, which we represent using the
sparse matrix structures available in PETSc [38,39]. Fig. 2 shows the sparsity of a matrix, needed to determine Unþ1

j and knþ1
l

in the discretisation for incompressible flow (57). We use a linear, iterative solver to converge to the desired tolerance. To
improve the convergence rate of the iterative solver ILU preconditioners were used with controlled memory usage of the
resulting algebraic system.
5. Tests of numerical scheme

Discretisations for linear compressible and incompressible flows were implemented for discontinuous Galerkin methods
in the hpGEM C++ software framework [32]. The developed applications are consequently highly object-oriented, easy to
maintain and extend. Although the tests considered concern cuboids, the implementation can cope with general geometries
Fig. 3. Incompressible waves in periodic domain. The results concern an incompressible Hamiltonian discretisation on a 32� 32� 32 grid with Dt ¼ T=20
and period T. The implementation concerns a quadratic polynomial approximation on local elements.

Fig. 4. Energy and L1-norm of discrete divergence in the Hamiltonian DGFEM discretisation during 100 periods of periodic inertial waves in a cuboid.
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and meshes. The three-dimensionality of the problem poses, however, significant requirements on speed and memory use.
The sparse matrix data structures available in the PETSc library are therefore used. An ILU pre-conditioner is applied to the
linear algebraic system before applying a GMRES linear solver [38,39]. The number of iterations varies for the different test
cases and strongly depends on the dimensions of the algebraic system, e.g., the grid size and the amount of basis functions. In
the case of quadratic polynomial basis functions with a grid of 64� 64� 64 elements, which is the computationally most
demanding case, one needs approximately forty GMRES iterations to reach the tolerance 10�14 in solving the algebraic equa-
tion for incompressible flow.

Although the main goal is to simulate inertial waves in a rectangular box, several extra test cases were performed to verify
the approaches and techniques used. Two text cases (periodic waves and waves in a domain with no-slip boundaries) for the
compressible fluid were implemented, tested and validated by comparison with an available exact solution (see [31] for
more details). Additionally, an attempt has been made to attain energy attractors in the domain with a geometrical asym-
metry. In all tests presented, h ¼ 1=2 was used in the numerical flux. Other values of 0 6 h 6 1 were also used for various test
cases, with similar results.
5.1. Incompressible waves in a periodic domain

The compressible test cases were mainly interesting as a quality assurance step for linearised incompressible fluid flow,
which we consider next. An exact solution was found for the linear, incompressible, rotational Euler Eqs. (29) with periodic
boundary conditions
Table 1
Converg
have th

Grid

4 � 4

8 � 8

16 �

32 �

64 �
u ¼ 1
2p

ffiffiffi
3
p

cos 2pðxþ yþ zÞ þ
ffiffiffi
3
p

3
t

 !
þ 3 sin 2pðxþ yþ zÞ þ

ffiffiffi
3
p

3
t

 !" #
; ð65aÞ

v ¼ 1
2p

ffiffiffi
3
p

cos 2pðxþ yþ zÞ þ
ffiffiffi
3
p

3
t

 !
� 3 sin 2pðxþ yþ zÞ þ

ffiffiffi
3
p

3
t

 !" #
; ð65bÞ

w ¼ � 1
p

ffiffiffi
3
p

cos 2pðxþ yþ zÞ þ
ffiffiffi
3
p

3
t

 !
; ð65cÞ

P ¼ 1
2p2 cos 2pðxþ yþ zÞ þ

ffiffiffi
3
p

3
t

 !
; ð65dÞ
where the rotation vector is X ¼ ð0;0;1Þ and P is the pressure. This exact solution is used for the initialisation in a periodic
domain D ¼ ½0;1�3. As was already discussed, the Lagrange multiplier k ¼ P plays the role of the pressure in our incompress-
ible Hamiltonian discretisation. The numerical velocity and pressure fields are compared against the exact solution during
several wave periods. Fig. 3 gives an example of the numerical solution during one period. Fig. 4 shows that conservation of
energy and discrete zero-divergence in time are maintained up to machine precision. To ensure that the velocity field has
zero-divergence, one has to initialise the numerical scheme with an exact discrete divergence-free velocity field, see
Section 4.3. Thus, adjustment of the initial projection of the velocity field onto the discontinuous Galerkin basis is required
to satisfy this condition exactly (up to machine precision). The energy change observed at t ¼ 0 in Fig. 4, originates from this
projection, and is within the order of accuracy of the numerical approximation. Table 1 presents the rate of convergence of
the Hamiltonian DGFEM discretisation.
ence of the error in the Hamiltonian DGFEM discretisation for incompressible periodic waves in a cuboid. Due to symmetry all velocity components
e same error.

p ¼ 0 p ¼ 1 p ¼ 2

l2-error order l2-error order l2-error order

� 4 u 2.665E�1 – 1.6340E-1 – 7.2122E-3 –
p 2.872E�2 – 1.3876E-2 – 3.9242E-3 –

� 8 u 1.477E�1 0.9 5.3412E�2 1.6 9.6455E�4 2.9
p 1.411E�2 1.0 4.6244E�3 1.6 6.0758E�4 2.7

16 � 16 u 7.587E�2 1.0 1.8100E-2 1.6 1.2843E�4 2.9
p 7.141E�3 1.0 1.4475E�3 1.7 1.0251E�4 2.6

32 � 32 u 3.822E�2 1.0 5.7218E�3 1.7 1.6820E�5 2.9
p 3.737E�3 0.9 4.5473E�4 1.7 1.443E�5 2.8

64 � 64 u 1.919E�2 1.0 1.6772E�3 1.8 2.2143E�6 2.9
p 2.169E�3 0.8 1.3692E�4 1.7 2.0682E�6 2.8
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5.2. Poincaré waves in a channel

Poincaré waves in a channel for incompressible flow are considered next. The channel is periodic in the y-direction and
closed with walls in the x- and z-directions. The angular rotation vector is equal to X ¼ ð0;0;1Þ. An exact solution for Poin-
caré waves in D ¼ ½0;1�3 reads
Fig. 5.
a 32� 3
Velocity components u and v for Poincaré waves are computed. Numerical results concern the incompressible Hamiltonian DGFEM discretisation on
2� 32 grid with Dt ¼ T=20. We consider a quadratic polynomial approximation in local elements.



Fig. 6. Vertical velocity component w and linearised scalar pressure fields during one period of a Poincaré-wave simulation. For details, see the caption of
Fig. 5.
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u ¼ � kr3

1� r2 1þ l2

ðrkÞ2

 !
sinðkxÞ sinðly� rtÞ cos 2pzð Þ; ð66aÞ

v ¼ �lr cosðkxÞ þ 1
k

sinðkxÞ
� �

cosðly� rtÞ cos 2pzð Þ; ð66bÞ



Table 2
Convergence of the error in the Hamiltonian DGFEM discretisation for incompressible Poincaré waves in a channel.

Grid p ¼ 0 p ¼ 1 p ¼ 2

l2-error order l2-error order l2-error order

4 � 4 � 4 u 7.834e + 0 – 1.3599e + 0 – 2.9126E�1 –
v 7.492e + 0 – 1.4793e + 0 – 2.5108E�1 –
w 8.935e + 0 – 1.6662e + 0 – 2.4933E�1 –
p 5.819e + 0 – 4.7072e + 0 – 2.1281E�1 –

8 � 8 � 8 u 3.889e + 0 1.0 5.7839E�1 1.3 2.8640E�2 3.3
v 3.802e + 0 1.0 6.1504E�1 1.3 2.0699E�2 3.6
w 4.042e + 0 1.1 6.7238E�1 1.3 2.0075E�2 3.6
p 2.290e + 0 1.3 9.1548E�1 2.3 2.9025E�2 2.9

16 � 16 � 16 u 2.192e + 0 0.8 1.9858E�1 1.5 3.1792E�3 3.1
v 2.229e + 0 0.8 2.4017E�1 1.4 2.3963E�3 3.1
w 2.015e + 0 1.0 2.4244E�1 1.5 2.2733E�3 3.1
p 1.179e + 0 1.0 3.2671E�1 1.5 3.2460E�3 3.1

32 � 32 � 32 u 1.136e + 0 0.9 6.3126E�2 1.6 4.1469E�4 2.9
v 1.169e + 0 0.9 8.4394E�2 1.5 3.2670E�4 2.9
w 1.065e + 0 0.9 8.5931E�2 1.5 3.1967E�4 2.8
p 5.932E-1 1.0 1.0317E�1 1.7 4.3572E�4 2.9

64 � 64 � 64 u 5.726E�1 1.0 1.8031E�2 1.8 5.5452E�5 2.9
v 5.899E�1 1.0 2.4461E�2 1.8 4.4548E�5 2.9
w 5.258E�1 1.0 2.3687E�2 1.9 4.3963E�5 2.9
p 2.961E�1 1.0 3.1627E�2 1.7 4.3572E�5 2.9

Fig. 7. Energy and L1-norm of discrete divergence-free velocity field during 100 periods in Hamiltonian DGFEM computations of a Poincaré-wave.
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w ¼ r cosðkxÞ þ l
rk

sinðkxÞ
� �

sinðly� rtÞ sin 2pzð Þ; ð66cÞ

P ¼ �r2 cosðkxÞ þ l
rk

sinðkxÞ
� �

cosðly� rtÞ cos 2pzð Þ; ð66dÞ
where k ¼ 2p; l ¼ 2p, and frequency r ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ l2 þ 1

p
. At the solid walls in the x- and z-directions we need to satisfy geo-

strophic balance at the boundaries, due to the rotation of the domain. In Figs. 5 and 6 we present a numerical solution (veloc-
ity vector and scalar pressure fields) during one period. Fig. 7 demonstrates the discrete conservation of the energy and the
zero-divergence of the discrete velocity. Convergence results are given in Table 2, which show that the convergence rates are
close to kþ 1, with k the polynomial order.
5.3. Inertial waves

Next, we consider linear, incompressible, rotational fluid flow in a rectangular box with solid wall boundary conditions on
all sides. Such kind of flow will lead to inertial waves in the interior of the domain, e.g., [22]. An extensive discussion of these
waves as well as an improved semi-analytical solution of this problem can be found in [30]. The semi-analytical solution is
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used as a test solution for the verification of our incompressible Hamiltonian discretisation with slip-flow boundary condi-
tions. Due to the slow convergence of the semi-analytical solutions, this comparison can, however, only be done for re-
stricted mesh sizes.

Since the exact solution is unknown, we use solutions on a sequence of uniform meshes to obtain an estimate for the rate
of convergence, which is called Richardson extrapolation (e.g., [44]). We take a uniformly refined sequence of meshes
h4 ¼ href < h3 < h2 < h1, where the mesh-size hi (i ¼ 1;2;3:4) is doubled for each finer mesh, and calculate the convergence
rate s by numerically solving the following equation
Fig. 8.
Quadra
Horizontal velocity components u and v of an inertial wave with eigenfrequency r ¼ 0:477. The rotation vector is aligned with the z-direction.
tic basis functions are used on 32 � 16 � 16 mesh with time step Dt ¼ T=20.
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hs
1 � hs

2

hs
2 � hs

3

¼ kUref � Uh1
k � kUref � Uh2

k
kUref � Uh2

k � kUref � Uh3
k : ð67Þ
The numerical velocity field and the mesh size for the different meshes are given with subscript notation, where ð�Þref denotes
the finest mesh. By taking the sequence of meshes 64� 64� 64, 32� 32� 32;16� 16� 16;8� 8� 8, we numerically solve
(67). The convergence rate in the L1-norm is roughly as expected, s 	 2:89, for the implementation with quadratic
polynomials.

The extensive tests reported above convince us that the presented numerical scheme is actually more accurate than the
slowly converging semi-analytical solutions. In Figs. 8 and 9 we present all components of the numerical velocity
vector and pressure fields produced by a simulation of incompressible fluid flow initialised with one of the eigenmodes
Fig. 9. Vertical component w of velocity and scalar pressure p for the inertial wave simulation. For details, see the caption of Fig. 8.



Fig. 10. Energy and L1-norm of discrete divergence-free velocity in Hamiltonian DGFEM discretisation during 100 time periods of inertial waves in a
cuboid.

520 S. Nurijanyan et al. / Journal of Computational Physics 241 (2013) 502–525
of the semi-analytical solution. The domain is a rectangular box D ¼ ½0;2p� � ½0;p�2. Fig. 10 shows conservation of energy
and discrete zero-divergence.

5.4. Inertial waves in a ‘tilted’ box

Finally, we attempt to observe wave focussing in our numerical wave tank, to demonstrate the capabilities of our novel
numerical scheme. In the previous cases, the walls are either parallel or perpendicular to the rotation vector, possessing a
‘‘local reflectional symmetry’’. Thus no mode breaking can be observed. However, a slight tilt in one of the walls results
in symmetry breaking and hence in wave focussing and defocussing, such that, due to dominance of the former, wave attrac-
tors may appear [25]. Here we break the ‘‘local reflectional symmetry’’ by a small change in the background angular velocity
vector.

The domain is chosen to be a prolonged three-dimensional box with D ¼ ½0;4p� � ½0;p�2. The simulation is initialised with
a particular eigenfrequency (r 	 0:6946) from the semi-analytical solution for a domain with a constant background rota-
tion (X� ¼ ð0;0;1Þ) aligned along the z-direction available and from [25,30]. Next we introduce a small tilt in the angular
velocity such that X ¼ ð0;0:1;1Þ. After some time, the initial mode completely changes its structure and its frequency,
due to the ‘tilt’; see the plots of the ‘tilted’ and original flows in Figs. 11 and 12. The distribution of the energy in the ‘tilted’
rectangular domain is given in Fig. 13. In the vertical cross-section of the energy distribution plot (see Fig. 13), a structure
reminiscent of a wave attractor can be discerned. This rectangular region with a locally increased energy density is most evi-
dent in the middle of the tank, whereas in the rest of the tank there is a lower energy distribution. Furthermore, a similar
rectangular structure can be seen in the pressure field, whereas the pressure field of the original ‘untilted’ mode has a regular
structure (see Figs. 11 and 12). The numerical solution is expanded in terms of quadratic polynomials defined on a mesh with
160� 40� 40 elements. In the current implementation the size of the mesh is constrained by the available random-access
memory. The latter obstacle can be overcome by applying local hp-refinement near the zones with high wave amplitude and
implementing the numerical algorithm in a parallel environment.
6. Concluding remarks

We have derived a DGFEM discretisation for Hamiltonian dynamics of linear, rotating incompressible fluid flow. The dis-
cretisation was obtained by applying Dirac’s constrained Hamiltonian theory on a DGFEM formulation of compressible fluid
flows. The use of Dirac’s theory is a novel approach to derive a Hamiltonian discontinuous Galerkin discretisation for incom-
pressible flow using a related discretisation for compressible flow. The resulting system, as a consequence of the exact pres-
ervation of the constraints, does not require a stabilisation common to some direct DGFEM discretisations of incompressible
fluid flows [6].

It was a challenge to derive and implement the boundary conditions for a discretisation preserving the Hamiltonian struc-
ture in a rotating frame, due to the mandatory satisfaction of geostrophic balance for the flow along fixed walls. Moreover,
for exact preservation of energy and zero-divergence, the presented numerical scheme requires the projection of the initial
velocity profile to be exactly divergence free at the discrete level. A preprocessing step was thus introduced to ensure that
the initial velocity field in the DGFEM discretisation is divergence free up to machine precision.

Several tests of inertial waves in rotating domains were presented. The simulation of Poincaré inertial waves in a channel
assessed the proper implementation of no-normal flow boundary conditions in rotating domains. Next, an inertial-wave sim-
ulation in a cuboid with fixed solid walls showed agreement up to 10�2 with slowly converging semi-analytical solutions



Fig. 11. All components of the velocity field and the pressure field are given at time t = 56.4. The first column concerns the ‘tilted’ simulation and the second
column is the exact ‘untilted’ semi-analytical solution.
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Fig. 12. Vertical cross-sections of the fields given in Fig. 11 in the middle of the tank.
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available from [22]. Richardson extrapolation with sequencing of meshes proved that our numerical solution is more
accurate: the semi-analytical solutions available from [22] or [30] do either not satisfy the Euler equations or the solid-wall
boundary conditions exactly. A DGFEM allows relatively easy hp-refinement of the system. Global p-refinement was already
used in all presented numerical test cases and it appears that the quadratic polynomial approximation in the local elements
provides sufficient order of accuracy for capturing the phenomena of inertial waves in rotating domains.



Fig. 13. The distribution of the numerical energy in the ‘tilted’ simulation at time t = 56.4. In (b), we outlined the tentative attractor.
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Moreover, a simulation of inertial waves in a rotating domain with a small change in the direction and magnitude of the
background angular velocity revealed a structure reminiscent of a wave attractor, due to the violation of the ‘‘local reflec-
tional symmetry’’. To capture sufficient details of wave attractors, it is useful to introduce hp-refinement of the domain near
the zones of attraction. This is one of the nice features of a DG scheme and will be addressed in future research. It will also
allow more detailed studies of the wave focussing and defocussing in a container deprived of ‘‘a local reflectional symmetry’’.
Additional work will include the incorporation of a free surface in the presented numerical scheme for incompressible fluid
flows.
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Appendix A. Constrained Hamiltonian continuum dynamics

The first calculation concerns the derivation from (20a)–(21)
0 ¼ fF½q�;Hg þ
Z

D
kDðx0ÞfF ½q�;Dðx0Þgdx0 ðA:1Þ

¼ �
Z

D

dF
dq
r � ðq0uÞdx�

ZZ
D;D0

kDðxÞ
dF

dqðx0Þr
0 � dr � uðxÞ

duðx0Þ dxdx0: ðA:2Þ
The last term in (A.2) can be reworked to
�
ZZ

D;D0
kDðxÞ

dF
dqðx0Þr

0 � dr � uðxÞ
duðx0Þ dxdx0 ¼

ZZ
D;D0

kDðxÞr0
dF

dqðx0Þ �
dr � uðxÞ

duðx0Þ dxdx0 �
Z

D

Z
@D0

kDðxÞ
dF

dqðx0Þ n̂
0

� dr � uðxÞ
duðx0Þ dS0dx

¼ �
Z

D
rkD � r

dF
dq

dxþ
Z
@D

Z
D0

kDðxÞr0
dF

dqðx0Þ n̂ �
duðxÞ
duðx0ÞdSdx0

¼
Z

D

dF
dq
r2kDdx�

Z
@D

dF
dq
rkD � n̂dS; ðA:3Þ
in which the first boundary term emerging is zero, and similarly the second boundary term emerging is zero, because
n0i@j
dujðxÞ
duiðx0Þ

� �
¼ dij@i n0i

duiðx0Þ
duiðxÞ

� �
¼ 0; ðA:4Þ
since duiðxÞ=duiðx0Þ ¼ duiðx0Þ=duiðxÞ ¼ dðx� x0Þ, which follows by analysing duiðxÞ and duiðx0Þ as functionals, and
nidui ¼ dðniuiÞ ¼ 0 at @D. The index i denotes the velocity component and summation over repeated indices is understood.
Recombining the above yields the result stated in the main text
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0 ¼
Z

D

dF
dq

�r � ðq0uÞ þ r2kD

� �
dx�

Z
@D

dF
dq

n̂ � rkDdS: ðA:5Þ
Recall that the secondary constraint is r � ðq0uÞ ¼ q0r � u ¼ 0. The solution of (A.5) is therefore
kD ¼ constant: ðA:6Þ
The second derivation concerns the step from (20b), (21)–(24). From (23), it follows that
dF½D�
du

¼ �r dF½D�
dD

: ðA:7Þ
Detailed analysis of (20b) entails
0 ¼ fF½D�;Hg þ
Z

D
kqðx0ÞfF ½D�;qðx0Þgdx0 þ

Z
D

kDðx0ÞfF½D�;Dðx0Þgdx0 ðA:8Þ

¼
Z

D
2X� u � r dF

dD
dxþ

ZZ
D;D0

kqðxÞr0 �
dF½D�
duðx0Þ

� �
dqðxÞ
dqðx0Þdxdx0 þ

ZZ
D;D0

kDðxÞ
2X
q0
� dF½D�

duðx0Þ �
dr � uðxÞ

duðx0Þ dxdx0: ðA:9Þ
The third term in (A.9) can be shown to be zero as follows
ZZ
D;D0

kDðxÞ
2X
q0
� dF½D�

duðx0Þ �
dr � uðxÞ

duðx0Þ dxdx0 ¼ �
ZZ

D;D0
rkDðxÞ �

2X
q0
� dF½D�

duðx0Þ �
duðxÞ
duðx0Þdxdx0

þ
Z

D0

Z
@D

kDðxÞ
2X
q0
� dF½D�

duðx0 Þ �
d n̂ � uðxÞð Þ

duðx0Þ dSdx0 ¼ 0; ðA:10Þ
since kD ¼ cst (cf. (A.6)) and by using (A.4).
The second term in (A.9) can be reworked as follows
ZZ

D;D0
kqðxÞr0 �

dF½D�
duðx0Þ

� �
dqðxÞ
dqðx0Þ dxdx0 ¼

Z
D

kqr �
dF½D�

du

� �
dx

¼
Z

D
rkq � r

dF½D�
dD

� �
dx�

Z
@D

kqn̂ � r dF½D�
dD

� �
dS

¼ �
Z

D
r2kq �

dF½D�
dD

dxþ
Z
@D
rkq � n̂

dF½D�
dD

dS: ðA:11Þ
The second last boundary term n̂ � rðdF=dDÞ in (A.11) is zero because it is imposed as extra gauge or boundary condition, cf.
an earlier remark.

When we combine (A.11) and (A.9), the final result (24) in the main text is reached
0 ¼ �
Z

D

dF
dD
r2kq þr � ð2X� uÞ
� �

dxþ
Z
@D

dF
dD

n̂ � rkq þ 2X� u
	 


dS: ðA:12Þ
References

[1] V.R. Ambati, O. Bokhove, Space-time discontinuous Galerkin discretization of rotating shallow water equations, J. Comput. Phys. 225 (2007) 1233–
1261.

[2] K.D. Aldridge, L.I. Lumb, Inertial waves identified in the earth’s fluid core, Nature 325 (1987) 421–423.
[3] K.D. Aldridge, L.I. Lumb, G.A. Henderson, A Poincaré model for the earth’s fluid core, Geophys. Astrophys 48, 5–23.
[4] I. Anderson, A. Huyer, R.L. Smith, Near-inertial motions off the oregon coast, J. Geophys. Res. 88 (1983) 5960–5972.
[5] V.I. Arnold, The Hamiltonian nature of the Euler equations in the dynamics of a rigid body and of an ideal fluid, Usp. Mat. Nauk. 24 (1966) 225–226.
[6] D.N. Arnold, F. Brezzi, B. Cockburn, L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (5)

(2002) 1749–1779.
[7] O. Bokhove, On balanced models in geophysical fluid dynamics: Hamiltonian formulation, constraints and formal stability, in: J. Norbury, I. Roulstone

(Eds.), Large-Scale Atmosphere-Ocean Dynamics, Geometric Methods and Models, vol. II, Cambridge University Press, Cambridge, 2002, pp. 1–63.
[8] O. Bokhove, M. Oliver, Parcel Eulerian–Lagrangian fluid dynamics for rotating geophysical flows, Proc. R. Soc. A 462 (2006) 2575–2592.
[9] B. Dintrans, M. Rieutord, L. Valdettaro, Gravito-inertial waves in a rotating stratified sphere or spherical shell, J. Fluid Mech. 398 (1999) 271–297.

[10] P. Dirac, Generalised Hamiltonian dynamics, Proc. R. Soc. Lond. Ser. A 246 (1958) 326–332.
[11] P.D. Fricker, H.M. Nepf, Bathymetry, stratification, and internal seiche structure, J. Geophys. Res. 105 (2000) 14237–14251.
[12] L.L. Fu, Observations and models of inertial waves in the deep ocean, Rev. Geophys. Space Phys. 19 (1981) 141–170.
[13] F.R. Gantmacher, Matrix Theory, vol. 1, Chelsea, New York, 1959.
[14] I.M. Gelfand, Lectures on Linear Algebra, Dover Publications, 1989.
[15] T. Gelhard, G. Lube, M.A. Olshanskii, J.H. Starcke, Stabilized finite element schemes with LBB-stable elements for incompressible flows, J. Comput. Appl.

Math. 177 (2005) 243–267.
[16] G.H. Golub, C.F. van Loan, Matrix Computations, The Johns Hopkins University Press, Baltimore, 1996.
[17] H. Greenspan, The Theory of Rotating Fluids, Cambridge University Press, Cambridge, 1968.
[18] E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration, Springer, Berlin, 2006. pp. 644.
[19] H. van Haren, C. Millot, Rectilinear and circular inertial motions in the western mediterranean sea, Oceanol. Acta 51 (11) (2004) 1441–1455.
[20] B. Leimkuhler, S. Reich, Simulating Hamiltonian Dynamics, Cambridge Monographs, 2005, pp. 379.
[21] L.R.M. Maas, Wave focusing and ensuing mean flow due to symmetry breaking in rotating fluids, J. Fluid Mech. 437 (2001) 13–28.



S. Nurijanyan et al. / Journal of Computational Physics 241 (2013) 502–525 525
[22] L.R.M. Maas, On the amphidromic structure of inertial waves in a rectangular parallelepiped, Fluid Dyn. Res. 33 (2003) 373–401.
[23] W.V.R. Malkus, Precession of the earth as the cause of geomagnetism, Science 160 (1968) 259–264.
[24] R. Manasseh, Visualization of the flows in precessing tanks with internal baffles, Am. Inst. Aeronaut. Astronaut. J. 31 (1993) 312–318.
[25] A.M.M. Manders, L.R.M. Maas, Observations of inertial waves in a rectangular basin with one sloping boundary, J. Fluid Mech. 493 (2003) 59–88.
[26] J.E. Marsden, T.S. Ratiu, Introduction to Mechanics and Symmetry, second ed., vol. 17, Springer, New York, TAM, 1999.
[27] G. Matthies, G. Lube, On streamline-diffusion methods of inf–sup stable discretisations of the generalised Oseen problem, Preprint 2007–02, Institut

für Numerische und Angewandte Mathematik, Georg-August-Universität Göttingen, 2007.
[28] P.J. Morrison, Hamiltonian description of the ideal fluid, Rev. Mod. Phys. 70 (1998) 467–521.
[29] P.J. Morrison, J.M. Greene, Noncanonical Hamiltonian density formulation of hydrodynamics and ideal magnetohydrodynamics, Phys. Rev. Lett. 45

(1980) 790–794.
[30] S. Nurijanyan, O. Bokhove, L.R.M. Maas, Inertial waves in a rectangular parallelepiped, Phys. of Fluids, submitted for publication. <http://

eprints.eemcs.utwente.nl/22540/>
[31] S. Nurijanyan, J.J.W. van der Vegt, O. Bokhove, Hamiltonian discontinuous Galerkin FEM for linear, rotating incompressible Euler equations: inertial

waves. <http://eprints.eemcs.utwente.nl/21124/>.
[32] L. Pesch, A. Bell, W.E.H. Solie, V.R. Ambati, O. Bokhove, J.J.W. van der Vegt, hpGEM—A software framework for discontinuous Galerkin finite element

methods, ACM Trans. Math. Softw. 33 (4) (2007).
[33] O.M. Phillips, Energy transfer in rotating fluids by reflection of inertial waves, Phys. Fluids 6 (1963) 513–520.
[34] M. Rieutord, Inertial modes in the liquid core of the earth, Phys. Earth Planet. Inter. 91 (1995) 41–46.
[35] M. Rieutord, L. Valdettaro, Inertial waves in a rotating spherical shell, J. Fluid Mech. 341 (1997) 77–99.
[36] R. Salmon, Semigeostrophic theory as a Dirac-bracket projection, J. Fluid Mech. (1988) 345–358.
[37] R. Salmon, Hamiltonian fluid mechanics, Annu. Rev. Fluid Mech. 20 (1988) 225–256.
[38] B. Satish, B. Kris, E. Victor, D.G. William, K. Dinesh, G.K. Matthew, McInnes C. Lois, B.F. Smith, Z. Hong, PETSc users manual, Argonne National

Laboratory, NL-95/11 – Revision 2.1.5, 2004.
[39] B. Satish, B. Kris, D.G. William, K. Dinesh, G.K. Matthew, McInnes C. Lois, B.F. Smith, Z. Hong, PETSc, (2001). <http://www-unix.mcs.anl.gov/petsc>.
[40] K. Stewartson, On trapped oscillations of a rotating fluid in a thin spherical shell, Tellus XXII (6) (1971) 506–510.
[41] K. Stewartson, On trapped oscillations of a rotating fluid in a thin spherical shell ii, Tellus XXIV (4) (1972) 283–286.
[42] B.R. Sutherland, Internal Gravity Waves, Cambridge University Press, 2010.
[43] J. Vanneste, O. Bokhove, Dirac-bracket approach to nearly geostrophic Hamiltonian balanced models, Physica D 164 (3–4) (2002) 152–167.
[44] J.J.W. Van der Vegt, F. Iszak, O. Bokhove, Error analysis of a continuous-discontinuous Galerkin finite element model for generalised 2D vorticity

dynamics, Siam J. Numer. Anal. 45 (2007) 1349–1369.
[45] Y. Xu, J.J.W. van der Vegt, O. Bokhove, Discontinuous Hamiltonian finite element method for linear hyperbolic systems, J. Sci. Comput. 35 (2008) 241–

265.

http://eprints.eemcs.utwente.nl/22540/
http://eprints.eemcs.utwente.nl/22540/
http://eprints.eemcs.utwente.nl/21124/
http://www-unix.mcs.anl.gov/petsc

	Hamiltonian discontinuous Galerkin FEM for linear, rotating  incompressible Euler equations: Inertial waves
	1 Introduction
	2 Continuum theory for (in)compressible fluid
	2.1 Governing equations
	2.2 Hamiltonian framework
	2.2.1 Bracket for linearised compressible flow
	2.2.2 Construction of a Dirac-bracket for linearised incompressible flow


	3 Discrete Hamiltonian formulation
	3.1 Discontinuous Galerkin FEM discretisation for the linearised Euler equations
	3.1.1 Finite element space
	3.1.2 Hamiltonian DGFEM discretisation for linearised compressible flow
	3.1.3 Hamiltonian DGFEM discretisation for linearised incompressible flow


	4 Time integrator
	4.1 Linear, compressible flow
	4.2 Incompressible flow
	4.3 Initial conditions
	4.4 Other properties of the algebraic system

	5 Tests of numerical scheme
	5.1 Incompressible waves in a periodic domain
	5.2 Poincaré waves in a channel
	5.3 Inertial waves
	5.4 Inertial waves in a ‘tilted’ box

	6 Concluding remarks
	Acknowledgments
	Appendix A Constrained Hamiltonian continuum dynamics
	References


