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Abstract

In this paper, we present a parallel higher-order boundary integral method to solve the linear
Poisson-Boltzmann (PB) equation. In our method, a well-posed boundary integral formulation is
used to ensure the fast convergence of Krylov subspace linear solver such as GMRES. The molecular
surfaces are first discretized with flat triangles and then converted to curved triangles with the
assistance of normal information at vertices. To maintain the desired accuracy, four-point Gauss-
Radau quadratures are used on regular triangles and sixteen-point Gauss-Legendre quadratures
together with regularization transformations are applied on singular triangles. To speed up our
method, we take advantage of the embarrassingly parallel feature of boundary integral formulation,
and parallelize the schemes with the message passing interface (MPI) implementation. Numerical
tests show significantly improved accuracy and convergence of the proposed higher-order boundary
integral Poisson-Boltzmann (HOBI-PB) solver compared with boundary integral PB solver using
often-seen centroid collocation on flat triangles. The higher-order accuracy results achieved by
present method are important to sensitive solvation analysis of biomolecules, particularly when
accurate electrostatic surface potentials are critical in the molecular simulation. In addition,
the higher-order boundary integral schemes presented here and their associated parallelization
potentially can be applied to solving boundary integral equations in a general sense.
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passing interface (MPI)
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1 Introduction

Molecular modeling is a rising interdisciplinary approach on the study of structure, function and
dynamics of molecules with biological significance [1]. Among interactions in molecular modeling,
electrostatics are critical due to their ubiquitous existence. Meanwhile, electrostatics are expensive
to compute as they are long-range and pairwise interactions. The Poisson-Boltzmann (PB) model
is an effective approach to resolve the electrostatics including energy, potential and force of solvated
biomolecules [2]. As an implicit solvent model, the PB model considers solvent effects with a mean
field approximation, and models the mobile ions with the Boltzmann distribution. These implicit
treatments of solvent surroundings make the PB model computationally more efficient compared with
explicit solvent models, in which atomic details of solvent molecules and electrolytes are described.
Recently, experimentalists also showed interests in using the PB model to provide references for
newly released structures of biomolecules e.g. the neurotransmitter receptor Acetylcholine [3] and the
Circadian clock complex CLOCK:BMAL1 [4].
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Figure 1: (a) Poisson-Boltzmann (PB) model: domains Ω1(molecule) and Ω2(solvent) with different dielectric
constants ε1 and ε2 respectively; (b) the molecular surface is formed by the trace of solvent probe in contact
with the solute (molecule).

In the PB model, as illustrated in Fig. 1(a), the computational domain R
3 is divided into the

solute (molecule) domain Ω1 and the solvent domain Ω2 by a closed molecular surface Γ such that
R
3 = Ω1∪Ω2∪Γ. As shown in Fig. 1(b), the molecular surface Γ is formed by the traces of a spherical

solvent probe rolling in contact with the van del Walls balls of the solute atoms [5, 6]. The solvated
molecule, which is located in domain Ω1 with dielectric constant ε1, is represented by a set of Nc

point charges carrying Qi charge in the units of ec at positions xi, i = 1, ..., Nc. The exterior domain
contains the solvent with dielectric constant ε2, as well as mobile ions. For x = (x, y, z), the PB
equation for the electrostatic potentials in each domain is derived from the Boltzmann distribution

2



and Gauss’ law and has the form

∇ · (ε1(x)∇φ1(x)) = −

Nc
∑

i=1

qiδ(x− xi) in Ω1, (1)

∇ · (ε2(x)∇φ2(x))− κ2 sinhφ2(x) = 0 in Ω2, (2)

φ1(x) = φ2(x), ε1
∂φ1(x)

∂ν
= ε2

∂φ2(x)

∂ν
on Γ, (3)

lim
|x|→∞

φ2(x) = 0, (4)

where φ1 and φ2 are the electrostatic potentials in each domain, qi = ecQi/kBT, i = 1, ..., Nc, ec the
electron charge, kB the Boltzmann’s constant, T the absolute temperature, δ the Dirac delta function,
κ the Debye–Hückel parameter, and ν the unit outward normal on the interface Γ. We assume weak
ionic strength in this context therefore the non-linear sinh function term can be approximated by its
linearized term, resulting in the linear PB equation with sinhφ2(x) term replaced by φ2(x) in Eq. (2).

The linear PB model is an elliptic equation defined on multiple domains with discontinuous coef-
ficients across the domain interfaces. The PB equation has an analytical solution only for the simple
geometries such as spheres [7] or rods [8]. For molecules with complex geometries, the PB equation
can only be solved numerically, which is challenging due to the following numerical difficulties.
(1) The solutions to the PB equation, physically the electrostatic potentials, are not smooth across
the interface as the continuities of both the potentials and the fluxes in Eq. (3) across the interface Γ
are required to be satisfied.
(2) The complex geometry of the interface needs to be captured to maintain the accuracy of the
potentials particularly on or near the interface.
(3) The partial charges carried by the individual atoms of the solute, modeled by the weighted sum-
mation of the Dirac delta functions, is hard to accurately discretize.
(4) The PB equation is defined on the entire R

3 domain subject to boundary condition that the
potentials approach zero at infinity thus a cutoff for 3D mesh-based methods is inevitable.

The wide application of the PB model as well as its associated numerical difficulties attracted
attention from various computational science communities ranging from biophysics, biochemistry,
mathematics, computer science, mechanical engineering as well as electrical engineering. Many nu-
merical PB solvers were developed and they can be roughly but not completely divided into two
categories: The 3D mesh-based finite difference/finite element methods [9, 10, 11, 12, 13, 14]; and
the boundary integral methods [15, 16, 17, 19, 18, 20, 21, 22, 23, 24]. All these methods have their
own advantages and disadvantages. For example, the PB solvers embedded in molecular modeling
packages such as Dephi [9], CHARMM [10], AMBER [11], APBS [12] use standard seven-point finite
difference with approximated approaches to bypass the numerical difficulties (1)-(4). Although ar-
guably these solvers have reduced accuracy, the efficient, robust and user-friendly features of these PB
solvers brought their popularities among the bio-oriented community. An often overlooked drawback
of these solvers is that they provide acceptable accuracy of resolved electrostatics potentials away
from the interface but are unable to provide accurate solutions near or on the interfaces. Applica-
tions such as molecular simulation related to ion channels [25] , cell membranes [26], and chromatin
packing[27] require accurate electrostatic potentials and fields near or on the interface, thus call for
developing higher-order methods to solve the PB equation. Three-dimensional mesh-based Inter-
face methods such as Immersed Interface Methods (IIM) [13] and Matched Interface and Boundary
Poisson-Boltzmann (MIBPB) solver [14] can significantly improve the accuracy by rigorously treating
the numerical difficulties (1)-(3). However, these methods need to cope with numerical difficulty (4)
and the complexities of the algorithms often reduce the efficiency.

Compared with 3D mesh-based methods, the boundary integral methods have many advantages.
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(1) The solution is characterized solely in terms of surface distributions so there are fewer unknowns
in comparison to methods that discretize the entire domain.
(2) The far-field boundary condition in Eq. (4) is exactly imposed.
(3) The surface geometry of Γ can be represented to high precision using appropriate boundary ele-
ments.
(4) The electrostatic potential at charge sites are accurately determined using exact analytical ex-
pressions.
(5) The continuity conditions in Eq. (3) are explicitly enforced.
Due to these advantages, boundary integral PB solvers have gained increased attention and we briefly
review studies relating to the present work. In 1988, Zauhar et al. [28] introduced the boundary
integral formulation by solving the Poisson equation for the induced surface charges. In 1990, Yoon
et al. [29] formulated an ill-posed integral formulation of the PB equation. In 1991, Juffer et al. [15]
reformulated the previous work to obtain a well-posed formulation, which were applied by most of the
boundary integral PB solvers after that. The boundary integral methods can analytically circumvent
the numerical difficulties (1)-(4), and accelerate the solver with fast algorithms such as fast multipole
method (FMM) [16, 17, 19] and treecode [20]. These boundary integral PB solvers mostly applied
centroid collocation methods on flat triangle and benchmark tests on spherical cavities with available
analytical solutions show 0.5th order accuracy relative to number of elements [17, 20], which left
spaces for the more challenging problem of developing higher-order boundary integral PB solver.

In this paper, we present a more accurate boundary integral PB solver on curved triangles with
higher-order quadratures and regularization of singularities. The rest of the paper is organized as
follows. In section 2, we provide our algorithms including the well-posed boundary integral formulation
and the higher-order numerical schemes, followed by the MPI parallelization. In section 3, we provide
the numerical results, first on the spherical cavities with centered and eccentric partial changes whose
analytical solutions are available and then on a protein (PDB: 1ajj) for the electrostatics solvation
energy computation and the parallel efficiency. This paper ends with a section of concluding remarks.

2 Methods

We will use the well-posed boundary integral formulation from Juffer’s work [15] together with high
order quadrature [28] and singularities regularization by a transformation [30, 31]. We modify and
improve these methods as needed and we will explain the details in this section. One fact affecting
the accuracy of boundary integral methods is the discretization of the surface. For the sphere,
we use a non-uniformed triangular surface from MSMS [32] with radial projection to correct the
truncated output, or a uniform icosahedral triangulation [33]. For biomolecules, we only use MSMS
to generate the flat triangles. All flat triangles are then converted to curved triangles by applying
the schemes introduced as follows. Through the paper, we call our higher-order boundary integral
Poisson-Boltzmann solver as HOBI-PB solver.

2.1 Well-posed integral formulation

The differential PB equation in Eqs. (1) and (2) can be converted to boundary integral equation. By
applying the fundamental solution of Poisson equation (1) , G0, in Ω1 and the fundamental solution of
PB equation (2), Gκ, in Ω2, together with Green’s second theorem, and cancel the normal derivative
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terms with interface jump conditions in Eq. (3), the coupled integral equations can be derived as [29]:

φ1(x) =

∫

Γ

[

G0(x,y)
∂φ1(y)

∂νy
−

∂G0(x,y)

∂νy
φ1(y)

]

dSy +

Nc
∑

k=1

qkG0(x,yk), x ∈ Ω1, (5)

φ2(x) =

∫

Γ

[

−Gκ(x,y)
∂φ2(y)

∂νy
+

∂Gκ(x,y)

∂νy
φ2(y)

]

dSy, x ∈ Ω2. (6)

where G0(x,y) and Gκ(x,y) are the Coulomb and screened Coulomb potentials,

G0(x,y) =
1

4π|x− y|
, Gκ(x,y) =

e−κ|x−y|

4π|x− y|
. (7)

However, straightforward discretization of Eqs. (5) and (6) yields a linear system which becomes
ill-conditioned as the number of boundary elements increases [34]. Juffer et al. derived a well-posed
boundary integral formulation by going through the differentiation of the single-layer and double-layer
potentials [15]. The desired forms are:

1

2
(1 + ε)φ1(x) =

∫

Γ

[

K1(x,y)
∂φ1(y)

∂νy
+K2(x,y)φ1(y)

]

dSy + S1(x), x ∈ Γ, (8)

1

2

(

1 +
1

ε

)

∂φ1(x)

∂νx
=

∫

Γ

[

K3(x,y)
∂φ1(y)

∂νy
+K4(x,y)φ1(y)

]

dSy + S2(x), x ∈ Γ, (9)

with the notation

K1(x,y) =G0(x,y)−Gκ(x,y), K2(x,y) = ε
∂Gκ(x,y)

∂νy
−

∂G0(x,y)

∂νy
,

K3(x,y) =
∂G0(x,y)

∂νx
−

1

ε

∂Gκ(x,y)

∂νx
, K4(x,y) =

∂2Gκ(x,y)

∂νx∂νy
−

∂2G0(x,y)

∂νx∂νy
, (10)

S1(x) =

Nc
∑

k=1

qkG0(x,yk), S2(x) =

Nc
∑

k=1

qk
∂G0(x,yk)

∂νx
. (11)

and ε = ε1/ε2. Note this is the well-posed Fredholm second kind of integral equation which is also
our choice in this paper.

In order to numerically solve the coupled equations (8) and (9), we need to discretize the molec-
ular surface Γ with high quality elements and implement the numerical integral with higher-order
quadrature. We also need to treat the occurred singularities or near-singularities when x and y are
equal or nearly equal in Kernels K1,...,4. These details are described in the following subsections.

2.2 Curved triangles and higher-order quadratures

Given the positions and radii of all atoms of a molecule, a triangulation program e.g. MSMS [32] can
generate a discretized surface with a set of Nf flat triangles, Nv nodes (vertices) and corresponding
normal directions. To achieve higher-order accuracy, we apply the schemes described in [28] to convert
these flat triangles to curved triangles under the new background of solving the well-posed integral
PB equation in Eqs. (8) and (9). We also modify and improve these schemes to treat the singularities
of kernels K1,...,4 in Eq. (10). To keep this paper in an integrated form, we start from restating the
schemes in [28] to produce the curved triangles and higher-order quadratures for discretizing Eqs. (8)
and (9).
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Figure 3: Coordinates Transformation

We first replace the straight element edges as shown in Fig. 2(a) with curved arcs in Fig. 2(b)
[28]. Let x(t) be the arc between two nodes, parameterized by the dimensionless variable t,

x(t) = c0 + c1t+ c2t
2 + c3t

3, (12)

where c0, c1, c2, c3 are vector constants (12 unknowns), which will be determined by a pair of con-
nected nodes and associated unit normals (12 conditions). At any point on the curve, the normal can

be found by n(t) = sgn(t)
κ(t)

|(κ(t))|
, where sgn(t) = ±1 is chosen to keep a constant orientation of n(t)

along the curve and κ(t) is the curvature given as [28]:

κ(t) =
1

dx/dt

[

d2x

dt2
−

(dx
dt

· d2x
dt2

)

|dx/dt|2
dx

dt

]

(13)

As shown in Fig. 2(c), we can use parameter u ∈ [0, 1] for the two curves starting from X1 and
ending at X2 and X3. Then for any given u, two points on the curves X1X2 and X1X3 are specified,
say Y1 and Y2 with normal directions. By following the same procedure, we could find a curve
connecting Y1 and Y2, using v ∈ [0, 1] as the parameter. The pair of parameters (u, v) will therefore
correspond to a point on the curve element.

In order to conveniently use quadrature rules, the integral is conducted in a unit right triangle.
A mapping between the parameters r, s ∈ [0, 1] on the unit right triangle in Fig. 3(a) and parameters
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u, v on a unit square in Fig. 3(b) is constructed with the following transformation [28].

{

u = (r + s), v = s/(r + s) if r + s 6= 0
u = 0, v = 0 if r = s = 0

(14)

Based on this, we can establish the mapping from point (r, s) on the unit right triangle in Fig. 3(a) to
point x(j)(u(r, s), v(r, s)) = x(j)(r, s) on the jth curved elements in Fig. 3(c) by the following steps:
(1) Given (r, s), find u, v through Eq. (14).
(2) Plug u as the parameter into the curve functions of X1X2 and X1X3 to locate Y1 and Y2 as shown
in Fig. 2(c).
(3) Find the curve function of Y1Y2 and then plug v as the parameter to finally get x(j) on the curved
elements.
However, this is not an analytical function for efficient computations but a constructive procedure.
As a remedy, a high-order 10-point interpolation scheme is used [28]. The brief idea is illustrated in
Fig. (3) on the jth element of the triangulation.
(1) Pick 10 specified points (rk, sk) first in the right unit triangle for k = 1, 2, ..., 10.
(2) Find u(rk, sk), v(rk, sk) according to Eq. (14).
(3) Find xj(u(rk, sk), v(rk, sk)) and their normal directions on the curved element, which is param-
eterized by (u, v). Note points 1,4,9 are already given with the flat triangles. With these three
nodes, three trajectories can be found and used to find the positions and normal directions of points
2,3,5,6,7,8. Finally with points 5 and 6, the dashed trajectory can be formed to find point 10 and its
normal direction.
(4) As required by the quadrature rules, interpolate any point on the curved element x(j)(r, s) by the
expression

x(j)(r, s) =
10
∑

k=1

Nk(r, s)x
(j)
k (15)

where Nk(r, s) are Lagrangian interpolation polynomial for a 10-point element. See table 1 of [28] for
the expression of Nk(r, s). Note Eq. (15) can also be used to find the partial derivative of x(j) with
respect to r and s, which is required for computing the Jacobian for transformation and the normal
direction at x(j).

Suppose now we will integrate function f(x) on the jth curved element. The quadrature rules
give the position of a set of points on the unit right triangle e.g. (rm, sm) and quadrature weights Wm

for m = 1, 2, .., N , where N is the number of quadrature points, and the integral can be evaluated as:

∫

△j

f(x)dA =

N
∑

m=1

f(x(rm, sm))|
∂x(rm, sm)

∂r
×

∂x(rm, sm)

∂s
|Wm (16)

Note the term ∂x(rm,sm)
∂r

× ∂x(rm,sm)
∂s

gives the normal direction of the point x(j)(r, s) with parameters
(r, s), and we will use this information to supply the required normal direction in Eqs. (8) and (9).

In this paper, we use N = NGR points (practically we choose NGR = 4) in the Gauss-Radau
quadrature [35]. For i = 1, 2, ..., Nv , the ith and the (i + Nv)th element of the discretized matrix-
vector product Au are given as

{Au}ri =
1

2
(1 + ε)φ1(xi)−

Nr
i

∑

j=1

NGR
∑

m=1

3
∑

n=1

Wj,m,n

[

K1(xi,yj,m)
∂φ1(yj,n)

∂νyj,n

+K2(xi,yj,m)φ1(yj,n)

]

(17)

{Au}ri+Nv
=

1

2

(

1 +
1

ε

)

∂φ1(xi)

∂νxi

−

Nr
i

∑

j=1

NGR
∑

m=1

3
∑

n=1

Wj,m,n

[

K3(xi,yj,m)
∂φ1(yj,n)

∂νyj,n

+K4(xi,yj,m)φ1(yj,n)

]

(18)
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In Eqs. (17) and (18), the superscript r of {Au} stands for regular triangle, Wj,m,n contains the weights
and coefficients associated with the quadrature, the transformation Jacobian, and the interpolation
coefficients in Eq. (15). Note that N r

i is the number of regular triangles associated with the ith vertex.
In these equations, yj,n are the same set of nodes as xi, but yj,m are the quadrature points on the jth
curved element, which are mapped from the predetermined points on the unit right triangle. This
mismatch brings difficulty to apply Fast Multipole Method or treecode to accelerate the higher-order
scheme. Studies about this issue will be proceeded in our future work.

2.3 Treatment of singularities

From Eqs. (17) and (18), we can see that when node i is one of the vertices of the jth curved triangular
element, singularity or near singularity occurs at evaluating kernels K1,...,4. In other words, xi is
equal to or nearly equal to yj,m. It can be shown that the singularities in kernels K1,...,4 are in the
order of O( 1

|xi−yj,m|) [15]. To treat these singularities, we use the tensor-product of Gauss-Legendre

quadrature on a unit square, together with a transformation [30, 31]. In this case the mapping from
a unit square (0 ≤ x, y ≤ 1) to a unit right triangle (0 ≤ r, s ≤ 1 and r + s ≤ 1), and to a curved
triangle is constructed. The mapping that r = (1 − y)x and s = yx for 0 ≤ x, y ≤ 0 is used to
remove the singularities in kernels K1,...,4 when they appear at (r, s) = (0, 0) which indicates x = 0.
To understand this, it can be seen that the Jacobian for the transformation from (r, s) to (x, y) is x,
thus it can remove the O( 1

|xi−yj,m|) type of singularities.

In the treatment of singularities, if the number of quadrature points used in each direction of the
Gauass-Lagendre quadrature is NGL, the ith and (i+Nv)th element of the discretized matrix-vector
product Au will in addition contain the following singular component

{Au}si =
1

2
(1 + ε)φ1(xi)−

Ns
i

∑

j=1

(NGL)2
∑

m=1

3
∑

n=1

Wj,m,n

[

K1(xi,yj,m)
∂φ1(yj,n)

∂νyj,n

+K2(xi,yj,m)φ1(yj,n)

]

(19)

{Au}si+Nv
=

1

2

(

1 +
1

ε

)

∂φ1(xi)

∂νxi

−

Ns
i

∑

j=1

(NGL)2
∑

m=1

3
∑

n=1

Wj,m,n

[

K3(xi,yj,m)
∂φ1(yj,n)

∂νyj,n

+K4(xi,yj,m)φ1(yj,n)

]

(20)

In Eqs. (19) and (20), the superscript s of {Au} stands for singular triangle, and Wj,m,n contains the
weights and coefficients associated with the quadrature, the transformation Jacobians (additionally
contains the Jacobian of the r = (1 − y)x and s = yx mapping), and the interpolation coefficients
in Eq. (15). Note index j has the range up to N s

i , which stands for the number of singular triangles
associated with the ith vertex. Simulation shows this value is various for different vertices and it
can be as big as 15. In this paper, we practically choose NGL = 4 points in each direction to ensure
desired accuracy [35].

2.4 Low-order scheme

We also briefly introduce the low-order boundary integral Poisson-Boltzmann (LOBI-PB) solver,
which is used for comparison in this paper. In this low-order scheme, the flat triangle and centroid
collocation are used, i.e. the quadrature point is located at the center of each triangle. This scheme
also assumes that the potential and its normal derivative, as well as the kernel functions are uniform
on each triangle. When singularity in kernels occurs, the contribution of this triangle in the integral
is then simply removed. This scheme is in fact widely used in latest boundary integral methods in
solving PB equations to provide convenience on incorporating fast algorithms such as FMM [34] and
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treecode [20]. For i = 1, 2, ..., Nf , the ith and the (i+Nf )th element of the discretized matrix-vector
product Au are given as

{Au}i =
1

2
(1 + ε)φ1(xi)−

Nf
∑

j=1,j 6=i

Wj

[

K1(xi,xj)
∂φ1(xj)

∂νxj

+K2(xi,xj)φ1(xj)

]

(21)

{Au}i+Nf
=

1

2

(

1 +
1

ε

)

∂φ1(xi)

∂νxi

−

Nf
∑

j=1,j 6=i

Wj

[

K3(xi,xj)
∂φ1(xj)

∂νxj

+K4(xi,xj)φ1(xj)

]

(22)

It worths mentioning that the unknowns of LOBI-PB is at the centroid of the triangle in the number
of Nf while the unknowns of HOBI-PB is at the vertices of the triangle in the number of Nv.

2.5 Electrostatic Solvation Energy Formulation

The electrostatic solvation energy is computed by

Esol =
1

2

Nc
∑

k=1

qkφreac(xk) =
1

2

Nc
∑

k=1

qk

∫

Γ

[

K1(xk,y)
∂φ1(y)

∂νy
+K2(xk,y)φ1(y)

]

dSy, (23)

where φreac(xk) = φ1(xk)− S1(xk), whose formulation is the integral part of Eq. (23), is the reaction
potential at the kth solute atom. The electrostatic solvation energy, which can be regarded as the
atomistic charge weighted average of the reaction potential φreac, can effectively characterize the
accuracy of a PB solver.

2.6 MPI Based Parallel Implementation

The HIBO-PB solver uses the boundary integral formulation, which can be conveniently parallelized.
The majority of the CPU time is taken by the following routines.
(1) Compute the source term in Eqs. (8) and (9).
(2) Convert flat triangles to curved triangles.
(3) Compute and store the Gauss-Radau quadrature information for each curved triangle.
(4) Compute and store the Gauss-Legendre quadrature information for singular triangles associated
with each vertex.
(5) Perform matrix-vector product as in Eqs. (17), (18), (19), and (20) on each GMRES iteration.
(6) Compute electrostatic solvation energy with Gauss-Radau quadrature.
Among all these routines, routine (5) is the most expensive one and it will be repeatedly computed
on each GMRES iteration. We parallelize all these routines to maximize the parallel efficiency. Table
1 provides the Pseudocode for MPI based parallel implementation.

3 Results

In this section, we present numerical results. We first solve the PB equation on spherical cavities
with a centered charge and with an eccentric change at different locations. The analytical solutions in
terms of a closed form (for centered charge) and in terms of spherical harmonics (for multiple eccentric
charges) are available for these tests [7]. To demonstrate the higher accuracy obtained by higher-
order boundary integral Poission–Boltzmann (HOBI-PB) solver, we compare the numerical results
with APBS[12], MIBPB[14], and the lower-order boundary integral Poisson-Boltzmann (LOBI-PB)
solver. APBS uses straight-forward finite difference scheme. MIBPB is a 2nd order interface method
repeatedly using local interpolation to capture interface jump conditions [36, 37] and applying a
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Table 1: Pseudocode for parallel HOBI-PB solver using replicated data algorithm.

1 on main processor
2 read protein data
3 call MSMS to generate triangulation
4 copy protein data and triangulation to all other processors
5 on each processor
6 locally compute sources terms for each assigned vertex
7 locally convert flat triangles to curved triangles
8 for each assigned triangle, locally compute and store quadrature information
9 for each assigned vertex, locally store quadrature of associated singular triangles

10 copy result to all other processors
11 set initial guess for GMRES iteration
12 compute assigned segment of matrix-vector
13 copy result to all other processors
14 on main processor
15 test for GMRES convergence
16 if no, go to step 12 for next iteration
17 if yes, go to step 17
18 on each processor
19 compute assigned segment of electrostatic solvation energy
20 copy result to main processor
21 on main processor
22 add segments of electrostatic solvation energy and output result

Dirichlet-to-Neumann mapping to transform the singular charges to interface jump conditions [38].
LOBI-PB discretizes the integral equations with flat triangles and performs the numerical integral
with centroid collocation as explained in the previous section.

We then solve the PB equation on a test protein (PDB: 1ajj), which is a lipprotein receptor
with 37 residues and 519 atoms. We report the electrostatic solvation energy results for this protein
computed from both HOBI-PB and LOBI-PB to demonstrate the improved accuracy achieved by the
higher-order integral schemes. All algorithms are written in Fortran 90/95 and compiled with GNU
Fortran with flag -O3. The serial simulations are performed with a single CPU (Intel(R) Xeon(R)
CPU E5440 @ 2.83GHz with 2G Memory) on an 8-core workstation. MPI parallel simulations are
conducted on the DMC cluster (Intel(R) Xeon(R) CPU E5520 @ 2.27GHz with 1.5G memory for
each core) at Alabama Supercomputing Center. Before seeing the numerical results, we define order
and errors.

3.1 Order and Errors

In this paper, we report the relative errors defined as

eφ =

max
i=1,...,N

|φnum(xi)− φexa(xi)|

max
i=1,...,N

|φexa(xi)|
(24)

where N is the number of unknowns. Note N is the number of vertices for HOBI-PB, the number of
triangular elements for LOBI-PB, and the number of close-to-surface mesh points (irregular points)
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Table 2: Accuracy comparison of different PB solvers on a spherical cavity (radius=2Å , q(0, 0, 0) = 1ec,
ε = 80, κ = 0); h the mesh size; d the number of vertices per Å2.

APBS MIBPB HOBI-PB LOBI-PB
h Esol eφ ord. Esol eφ ord. d Esol eφ ord. Esol eφ ord.
1 -83.44 1.94e+0 -81.95 1.24e-2 5 -81.98 1.45e-4 -83.41 4.07e-4
0.5 -85.85 1.31e+0 0.6 -81.98 1.91e-3 2.7 10 -81.98 5.26e-5 1.5 -83.13 2.55e-4 0.7
0.2 -82.58 5.76e-1 0.9 -81.98 3.87e-4 1.7 20 -81.98 1.52e-5 1.8 -82.82 1.82e-4 0.5
0.1 -82.27 2.94e-1 1.0 -81.98 1.07e-4 1.9 40 -81.98 6.13e-6 1.3 -82.60 1.27e-4 0.5
0.05 -82.03 1.49e-1 1.0 -81.98 2.31e-5 2.2 80 -81.98 1.85e-6 1.7 -82.43 8.58e-5 0.6

for APBS and MIBPB. The notation φnum represents numerically solved surface potentials and φexa

denotes the analytical solutions obtained by Kirkwood’s spherical harmonic expansion [7]. The dis-
cretization of APBS and MIBPB are on the Cartesian grid with mesh size h. The discretization of
HOBI-PB and LOBI-PB are on the molecular surface with density d, number of vertices per Å2.

The numerical order of accuracy is computed with

order = log coarse mesh

fine mesh

coarse error

fine error
(25)

following the convention of numerical analysis, where “mesh” refers to h for finite difference methods
or density d for boundary integral methods, both at coarse and fine levels.

3.2 On a Spherical Cavity with one Centered Charge

We first solve the linear Poisson-Boltzmann equation on a spherical cavity with radius 2Å and a
centered change 1ec submerged in water with zero ionic strength. We report the electrostatic solvation
energy Esol and surface potential errors eφ computed with all above-mentioned methods in Table 2.
The results of APBS and MIBPB are from reference [38].

From Table 2, we can see that APBS provides acceptable value in electrostatic solvation energy
compared with the true value 81.98 kcal/mol since only the potential at the center of the spherical
cavity is required to compute the electrostatic solvation energy. However, the surface potentials com-
puted by APBS method show large errors. This is due to the approximation on interface conditions
and singular charges of standard finite difference methods.

MIBPB uses a more sophisticated finite difference scheme. The rigorous treatment on interface
conditions and singular charges significantly improves accuracy. The electrostatic solvation energy
is nearly perfect even at coarse grid and the surface potential is very accurate with solid 2nd order
convergence pattern relative to mesh-size h.

LOBI-PB gives the electrostatic solvation energy in the same accurate level as APBS but produces
much more accurate surface potentials than APBS does. These surface potentials converge at the
0.5th order relative to density d.

HOBI-PB is obviously a more accurate method. It shows 1.5th order of convergence relative to
density d as reflected from surface potential errors and its accuracy is even better than results from
MIBPB.

These results demonstrate HOBI-PB is the most accurate PB solver among its peers. According
to our knowledge, for this classic benchmark test, there is no other PB solvers can achieve the same
level of accuracy as HOBI-PB does.

3.3 A Spherical Cavity with One Eccentric Charge

We further investigate the performance of HOBI-PB and LOBI-PB on a spherical cavity with radius
1Å and a 1ec eccentric charge at different locations. The errors shown are in terms of surface potential
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eu as previously defined. The Debye–Hückel parameter κ is set to 1. The charge moves from the
center of the sphere toward to the surface and we test the performance of the PB solvers in response to
the change of locations. The closer the charge is to the surface, the more variant the induced charges
on the surface appear to be. This interesting phenomenon draws attention from many researchers,
e.g. the peak separation method by Juffer et al. [15] and the image method by Deng et al. [39]. In
addition to that, we also try to investigate if the quality of the triangulation will affect the accuracy.
To this end, we report the results computed on the triangular surfaces generated by MSMS [32] and
by a uniform icosahedral triangulation routine (ico) [33]. MSMS generates triangles in various shapes
and sizes, while ico generates uniform and equilateral triangles with fixed numbers of triangles such
as 20, 80, 320, etc. The results are plotted in Fig. 4, and we have the following observation and
discussion.
(1) The results of HOBI-PB in Fig. (b)(d) show significant improvement in accuracy compared with
results of LOBI-PB in Fig. (a)(c). For HOBI-PB, the errors are smaller in general and the difference
between two different meshes are larger, indicating better accuracy and higher-order convergence
(2) LOBI-PB, due to its simplicity in algorithm, shows more consistent convergence pattern. HOBI-
PB, however affected by the quadrature rule and singularity removal schemes, shows some irregular
patterns.
(3) We also observe that when the charge is located close to the interface e.g. at (0.9,0,0), for coarse
mesh, LOBI-PB shows better accuracy than that from HOBI-PB. This is due to the fact that the
close-to-boundary charge brings high variation of the induced charges on surface and multiple quadra-
ture points selected in HOBI-PB amplify the variations. In LOBI-PB, there is only one quadrature
point in each triangle at the centroid thus the scheme is less sensitive to the induced charges.
(4) The quality of triangular surface will slightly affect the convergence of the boundary integral PB
solvers. The results from icosahedral triangulation routines show more uniform convergence pattern
than that from MSMS.
(5) We further draw the error-vs-element plots for one charge located at (0,0,0) in Fig. 4(e) and
(0.9,0,0) in Fig. 4(f) for both LOBI-PB (circle) and HOBI-PB (triangle) solvers on both MSMS (red,
empty marker, solid line) and icosahedron (blue, filled marker, dashed line) triangles. By observing
one color at a time (one kind of mesh at a time), we can see the pattern in Fig. 4(e) is uniform and
HOBI-PB shows better accuracy (smaller y values) and faster convergence (larger slope). The pattern
in Fig. 4(f) is tangled. By observing the slope, we can still see that HOBI-PB converges faster than
LOBI-PB generally. However, the error of the HOBI-PB is bigger than LOBI-PB for coarse mesh due
to the interaction between the induced charges on surface and the singular charge near the surface, as
explained in observation and discussion (3). In practice, the partial charges are at least 1-2 Å away
from the molecular surfaces therefore the slightly deteriorated pattern observed here when charges
are close to the surfaces will unlikely happen.

In short, the numerical results of HOBI-PB and some other reference PB solvers on the spherical
cavities compared with available analytical solutions quantitatively demonstrate the achieved better
accuracy and higher-order convergence of HIBO-PB. The complexity of the higher-order schemes
for quadrature and regularization introduces only minor instabilities but gain significantly improved
accuracy and convergence. Next we use HOBI-PB and LOBI-PB to solve PB equation and compute
electrostatic solvation energy on a protein.

3.4 Computing Electrostatic Solvation Energy on Protein 1ajj

The ultimate goal of HOBI-PB is to provide accurate electrostatic potentials for solvated biomolecules.
With this solver, we solve the PB equation and compute the electrostatic solvation energy for many
small-middle sized proteins. Here we take protein 1ajj with triangulation at different resolutions

12



(a) (b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

charge location (Å)
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Figure 4: relative surface potential errors (eφ) on a spherical cavity with radius 1Å and eccentric unit charge,
κ = 1, and ε = 80: (a) LOBI-PB, MSMS; (b) HOBI-PB, MSMS; (c) LOBI-PB, ico; (d) HOBI-PB, ico; (e)
error vs. elements # N , a charge located at (0,0,0); (f) error vs. elements # N , a charge located at (0.9,0,0).
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as an example. The coordinates and partial charges of the protein are obtained from CHARMM22
force field [40]. The numerical results show that HOBI-PB solves the PB equation with significantly
improved accuracy compared with LOBI-PB does.

Table 3: Testing results for protein 1ajj. HOBI-PB results showing electrostatic solvation energy Esol, CPU
time, memory usage; number of GMRES iterations (it.).

d # of ele. N Esol (kcal/mol) CPU (s) Memory (Mbyte) # of it.

1 6027 -1168.87 115 47 10
2 9198 -1152.42 266 70 10
4 17278 -1145.50 867 129 9
8 32386 -1140.60 3114 238 9
16 66558 -1139.23 17790 523 13
32 132028 -1138.38 56039 759 10
64 270680 -1138.49 254198 2116 11

The numerical results for computing electrostatic solvation energy for protein 1ajj are reported
in Table 3. To produce these results, we discretize the molecular surface of protein 1ajj at different
densities as seen in the first column of the table. Different densities result in different numbers of
triangular elements which are listed in the second column of the table, characterizing the dimension
of problem. In the third column, we report electrostatic solvation energies. We can see these values
are very close to each other at different resolutions and they converge to a value near about −1138.49
kcal/mol. In column 4, we report the CPU time and it increases at the order of O(N2). This reveals
currently the most critical limitation of HOBI-PB as the O(N2) computational cost eventually will
make the HOBI-PB prohibitively expensive. To alleviate the pain, we take advantage of the convenient
parallelization of boundary integral formulation, and we will see the parallelization performance next.
Memory uses are shown in column 5 and we see a O(N) pattern, which is advantageous compared
with the 3D mesh-based methods whose memory uses increase at O(N2) or even O(N3), where N
is the number of unknowns. The last column is the number of iterations, and these stable results
attribute to the well-posed integral formulation in Eqs. (8) and (9).

We next plot the solvation energies of HOBI-PB (solid circle) from Table 3 on Fig. 5 together
with the solvation energies computed with LOBI-PB (empty circle) for the same protein at different
resolutions. The plot shows results from LOBI-PB converge to that of HOBI-PB. By using cubic
interpolation, we can see both methods eventually converge toward almost the same values (the
red “x” for HOBI-PB and the red “∗” for LOBI-PB). The advantage of HOBI-PB is that it can
achieve high accuracy even at very coarse mesh. For example, the first solid point from right, which
corresponds to electrostatic solvation energy of −1168.87 kcal/mol at density d = 1, is only 30
kcal/mol different from the interpolated true value at about −1139.09 kcal/mol. Similar patterns are
observed on our other tests on different proteins.

We finally provided the MPI based parallel performance in terms of parallel efficiency of HOBI-PB
for protein 1ajj at different meshes in Table 4. Due to the limitation of the resources, our results
are generated with up to 64 CPUs. The maximum memories for each CPU in MPI implementation
is about 1.5G therefore for protein (1ajj) we solve the PB equation with maximum d = 32 requiring
759M memory (note d = 64 requires more than 2G memory per core from Table 3). From Table 4, we
can see the CPU time is substantially reduced when the code is run in parallel on high performance
computers. For example, for d = 32 with 132,028 elements, the serial work requires more than half of
a day (50457s), the parallel work with 64 CPUs produce results in about 15 minutes (860s). We see
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Figure 5: Comparison of electrostatic solvation energy computed with HOBI-PB and LOBI-PB for protein
1ajj

high parallel efficiency from the T1
pTp

column. When the dimension of the problem is sufficiently large

(e.g. N = 66, 558 or N = 132, 028), the parallel efficiency with 64 CPUs is higher than 90%. We
observed occasionally the interesting larger-than-one parallel efficiencies and those could be explained
by the traffic fluctuation on the cluster or possibly the argument mentioned in [41].

Table 4: MPI parallel performance for computing electrostatic solvation energy on protein 1ajj; p is number
of CPUs, Tp is the time using p CPUs, T1/pTp is the parallel efficiency.

N = 132028 N = 66558 N = 32386

p Tp(s) T1/pTp Tp(s) T1/pTp Tp(s) T1/pTp

1 50457 100.0% 17755 100.0% 3060 100.0%
2 24740 102.0% 8790 101.0% 1528 100.1%
4 12877 98.0% 4381 101.3% 777 98.5%
8 6398 98.6% 2190 101.3% 406 94.3%
16 3321 95.0% 1090 101.8% 194 98.8%
32 1677 94.0% 571 97.2% 106 90.6%
64 860 91.7% 306 90.8% 62 77.4%

In summary, the HOBI-PB solver solves the PB equation accurately on both spherical cavities
and real biomelecules. The surface potential and electrostatic solvation energy computed with the
solver is accurate, fast-convergent and stable. The parallelization of the solver is easy to implement
and the parallel efficiency is attractively high.

4 Conclusion

This paper describes the schemes of a higher-order boundary integral Poisson-Boltzmann (HOBI-PB)
solver. This solver discretizes the molecular surface with curved triangles, and performs numeri-
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cal integral with four-point Gauss-Radau quadratures on regular triangles and with sixteen-point
Gauss-Legendre quadratures on singular triangles. The singularities are regularized with a coordi-
nate transformation. The numerical tests on spherical cavities show that HOBI-PB can achieve 1.5th
order convergence of on surface potentials relative to boundary elements and these computed surface
potentials are very accurate even at coarse mesh. In addition, the order of convergence does not
compromise when the electric charge is off-center or even closed to the surface. The numerical tests
of HOBI-PB on biomolecules show much improved accuracy compared with results from the popular
LOBI-PB solvers. The accurate surface potentials are of vital importance to molecular modeling
that are sensitive to electrostatics near or on the molecular surface. To improve the efficiency of
HOBI-PB, we also developed its MPI based parallel version. The numerical results demonstrate very
encouraging parallel efficiency, e.g. above 90% when up to 64 CPUs work concurrently.

HOBI-PB achieves higher accuracy at the price of more complex algorithms. The limitation of
the HOBI-PB is mainly at the problem dimension it can treat, which is subject to the available
computing resources. For example, for the accessibility to up 64 CPUs each with 1.5G memory per
core at Alabama Supercomputing Center, the problem size HOBI-PB can handle for a reasonable
long waiting time (<15 minutes) is about 150,000 elements. Considering the high accuracy, we can
use fairly small density 1 ≤ d ≤ 5, then PB equations on proteins with hundreds of residues can be
conveniently solved. More computing resources will bring better performance on bigger problems.
The rapid updating of computing power will definitely make HOBI-PB more and more capable.

There are many spaces in which HOBI-PB can be improved and extended. For example, we are
looking for better triangulation programs for the molecular surfaces [42, 43, 44]. The currently adopted
MSMS only provides 3 digits accuracy in vertices, positions and normal directions (we radially project
vertices for spheres). In addition, the adoption of fast algorithms such as FMM [45] and treecode [46]
to HOBI-PB, although considerably challenging due to the complexity of HOBI-PB schemes, is under
our consideration. A more challenging problem is the application of HOBI-PB to molecular dynamics
[47, 48], where the PB equation will be solved at every time sampling. Furthermore, the higher-order
schemes applied in HOBI-PB has the potential to solve other integral equations such as the integral
forms of Helmholtz equation [49] and Maxwell Equations [50]. For these challenges, the application of
the quadrature rules and the treatment of singularity will be similar, however, new challenges such as
obtaining the well-posedness of the integral formulation and applying the fast algorithms need further
investigation.
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