
ar
X

iv
:1

30
1.

60
82

v1
 [

ph
ys

ic
s.

co
m

p-
ph

]
 2

5
Ja

n
20

13

Reaction-diffusion model Monte Carlo simulations on

the GPU

R.D. Schrama

aInstituut-Lorentz, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands

Abstract

We created an efficient algorithm suitable for graphics processing units (GPUs)
to perform Monte Carlo simulations of a subset of reaction-diffusion models.
The algorithm uses techniques that are specific to GPU programming, and
combines these with the multispin technique known from CPU programming
to create one of the fastest algorithms for reaction-diffusion models. As an
example, the algorithm is applied to the pair contact process with diffusion
(PCPD). Compared to a simple algorithm on the CPU, our GPU algorithm
is approximately 4000 times faster. If we compare the performance of the
GPU algorithm, between the GPU and CPU, we find a speed-up of about
130x.

Keywords: GPU, PCPD, Monte Carlo simulations, reaction-diffusion
models

1. Introduction

One-dimensional reaction-diffusion models have received interest over the
past decades. In non-equilibrium statistical mechanics these include directed
percolation (DP), pair contact process with diffusion (PCPD) and triple con-
tact process with diffusion (TCPD). The interest in these models is mostly
whether we can classify the models into one, or more universality classes.
Grassberger [1] and Janssen [2] conjectured that all systems with a single
order parameter and a single absorbing state will belong to the universality
class of the Directed Percolation model. The order parameter of the reaction-
diffusion models considered here is simply the density ρ of the system.

Email address: schram@lorentz.leidenuniv.nl (R.D. Schram)

Preprint submitted to Journal of Computational Physics July 10, 2018

http://arxiv.org/abs/1301.6082v1

Monte Carlo simulations are very useful in this area of research, because
the critical behaviour of these simple models is not understood very well
theoretically. The Monte Carlo approach was extensively used on the PCPD
model, with varying degrees of success. As shown in [3], there are strong
finite-time corrections. Thus, both long time-series and good statistics are
mandatory for a proper analysis of the critical behaviour of the system.
Acquiring sufficient amounts of data is a very time consuming effort. Thus,
we used the parallel processing power of the GPU and clever processing
techniques to achieve this in Ref. [4]. This paper will concentrate on the
implementation and benchmarks of this algorithm.

This paper uses the PCPD model as an example model that can be simu-
lated using the described algorithm. It is very easy to expand the algorithm
to other related models, such as the DP, TCPD and QCDP (Quadruplet
Contact Process with Diffusion) models. In fact, the algorithm has already
been applied to the TCPD and QCPD models, and analysis of these models
will hopefully be published in the near future.

The graphics processing unit (GPU) has been utilized in the last decade
for the purpose of gathering high quality data in computational physics: [5]
(Ising model), [6] (Molecular dynamics) and [7] (bond fluctuation model).
This paper combines GPU programming with a clever programming tech-
nique called multispin programming, that originates from general purpose
CPU programming. It has been used for the PCPD problem in Ref. [8]. A
more thorough explanation of this technique is found in [9]. The relevant
parts for our purposes are explained in this paper.

2. Pair contact process with diffusion

The PCPD model is a 1+1 dimensional problem from non-equilibrium
statistical mechanics. In this model, particles on a lattice can interact in two
ways when they are adjacent to each other: both particles can annihilate,
or a new particle can be produced adjacent to either particle. Additionally,
single particles can diffuse on the lattice. More formally, the reactions are
described by the following notation, where A denotes a particle and 0 denotes
an empty site on the lattice:

2

 0.01

 0.1

 1

 0 2 4 6 8 10 12 14 16 18

ρ

ln(t)

active

inactive

active
critical

inactive

Figure 1: The density of the system as a function of time for the PCPD model, with three
different p values: one in the active phase, one close to critical, and one in the inactive
phase.

{

AA0 → AAA
0AA → AAA

each with rate (1−p)(1−d)
2

AA → 00 with rate p (1− d)
A0 ↔ 0A with rate d

(1)

There exist three regimes of the system. A schematic overview is shown
in figure 1. For a low annihilation rate p < pc, the system will maintain a
constant density with very high probability. This is called the active phase.
On the other hand, in the case of a high annihilation rate p > pc, the particles
in the system will annihilate quickly, and the system is in the inactive phase.
On the boundary at the critical annihilation rate p = pc, length and time
scales are expected to diverge in a power law fashion, similar to equilibrium
phase transitions. The actual value for pc depends on the diffusion coefficient
d. For p values far from the critical value pc, the behaviour of the system is
well described by mean-field theory. Thus, our interest lies in determining
the critical behaviour at or close to pc.

A sequential Monte Carlo algorithm of the PCPD model is shown in
algorithm 1. It is not optimized for speed, because for instance the number

3

Algorithm 1 Sequential PCPD algorithm

1: Input: configuration q at time t.
2: Output: configuration q at time t+ 1/L.

3: PCPD step seq(q):
4: {pick a site i on the lattice}
5: i := ⌊L · RNG()⌋ {RNG is uniform in [0, 1)}
6: r1 := RNG(), r2 := RNG(), r3 := RNG()

7: if r1 < d then

8: Swap(qi, qi+1) {Diffusion}
9: else if qi = 1 and qi+1 = 1 then

10: if r2 < p then

11: qi := 0, qi+1 := 0 {Annihilation}
12: else

13: if r3 < 1/2 then

14: qi−1 := 1 {Fission low}
15: else

16: qi+2 := 1 {Fission high}

of calls to the random number generator (RNG) can be reduced to only one
call. The reason for writing the algorithm this way is that it compares more
easily to the GPU algorithm.

3. GPU programming

Some algorithms are more easily ported to a GPU architecture than oth-
ers. It is important to understand the strengths of the GPU to see whether it
is worth the effort. First we will give the conditions under which a GPU pro-
gram can thrive. Our implementation uses the OpenCL [10] framework for
parallel computing. Therefore, OpenCL terminology will be used to describe
the basics of GPU architecture. The difference between the two GPU archi-
tectures of the main GPU manufacturers AMD and NVIDIA is far smaller
than difference between a CPU and a GPU. For our purpose the difference
is small enough, that it does not need a different implementation. Technical
specifications of the GPU architectures can be found in [11] (NVIDIA) and
[12] (AMD).

The first and most important condition is the amount of parallelism that

4

can be obtained in the algorithm. For the current generation GPUs, the num-
ber of threads should ideally be of an order 10,000 or higher per GPU. Future
GPUs will be even more parallel, and this requirement will further increase.
Generally speaking, for Monte Carlo simulations there are two (easy) meth-
ods to increase parallelism: increase the system size and let more threads
work on one system, or increase the number of statistically independent sys-
tems and run them in parallel. The second option is easy to implement, but
often for the desired system size the simulation will either consume too much
memory, or time scales that can be achieved are too low, which is especially
important in the case of non-equilibrium models such as PCPD.

Having more threads working on the same system typically relieves these
problems, but it is harder to program and it adds synchronization cost to
the total computation cost, which can be severe if all threads on the GPU
are synchronized.

On a GPU the workitems, which are called threads on a CPU, are divided
into workgroups. The programmer can decide on the size of a workgroup,
up to a maximum that depends on the hardware. Synchronization and com-
munication between workitems within a workgroup is cheap on the GPU,
compared to synchronization and communication between two workitems
that belong to a different workgroup. To reduce communication overhead, in
our implementation each workgroup simulates its own independent system
with a different seed of the random number generator (RNG).

Attaining a high memory bandwidth utilization is another aspect of an
efficient GPU algorithm. The memory bandwidth of a current-gen high-end
GPU (AMD Radeon HD7970, 260 GB/s) is about 5 times higher than that
of a current-gen high-end CPU (Intel Core i7 3960X, 51 GB/s). However, the
memory access pattern is more important on a GPU; a bad access pattern
such as random access will hurt the performance on the GPU more than
on the CPU. Sequential access gives the best performance, but the PCPD
problem requires us to randomly select a lattice site, which is an inefficient
memory access pattern. We circumvent this by slightly modifying the PCPD
algorithm. The lattice is divided among the workitems into parts of equal
sizes. Then as a compromise, we modify the PCPD algorithm such that all
workitems access the same local site in their part of the lattice, where the
local site is the site relative to the appointed part of the lattice. The local
site for all the workitems is still randomly chosen. Local sites with the same
number can be placed sequentially, and the random access pattern becomes
at least partially sequential. A more detailed description of how the lattice

5

sites are ordered in memory will be given in section 4.
Since the reaction-diffusion models are simulated using Monte Carlo al-

gorithms, it is important to carefully choose the random number generator
(RNG). One aspect that determines the quality of a good RNG is the number
of bits that is used to store the current state of the RNG. There is a compar-
atively large, but still limited amount of general purpose registers (GPRs)
available on the GPU. Access to these registers is in principle without delay,
barring some restrictions that are handled by the compiler. To optimize for
performance we chose the combined Tausworthe RNG with the seeds from
Ref. [13]. It has a 128-bit state storage, which can easily fit inside the GPRs.
To verify that this does not deteriorate the results, we used the WELL512
RNG with a 512 bit state space, to check whether the results are influenced
by the small state space. We found that this is not the case.

The final important consideration that we want to highlight is the use of
branching on the GPU. Workgroups on the GPUs of both NVIDIA and AMD
are divided into (smaller) entities called warps by NVIDIA and wavefronts
by AMD. These warps/wavefronts are executed in SIMD (Single Instruction
Multiple Data) fashion. This means that each workitem in a warp/wavefront
executes the exact same instructions. Instructions within a branch are ex-
ecuted by all workitems within a warp/wavefront if at least one workitems
takes that particular branch. In addition to that, older AMD GPUs (prior to
the Core Gen Next architecture) have a high latency penalty when encoun-
tering a branch, which is at least ∼ 50 clock cycles. In our implementation
all branching operations in the simulation part of the program are replaced
by bit-operations.

4. The multispin GPU program

Multispin programming is a technique that enables parallelism within one
thread. It can be used when the number of bits necessary to store one data
element is smaller than the register size of the underlying hardware. For
example, modern 64-bit CPUs have 64-bit registers (not counting SSE, AVX
extensions), whereas current GPUs work fastest on 32-bit integers/floating
point numbers. For the reaction-diffusion models that we consider, a lattice
site can either be occupied, denoted by 1, or empty, denoted by a 0. Thus,
to store the state of one lattice site, we only need one bit of storage per site.
In the original multispin technique, parallelism is obtained by simulating Nr

lattices in parallel, where Nr is the number of bits in the GPR, depending on

6

hardware. The sequential program is translated to use bit operations, instead
of branching statements. Finally, the lattices are decoupled in some way, to
ensure that after sufficient time, the Nr lattices are statistically independent.

We opted for a slightly different approach. The problem with the classical
approach to multispin programming in the case of GPUs is twofold. Firstly,
the multispin technique does not make time steps go faster, but only im-
proves the statistics of the results. Thus, to obtain long time series, we still
need to wait a long time, although the statistics are much better than on a
CPU, because of the number of lattices used. Perhaps more importantly, the
necessary amount of memory grows very large. In our simulations we used a
lattice size of L = 218 = 262144. With 500 workgroups, the total amount of
memory used would be about 2 GB of memory. Although professional Tesla,
or FireGL cards usually contain this amount of memory, it does reach the
limit of most consumer cards (which are used extensively in simulations be-
cause of the price difference), and it does not leave much room for increasing
the lattice size.

Instead, we connected the Nr lattices of the classical approach, to form
one larger lattice. A concern that may arise, is that the correlation between
the sites within one GPR (that of one workitem) will propagate and bias
the results. We found that this is indeed the case if sites in the same GPR
are close to each other, but if they are the maximum distance apart (L/Nr),
we found no bias, as a consequence of this trick to increase the lattice size.
Additionally, we added extra decoupling between sites in the same GPR,
which will be discussed in section 4.2.

The placement of the sites in memory is shown in figures 2 and 3. This
memory lay-out is optimized for performance. At each step of the simula-
tion of the reaction-diffusion model, the GPU program loads a number of
consecutive sites into the GPRs of each workitem. The sites loaded from
the global memory are those that are needed for computation of the Monte
Carlo step, and those that can potentially be modified. Thus, for the PCPD
problem, four sites loaded into the GPRs (the pair, one to the left of the
pair and one to the right). For a equivalent definition of the TCPD problem,
five sites would have to be retrieved. The workgroup size is chosen to be a
power of 2, such that the memory loads are 4 · Sw byte aligned, with Sw the
size of the workgroup. According to a technical document of AMD [12], the
memory channel width of AMD GPUs is 256 byte, and we expect at least
decent performance, using a workgroup size of 64.

The distribution of work among the workitems in combination with the

7

l31 l0 l1 l2

p0 p1 p2 p63 p0 p1 p2 p63p63 p0

2047 0 32 64 2016 1 33 65 2017 2

Figure 2: A schematic picture of the memory layout of the multispin GPU algorithm.
The configuration shown in this figure has a work-group size of 64. The number of local
elements is 32. Consequently, the lattice size is L = 32 · 32 · 64 = 65536. The work-item
number is given by pi. The local memory index is denoted by li. The numbers in the
boxes give the global lattice site number, which means that s = 1 is a neighbor of s = 2,
etc. The arrows indicate lattice sites that are next to each other in the global memory of
the GPU. The vertical columns are not drawn, because they are the same as in figure 3,
i.e. only the first bit of the double word is shown. For example, global lattice site 2048 is
contained in the same double word as 0.

p63 p0 p1

l0 l1 l2 l31 l0 l1l31

63487

65535

2047

4095

0 1 2 31

2048 2049 2050 2079

4096

63488 63519

32 33

2080

Figure 3: A schematic figure showing the distribution of the sites of the lattice among the
work-items. The work-item number is given by pi. The local memory index is denoted
by li. The numbers in the boxes are global site numbers, where s = 1 is a neighbor of
s = 2, etc. The arrows indicate consecutive lattice sites. A vertical column is stored in
one double word, and this is where multispin coding is used.

8

memory lay-out ensures that there is no communication needed between
workitems: the sites on which the workitems work are always far enough
(L/Nr) apart such that they are independent within a step. The sites are
stored in the (shared) global memory, which also prevents the need for com-
munication, as opposed to using the GPRs. Between computation steps,
however, it is necessary to synchronize the workitems within a workgroup to
avoid race conditions on the global memory. If the workgroup size is small
enough, this synchronization is a intrinsic property of the SIMD array of the
GPU and in that case it is cost-free (64 for AMD GPUS, 32 for NVIDIA
GPUs).

4.1. Implementation details of the PCPD algorithm

To keep the pseudocode compact and more easy to follow, we assume
that the required sites are already loaded from the global memory into the
GPRs, and that the necessary bit-rotations to connect the multi-spin lattices
are already done.

The PCPD-specific core of the algorithm is given in Algorithm 2. The
bitwise operations used are the or (∨), and (∧) and not (¬) logical operators.
Except for the comparison in line 13, the pseudocode can be read as if it were
only working on one bit. In the processing unit of the GPU these bit-wise
operations are done on all Nr bits simultaneously. Line 13 is an exception:
the comparison RNG() < 4p is not done bit-wise. Instead, it gives either 1
or 0 equally for all Nr bits. The reason for this will be given in section 4.3.

4.2. diffusion

In algorithm 2 the diffusion coefficient d is set to 0.5. In contrast to
a straightforward PCPD implementation, the value for d is hard coded for
efficiency. The advantage lies in the computational effort to create a bit that
is one with probability d. For d = 0.5 the output of the function RNG()
(with a correct implementation of the RNG) is 1 with probability 0.5, and 0
otherwise. To obtain other values for d or and and operators are used. For
example to create bits that are 1 with probability 0.25 the and operator is
used between two random numbers: dMask = RNG()∧RNG(). This way we
can generate 2Ng − 1 different values of d using at most Ng calls to the RNG
(d = 0 is not counted). The universal behaviour of the system is believed
to independent of d, and therefore the limited choice of d is not an issue, as
long as we can select values for d that differ sufficiently.

9

Algorithm 2 GPU multispin PCPD algorithm

1: Input: Local lattice l at time t, site(s) i, percolation probability p.
2: Output: Local lattice l at time t+ 1/32.
3: Call: PCPD GPU multi(L, i):

4: {Diffusion, d = 0.5}
5: dMask := RNG()
6: temp := l[i]
7: l[i] := (dMask ∧ l[i+ 1]) ∨ ((¬dMask) ∧ l[i])
8: l[i+ 1] := (dMask ∧ temp) ∨ ((¬dMask) ∧ l[i+ 1])

9: {pMask has the j-th bit set to 1 iff the j-th bit in both l[i] and l[i + 1]
are 1}

10: pMask := l[i] ∧ l[i+ 1]

11: {Annihilation, p < 0.25}
12: aMask := RNG() ∧ RNG()
13: aMask := (¬dMask) ∧ aMask ∧ pMask ∧ ((RNG() < 4p)?1 : 0)
14: l[i] := l[i] ∧ aMask
15: l[i+ 1] := l[i+ 1] ∧ aMask

16: {Fission high}
17: fMask := pMask ∧ (¬dMask) ∧ (¬aMask) ∧ RNG()
18: l[i+ 2] := l[i+ 2] ∨ fMask

19: {Fission low}
20: fMask := pMask ∧ (¬dMask) ∧ (¬aMask) ∧ (¬fMask)
21: l[i− 1] := l[i+ 2] ∨ fMask

In lines 6-8 the diffusion step is done by swapping the bits of sites l[i] and
l[i+ 1], if the bit in dMask is 1.

4.3. Annihilation

In the annihilation step we are confronted with a similar problem as in
the diffusion step. We need to create a set of Nr bits that are one with
probability p. We could do this analogously with the diffusion step, but in
this case an arbitrary value for p is not useful, because p needs to be close
to pc. In our simulations in Ref. we found pc with an error of approximately
2 · 10−6, which means that we would need at about 18 random numbers to
have multiple values of p close enough to pc (2−18 ≈ 4 · 10−6). The final

10

PCPD program needs 5 or 6 random numbers in total, depending on d.
Thus, it would be a bottleneck if we would use the same procedure for the
annihilation step. Instead, all Nr bits are set to 1 with probability p and all
0 otherwise. This gives each bit the right probability to be 1, but the bits are
fully correlated. With the described memory lay-out in section 4 we found
the bias due to the correlation to be smaller than the noise of our data, but
to be safe we added a decorrelation step to our algorithm.

We found in Ref. [4] that pc < 1/4 for d = 0.25, d = 0.5 and d = 0.75.
In line 12, Ng bits are generated independently of each other being 1 with
probability 0.25. Then in the next line we apply the AND operator between
these bits and the fully correlated bits that are one with probability 4p.
The result is a partially correlated bit with probability p to be one. In
the case that we would not have the property p < 1/4, we can still do a
similar procedure. For example, in the case of the bound p < 3/4, we would
generate uncorrelated bits with a probability of 3/4 to be 1, and use the
AND operation with correlated bits that are one with probability 4p/3.
The quality of the decorrelation procedure depends on the tightness of the
bound we use.

The last two lines clear the two sites l[i] and l[i + 1] under the following
conditions:

1. l[i] = l[i+ 1] = 1

2. No diffusion this step

3. We drew 1, with a probability p

4.4. fission

Lines 17-21 constitute the fission step. By the definition given in eq. (1),
the conditional probability to attempt a fission step, given that no diffusion
or annihilation step was attempted, is 1. Therefore, only one random number
is necessary to distinguish between a new particle to the left and to the right
of the pair.

5. Benchmarks

5.1. Test setup

We use the “Little Green Machine” for our main benchmarking tests. A
node consists of two NVIDIA Geforce GTX 580 GPUs, an Intel Xeon E5620
(@2.4 Ghz) CPU, and 24 GB of memory. As the OpenCL library we use

11

the NVIDIA Cuda toolchain, version 4.0. The program was compiled using
version 4.1.2 of the gcc compiler, with optimization flags -O2.

Additionally to this setup, we also use a PC, consisting of an ATI Radeon
HD5850 GPU, an Intel Core 2 Duo E8400 (@3.0 Ghz), and 4 GB of memory.

5.2. Performance

The performance of the GPU PCPD algorithm is measured in the number
of moves done per second globally on the GPU, including multispin. In
the PCPD case the program reads 4 bits, and writes back 4 bits to the
lattice, per single move. Thus the total (read/write combined) bandwidth in
bytes/s (B/s) of the PCPD program is equal to the number of moves/s. The
performance of the PCPD GPU program is shown in figure 4, for different
GPUs and a CPU.

Our conventional CPU program does roughly 20 · 106 moves per second,
which means that the GPU program is about 4000 times faster. The same
GPU program run on the CPU performs 615 · 106 moves per second, which
is still 130 times slower than the same algorithm run on a GPU. Using both
cores, the algorithm achieves almost perfect scaling with 1200 · 106 moves
per second. Thus, we conclude that this algorithm is very well tailored
for the GPU. We believe that this is due to the fact that the algorithm is
still computationally bound, where the GPU has the largest architectural
advantage. Also, the GPU algorithm on the CPU has the disadvantage that
the memory access pattern is more simlar to a random access pattern.

The performance depends on the size of the workgroups on the GPU. The
advantage of a smaller workgroup is that synchronization is less expensive.
Also, the number of workgroups that fits on a compute unit/SIMD array con-
currently is larger because the stacking of workgroups is less coarse grained.
In our implementation the number of bytes read sequentially is equal to 4Sw.
The more bytes that are read sequentially, the better the global access pat-
tern, which can improve performance. With a workgroup size of 32 we are
likely seeing this effect: even with the largest number of workgroups, it is
still 20% slower than the simulations with larger workgroup sizes. Since less
workitems per workgroup makes the simulation more safe with regards to
finite size effects, the best choice is probably either WS = 64 or WS = 128.

To test the numerical dependence of the density ρ(t) on the workgroup size
and the number of decorrelation bits, we have used different configurations
of those. Only with the largest workgroup size (512) there is a significant
deviation from the other curves. Adding decorrelation bits does not help to

12

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500

G
B

/s

Number of workgroups

WS=32
WS=64
WS=128
WS=256
WS=512
AMD(WS=64)

Figure 4: Performance of the GPU PCPD algorithm, depending on the number of work-
groups and the size of the workgroups. The performance is measured in the effective
bandwidth the algorithm achieves. For the PCPD problem, the number of bytes trans-
fered per second is equal to the number of moves per second. The number of workgroups is
equal to the number of parallel lattices on the GPU. The smallest workgroup (WS=32) has
the worst performance. However, it has theoretically the most numerically most accurate
results. Thus, for safety for our analysis [4] we used a workgroup size of 32. The fact that
the graph is not smooth, is not due to statistical fluctuation. The error bars on the curves
is much less than 1 GB/s. Instead, the reason is that the performance does not depend
smoothly on the number of workgroups, because the number of computational units is an
integer. We will not discuss more deeply why some workgroup size is better performing
than others.

13

improve the numerical result. This means that the cause of the deviation is
the choice of sites, which is correlated between the workitems (and which is
not influenced by decorrelation bits). On the other hand, a workgroup size of
128 is indistinguishable from runs with Sw = 32. Thus, we conclude that our
data with Sw = 32 is almost certainly not significantly biased by the finite
lattice size.

5.3. Analysis

The analysis was done in a previous paper [4]. Here, we will present some
analysis of the data to show the necessity of a fast algorithm.

At the critical value pc, the density ρ of the system is expected to decrease
in a power-law fashion. However, for the PCPD problem we found that there
are strong corrections to scaling, which we believe to be of the following form:

ρ(t) = c1t
−δ + c2t

−2δ + (2)

As shown in the analysis paper, under this assumption, asymptotically
a straight line is obtained by plotting δeff as a function of ρ. This is one in
figures 5 and 6 for diffusion coefficients d equal to 0.25 and 0.75 respectively.
The figure with d = 0.5 was shown in the analysis article. The particle
density and the pair density are expected to converge to the same value of δ
at ρ = 0 (or equivalently t → ∞). The pair density and the particle density at
high densities (low t) have slopes that when extrapolated, cross each other at
some finite density. Thus, at these time scales, it is not possible to extract the
universal exponent δ by extrapolation. The data after the virtual crossover
point is more useful in this regard, but even with the amount of data gathered,
this part is still quite noisy and short. This shows the necessity of a fast
algorithm as presented in this paper.

6. Conclusion and discussion

We have addressed concerns about the numerical accuracy, as a result of
an insufficiently large lattice, in combination with a large workgroup size. We
conclude that the effective lattice size does indeed decrease with an increasing
workgroup size. Thus, the effective lattice size will be smaller than the
number of sites in the lattice. This means that the lattice size has to be bigger
than in an ordinary CPU simulation. However, the simulations presented
here were not limited by the amount of memory, and for workgroup sizes

14

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

δ e
ff

ρ

Figure 5: The effective exponent δeff for both the single particle density (black lines) and
the pair density (gray lines), as a function of their respective densities. The diffusion
constant d is equal to 0.25. The values for p was chosen close to the critical point, that
was estimated to be pc = 0.125141(2). The lattice size was chosen to be L = 218 = 262144.
The values for p are 0.12514 (N = 2000), 0.125142 (N = 3000), 0.125145 (N = 3000) and
0.125155 (N = 1000), with N the number of runs.

15

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

δ e
ff

ρ

Figure 6: The effective exponent δeff for both the single particle density (black lines) and
the pair density (gray lines), as a function of their respective densities. The diffusion
constant is equal to 0.75. The values for p was chosen close to the critical point, that was
estimated to be pc = 0.191789(2). The lattice size was chosen to be L = 218 = 262144.
The values for p are 0.19178 (N = 2000), 0.191785 (N = 2000), 0.19179 (N = 8000) and
0.191795 (N = 2000), with N the number of runs.

16

smaller than 128, we did not observe any deviation at all, with a lattice size
of 218, and t < 1.5 · 107.

The GPU reaction-diffusion algorithm presented here is much faster than
traditional multispin methods, which are among the fastest CPU methods.
With our algorithm, one GPU is roughly equivalent to 130 CPU cores. A
multispin program specifically written for the CPU will be faster, but it is
unlikely to be much more than twice as fast (most can be gained from going
from 32-bit integers to 64-bit integers), which still leaves a factor of roughly
65. Thus, it greatly sped up the simulations used to analyze the PCPD
model, which otherwise would have taken an immense amount of CPU hours.

The algorithm is easy to extend to other related models, and is already
being used for that problem. Hopefully this will shed more light on the issue
of universality in non-equilibrium statistical mechanics models.

7. Acknowledgements

Computing time on the “Little Green Machine”, which is funded by the
Dutch agency NWO, is acknowledged.

References

[1] P. grassberger, “On phase transitions in schlögl’s second model,” Z.

Phys. B, vol. 47, no. 4, pp. 365–374, 1982.

[2] H. K. Janssen, “On the nonequilibrium phase transition in reaction-
diffusion systems with an absorbing stationary state,” Z. Phys. B,
vol. 42, no. 2, pp. 151–154, 1981.

[3] H. Hinrichsen, “The phase transition of the diffusive pair contact process
revisited,” Phys. A: Stat. Mech. and its Applications, vol. 361, no. 2,
pp. 457–462, 2006.

[4] R. D. Schram and G. T. Barkema, “Critical exponents of the pair contact
process with diffusion,” J. Stat. Mech., vol. 2012, no. 3, p. 3009, 2012.

[5] T. Preis, P. Virnau, W. Paul, and J. J. Schneider, “Gpu accelerated
monte carlo simulation of the 2d and 3d ising model,” Journal of Com-

putational Physics, vol. 228, no. 12, pp. 4468–4477, 2009.

17

[6] J. A. Anderson, C. D. Lorenz, and A. Travesset, “General purpose
molecular dynamics simulations fully implemented on graphics units,”
Journal of Computational Physics, vol. 227, no. 10, pp. 5342–5359, 2007.

[7] S. Nedelcu, M. Werner, M. lang, and J.-U. Sommer, “Implementa-
tions of the bond fluctuation model,” Journal of Computational Physics,
vol. 231, no. 7, pp. 2811–2824, 2011.

[8] F. Smallenburg and G. T. Barkema, “Universality class of the pair con-
tact process with diffusion,” Phys. Rev. E, vol. 78, pp. 31129–31136,
2008.

[9] M. Newman and G. Barkema, Monte Carlo Methods in Statistical

Physics. Clarendon Press, Oxford, 1999.

[10] Khronos Group, OpenCL specifications, 2012.

[11] NVidia Corp., Cuda programming guide, 2012.

[12] Advanced Microdevices Inc., AMD Accelerated Parallel Processing,

OpenCL programming guide, 2012.

[13] P. L’Ecuyer, “Tables of maximally equidistributed combined lfsr gener-
ators,” Math. Comp., vol. 68, pp. 261–269, 1999.

18

	1 Introduction
	2 Pair contact process with diffusion
	3 GPU programming
	4 The multispin GPU program
	4.1 Implementation details of the PCPD algorithm
	4.2 diffusion
	4.3 Annihilation
	4.4 fission

	5 Benchmarks
	5.1 Test setup
	5.2 Performance
	5.3 Analysis

	6 Conclusion and discussion
	7 Acknowledgements

