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This paper proposes a novel systematic approach for the parallelization of pentadiagonal
compact finite-difference schemes and filters based on domain decomposition. The pro-
posed approach allows a pentadiagonal banded matrix system to be split into quasi-
disjoint subsystems by using a linear–algebraic transformation technique. As a result the
inversion of pentadiagonal matrices can be implemented within each subdomain in an
independent manner subject to a conventional halo-exchange process. The proposed
matrix transformation leads to new subdomain boundary (SB) compact schemes and filters
that require three halo terms to exchange with neighboring subdomains. The internode
communication overhead in the present approach is equivalent to that of standard explicit
schemes and filters based on seven-point discretization stencils. The new SB compact
schemes and filters demand additional arithmetic operations compared to the original
serial ones. However, it is shown that the additional cost becomes sufficiently low by
choosing optimal sizes of their discretization stencils. Compared to earlier published
results, the proposed SB compact schemes and filters successfully reduce parallelization
artifacts arising from subdomain boundaries to a level sufficiently negligible for sophisti-
cated aeroacoustic simulations without degrading parallel efficiency. The overall perfor-
mance and parallel efficiency of the proposed approach are demonstrated by stringent
benchmark tests.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Compact finite-difference schemes and filters based on implicit multi-diagonal banded matrix systems have been used for
the last two decades particularly in direct numerical simulation (DNS), large eddy simulation (LES) and computational aero-
acoustics (CAA) [1–12]. One of the main advantages of using them over conventional explicit ones is that one may achieve
higher wavenumber performance for a given stencil size and formal order of accuracy. Currently, the vast majority of CAA/
LES/DNS activities make extensive use of parallel computing techniques benefitting from the rapid growth of modern super-
computing capabilities. However, the advantage of using the compact finite-difference schemes and filters in a parallel com-
puting environment often comes at a significant cost, particularly when they are parallelized based on domain
decomposition and message passing interface (MPI) that is currently the most common platform of parallel computing. This
drawback is mainly due to their implicit nature of solving tri- or penta-diagonal banded matrix systems that demand sub-
stantial algorithmic/numerical efforts to generate parallel solutions identical to the serial counterparts.
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Previously, some algorithmic approaches have been proposed for the parallelization of tridiagonal banded matrix systems
applied to compact finite-difference schemes. They are mainly categorized into: pipelined Thomas algorithm [13,14], parallel
diagonal dominant algorithm [15] and SPIKE algorithm [16]. The pipelined Thomas algorithm (PTA) provides identical results
to the serial calculations at some penalty in efficiency due to processors inevitably idling at times for the completion of cal-
culations on the other processors (mostly during the switch between forward and backward operation steps). Povitsky and
Morris [14] introduced an efficient static schedule for PTA in which processors run in a time-staggered way in order to min-
imize the idle time. The parallel diagonal dominant (PDD) algorithm [15] is specifically designed for the solution of Toeplitz
tridiagonal systems arising from compact schemes. However, it is an approximation of the original system (dropping inter-
mediate coefficients) and has a higher computational overhead compared to PTA. Polizzi and Sameh [16] proposed an exten-
sively generalized algorithm named SPIKE based on a four-stage procedure. The SPIKE algorithm shows more efficient and
versatile performance compared to direct solvers in ScaLAPACK (an open source package for linear algebra) in parallel cal-
culations. It can handle arbitrary bandwidth systems whereas the PTA and PDD algorithms are limited to tridiagonal ones.
However, it may cost a significant computational overhead due to reordering and factorization processes required. Although
these algorithmic approaches demand an increased level of complexity in computer programming, they usually provide
good flexibility to be implemented in various applications.

In recent years, as an alternative to the algorithmic approaches, a boundary approximation approach was proposed to
avoid the earlier drawbacks. The boundary approximation approach (BAA) employs overlapping (Gaitonde & Visbal [7]
and Sengupta et al. [17]) or halo points (Hixon [6] and Kim & Sandberg [18]) between two neighboring subdomains and lo-
cally applies tailored boundary schemes and filters (as an approximation to the original ones) around the subdomain bound-
aries in order to create disjoint matrix systems that can be solved within each subdomain in a quasi-independent manner
subject to a conventional message passing process. Kim and Sandberg [18] introduced a new set of wavenumber-optimized
subdomain boundary schemes based on three halo points and proposed an iterative type of filtering implementation, which
resulted in a reduction of numerical errors by two orders of magnitude compared to the results in [17]. They also showed
that the parallel efficiency and speed-up of BAA for pentadiagonal schemes and filters could be almost comparable to those
of standard explicit ones. Despite the substantial improvement achieved in [18], however, the BAA still shows parallelization
artifacts in an acoustic level arising from subdomain boundaries when situated in a vortex-driven fluid flow, which raises a
concern for sophisticated aeroacoustic calculations. It is indicated in [18] that the undesirable effect is essentially attributed
to a local degradation in discretization performance (both dispersion and dissipation) due to the approximate boundary
schemes and filters.

This paper aims to present a significantly more reliable BAA by deriving new subdomain boundary (SB) compact schemes
and filters that provide almost identical dispersion and dissipation performance to the interior ones. This leads to almost
artifact-free solutions from subdomain boundaries, which offers convincingly clean parallel computing environments for
aeroacoustic calculations based on compact schemes/filters. The proposed BAA employs pentadiagonal platforms of
fourth-order central finite-difference schemes and sixth-order central filters. A linear–algebraic transformation of the matrix
systems allows deriving the new SB (subdomain boundary) compact schemes and filters that have wider discretization sten-
cils than those of the interior ones. The extra stencils appear on the first two points from a subdomain boundary in the pres-
ent pentadiagonal systems, which requires additional floating-point operations compared to the previous approach
proposed in [18]. The parallel efficiency associated with the additional cost depends on the ratio between the size of the ex-
tra stencils and the size of subdomain. The present work proposes an efficient set of stencil sizes for the SB compact schemes
and filters in order to minimize the extra cost without degrading the accuracy of solutions. The accuracy and efficiency of the
new BAA are validated via applications to aeroacoustic benchmark tests.

The paper is organized as follows. Section 2 briefly introduces the original form of compact schemes and filters used for
serial computation. Section 3 explains the formulation of the new SB compact schemes and filters associated with the linear–
algebraic transformations. Section 4 suggests an efficient set of the SB compact schemes and filters with optimal stencil sizes,
and examines linear stability of the combined differencing–filtering system. Section 5 shows aeroacoustic benchmark test
cases to highlight the accuracy and effectiveness of the proposed approach. Finally concluding remarks are made in Section 6.

2. Original compact finite-difference schemes and filters in serial computing

This section introduces the original serial form of compact finite-difference schemes and filters used in the present work.
They are commonly based on pentadiagonal banded matrices and seven-point stencils with suitable boundary closure
formulations.

2.1. Compact finite-difference schemes

The present work employs fourth-order pentadiagonal compact finite-difference schemes proposed in [11] for numerical
differentiation. They can be expressed in a serial form as



Table 1
Coefficients for central compact schemes on interior points: Eq. (2.2).

a b a1 a2 a3

0.5862704032801503 9.549533555017055e�2 0.6431406736919156 0.2586011023495066 7.140953479797375e�3

Table 2
Coefficients for non-central compact schemes on physical boundary points: Eq. (2.1).

i = 0 i = 1 i = 2

ci0 (n/a) 8.360703307833438e�2 3.250008295108466e�2
ci1 5.912678614078549 (n/a) 0.3998040493524358
ci2 3.775623951744012 2.058102869495757 (n/a)
ci3 (n/a) 0.9704052014790193 0.7719261277615860
ci4 (n/a) (n/a) 0.1626635931256900
bi0 (n/a) �0.3177447290722621 �0.1219006056449124
bi1 �3.456878182643609 (n/a) �0.6301651351188667
bi2 5.839043358834730 �2.807631929593225e�2 (n/a)
bi3 1.015886726041007 1.593461635747659 0.6521195063966084
bi4 �0.2246526470654333 0.2533027046976367 0.3938843551210350
bi5 8.564940889936562e�2 �3.619652460174756e�2 1.904944407973912e�2
bi6 �1.836710059356763e�2 4.080281419108407e�3 �1.027260523947668e�3
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�f 0i þ c01
�f 0i�1 þ c02

�f 0i�2 ¼ �
1
Dx

X6

m¼0;–0

b0mðfi�m � fiÞ

c10
�f 0i þ �f 0i�1 þ c12

�f 0i�2 þ c13
�f 0i�3 ¼ �

1
Dx

X6

m¼0;–1

b1mðfi�m � fi�1Þ

c20
�f 0i þ c21

�f 0i�1 þ �f 0i�2 þ c23
�f 0i�3 þ c24

�f 0i�4 ¼ �
1
Dx

X6

m¼0;–2

b2mðfi�m � fi�2Þ

9>>>>>>>>>>>=>>>>>>>>>>>;
for i ¼

0;
N;

�
ð2:1Þ

b�f 0i�2 þ a�f 0i�1 þ �f 0i þ a�f 0iþ1 þ b�f 0iþ2 ¼
1
Dx

X3

m¼1

amðfiþm � fi�mÞ for 3 6 i 6 N � 3; ð2:2Þ
where fi and f 0i represent an objective function f(x) and its spatial derivative @f(x)/@x respectively at a location of interest xi.
The bar ‘‘-’’ is used in order to distinguish numerical derivative ð�f 0Þ from the exact derivative ðf 0Þ. The discretization index
runs within 0 6 i 6 N, where i = 0 and i = N represent the domain boundaries. The upper signs in Eq. (2.1) correspond to
i = 0 (left-hand side boundary) and the lower signs to i = N (right-hand side boundary). The spatial interval Dx = xi+1 � xi is
a constant independent of the index i in the computational domain where all the grid points are equally spaced. Eq. (2.2)
is the main central difference scheme for interior points and Eq. (2.1) is non-central schemes for the physical boundary
points. The coefficients – determined in [11] for optimal performance – are listed in Tables 1 and 2. The resolution charac-
teristics of the schemes are described by pseudo-wavenumber profiles (see Section 4.1 for details) in Fig. 1.

2.2. Compact discrete filters

Compact filters are often used in conjunction with compact finite-difference schemes in order to ensure numerical sta-
bility and remove errors arising from unresolved wavenumbers without degrading the high resolution performance of the
compact schemes. The present work employs pentadiagonal compact filters proposed in [12], which can be expressed in
a serial form as
bDfi þ cF01

bDfi�1 þ cF02
bDfi�2 ¼ 0

cF10
bDfi þ bDfi�1 þ cF12

bDfi�2 þ cF13
bDfi�3 ¼ 0

cF20
bDfi þ cF21

bDfi�1 þ bDfi�2 þ cF23
bDfi�3 þ cF24

bDfi�4 ¼
X5

m¼0;–2

bF2mðfi�m � fi�2Þ

9>>>>>=>>>>>;
for i ¼

0;
N;

�
ð2:3Þ

bF
bDfi�2 þ aF

bDfi�1 þ bDfi þ aF
bDfiþ1 þ bF

bDfiþ2 ¼
X3

m¼1

aFmðfi�m � 2f i þ fiþmÞ for 3 6 i 6 N � 3; ð2:4Þ
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Fig. 1. Pseudo-wavenumber profiles of compact finite-difference schemes (serial mode) used in the present work: real (left) and imaginary (right) parts.

Table 3
Coefficients for central compact filters on interior points: Eq. (2.4).

aF bF aF1 aF2 aF3

0.6651452077642562 0.1669709584471488 8.558206326059179e�4 �3.423282530423672e�4 5.705470884039454e�5

Table 4
Coefficients for non-central compact filters on physical boundary points: Eq. (2.3).

Coef. i = 0 i = 1 i = 2 Coef. i = 2

cFi0 (n/a) 0.7311329755609861 0.1681680891936087 bF20 �2.81516723801634e�4
cFi1 0.3412746505356879 (n/a) 0.6591595540319565 bF21 1.40758361900817e�3
cFi2 0.2351300295562464 0.6689728401317021 (n/a) bF23 2.81516723801634e�3
cFi3 (n/a) 0.1959510121583215 0.6591595540319565 bF24 �1.40758361900817e�3
cFi4 (n/a) (n/a) 0.1681680891936087 bF25 2.81516723801634e�4
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where ‘‘^’’ represents numerically filtered quantities and bDfi ¼ f̂ i � fi is the difference between the filtered and the original
functions at a location of interest xi. Again, the upper signs in Eq. (2.3) correspond to i = 0 (left-hand side boundary) and the
lower signs to i = N (right-hand side boundary). Eq. (2.4) is the main central filter for interior points and Eq. (2.3) is non-cen-
tral filters for the physical boundary points. The interior filter has sixth-order of accuracy and the boundary filters were de-
rived based on a fourth-order extrapolation function in [12].

The filter coefficients in Eqs. (2.3) and (2.4) used for the present work are listed in Tables 3 and 4. The present coefficients
are determined to set the cut-off wavenumber to jC = 0.88p (see [12] for details) and the formulas used to determine them
are also provided in Appendix A. The transfer functions of the present filters are plotted in Fig. 2 to describe the profiles of
amplification rate in the wavenumber domain (see Section 4.1 for details).

2.3. Matrix systems for compact schemes and filters

The systems of Eqs. (2.1)–(2.4) can be expressed in a matrix-vector form:
P�f 0 ¼ 1
Dx

Qf for differencing; ð2:5Þ

PF
bDf ¼ Q Ff for filtering; ð2:6Þ
where f;�f 0 and bDf are (N + 1)-dimensional vectors representing the nodal values of objective function, numerical derivative
and the filter’s contribution, respectively:
f ¼ ðf0; . . . ; fNÞT; �f 0 ¼ �f 00; . . . ;�f 0N
� �T

& bDf ¼ ðbDf0; . . . ; bDfNÞT: ð2:7Þ
The (N + 1) � (N + 1) pentadiagonal matrix P in Eq. (2.5) is given by:
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P ¼

1 c01 c02 0 � � � � � � � � � � � � 0
c10 1 c12 c13 0 � � � � � � � � � 0
c20 c21 1 c23 c24 0 � � � � � � 0
0 b a 1 a b 0 � � � 0

..

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. ..

.

0 � � � 0 b a 1 a b 0
0 � � � � � � 0 c24 c23 1 c21 c20

0 � � � � � � � � � 0 c13 c12 1 c10

0 � � � � � � � � � � � � 0 c02 c01 1

0BBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCA

ð2:8Þ
and PF in Eq. (2.6) appears the same as P where the coefficients contain an extra subscript ‘‘F’’ representing the filters as de-
fined in Eqs. (2.3) and (2.4). On the right-hand side of Eqs. (2.5) and (2.6), the (N + 1) � (N + 1) matrices Q and QF are as
follows:
Q ¼

b00 b01 b02 b03 b04 b05 b06 0 � � � � � � 0
b10 b11 b12 b13 b14 b15 b16 0 � � � � � � 0
b20 b21 b22 b23 b24 b25 b26 0 � � � � � � 0
�a3 �a2 �a1 0 a1 a2 a3 0 � � � � � � 0

0 �a3 �a2 �a1 0 a1 a2 a3 0 � � � 0

..

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. ..

.

0 � � � 0 �a3 �a2 �a1 0 a1 a2 a3 0
0 � � � � � � 0 �a3 �a2 �a1 0 a1 a2 a3

0 � � � � � � 0 �b26 �b25 �b24 �b23 �b22 �b21 �b20

0 � � � � � � 0 �b16 �b15 �b14 �b13 �b12 �b11 �b10

0 � � � � � � 0 �b06 �b05 �b04 �b03 �b02 �b01 �b00

0BBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCA

; ð2:9Þ

Q F ¼

0 0 0 0 0 0 0 � � � � � � � � � 0
0 0 0 0 0 0 0 � � � � � � � � � 0

bF20 bF21 bF22 bF23 bF24 bF25 0 � � � � � � � � � 0
aF3 aF2 aF1 aF0 aF1 aF2 aF3 0 � � � � � � 0
0 aF3 aF2 aF1 aF0 aF1 aF2 aF3 0 � � � 0

..

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. ..

.

0 � � � 0 aF3 aF2 aF1 aF0 aF1 aF2 aF3 0
0 � � � � � � 0 aF3 aF2 aF1 aF0 aF1 aF2 aF3

0 � � � � � � � � � 0 bF25 bF24 bF23 bF22 bF21 bF20

0 � � � � � � � � � 0 0 0 0 0 0 0
0 � � � � � � � � � 0 0 0 0 0 0 0

0BBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCA

; ð2:10Þ
where the numbers at the diagonal of Eqs. (2.9) and (2.10) are defined as:
bnn ¼ �
X6

m¼0; – n

bnm for n ¼ 1;2 & 3; aF0 ¼ �2
X3

m¼1

aFm & bF22 ¼ �
X5

m¼0; – 2

bF2m: ð2:11Þ
3. Formulation of new compact schemes and filters for parallel computing

This section presents the formulation of new compact finite-difference schemes and filters to be used on boundaries be-
tween two adjacent subdomains for parallel computing purposes based on domain decomposition and message passing. The
present formulation results from linear–algebraic transformations without consideration into algorithmic techniques.

3.1. Construction of quasi-disjoint matrix systems

It is considered in this paper for derivation purposes that a domain is split into two subdomains from the center. In order
to perform a parallel computing with the compact schemes and filters in the split subdomains, it is necessary to allow inde-
pendent inversion of the pentadiagonal matrices within each subdomain. It can be achieved if some of the off-diagonal terms
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Fig. 2. Amplification rate profiles of compact filters (serial mode) used in the present work: real (left) and imaginary (right) parts.
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in the matrix P from Eq. (2.5) are eliminated to form a modified matrix R that has no elements shared between the two sub-
domains as follows:
ð3:1Þ
where the dashed lines represent the subdomain boundary that split the matrix into two disjoint matrices RA and RB. The
subscripts ‘‘A’’ and ‘‘B’’ indicate the first-half and the second-half subdomain, respectively. Likewise, PF from Eq. (2.6) for
compact filtering is modified to form:
ð3:2Þ
where RFA and RFB appear the same as RA and RB in Eq. (3.1) with an extra subscript ‘‘F’’ (representing the filters) included in
the coefficients as listed in Tables 3 and 4. It should be noted that the present approach only considers two completely sep-
arated subdomains with no overlapped points.
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For simplicity, we assume that the total number of points N + 1 is an even number, i.e. N + 1 = 2(M + 1), and the two
subdomains have exactly the same number of points M + 1 with the discretization index running from 0 to M. Then, the
disjoint pentadiagonal matrices RA and RB (also RFA and RFB) are of an equal size of (M + 1) � (M + 1) and in reversed
sequence:
ðRBÞl;m ¼ ðRAÞM�l;M�m

ðRFBÞl;m ¼ ðRFAÞM�l;M�m

)
for

l ¼ 0; � � � ;M
m ¼ 0; � � � ;M

� �
with M ¼ N � 1

2
: ð3:3Þ
Applying R and RF to the original Eqs. (2.5) and (2.6), respectively, without affecting the solutions �f 0 and bDf results in the
following transformation:
R�f 0 ¼ 1
Dx

RP�1Qf ¼ 1
Dx

Sf; ð3:4Þ

RF
bDf ¼ RF P�1

F Q F f ¼ SFf: ð3:5Þ
The new matrices S = RP�1Q and SF ¼ RF P�1
F Q F on the right-hand side of Eqs. (3.4) and (3.5) can be written as:
ð3:6Þ
which leads to the following two quasi-disjoint systems for each subdomain:
RA
�f 0A ¼

1
Dx
ðSAfA þ TBfBÞ & RFA

bDfA ¼ SFAfA þ TFBfB for subdomain A; ð3:7Þ

RB
�f 0B ¼

1
Dx
ðSBfB þ TAfAÞ & RFB

bDfB ¼ SFBfB þ TFAfA for subdomain B; ð3:8Þ
where fA;
�f 0A and bDfA are the first half (with the size of M + 1) of the vectors in Eq. (2.7) for the subdomain A; and, fB; f

0
B andbDfB are the second half (also with the size of M + 1) for the subdomain B. The (M + 1) � (M + 1) component matrices in Eq.

(3.6) are given by:
SA ¼

b00 b01 b02 b03 b04 b05 b06 0 � � � � � � 0
b10 b11 b12 b13 b14 b15 b16 0 � � � � � � 0
b20 b21 b22 b23 b24 b25 b26 0 � � � � � � 0
�a3 �a2 �a1 0 a1 a2 a3 0 � � � � � � 0

0 �a3 �a2 �a1 0 a1 a2 a3 0 � � � 0

..

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. ..

.

0 � � � 0 �a3 �a2 �a1 0 a1 a2 a3 0
0 � � � � � � 0 �a3 �a2 �a1 0 a1 a2 a3

0 � � � � � � � � � 0 �a3 �a2 �a1 0 a1 a2

�c1M � � � � � � � � � �c16 �c15 �c14 �c13 �c12 �c11 �c10

�c0M � � � � � � � � � �c06 �c05 �c04 �c03 �c02 �c01 �c00

0BBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCA

; ð3:9Þ

TB ¼

0 � � � � � � � � � � � � 0
..
. . .

. . .
. . .

. . .
. ..

.

0 � � � � � � � � � � � � 0
a3 0 � � � � � � � � � 0
�c�10 �c�11 �c�12 �c�13 � � � �c�1M

�c�00 �c�01 �c�02 �c�03 � � � �c�0M

0BBBBBBBBB@

1CCCCCCCCCA
; ð3:10Þ

ðSBÞl;m ¼ �ðSAÞM�l;M�m

ðTAÞl;m ¼ �ðTBÞM�l;M�m

)
for

l ¼ 0; . . . ;M
m ¼ 0; . . . ;M

� �
with M ¼ N � 1

2
; ð3:11Þ



J.W. Kim / Journal of Computational Physics 241 (2013) 168–194 175
SFA ¼

0 0 0 0 0 0 0 � � � � � � � � � 0

0 0 0 0 0 0 0 � � � � � � � � � 0

bF20 bF21 bF22 bF23 bF24 bF25 0 � � � � � � � � � 0

aF3 aF2 aF1 aF0 aF1 aF2 aF3 0 � � � � � � 0

0 aF3 aF2 aF1 aF0 aF1 aF2 aF3 0 � � � 0

..

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. ..

.

0 � � � 0 aF3 aF2 aF1 aF0 aF1 aF2 aF3 0

0 � � � � � � 0 aF3 aF2 aF1 aF0 aF1 aF2 aF3

0 � � � � � � � � � 0 aF3 aF2 aF1 aF0 aF1 aF2

cF1M � � � � � � � � � cF16 cF15 cF14 cF13 cF12 cF11 cF10

cF0M � � � � � � � � � cF06 cF05 cF04 cF03 cF02 cF01 cF00

0BBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCA

; ð3:12Þ

TFB ¼

0 � � � � � � � � � � � � 0
..
. . .

. . .
. . .

. . .
. ..

.

0 � � � � � � � � � � � � 0
aF3 0 � � � � � � � � � 0
c�F10 c�F11 c�F12 c�F13 � � � c�F1M

c�F00 c�F01 c�F02 c�F03 � � � c�F0M

0BBBBBBBBB@

1CCCCCCCCCA
; ð3:13Þ

ðSFBÞl;m ¼ ðSFAÞM�l;M�m

ðTFAÞl;m ¼ ðTFBÞM�l;M�m

)
for

l ¼ 0; . . . ;M
m ¼ 0; . . . ;M

� �
with M ¼ N � 1

2
: ð3:14Þ
The reversed anti-symmetric relation between (SA,TA) and (SB,TB) in Eq. (3.11), and the reversed symmetric relation between
(SFA,TFA) and (SFB,TFB) in Eq. (3.14) can only be achieved when the sizes of the two subdomains are equal. A general but more
complex form of the matrices can be derived and used if required.

It can be seen from Eqs. 3.9, 3.10, 3.12 and 3.13 that only two rows from the subdomain boundary are modified by the
matrix transformation outlined in Eqs. (3.4) and (3.5). All the other rows remain unchanged. The modified rows exhibit full-
sized discretization stencils across both subdomains. The new coefficients c0m; c�0m; c1m; c�1m

� �
and cF0m; c�F0m; cF1m; c�F1m

� �
for

m = (0, . . . ,M) where the superscript ‘‘⁄’’ denotes coefficients for the neighboring subdomain can be obtained by using a ma-
trix calculator depending on the size of the domain. The quasi-disjoint matrix systems introduced in Eqs. (3.7) and (3.8) pro-
vide an essential basis for the formulation of new compact schemes and filters to be used for parallel computing.

3.2. Subdomain boundary compact schemes and filters for parallel computing

It is not always practically sensible in a massively parallel computation, albeit possible, to derive different quasi-disjoint
matrix systems on an ad hoc basis for all subdomains with different sizes. Also, computational cost is a critical issue due to
the full-sized stencils involved in solving them. Therefore, this paper proposes using a universal set of subdomain boundary
(SB) compact schemes and filters with a fixed (fairly small enough) size of stencils that can be used for various sizes of sub-
domains. This means an approximation to the original serial solution but the approximation error can be limited within a
strict tolerance if the stencil sizes are carefully selected. An optimal set of the stencil sizes for both accuracy and efficiency
is suggested in Section 4.

One of the main advantages in using the quasi-disjoint matrix systems introduced in Eqs. (3.7)–(3.14) is that only three
halo terms (not points) are required in order to perform message passing between neighboring subdomains. The following
equations can be retrieved from the quasi-disjoint matrix systems to construct new SB (subdomain boundary) compact
schemes and filters employing the three halo terms, (h0,h1,h2) and (hF0,hF1,hF2):

SB compact schemes:
�f 0i þ a�f 0i�1 þ b�f 0i�2 ¼ �
1
Dx

XM

m¼0

c0mfi�m þ h0

 !

a�f 0i þ �f 0i�1 þ a�f 0i�2 þ b�f 0i�3 ¼ �
1
Dx

XM

m¼0

c1mfi�m þ h1

 !

b�f 0i þ a�f 0i�1 þ �f 0i�2 þ a�f 0i�3 þ b�f 0i�4 ¼ �
1
Dx

X2

m¼1

amðfi�2�m � fi�2�mÞ þ a3ðfi�5 � h2Þ
" #

9>>>>>>>>>>=>>>>>>>>>>;
for i ¼

0;
NS;

�
ð3:15Þ



Table 5
Number of arithmetic operations required in implementing the present compact schemes and filters within a domain with the size of NS + 1. Abbreviations:
RHS = right-hand side calculation, HT = halo term calculation, FS = forward substitution and BS = back substitution in a standard LU-decomposition routine.

Serial operations Parallel operations with proposed SB method

Differencing Filtering Differencing Filtering

RHS 8(NS + 1) 12(NS + 1) 8(NS � 3) + 8(M + 1) 12(NS � 3) + 8(MF + 1)
HT 0 0 4(2M + 1) 4(2MF + 1)
FS 4(NS + 1) 4(NS + 1) 4(NS � 1)+2 4(NS � 1) + 2
BS 5(NS + 1) 5(NS + 1) 5(NS � 1) + 4 5(NS � 1) + 4
Total 17(NS + 1) 21(NS + 1) 17(NS + 1) + 16(M � 2) 21(NS + 1) + 16(MF�3)
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SB compact filters:
e

bDfi þ aF
bDfi�1 þ bF

bDfi�2 ¼
XMF

m¼0

cF0mfi�m þ hF0

aF
bDfi þ bDfi�1 þ aF

bDfi�2 þ bF
bDfi�3 ¼

XMF

m¼0

cF1mfi�m þ hF1

bF
bDfi þ aF

bDfi�1 þ bDfi�2 þ aF
bDfi�3 þ bF

bDfi�4 ¼
X2

m¼1

aFmðfi�2�m � 2f i�2 þ fi�2�mÞ þ aF3ðfi�5 � 2f i�2 þ hF2Þ

9>>>>>>>>>>=>>>>>>>>>>;
for i ¼

0;
NS;

�

ð3:16Þ
where M and MF denote the stencil sizes of the SB schemes and filters, respectively, and the subdomain of interest is defined
by i 2 [0,NS] subject to conditions NS P M and NS P MF. It is allowed that MF – M as part of the approximation mentioned
earlier. In Eqs. (3.15) and (3.16), the upper signs correspond to i = 0 (left-hand side boundary) and the lower signs to
i = NS (right-hand side boundary) of the subdomain. The halo terms in Eqs. (3.15) and (3.16) are given by:
ðh0; h1Þ ¼
XM

m¼0

c�0m; c
�
1m

� �
f �l�m

ðhF0; hF1Þ ¼
XMF

m¼0

c�F0m; c
�
F1m

� �
f �l�m

h2 ¼ hF2 ¼ f �l

9>>>>>>>=>>>>>>>;
with l ¼

N�S
0

�
for i ¼

0;
NS;

�
ð3:17Þ
where the superscript ‘‘⁄’’ and index ‘‘l’’ denote properties in the neighboring subdomain; and, l = 0 and N�S represent the
neighbor’s boundaries in connection for message passing. It should be noted though that l = 0 or N�S do not point the same
position to i = 0 or NS, since the present approach only considers completely separated subdomains with no boundary point
shared or overlapped, as mentioned earlier. The coefficients ðc0m; c�0m; c1m; c�1mÞ for m = (0, . . . ,M) and cF0m; c�F0m; cF1m; c�F1m

� �
for

m = (0, . . . ,MF) that are obtained by the procedure in Section 3.1 (for subdomains with the size of M + 1 and MF + 1) are used
here for any subdomains with larger sizes. Therefore, this approach is an approximate method. In this approach, M and MF
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Fig. 3. Estimated parallel efficiencies of proposed SB compact schemes (e) and filters (eF) based on Eq. (3.18).
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should be sufficiently small in order for the SB schemes and filters to fit in any reasonably sized subdomains and to keep the
computational cost low.

As shown in Eqs. (3.15) and (3.16), the proposed SB compact schemes and filters rely on three halo terms and this means
that their cost for internode communication is the same as those of previous ones [18] or standard explicit ones based on
seven-point stencils such as DRP scheme by Tam and Webb [19] that requires three halo points. The only extra overhead
involved in the present approach particularly compared to [18] is the calculation of the wider stencils (M and MF points)
for the right-hand side of the first two equations in Eqs. (3.15) and (3.16). In Table 5, the total numbers of arithmetic oper-
ations ðþ;�;�;�Þ required for implementing the present compact schemes and filters within a domain section with the size
of NS + 1 are calculated for both serial and parallel cases to figure out the relative contribution of the extra overhead in actual
calculations. This leads to an estimated parallel computing efficiency of the proposed compact schemes and filters:
e ¼ 17
17þ 16ðM � 2Þ=ðNS þ 1Þ & eF ¼

21
21þ 16ðMF � 3Þ=ðNS þ 1Þ ð3:18Þ
where subscript ‘‘F’’ denotes filtering. The efficiency profiles are plotted in Fig. 3 as a function of M and MF for various NS. It is
noteworthy for comparison purposes that the earlier work of [18] yields e = 1 and eF = 0.5 since their SB schemes and filters
are based on seven-point stencils (same as the interior) but the filters use double operations due to predictor–corrector
iterations.

4. Efficient stencil sizes for SB compact schemes and filters

This section suggests an efficient set of stencil sizes for the proposed SB (subdomain boundary) compact finite-difference
schemes and filters which provides high accuracy parallel solutions without a significant impact on the computational cost.
Fourier analysis of errors is performed to investigate the accuracy of the parallel schemes and filters compared to the serial
ones for various stencil sizes. Linear stability of the selected schemes and filters is examined as well.

4.1. Fourier analysis of errors

Fourier transform provides useful apparatus to investigate dispersive and dissipative behaviors of a discretization method
in wavenumber domain. The use of Fourier transform for these purposes has been discussed and established through a series
of publications for the last five decades as described in [1]. Mathematically, the Fourier transform of a continuous function
(subject to certain conditions – not to be discussed in detail here) is defined as
~f ðkÞ ¼
Z 1

�1
f ðxÞe�jkxdx ð4:1Þ
where j ¼
ffiffiffiffiffiffiffi
�1
p

; k is the wavenumber and the tilde represents the transformed function. With fi+m and �f 0iþm replaced by
f(x + mDx) and �f 0(x + mDx), taking the Fourier transform of Eqs. (2.2), (2.4), (3.15) and (3.16) results in the following
equations:
j�j½AiðjÞ þ jBiðjÞ	 ¼ CiðjÞ þ jDiðjÞ for differencing; ð4:2Þ

½~̂f ðkÞ � ~f ðkÞ	½AFiðjÞ þ jBFiðjÞ	 ¼ ~f ðkÞ½CFiðjÞ þ jDFiðjÞ	 for filtering; ð4:3Þ
where j = kDx is a scaled wavenumber and �j ¼ �kDx is a scaled pseudo-wavenumber which deviates from the true wave-
number (j) due to the numerical differentiation, i.e. ~f 0 ¼ jk~f and ~�f 0 ¼ j�k~f . By working out Eqs. (4.2) and (4.3), the pseudo-
wavenumber of the finite-difference schemes and the amplification rate of the filters are derived as follows:
�jiðjÞ ¼
AiðjÞDiðjÞ � BiðjÞCiðjÞ

A2
i ðjÞ þ B2

i ðjÞ
� j

AiðjÞCiðjÞ þ BiðjÞDiðjÞ
A2

i ðjÞ þ B2
i ðjÞ

ð4:4Þ

TiðjÞ ¼
~̂
f ðkÞ
~f ðkÞ

¼ 1þ AFiðjÞCFiðjÞ þ BFiðjÞDFiðjÞ
A2

FiðjÞ þ B2
FiðjÞ

þ j
AFiðjÞDFiðjÞ � BFiðjÞCFiðjÞ

A2
FiðjÞ þ B2

FiðjÞ
ð4:5Þ
which are complex functions of j 2 [0,p], which varies with nodal position i. The component functions in Eqs. (4.2) and (4.4)
are given by
AiðjÞ ¼ 1þ a cosðjÞ þ b cosð2jÞ
BiðjÞ ¼ a sinðjÞ þ b sinð2jÞ

CiðjÞ ¼
XM

m¼0

c0m cosðmjÞ þ c�0m cos½ðmþ 1Þj	
� �

DiðjÞ ¼
XM

m¼0

c0m sinðmjÞ � c�0m sin½ðmþ 1Þj	
� �

9>>>>>>>>>=>>>>>>>>>;
for i ¼ 0 or NS; ð4:6Þ
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AiðjÞ ¼ 1þ 2a cosðjÞ þ b cosð2jÞ
BiðjÞ ¼ b sinð2jÞ

CiðjÞ ¼
XM

m¼0

c1m cos½ðm� 1Þj	 þ c�1m cos½ðmþ 2Þj	
� �

DiðjÞ ¼
XM

m¼0

c1m sin½ðm� 1Þj	 � c�1m sin½ðmþ 2Þj	
� �

9>>>>>>>>>=>>>>>>>>>;
for i ¼ 1 or NS � 1; ð4:7Þ

AiðjÞ ¼ 1þ 2a cosðjÞ þ 2b cosð2jÞ; BiðjÞ ¼ 0

CiðjÞ ¼ 0; DiðjÞ ¼ 2
X3

m¼1

am sinðmjÞ

9>=>; for 2 6 i 6 NS � 2 ðinteriorÞ: ð4:8Þ
The component functions [AFi(j),BFi(j),CFi(j),DFi(j)] in Eqs. (4.3) and (4.5) appear the same as those in Eqs. (4.6)–(4.8) with
an extra subscript ‘‘F’’ for the coefficients as well as MF instead of M, except for the following:
CFiðjÞ ¼ 2
X3

m¼1

aFm½cosðmjÞ � 1	 & DFiðjÞ ¼ 0 for 2 6 i 6 NS � 2 ðinteriorÞ: ð4:9Þ
It can be found from Eqs. (4.8) and (4.9) that the interior schemes and filters (for 2 6 i 6 NS � 2) only have real numbers in
their pseudo-wavenumber and amplification rate given by Eqs. (4.4) and (4.5). Meanwhile, the SB schemes and filters gen-
erate imaginary numbers that might incur significantly different resolution characteristics compared to those of the interior
ones. It was indicated in [18] that non-uniform distribution of the pseudo-wavenumber and the amplification rate across
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Fig. 5. Amplification rate profiles of proposed SB compact filters in different stencil sizes compared with interior filter: real (left) and imaginary (right)
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subdomain boundaries might be the main source of artifacts arising in parallel calculations. The present work aims to sub-
stantially reduce the non-uniformity in resolution characteristics across subdomain boundaries. The resolution non-unifor-
mity of the proposed SB schemes and filters with reference to the interior ones may be quantified as follows:
U ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
p3

Z p

0
½j�j0ðjÞ � �jInteriorðjÞj2 þ j�j1ðjÞ � �jInteriorðjÞj2	dj

s
;

UF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
p

Z p

0
½jT0ðjÞ � T InteriorðjÞj2 þ jT1ðjÞ � T InteriorðjÞj2	dj

s
;

ð4:10Þ
which are L2-norm based measure of the deviation in resolution characteristics of the SB schemes and filters (denoted by
subscripts ‘‘0’’ and ‘‘1’’) from the interior ones. It is expected that the resolution non-uniformity decays as the size of the
SB stencils (M and MF) increases, on which a parameter study is presented below.

Figs. 4 and 5 provide the profiles of the pseudo-wavenumber �jiðjÞ and the amplification rate Ti(j) from Eqs. (4.4) and
(4.5) for different stencil sizes (M and MF). It is evidenced that the agreement with the interior schemes and filters becomes
better as M and MF increases. Fig. 6 shows the history of U and UF converging with increasing M and MF on a logarithmic
scale, which indicates that the resolution non-uniformity diminishes exponentially as the size of stencils increases. The cal-
culated value of U from the earlier work by Kim and Sandberg [18] is 0.3146. Based on the results in Fig. 6, M = 11 and MF = 8
are selected as optimal stencil sizes for the present SB compact schemes and filters. The resulting coefficients are provided in
Appendix B. The selected stencil sizes maintain the level of U and UF both below 0.03 (3% criterion). This implies a significant
improvement in SB schemes compared to [18], although the SB filters may not be directly compared with those of [18] since
the old filters were based on an iterative (predictor–corrector) approach. A much stricter criterion 0.3% can be achieved at
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Fig. 7. Pseudo-wavenumber profiles of proposed SB compact schemes for two different criteria of Fourier error defined in Eq. (4.10): U < 0.03 (top) and
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M = MF = 19, which may demand a significant drop in parallel efficiency as predicted by Eq. (3.18). In Figs. 7 and 8, the pro-
files of �jiðjÞ and Ti(j) are compared between the two different criteria (3% and 0.3%), which showcases that the 3% criterion
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provides reasonably well matched profiles with the interior ones and the 0.3% criterion leads ultimately to an artifact-free
condition.

4.2. Linear stability analysis

The stability analysis of the proposed SB compact schemes and filters begins by considering a one-dimensional linear sca-
lar wave equation:
@tf þ c1@xf ¼ 0 ð4:11Þ
over a subdomain x 2 [0,L] where c1 is the wave convection speed (c1 > 0). Complying with the direction of the wave, a pre-
scribed boundary condition is required in the upstream domain (x < 0). Current setup for the stability analysis is that the
proposed SB compact schemes and filters are used at the left boundary (x = 0), and the upstream boundary condition is pro-
vided via halo terms from a neighboring subdomain on the left. Ordinary boundary schemes and filters (with eF = 0 in Appen-
dix A) given by Eqs. (2.1) and (2.3) are used at the right boundary (x = L) through which the prescribed wave leaves the
domain. This problem setup corresponds effectively to Eq. (3.8). The upstream boundary condition here can be set to zero,
fBC(x < 0, t) = 0 without loss of generality [2]. With this boundary condition in place, Eq. (3.8) may reduce to:
�f 0 ¼ 1
Dx

R�1
B SBðf þ bDfÞ ¼ 1

Dx
R�1

B SB Iþ R�1
FB SFB

	 

f ð4:12Þ
which represents a combined differencing–filtering system. I is an identity matrix. The subdomain is discretized into NS

equal intervals with Dx = L/NS and the discretization index runs from i = 0 to i = NS.
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Relating Eqs. (4.11) and (4.12) leads to the following equation:
df
dt
¼ � c1

Dx
R�1

B SB Iþ R�1
FB SFB

	 

f: ð4:13Þ
Since Eq. (4.13) is a system of ordinary differential equations with respect to time with constant coefficients the solution
consists of normal modes f = f0ewt with a constant w representing the rates of decay or amplification of the modes. Imposing
the normal modes into Eq. (4.13) reduces to an eigenvalue problem:
�R�1
B SB Iþ R�1

FB SFB

	 

f0 ¼ xf0 ð4:14Þ
where x = wDx/c1 is the dimensionless eigenvalue (complex number) and f0 becomes the corresponding eigenvector. The
real parts of the eigenvalues are required to be equal to or less than zero to ensure numerical stability of the system, i.e.
jew tj 6 1. Fig. 9 shows the distribution of eigenvalues in the complex plane where all the eigenvalues are located in the left
half plane proving linear stability of the present differencing–filtering system.

5. Application to benchmark problems

In this section the performance of the proposed SB compact finite-difference schemes and filters is demonstrated through
their application to multi-domain parallel calculations for benchmark test cases. As recommended in Section 4.1, M = 11 and
MF = 8 are consistently used in this section. The benchmark tests are based on one-dimensional linear scalar wave equation
and two-dimensional nonlinear compressible Euler equations. In all cases, a standard fourth-order Runge–Kutta method is
used for temporal marching of the numerical solutions. The compact filters are implemented for conservative variables at the
last stage in each time step of the Runge–Kutta routine. The accuracy and efficiency of the present calculations are quantified
by comparing with analytic solutions and data from single-domain serial calculations.

5.1. Linear scalar wave convection

The one-dimensional linear wave convection in Eq. (4.11) is calculated as a canonical benchmark test case. The initial
wave profile and the upstream boundary condition are given by
f ðx; t ¼ 0Þ ¼ ½2þ cosðk1x=LÞ	 exp½�ðln 2Þðk2x=LÞ2	 for x 2 ½�0:5L;1:5L	; ð5:1Þ
f ðx < �0:5L; tÞ ¼ f ð�0:5L;0Þ & @xf ðx < �0:5L; tÞ ¼ 0; ð5:2Þ
where L is an arbitrary characteristic length; and the constants are set to k1 = 17k2 and k2 = 10. The calculation runs until the
center of the wave pulse travels from x/L = 0 to 1 over a time period of c1t/L = 1. The domain is split into four subdomains:
x 2 [�0.5L,0], [Dx,0.5L], [0.5L + Dx,L] and [L + Dx,1.5L], which have N/4 + 1, N/4, N/4 and N/4 number of grid points (N + 1 in
total), respectively. The grid points are equally spaced, i.e. Dx = 2L/N. The proposed SB compact schemes and filters are
implemented across each subdomain boundary. The time step size is set to c1Dt/L = N�1 corresponding to the CFL number
of 0.5 at which the contribution of the temporal marching to the overall solution errors is insignificant.

Fig. 10 shows the result of calculation comparing the present method with others. The present parallel solution agrees
very well with the serial solution as well as with that from the previous approach of [18]. It is also noticeable that the family
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of compact schemes outperforms the standard explicit schemes on a reasonably small number of grid points (the standard
explicit schemes were used with the present compact filters in order to keep consistency in comparing the major effect of
finite-difference schemes). Fig. 11 plots the convergence history of numerical error and filter’s contribution
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(Maxjf(x) � fexact(x)j and Maxjf(x) � fun�filtered(x)j) defined on L1-norm basis varying with the number of grid points used. It
confirms the expected fourth-order accuracy of the present method along with others. However, the standard sixth-order
scheme yields a fifth-order convergence rate. This is due to the fifth-order accuracy of the filters as revealed in an additional
plot of Fig. 11. The sixth-order interior filters blended with the fourth-order boundary filters, i.e. Eqs. (2.3) and (2.4) resulted
in an fifth-order accuracy overall.

It is shown in Fig. 11 that the present parallel calculation reproduces almost identical convergence history to that of the
serial one whereas the previous approach by Kim and Sandberg [18] yields a noticeable difference. The fidelity of the present
parallel calculations can be judged by the level of agreement with the corresponding serial calculations. Fig. 12 plots the dif-
ference between parallel and the serial solutions defined on L1-norm basis (Maxjf(x) � fserial(x)j) varying with the number of
grid points used. The calculations are also performed for larger numbers of processor-cores (8 and 16). It is found that the
present parallel computing approach improves the level of agreement with the serial solutions by a factor of 100 compared
to the earlier approach by Kim and Sandberg [18]. It is also observed (by comparing Figs. 11 and 12) that the level of artifacts
in the present parallel solutions (deviation from the serial solutions) is two orders of magnitude smaller than the genuine
numerical error (deviation from the exact solutions) regardless of grid resolution for up to 16 processor-cores used across
the one-dimensional domain.

5.2. Isentropic vortex convection

The second benchmark test is the convection of two-dimensional isentropic vorticity waves in a subsonic free stream. An
initial isentropic vorticity wave packet located in the upstream part of the computational domain moves downstream and
passes through subdomain boundaries in a parallel computing setup. The simulation is based on full nonlinear compressible
Euler equations in a conservative form in generalized coordinates, which can be found in [18]. It was indicated in [18] that a
vortex crossing subdomain boundaries might generate spurious reflections up to a level that interferes the genuine hydro-
dynamic/acoustic field. This might become a critical issue in DNS of a subsonic jet where quadrupole noise due to unsteady
vortices dominates. The current benchmark test aims to demonstrate a significant reduction of such acoustic reflections by
using the proposed method compared to the latest results in [18]. The isentropic vortex is described by the following equa-
tions over a rectangular domain of x 2 [�0.5L,0.5L] and y 2 [�0.5L,0.5L]:
qðx; y; tÞ ¼ q1 1� c�1
2 w2ðx�; yÞ

h i1=ðc�1Þ

uðx; y; tÞ ¼ u1 þ c1ðk1y=LÞwðx�; yÞ
vðx; y; tÞ ¼ �c1ðk1x�=LÞwðx�; yÞ
pðx; y; tÞ ¼ p1ðq=q1Þ

c

9>>>>>=>>>>>;
with

wðx; yÞ ¼ k2 exp � 1
2 k2

1ðx2 þ y2Þ=L2
h i

x� ¼ x� xo � u1t:

(
ð5:3Þ
The size and the strength of the vortex are controlled by k1 and k2, respectively. Various sizes and strengths are tested. Initial
location of the vortex core is (x,y) = (xo,0) where xo = �0.125L is used. The free stream velocity u1 = M1c1 is given by the
Mach number M1 = 0.5, where c1 = (cp1/q1)1/2 is the ambient speed of sound. The calculations are carried out on three dif-
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ferent (one uniform and two non-uniform) grids with a fixed number of cells (N � N) = (200 � 200). The grids are generated
by the following formula used by Gaitonde and Visbal [7]:
Fig. 13.
on a no
approac
xi;j=L ¼ � 1
2þ 1

N ½iþ e sinð4pj=NÞ	
yi;j=L ¼ � 1

2þ 1
N ½jþ e sinð4pi=NÞ	

)
for 0 6 i 6 N and 0 6 j 6 N ð5:4Þ
which gives curvilinear grids deformed from a uniform grid by controlling the constant e. Setting e = 0 restores the uniform
grid. Two different grids with e = 0 and 3 are tested. Non-reflecting boundary conditions [20] are implemented at the outer
boundaries with the time derivatives of all the incoming waves set to zero.

The domain is split into two (left and right) and then four (top and bottom in addition) subdomains to see the effect of
multi-directional decomposition. The calculations run until u1t/L = 0.25 by which the vortex has travelled a quarter of the
domain length after passing through the subdomain boundaries in the middle. The time step size is fixed at u1Dt/L = (25/
6) � 10�4 which corresponds to the CFL number of 0.5 in the case of uniform grid. All the results are compared with reference
data from single-domain serial calculation. In order to examine the accuracy of calculations properly, the following quantity
is introduced:
PS ¼
jp� pserialj
p1 � pmin

¼ jp� pserialj

p1 1� 1� c�1
2 k2

2

	 
c=ðc�1Þ
� � ð5:5Þ
which gives the difference of pressure between the parallel and the serial solutions normalized by the pressure drop at the
vortex core where the pressure is minimum. This normalization provides self-similarity in plotting the pressure field, which
allows fair comparison between cases with different vortex strengths (k2). The distribution of PS taken at the last moment
u1t/L = 0.25 is plotted in three different logarithmic scales in Fig. 13 (for two subdomains) and 14 (for four subdomains)
comparing the results of using the present method and the previous approach of [18]. The vortex diameter (based on the
definition given in [18]) is moderately resolved by 17 cells and the core pressure drop is 3.974% of the ambient pressure (p1 -
� pmin = 0.03974p1). It is shown in Fig. 13 and 14 that the present approach substantially reduces the level of parallelization
artifacts from subdomain boundaries by at least an order of magnitude compared to the previous approach in [18]. It can also
be seen in the figures that the artifact acoustic reflection in the present approach is between 10�5 and 10�6 times the hydro-
dynamic fluctuation (the pressure drop at the vortex core). In fact, Fig. 14 showcases a particularly severe test case where the
vortex constantly goes through the lateral subdomain boundary, in which the previous approach [18] generates more reflec-
tions than it does in Fig. 13 whereas the present approach makes no noticeable difference.
Distribution of PS defined in Eq. (5.5) plotted at u1t/L = 0.25 from the calculation of isentropic vortex convection with (k1,k2) = (50,0.24) in Eq. (5.3)
n-uniform grid with e = 3 in Eq. (5.4). Contour levels in three different ranges in logarithmic scales. Cases with two subdomains by using the present
h (top) and Ref. [18] (bottom).



Fig. 14. Distribution of PS defined in Eq. (5.5) plotted at u1t/L = 0.25 from the calculation of isentropic vortex convection with (k1,k2) = (50,0.24) in Eq. (5.3)
on a non-uniform grid with e = 3 in Eq. (5.4). Contour levels in three different ranges in logarithmic scales. Cases with four subdomains by using the present
approach (top) and Ref. [18] (bottom).
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A more quantitative investigation on PS defined by Eq. (5.5) is carried out in Figs. 15 and 16 where different values of the
vortex parameters k1 and k2 in Eq. (5.3) and the mesh deformation level e in Eq. (5.4) are used on two different domains split
by two and four subdomains (denoted by S2 and S4). The constant k1 = 30 to 70 corresponds to the diameter of the vortex
covered by 28.7 cells (well-resolved) to 12.3 (under-resolved). The other constant k2 = 0.08 to 0.4 changes the pressure drop
at the vortex core (hydrodynamic fluctuation) from p1 � pmin = 0.004473 p1 (linear) to 0.1076p1 (nonlinear). Fig. 15 plots
the largest values of PS obtained at the end of each calculation, which shows the level of artifacts (deviation from the serial
solutions) arising mainly in the vicinity of the vortex core – hydrodynamic artifact. The present hydrodynamic artifact falls
below 10�5 (of the core pressure drop) in the well-resolved range while it is maintained at 10�4 or lower in the under-re-
solved range with the non-uniform grid (e = 3) and the severe condition (S4). The results are consistent in both linear and
nonlinear cases; and, also in both uniform and non-uniform grids.

As mentioned earlier, a critical issue in the current BAA (boundary approximation approach) is the acoustic artifact that
emerges and propagates in all directions at the speed of sound as displayed in Figs. 13 and 14. In order to focus on the acous-
tic artifact, it is necessary to apply a window function WAcoustic to PS and phase out the hydrodynamic contribution that is
usually larger than the acoustic counterpart, as follows:
PSWAcoustic ¼ PS½1� wðx�; yÞ=k2	 ¼ PS 1� exp �1
2

k2
1ðx�2 þ y2Þ=L2

� �� �
ð5:6Þ
where x⁄ = x � xo � u1t is the location of the travelling vortex core as described in Eq. (5.3). Fig. 16 plots the largest values of
PSWAcoustic obtained at the end of each calculation. It is shown that the acoustic artifact in the present approach drops further
down below 10�6 in the well-resolved range and stays in the region of 10�5 even when the grid resolution is insufficient to
properly reproduce the vortex profile. The results are consistent in both linear and nonlinear cases; and, in both uniform and
non-uniform grids as well. Compared to the previous approach [18] overall, the present approach provides significantly low-
er level of artifacts by a factor of 10 to 100 from both hydrodynamic and acoustic perspectives.

Aggregate CPU time elapsed per time step per grid point in an Intel Xeon W3520 quad-core CPU at 2.67 GHz (with the
computer code compiled by PGI Visual Fortran 2010) is measured and listed in Table 6 for each domain topology. The table
reveals that the present approach offers higher parallel computing efficiency than that of the previous approach [18]. This is
mainly due to the fact that the present compact filters do not require an iterative routine, i.e. predictor–corrector steps
(twice the effort) which the previous approach [18] employed. The actual efficiencies are compared with the analytical pre-
diction derived in Eq. (3.18) as well. Although the analytical prediction based on an assumption that every single arithmetic
operation takes the same CPU time does not entirely correspond to the Euler solver used in this simulation, it provides rea-
sonably close estimation to the actual results (M = 11 and MF = 8 for the present approach, and M = MF = 3 for [18], with
NS = 100; and the filters are implemented at the last stage of the Runge–Kutta routine).
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Fig. 15. Plots of largest values of PS from Eq. (5.5) measured at u1t/L = 0.25 from the calculation of isentropic vortex convection with various parameters. S2
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5.3. Sound generated by a pair of co-rotating vortices

The third benchmark test case in the present study is direct calculation of quadrupole sound generated by a pair of co-
rotating vortices in a stationary medium. Co-rotating vortices have been studied as one of the major noise source mecha-
nisms in free shear flows [21], which demand very precise simulations since quadrupole sound is normally the weakest
one in subsonic media compared to monopole and dipole ones. This benchmark test will gauge the fidelity of using the pro-
posed parallel computing approach for highly sophisticated aeroacoustics simulations. In addition, this benchmark test is
designed to investigate the effect of repetitive collisions between vortices and subdomain boundaries by locating the co-
rotating vortex pair on a junction of multiple subdomains. A question may be asked as to whether a more pronounced level
of acoustic artifacts than is estimated in Section 5.2 might develop in the presence of repetitive collisions between vortices
and subdomain boundaries that normally take place in massively parallel simulations. The answer to this question will be
revealed at the end of the test.

The current test is based on a modified Scully vortex model that provides an initial condition as follows:
qjx;y;t¼0 ¼ q1 1� c�1
2 ðu2 þ v2Þ

h i1=ðc�1Þ

ðu;vÞjx;y;t¼0 ¼
X1

m¼0

ð1þdÞCo

2p r2
mþr2

cð Þ ðy;�xmÞ

pjx;y;t¼0 ¼ p1ðq=q1Þ
c

9>>>>>>=>>>>>>;
with r2

m ¼ x2
m þ y2 and xm ¼ xþ ð�1ÞmL ð5:7Þ
where Co is the desired circulation of the velocity field; d is a correction factor (to be explained below); and the characteristic
length L is the half of the distance between the two vortex cores, i.e. the radius of the circular trajectory of the vortices. The
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Fig. 16. Plots of largest values of PSWAcoustic from Eq. (5.6) measured at u1t/L = 0.25 from the calculation of isentropic vortex convection with various
parameters. S2 and S4 denote cases for two (split in streamwise direction) and four subdomains (split in lateral direction in addition to former).

Table 6
Parallel computing efficiencies calculated from aggregate CPU time elapsed per time step per grid point in two-dimensional isentropic vortex convection. S2
and S4 represent domains split into two and four subdomains, respectively, in the streamwise direction and additionally in the lateral direction.

Single domain Present approach Ref. [18]

S2 S4 S2 S4

Aggregate CPU time (ls) 0.7654 0.8002 0.8284 0.8806 0.9437
Relative efficiency 1 0.9565 0.9240 0.8692 0.8111
Prediction – Eq. (3.18) 1 0.9640 0.9305 0.9060 0.8282
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extra term rc that is a constant in the original Scully vortex model removes numerical singularity at the center of vortices.
This paper suggests using a modified form of rc that diminishes after a certain distance from the vortex center in order to
maintain uniform circulation in most of the computational domain, as follows:
rc ¼ 10�2ðrm=RÞ2rL ð5:8Þ
which reaches its maximum of rL (a fraction of L) at the center and reduces rapidly to 1% of it at rm/L = 1. For the present
simulation, r = 0.2 is selected. The simulation is based on full nonlinear compressible Euler equations in a conservative form
in generalized coordinates.



Fig. 17. Co-rotating vortex pair captured at every 1/8th of revolution (to = tmax � To/2): instantaneous plots of unsteady pressure normalized by ambient
pressure (p � pmean)/p1. Contours run from � 0.305 to 0.075 in 101 levels. Solid lines in the pictures denote subdomain boundaries (36 subdomains and
processor-cores are used).
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In an ideal potential flow that can be obtained if d = rc = 0 (point vortices) in Eq. (5.7), the period of co-rotation (To) of the
vortices can be related with the desired circulation as CoTo = 8p2L2. The non-ideal velocity field generated by introducing an
artificial damping (rc) near the vortex cores may result in a different co-rotation speed of the vortices, which can be compen-
sated by using the correction factor d. The present calculation is based on a co-rotation period Toc1/L = 80 (by setting the
desired circulation to Co/(c1L) = p2/10), which produces sound waves with the wavelength of k/L = 40. Attempting a few trial
calculations, the correction factor of d = 0.059395 has been found to meet the aimed co-rotation period. Given the flow con-
ditions, an analytical solution derived in [21] predicts the induced acoustic pressure as follows:
paðr; h; tÞ ¼ �
q1C4

o

64p3c2
1L4 J2

2Xor
c1

 �
sinð2hþ 2XotÞ þ Y2

2Xor
c1

 �
cosð2hþ 2XotÞ

� �
ð5:9Þ
where J2(z) and Y2(z) are the second-order Bessel functions of the first and second kind, respectively; Xo = 2p/To corresponds
to the angular velocity of the co-rotation; and (r,h) is the polar coordinates of the observer location from the center of the
vortex pair.

Direct simulations of the co-rotating vortices and the induced sound waves are performed within a domain of
x 2 [�340L,340L] and y 2 [�340L,340L]. Stretched rectangular grid cells are used for this test and the total number of cells
is (N � N) = (300 � 300). The domain is split into 36 subdomains with an equal number of cells. Each subdomain is allocated
to one processor-core (36 cores in total). The vortex pair is positioned at the center of the domain so that each vortex passes



Fig. 18. Quadrupole sound field generated by a co-rotating vortex pair: instantaneous plots of acoustic pressure normalized by ambient pressure
(p � pmean)/p1 obtained at the end of calculation. Contours run from �2 � 10�4 to 2 � 10�4 in 101 levels. Solid lines in the left picture denote subdomain
boundaries (36 subdomains and processor-cores are used).
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Fig. 19. Instantaneous profiles of acoustic pressure (p � pmean)/p1 from the simulation of a co-rotating vortex pair: measured along x-axis (top) and y-axis
(bottom) of the domain.
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through four different subdomain boundaries per revolution. Fine cells with the size of Dx/L = Dy/L = 0.05 are located within
a region of x 2 [�2L,2L] and y 2 [�2L,2L] surrounding the vortex pair, and the cell size grows exponentially up to Dx/L = Dy/
L = 4 at the far corners of the domain. The present grid covers each vortex with around 16 cells (comparable to the moder-
ately resolved case of k1 = 50 in the earlier vortex convection test) and the sound wavelength with 10 cells at the far bound-
ary. Characteristic boundary conditions [20] with the time derivatives of all the incoming components set to zero are
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Fig. 20. Speed-up rates of parallel computing in the calculation of a co-rotating vortex pair.
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imposed at the far boundary to avoid spurious wave reflections. A sponge layer [22] surrounding the far boundary with the
thickness of 40L (equal to the sound wavelength) is also used in order to ensure the reflection-free condition. The time step
size is fixed at c1Dt/L = 0.01725 that corresponds to the CFL number of 0.9 ± 0.005 (variable in time). The calculations run
until c1t/L = 597.3366 (rather than 600.0 to compensate a phase shift during initial transition) by which each vortex has cir-
cled 15 revolutions (crossing the subdomain boundaries 60 times) and returned to its initial position.

The result of calculation is shown in Figs. 17 and 18 which visualize the near-field unsteady pressure distribution and the
far-field quadrupole sound radiation generated by the co-rotating vortex pair. It is demonstrated in Fig. 17 that the vortex
pair leaves no trace of hydrodynamic artifacts after numerous events of crossing the subdomain boundaries. The parallel
solution obtained by using 36 processor-cores is compared with the serial counterpart in Fig. 18 where no visible difference
is identified even in the fully acoustic contour levels. The present vortex condition results in a core pressure drop up to 41%
(p1 � pmin = 0.41p1). Based on the results obtained in Section 5.2 (Fig. 16), the level of acoustic artifacts for the moderately
resolved vortices may be estimated to reach 5 � 10�6(p1 � pmin) = 2 � 10�6p1 in the vicinity of the vortices, and it will be-
come weaker as it radiates away from the center with the factor of 1/r. This means that the level of acoustic artifacts at the
far field is as low as 10�8p1 that hardly affects the genuine acoustic solution. The acoustic pressure data are compared with
the analytic solution given by Eq. (5.9) in Fig. 19. The present data show excellent agreement with the analytic solution apart
from reasonable discrepancies in the near to mid field (r/L < 10) where hydrodynamic fluctuations are predominant. More
importantly, it is demonstrated that there exists no meaningful difference between the parallel and the serial data through-
out the domain even in the fine acoustic pressure range.

The calculation is also performed in a massively parallel computing setup employing up to 256 processor-cores in order to
examine the scalability of the new parallel computing approach. The task was carried out in IRIDIS3 cluster at the University
of Southampton which is one of the largest and fastest university-based supercomputers at present. For this test, the co-
rotating vortex pair was recalculated by using an increased number of cells (N � N) = (1120 � 1120) and the job was evenly
distributed over k2 processor-cores where k = (2,4,6,8,10,12,14,16). Fig. 20 shows that the present parallel computing ap-
proach provides superior speed-up rates to those of the old approach in [18], particularly when 150 or more processor-cores
are used. It is also observed that the present setup exhibits super-linear scalability at large numbers of processor-cores. Note
that none of the pre-/post-processing time is involved in the results of Fig. 20. The super-linear scalability is perhaps attrib-
uted to the fact that the relative amount of calculations performed within L1/L2 CPU Cache (which is much faster than RAM/
DRAM) increases as the size of subdomains becomes smaller. This extra speedup might have compensated the internode
communication overhead. In the meantime, it seems that the iterative filtering method used in [18] fails to fully take advan-
Table 7
Comparison of parallel artifacts in pressure measured in an L2-norm basis in the calculation of a co-rotating vortex pair distributed over 36 processor-cores for
three different numbers of cells used.

Number of cells used: (N � N) PN
j¼0
PN

i¼0ðpparallel � pserialÞ
2

h i1=2
=½p1ðN þ 1Þ	

Present approach Ref. [18]

(150 � 150) 6.5550e�3 4.8860e�2
(300 � 300) 9.9624e�5 1.1434e�3
(600 � 600) 2.4374e�6 3.8284e�5
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tage of the beneficial effects due to the increased amount of calculation and internode communication. Finally, it is re-con-
firmed in Table 7 that the present approach generates an order of magnitude smaller parallel artifacts than those of [18] in
the last benchmark test case as well.

6. Concluding remarks

The proposed BAA (boundary approximation approach) has successfully led to the development of new SB (subdomain
boundary) compact finite-difference schemes and filters for parallel computing purposes. The new SB compact schemes
and filters require three halo terms for a conventional message passing process, which demands the same cost of inter-node
communication as that of standard explicit schemes and filters based on seven-point stencils. Non-uniformity in resolution
characteristics across subdomain boundaries, which was the major drawback in the earlier works of BAA, has been substan-
tially reduced by a factor of 10 (or more if required) in this paper. This is achieved by implementing a novel linear–algebraic
transformation technique to obtain quasi-disjoint pentadiagonal matrix systems, which leads to deriving the SB compact
schemes and filters with variable stencil sizes. It is found that M = 11 and MF = 8 are optimal stencil sizes for the present
SB compact schemes and filters to keep the resolution non-uniformity below 3% and the combined parallel efficiency over
92% for a reasonably sized subdomain (NS = 100). Strictly artifact-free conditions may also be achieved if necessary by choos-
ing M = MF = 19 at an extra computational cost. This approach may be used for various compact schemes/filters and other
banded matrix solver systems in general to achieve both high accuracy and efficiency in parallel computing environments.

The present benchmark tests evidence that the enhanced uniformity in resolution characteristics does improve the accu-
racy of parallel computing and reduce the discrepancy between the parallel and the serial solution by a factor of 10 to 100
consistently compared with the latest published results [18]. The overall accuracy of the proposed SB compact schemes and
filters are proved to be of fourth- and fifth-order, respectively. The maximum levels of hydrodynamic and acoustic artifacts
(normalized by the major hydrodynamic perturbation) in the proposed approach are estimated to be in the order of 10�5 and
10�6 (or lower), respectively, at a moderate to sufficient grid resolution. This means that the number of valid digits in numer-
ical data will be fairly sufficient for most aeroacoustic simulations. This claim is also supported by the calculation of co-rotat-
ing vortices that represent the weakest source of sound (quadrupole) predominant in low-speed free shear flows. It is shown
that the level of acoustic artifacts generated after numerous repetitions of collisions between the vortices and subdomain
boundaries make no meaningful impact on the genuine acoustic solution. Also, the present parallel computing setup exhibits
super-linear scalability when a large number of processor-cores are used. The proposed approach with the new SB compact
schemes and filters may be used for high-fidelity parallel computing of various aeroacoustic problems.

Appendix A

The filter coefficients in Eqs. (2.3) and (2.4) can be determined by selecting an appropriate cut-off wavenumber (p/
2 6 jC 6 p) and a boundary weighting factor (0 6 eF
 1) in accordance with the finite-difference schemes used. The coef-
ficients are determined by the following formulas given by [12]:
aF ¼ �½30 cosðjCÞ þ 2 cosð3jCÞ	=AFðjCÞ
bF ¼ ½18þ 9 cosðjCÞ þ 6 cosð2jCÞ � cosð3jCÞ	=½2AFðjCÞ	
aF1 ¼ 30 cos4ðjC=2Þ=AFðjCÞ; aF2 ¼ �2aF1=5; aF2 ¼ aF1=15
AFðjCÞ ¼ 30� 5 cosðjCÞ þ 10 cosð2jCÞ � 3 cosð3jCÞ

9>>>=>>>; for 3 6 i 6 N � 3; ðA:1Þ

cF20 ¼ _bF ; cF21 ¼ _aF ; cF23 ¼ _aF ; cF24 ¼ _bF

bF20 ¼ _aF2 þ 5 _aF3; bF21 ¼ _aF1 � 10 _aF3; bF23 ¼ _aF1 � 5 _aF3; bF24 ¼ _aF2 þ _aF3; bF25 ¼ _aF3

)
for i ¼

2;
N � 2;

�
ðA:2Þ

cF10 ¼ 10€b2
F ð8€bF � 1Þ þ ð1þ 4€bF þ 81€b2

F Þ€aF þ 5ð1þ 8€bFÞ€a2
F þ 9€a3

F

h i
=BF

cF12 ¼ €aF 1þ 5€aF þ 9€a2
F

� �
þ €aFð5þ 36€aFÞ€bF þ ð55€aF � 1Þ€b2

F þ 10€b3
F

h i
=BF

cF13 ¼ €bF 1þ 5€aF þ 9€a2
F þ 5ð1þ 7€aFÞ€bF þ 50€b2

F

h i
=BF

BF ¼ ð1� €bFÞ 1þ 6€bF þ 60€b2
F

	 

þ 5þ 35€bF � 29€b2

F

	 

€aF þ ð9� 5€bFÞ€a2

F

9>>>>>>>>=>>>>>>>>;
for i ¼

1;
N � 1;

�
ðA:3Þ

cF01 ¼ vaFð1þ vaFÞð1þ 4vaFÞ þ 2vaFð7þ 3vaFÞvbF þ 24ð1� vaFÞvb2
F � 80 vb3

F

h i
=CF

cF02 ¼ va3
F þ 1þ 3vaF þ 14va2

F

� �vbF þ 46vaF
vb2

F þ 60vb3
F

h i
=CF

CF ¼ 1þ vbF 5þ 4 vbF þ 60 vb2
F

	 

þ 5 1þ 3 vbF þ 10 vb2

F

	 

vaF þ 2ð4þ 11 vbFÞva2

F þ 5va3
F

9>>>>=>>>>; for i ¼
0;
N;

�
ðA:4Þ



J.W. Kim / Journal of Computational Physics 241 (2013) 168–194 193
where jC is the cut-off wavenumber normalized by grid space (jC = kCDx). The dots ‘‘�’’, ‘‘��’’ and ‘‘� � �’’ in Eqs. (A.2)–(A.4) de-
note boundary filter coefficients calculated from weighted cut-off wavenumbers for enhanced stability at the boundaries
[12]. The weighted boundary cut-off wavenumbers are given by
ð _jC ; €jC ;
vjCÞ ¼ jC ½1� eF sin2ðp=6;p=3;p=2Þ	 ðA:5Þ
which provides a linearly decreasing cut-off wavenumber from jC to jC (1 � eF) across three boundary cells. In the present
work, jC = 0.88p and eF = 0.25 are used as suggested in [12]. The use of boundary weighting is limited to physical boundaries
only. The derivation of SB filters in Section 3 is based on zero weighting (eF = 0) in order to maintain the uniformity of cut-off
wavenumbers across subdomain boundaries.
Appendix B

(See Tables B1 and B2).
Table B1
Coefficients for proposed SB compact finite-difference with an efficient stencil size (M = 11)
for 3% of Fourier error criterion (U < 0.03) from Eq. (4.10).

i = 0 i = 1

c�i11 8.992896791505667e�4 1.8805388760373756e�4
c�i10 �4.986658746868655e�3 �1.0428064609290105e�3
c�i9 0.012786121380103266 2.674020687502082e�3
c�i8 �0.022191498180909847 �4.642009649365245e�3
c�i7 0.032927991618090485 6.892064579400338e�3
c�i6 �0.04657661323376615 �9.765163647505088e�3
c�i5 0.06440194430816426 0.013564972483922279
c�i4 �0.08928335697480955 �0.019041949765658123
c�i3 0.1269011204772041 0.027944770534486005
c�i2 �0.1899431297805324 �0.045046905179487715
c�i1 0.31949304859383254 0.08695470058860919
c�i0 �0.736992740887527 �0.2584771941406698
ci0 �0.5336813436634584 �0.737493882305206
ci1 0.8929327012121225 0.04533056718142581
ci2 0.10470378604054187 0.6148876130753849
ci3 0.11170443847314782 0.27789867343514313
ci4 �0.07406941462165517 �6.5575218744913025e�3
ci5 0.05356599552451824 9.914395938076442e�3
ci6 �0.038776573996292044 �7.179137445315696e�3
ci7 0.02742301575120666 5.077657345955812e�3
ci8 �0.018483768633962283 �3.4225923067379947e�3
ci9 0.010650298015870585 1.9721149221814116e�3
ci10 �4.153737783508027e�3 �7.691508381817702e�4
ci11 7.490854293364865e�4 1.3870895385643608e�4

Table B2
Coefficients for proposed SB compact filters with an efficient stencil size (MF = 8) for 3% of
Fourier error criterion (UF < 0.03) from Eq. (4.10).

i = 0 i = 1

c�Fi8 0.0004080671697386847 0.00015993165225968903
c�Fi7 �0.002717077311573497 �0.0010578318951607495
c�Fi6 0.008480664890910771 0.003267326218563917
c�Fi5 �0.017334702567069534 �0.006573193658529932
c�Fi4 0.02779543950845714 0.010312204999438773
c�Fi3 �0.03912303782296065 �0.014132468145873005
c�Fi2 0.050670406049655274 0.017740605419707154
c�Fi1 �0.060616551731385186 �0.020410018015663934
c�Fi0 0.06618452008562463 0.021181984429966882
cFi0 �0.0651664813842433 �0.019704550203409617
cFi1 0.057834156017972066 0.01678572683413678
cFi2 �0.04690486952135603 �0.013552985219781221
cFi3 0.03532589000463139 0.01041393174226837
cFi4 �0.02463082407109682 �0.007354410488865658
cFi5 0.015138255674794043 0.004501738899644245
cFi6 �0.007325228325767596 �0.002158677210552717
cFi7 0.002329579902198938 0.0006822496763485686
cFi8 �0.0003482065685303191 �0.00010156503449754444
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