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The cutoff method, which cuts off the values of a function less than a given number,

is studied for the numerical computation of nonnegative solutions of parabolic partial dif-

ferential equations. A convergence analysis is given for a broad class of finite difference

methods combined with cutoff for linear parabolic equations. Two applications are in-

vestigated, linear anisotropic diffusion problems satisfying the setting of the convergence

analysis and nonlinear lubrication-type equations for which it is unclear if the convergence

analysis applies. The numerical results are shown to be consistent with the theory and in

good agreement with existing results in the literature. The convergence analysis and appli-

cations demonstrate that the cutoff method is an effective tool for use in the computation

of nonnegative solutions. Cutoff can also be used with other discretization methods such

as collocation, finite volume, finite element, and spectral methods and for the computation

of positive solutions.
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1 Introduction

Many physical phenomena involve variables such as the density and concentration of a material that

take only nonnegative values. The mathematical reflection of this property is that the partial dif-

ferential equations (PDEs) modeling the phenomena admit nonnegative solutions. For the numerical
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solution of those PDEs, it is crucial that numerical schemes preserve the solution nonnegativity and

produce physically meaningful numerical solutions.

A closely related concept is the maximum principle. Preserving the maximum principle is equivalent

to preserving the solution nonnegativity for linear problems [50] but generally the former is more

difficult than the latter. It is known (e.g., see [11]) that a conventional numerical method, such as a

finite difference (FD), finite volume (FV), or finite element (FE) method, generally does not preserve

the maximum principle and can produce negative undershoot in the solution for diffusion problems,

especially those with heterogeneous anisotropic diffusion coefficients. Considerable effort has been

made on developing numerical schemes satisfying the maximum principle; e.g., see [6, 7, 10, 11, 28,

29, 31, 34, 46, 47, 51, 52] for steady-state isotropic diffusion problems and [15, 22, 23, 27, 30, 36, 38, 39,

40, 41, 42, 45] for steady-state anisotropic diffusion problems. Particularly, Ciarlet and Raviart [11]

show that the linear FE approximation of an elliptic isotropic diffusion problem satisfies the maximum

principle when the mesh is simplicial and nonobtuse. The result is generalized to anisotropic diffusion

problems by Huang and his coworkers in [27, 36, 41]. On the other hand, less progress has been made

for time dependent problems. For example, Fujii [21] shows that the linear FE approximation of the

heat equation satisfies the maximum principle when the mesh is simplicial and acute and the time step

size is bounded above by a bound proportional to the squared maximal element size and below by a

bound proportional to the squared minimal element in-diameter. He also shows that when the lumped

mass matrix is used, the maximum principle holds without requiring the time step size to be bounded

from below. Fujii’s results are extended to more general isotropic diffusion problems by Faragó et

al. [17, 19, 20] and to anisotropic diffusion problems by Li and Huang [37]. Faragó and Horváth

[18] study the relations between the maximum principle, nonnegativity preservation, and maximum

norm contractivity for linear parabolic equations and their finite difference and Galerkin finite element

discretizations. Thomée and Wahlbin [50] consider more general parabolic PDEs and show that the

maximum principle cannot hold for the conventional semidiscrete FE problem and Fujii’s conditions

on the mesh are essentially sharp for the lumped mass matrix. Le Potier [32, 33] (also see Lipnikov et

al. [39]) proposes two nonlinear FV schemes for linear anisotropic diffusion problems and shows that

they are second order in space and satisfy monotonicity [32] or the maximum principle [33].

We consider initial-boundary value problems of parabolic PDEs which are well posed and have a

unique, nonnegative solution. Instead of employing a maximum-principle preserving scheme, we pro-

pose to use the cutoff method that cuts off the negative values in the computed solution at each time

step and then continues the time integration with the corrected solution; see Fig. 1 for a sketch of the

solution procedure. The cutoff method shares a similar idea with many projection and correction meth-

ods. For example, projection methods [9, 49] are an effective means of enforcing the incompressibility

condition in the numerical solution of time dependent incompressible fluid flow problems. Projection

is also used by some researchers in the numerical solution of Hamiltonian systems to preserve the

energy; e.g., see [26]. A FE/implicit Euler discretization of a Cahn-Hilliard equation with logarithmic

nonlinearity is considered in [13] and iterative methods to solve the resulting nonlinear systems of

equations are developed to keep the solution within its physically relevant range. Solution compres-

sion is used in the design of maximum-principle-satisfying high order schemes for scalar conservation

laws by Zhang and Shu [53]. It should be emphasized that the cutoff method provides several advan-

tages over many positivity-preserving or maximum-principle-preserving schemes. Its implementation
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is simple and requires no significant changes in the existing code. Moreover, the cutoff procedure does

not impose any constraint on the mesh and time step which maximum-principle-preserving schemes

often impose. However, unlike projection methods, there do not seem to exist published theoretical

or numerical studies on the cutoff method.

The objective of this paper is to provide a theoretical and numerical study of the cutoff method

for use in the computation of nonnegative solutions of parabolic PDEs. We shall first prove that a

broad class of finite difference methods are convergent when they are incorporated with the cutoff

method for linear parabolic PDEs. Two applications are then investigated. The first is a linear

anisotropic diffusion problems which satisfies the setting of the convergence analysis. It is known

that a conventional finite difference or finite element method with a uniform or quasi-uniform mesh

does not preserve the maximum principle (nor the solution nonnegativity) and typically produces

negative undershoot in the computed solution. The cutoff method removes the unphysical negative

values in the solution while keeping the same convergence order of the underlying scheme. The second

application is nonlinear lubrication-type equations. It is unclear if the convergence analysis (which

can be extended to some nonlinear equations; see Remark 2.1) applies to those equations. A distinct

feature of lubrication-type equations is that a positive solution can develop a finite time singularity

of the form u → 0 and become identically zero on some spatial interval for a period of time. A

conventional finite difference or finite element method can produce negative values in the computed

solution during this development of singularity. Negative solution values are not only unphysical

but also cease the computation for typical situations where the nonlinear diffusion coefficients are

undefined for negative solution values. The application of the cutoff method avoids this difficulty.

Moreover, it is shown that no regularization is needed when cutoff is used. Numerical results are

shown to be in good agreement with existing ones in the literature.

The outline of the paper is as follows. The cutoff method is described and some of its properties

are given in Section 2. The convergence of a broad class of finite difference methods is proved also

in Section 2 when they are incorporated with the cutoff method for the computation of nonnegative

solutions of linear parabolic PDEs. Application of finite difference methods with cutoff to a linear

anisotropic diffusion problem and a lubrication-type PDE is studied in Sections 3 and 4, respectively.

Finally, Section 5 contains conclusions and further comments.

2 The cutoff method and convergence analysis

In this section, we first describe the cutoff method and some of its properties. We then give a

convergence analysis of the method for a class of finite difference methods applied to linear parabolic

problems. Possible generalizations are also discussed.

2.1 The cutoff method

Consider a continuous function f = f(x) defined on a domain Ω ⊂ Rd (d ≥ 1). For any given cutoff

parameter δ ∈ R, we define the δ-cutoff function as

f+
δ (x) =

{
f(x), for f(x) ≥ δ
δ, for f(x) ≤ δ

∀x ∈ Ω. (1)

3



t

u

u = u(t)

u0

un
un+1

Un

(Un)+

Un+1

(Un+1)+

t0 tn tn+1

Figure 1: An illustration of the time integration with cutoff (the dashed line). Here, Un is the numer-

ical solution, (Un)+ is the corrected numerical solution and u(t) is the exact solution of the

IBVP starting from u0 at t = t0.

Note that f+(x) ≡ f+
0 (x) is the nonnegative part of f , i.e.,

f+(x) =
1

2
(|f(x)|+ f(x)) =

{
f(x), for f(x) ≥ 0

0, for f(x) ≤ 0
∀x ∈ Ω. (2)

The following three lemmas give some properties of cutoff functions. Although these properties are

easy to prove (and almost obvious), they play a central role in the convergence analysis for a class of

finite difference methods in the next subsection.

Lemma 2.1. For a given function f and any nonnegative continuous function u defined on Ω, we

have

|f+(x)− u(x)| ≤ |f(x)− u(x)|, ∀x ∈ Ω. (3)

Proof. Obviously, (3) holds when f(x) ≥ 0. When f(x) < 0, we have f+(x) = 0. By assumption,

u(x) ≥ 0. Thus, we have

|f+(x)− u(x)| = |u(x)| ≤ |f(x)|+ |u(x)| = |f(x)− u(x)|.

Lemma 2.2. For a given function f and any nonnegative continuous function u defined on Ω, we

have

|f+(x)− f(x)| ≤ |u(x)− f(x)|, ∀x ∈ Ω. (4)

Proof. The proof is similar to that of Lemma 2.1.

Lemma 2.3. Given a cutoff parameter δ ≥ 0, for any function f and any nonnegative continuous

function u defined on Ω, we have

|f+
δ (x)− f+(x)| ≤ δ, ∀x ∈ Ω (5)

|f+
δ (x)− u(x)| ≤ |f(x)− u(x)|+ δ, ∀x ∈ Ω. (6)
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Proof. Inequality (5) follows from the definitions of f+ and f+
δ . Inequality (6) follows from the

triangle inequality |f+
δ (x)− u(x)| ≤ |f+(x)− u(x)|+ |f+

δ (x)− f+(x)| and Lemma 2.1.

2.2 Error analysis for a linear IBVP problem

We now use the results in the previous subsection to analyze the convergence of a class of finite

difference schemes for a general initial-boundary value problem (IBVP) in the form
∂u
∂t = L(u), in Ω× (t0, T ]

u = g, on ∂Ω

u = u0, on Ω× {t = t0}

(7)

where Ω ⊂ Rd (d ≥ 1) is the physical domain, L is a linear elliptic differential operator and g and u0

are given sufficiently smooth functions. We assume that the IBVP is well posed and admits a unique

nonnegative continuous solution, u = u(t,x). We also assume that L and g do not contain t explicitly

for notational simplicity.

We consider a class of finite difference schemes for (7) in the matrix form as

B1U
n+1 = B0U

n + Fn, (8)

where B0 and B1 are matrices independent of n and Un is an approximation of the exact solution at

t = tn, i.e., Un = {Unj }, un = {unj }, Unj ≈ unj ≡ u(tn,xj) for each mesh vertex xj . We assume that

(8) satisfies

‖B−1
1 ‖ ≤ K1, (9)

‖B−1
1 B0‖ ≤ (1 +K∆t), (10)

1

∆t

[
B1u

n+1 −B0u
n − Fn

]
−→ ∂u

∂t
− L(u), as ∆t(h)→ 0 (11)

where ∆t and h are the maximal time step size and the maximal element size, respectively, K and

K1 are positive constants, and ‖ · ‖ is a proper matrix norm. Condition (9) requires that (8) produce

a bounded solution while (10) and (11) are the stability and consistency conditions, respectively. The

local truncation error of this scheme is defined as

τn = B1u
n+1 −B0u

n − Fn. (12)

Assume that scheme (8) is (p, q)-order for some positive integers p and q. Then, there exists a constant

Clte(u) (depending only on the exact solution) such that

‖τn‖ ≤ Clte(u) ∆t (∆tp + hq). (13)

It is remarked that there exist many schemes satisfying assumptions (9) – (11). Examples include

those employing central finite differences for spatial discretization and the θ-method for temporal

discretization; e.g., see Morton and Mayers [43].
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Theorem 2.1. Assume that IBVP (7) is well posed and admits a unique nonnegative continuous

exact solution u = u(t,x). We also assume that scheme (8) satisfies (9) – (11) and (13). Then, the

error for the cutoff solution procedure shown in Fig. 1 with scheme (8) is bounded by

‖(Un)+ − un‖ ≤ ‖Un − un‖ ≤ K1

K
eKtn Clte(u) (∆tp + hq). (14)

Proof. Let en = Un − un. Notice that the cutoff solution procedure shown in Fig. 1 with (8)

satisfies

B1U
n+1 = B0(Un)+ + Fn. (15)

Combining this with (12), we obtain

B1e
n+1 = B0((Un)+ − un)− τn.

It follows that

‖en+1‖ ≤ ‖B−1
1 B0‖ · ‖(Un)+ − un‖+ ‖B−1

1 ‖ · ‖τ
n‖.

Combining this with (9) and (10) leads to

‖en+1‖ ≤ (1 +K∆t) ‖(Un)+ − un‖+K1 ‖τn‖. (16)

Lemma 2.1 implies

‖(Un)+ − un‖ ≤ ‖Un − un‖. (17)

Thus, we get

‖en+1‖ ≤ (1 +K∆t) ‖en‖+K1 ‖τn‖. (18)

Then it is standard to show that (14) follows from (13) and (18).

Remark 2.1. From the above proof we can see that the key condition is the convergence of the

original scheme (without cutoff). If it (without cutoff) is convergent, using Lemma 2.1 we can readily

show that the scheme with cutoff is also convergent. This observation implies that the convergence

analysis of the cutoff method can be extended to more general linear or nonlinear IBVPs.

When a strictly positive solution is desired, we can replace (Un)+ with (Un)+
δ for some positive

constant δ. The following theorem can be proven using Lemma 2.3 in a similar way as for Theorem 2.1.

Theorem 2.2. Assume that IBVP (7) is well posed and admits a unique nonnegative continuous

exact solution u = u(t,x). We also assume that scheme (8) satisfies (9) – (11) and and (13). For the

cutoff solution procedure shown in Fig. 1 with scheme (8) and with (Un)+ being replaced with (Un)+
δ

for some positive δ, the error is bounded by

‖(Un)+
δ − u

n‖ ≤ K1

K
eKtn Clte(u) (∆tp + hq) +

(
(1 +K∆t)

K∆t
eKtn + 1

)
δ. (19)

Remark 2.2. Inequality (19) shows that δ should be chosen proportional to ∆t for the error

bound to stay bounded as ∆t→ 0. Ideally, δ should be at the same level as the local truncation error,

i.e.,

δ = O(∆t(∆tp + hq)). (20)

This way, the terms on the right-hand side of (19) have the same convergence order as ∆t(h)→ 0.
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3 An anisotropic diffusion problem

In this section we present numerical results obtained for a 2D linear anisotropic diffusion problem by

the cutoff method described in the previous section. The problem takes the form of IBVP (7) with

L(u) = ∇ · (D∇u) + f, Ω = [0, 1]× [0, 1], D =

(
500.5 480

480 500.5

)
, (21)

and f , u0, and g are chosen such that the exact solution of the IBVP is given by

u =
1

2
exp(−t)(tanh(−15(x− y)) + 1). (22)

The problem satisfies the maximum principle and the solution stays between 0 and 1.

It is worth pointing out that unlike lubrication-type equations which we shall consider in the next

section, for this problem the computation can continue when negative values occur in the computed

solution. From this point of view, it is unnecessary to remove negative values at each time step.

Nevertheless, this problem satisfies the setting of the convergence analysis in the previous section and

provides a good example for verifying the theory and testing the effectiveness and accuracy of the

cutoff method.

We use Cartesian grids of size J × J for the physical domain, central finite differences for spatial

discretization, and a third-order singly diagonally implicit Runge-Kutta (SDIRK) method [1, 8] for

temporal discretization of the underlying PDE. The discretization is standard and can be shown to

be convergent with order (3, 2) (third order in time and second order in space). It is also known (and

is shown below) that this standard scheme does not preserve the maximum principle and produces

spurious undershoot and overshoot in the numerical solution. The numerical results presented below

are obtained with a fixed time step size ∆t = 10−2, which was found to be small enough so that the

temporal discretization error is ignorable compared to the spatial discretization error.

Fig. 2 shows the surface plot of a numerical solution (after cutoff) at t = 1. The contours of the

numerical solutions before and after cutoff are shown in Fig. 3 (a) and (b). One may notice that the

underlying finite difference scheme does not preserve the nonnegativity and the numerical solution at

t = 1 contains negative values (with UNmin = −1.073 × 10−3 where N is the last time step) before

cutoff.

The L2 error, ‖(UN )+ − uN‖L2(Ω), and the maximal undershoot, −umin, are shown in Fig. 4 as

functions of the number of subintervals in x (or y) direction. We can see that the L2 error decreases

at a rate of O(J−2) (second order in terms of element size) as J increases. This is consistent with the

theoretical prediction given in Theorem 2.1. On the other hand, the maximal undershoot, which is

equal to the cutoff error, i.e., −umin = ‖UN − (UN )+‖∞, decreases at a faster rate. This is somewhat

surprising since we expect the cutoff error to be at the level of the local truncation error, which is

second order in space.

Recall that the cutoff strategy can be used to preserve the positivity of the solution. For example,

when the cutoff parameter is taken δ = ∆t(∆x)2, we have (Unj )+
δ ≥ ∆t(∆x)2. Theorem 2.2 implies

that the L2 error, ‖(UN )+
δ − u

N‖L2(Ω), decreases at a rate of second order in space. For the current

example, the numerical results obtained with this cutoff parameter are indistinguishable from those

shown in Figs. 3 and 4. For this reason and to save space, we omit those results here.
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It is worth mentioning that computations were also performed for a similar problem with a convec-

tion term,

L(u) = ∇ · (D∇u)− b · ∇u+ f, (23)

where D is given in (21), b = [1000, 1000]T , and the functions f , g, and u0 are chosen such that the

exact solution is given by (22). The obtained results (not shown) are very similar to those shown in

Figs. 3 and 4.
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Figure 2: Example (21). The surface plot of a numerical solution (after cutoff) at t = 1 obtained with

an 80× 80 Cartesian grid.

4 Application to lubrication-type equations

In this section we consider the application of the cutoff method to a lubrication-type equation, which

was first derived from lubrication theory by Greenspan [24] for describing the movement of thin

viscous films and spreading droplets. Lubrication theory consists of a depth-averaged equation of

mass conservation and a simplified form of the Navier-Stokes equations that is appropriate for a thin

layer of very viscous fluid. We consider a lubrication-type equation in the general form

ut +∇ · (f(u)∇∆u) = 0, f(u) ∼ un, n ∈ [0,∞) (24)

where u is the thickness of the viscous droplet and n is a physical parameter which has different values

for different boundary conditions on the liquid solid interface. Lubrication-type equations also appear

in several other applications, including a thin neck model in the Hele-Shaw cell [12], Cahn-Hilliard

models with degenerate mobility [16], and problems in population dynamics [35] and plasticity [25].

8



(a): UN

−0
.00
05
36
68

−0.
000

536
68

−0
.00
05
36
68

−0.
000

536
68

(b): (UN )+

Figure 3: Example (21). Contours of the numerical solutions at t = 1 before and after cutoff. The

solutions are obtained with an 80× 80 Cartesian grid.

It is noted that the solution u must stay nonnegative to be physically meaningful in all of those

applications.

It is known theoretically [2, 5] that in one dimension, (24) preserves the positivity of the solution

for n ≥ 3.5 and has a nonnegative weak solution in a sense of distributions for 3/8 < n < 3 (and in a

weaker sense for 0 < n < 3/8). Such a weak solution can be obtained [2] as the limit as ε→ 0 of the

solution of the regularized problem

uεt +∇ · (f ε(uε)∇∆uε) = 0, f ε(uε) =
(uε)4f(uε)

εf(uε) + (uε)4
, (25)

where ε > 0 is the regularization parameter. Moreover, numerical computation (such as see [3, 4, 5])

shows that for small values of n > 0, a positive solution can first develop a finite time singularity of

the form u→ 0 at some point (which physically describes the rupture of the liquid film), then becomes

identically zero on an interval of time dependent length for a period of time, becomes positive again

at a later time, and eventually decays to the mean of the initial solution. It is challenging to simulate

this singularity development since conventional numerical methods do not preserve the nonnegativity

of the solution and requires a huge number of mesh points to provide the necessary resolution to

avoid spurious, negative undershoot. Moreover, when n is an even denominator rational number,

f(u) is undefined for negative u. In this situation, the computation typically stops around the initial

formation of the singularity when negative values start to appear in the numerical solution. For this

reason, the simulation of the singularity development in (24) is a good test for the cutoff method

although it is unclear if the convergence analysis described in § 2.2 applies to (24).

Great effort has been made in the numerical solution of (24). In addition to the above mentioned

references [3, 4, 5], Zhornitskaya and Bertozzi [54] propose a positivity preserving finite difference

scheme for the regularized equation (25). Russell et al. [44] solve the same regularized equation using

a moving collocation method. Sun et al. [48] solve (24) in two dimensions using an adaptive finite
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Figure 4: Example (21). The L2 error, ‖(UN )+− uN‖L2(Ω), and the maximal undershoot, −umin, are

shown as functions of the number of subintervals in x (or y) direction.

element method and show that proper mesh adaptation can provide accurate resolution and there is

no need to use regularization in the numerical simulation of the singularity development in (24).

We first consider an IBVP of the one-dimensional lubrication-type equation as
ut + (f(u)uxxx)x = 0, x ∈ Ω ≡ (−1, 1), f(u) = u

1
2 ,

u(t,±1) = 0, uxxx(t,±1) = 0,

u(0, x) = 0.8− cos(πx) + 0.25 cos(2πx).

(26)

Notice that the initial condition is strictly positive (with minimum value 0.05 and mean value 0.8) and

f(u) is undefined for negative u. We use a uniform mesh of J cells for Ω, central finite differences for

spatial discretization, a third-order SDIRK method for the temporal discretization of the underlying

PDE. (A small fixed time step ∆t = 10−6 is used in our computation.) This discretization is basically

the same as that for the example in the previous section except that a special treatment is needed

for the diffusion coefficient for the current problem since it is nonlinear. Recall that the scheme

does not preserve the nonnegativity of the solution. Thus, iterates can have negative values at some

point during the Newton iterative solution of the nonlinear algebraic equations resulting from the

SDIRK/finite difference discretization of the underlying PDE. Once this occurs, the computation

stops because f(u) is undefined for those values. One way to avoid this difficulty is to use f((Un+1)+)

instead of f(Un+1) in the scheme. However, the nonsmoothness of (Un+1)+ can cause difficulty in the

convergence of the Newton iteration. We use here the “lagged diffusivity” method, i.e., the diffusion

coefficient is computed using the (corrected) numerical solution at the previous time step. An iterative

method based on the lagged diffusivity is used and proved to be convergent by Dobson and Vogel [14]

for a total variation denoising problem which also has a nonlinear diffusion coefficient.

Fig. 5 shows a numerical solution at various time instants obtained with the cutoff method (without

using regularization for f(u)) on a relatively coarse uniform mesh of 129 points. The result is almost

identical (in the eyeball norm) to those in [3, 48]. To further verify the result, the computation is

done with a uniform mesh of 1001 points and the obtained solution is indistinguishable from the one

shown in Fig. 5 in the plotting precision.
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A uniform mesh of 1001 points is used for the numerical study of the singularity development of

the solution. Fig. 6 shows the close views of the solution during the development. It can be seen that

the singularity is developed at around t = 7.30 × 10−4, which is consistent with existing numerical

simulations, including those in [54] with a positivity-preserving scheme. Then, the solution becomes

identically zero on an interval of time dependent length for a period of time. The length of the interval

increases from zero, attains its maximum (about 0.12), and decreases to zero. Afterward, the solution

becomes positive again, and eventually decays to the mean of the initial solution. It is known (e.g.,

see [3]) that the development of the singularity is characterized by the third order derivative of the

solution becoming infinite at certain points. This can be seen in Fig. 7 where the third order derivative

of the numerical solution is shown at various time instants. In particular, the third order derivative

becomes discontinuous when the singularity occurs, then has jump discontinuities, and then becomes

continuous again when the solution is positive.

As we have seen in the above, there is no need to use any regularization for f(u) (cf. (25)) with the

cutoff method. On the other hand, it is interesting to see the effects of the regularization of f(u) on

the solution. We first point out that the regularization does not guarantee the nonnegativity of the

solution for the central finite difference discretization on a uniform mesh. Thus, we also need to use

the cutoff method for the regularized equation (25). A solution obtained for (25) (with ε = 10−14)

with the cutoff method is shown in Fig. 8. By a direct comparison with Fig. 7, one can see that there

is only a slight difference (at the level of O(10−6)) in the onset time and disappearance time of the

singularity. Moreover, the solution of the regularized problem does not become identically zero on

an interval for a period of time. Instead, there is a bump at the central part of the interval and the

height of the bump maintains constant almost for the whole appearance period of singularity. Once

again, the length of the interval first increases from zero, reaches its maximum, and decreases to zero

when the solution becomes positive again.

Fig. 9 shows comparison of numerical solutions at onset of singularity and at t = 0.001. It can be

seen that the regularization changes the onset pattern: the solution to the non-regularized equation

touches the x-axis at one point whereas those to the regularized one touch at two points simultaneously.

Moreover, the length of the touching interval and the height of the bump at onset depend on the

regularization parameter ε. The smaller ε, the smaller the touching interval and the lower the bump.

This suggests uε → u as ε → 0. It is interesting to point out that all solutions, for regularization or

non-regularization, have almost the same length of the touching interval at t = 0.001.

Finally, we present some numerical results for an IBVP of the two-dimensional lubrication-type

equation as
ut +∇ · (f(u)∇∆u) = 0, (x, y) ∈ Ω ≡ [−1, 1]× [−1, 1], f(u) = u

1
2 ,

u = 0, ∂∆u
∂n = 0, (x, y) ∈ ∂Ω

u(0, x, y) = (0.8− cos(πx) + 0.25 cos(2πx))(0.8− cos(πy) + 0.25 cos(2πy)), (x, y) ∈ Ω.

(27)

Fig. 10 (a) shows a numerical solution at t = 0.001 obtained with a uniform mesh of size 81×81 while

its profiles along the diagonal line x = y at various times are shown in Fig. 10 (b). One can see that

the development of singularity has a similar behavior as in one dimension (cf. Fig. 5). One may also

see that the onset time for the current example is slightly earlier. This is because the current initial

solution has a smaller minimum value 0.025. The contours of the numerical solutions at t = 0.001

11



before and after cutoff are shown in Fig. 11. The undershoot (with umin = −3.23 × 10−4) is visible

in the solution before cutoff. These results demonstrate that the cutoff method can be used for the

simulation of singularity development in the two-dimensional lubrication-type problem without need

of any type of regularization.
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Figure 5: The one-dimensional lubrication-type problem. The solution obtained with 129 uniform grid

points is shown at various time instants.

5 Conclusions and further comments

In the previous section we have studied the cutoff method for the numerical computation of nonneg-

ative solutions of parabolic partial differential equations. Several properties of the cutoff method are

given in Lemmas 2.1 – 2.3. Convergence of a class of finite difference methods is proved (Theorems 2.1

and 2.2) when they are incorporated with the cutoff method for linear parabolic PDEs. The method is

investigated for two applications, linear anisotropic diffusion problems and nonlinear lubrication-type

PDEs. The numerical results are consistent with theoretical predictions and in good agreement with

existing results in the literature.

We have considered finite difference methods in this work. But it is worth pointing out that the

cutoff method can also be used with other discretization methods, e.g. collocation, finite volume,

finite element, or spectral methods. As an example, we show in Figs. 12 and 13 results obtained with

the standard linear finite element method on Delaunay meshes for anisotropic diffusion problem (21).

They are comparable with those in Figs. 3 and 4. Theoretical analysis for finite element methods with

the cutoff strategy is currently underway.
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Figure 6: The one-dimensional lubrication-type problem. The close views of the numerical solution are

shown at various time instants during the singularity development. The numerical solution

is obtained by the cutoff method (without using regularization for f(u)) on a uniform mesh

of 1001 points with ∆t = 10−6.
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[20] I. Faragó, R. Horváth, and S. Korotov. Discrete maximum principles for FE solutions of non-

stationary diffusion-reaction problems with mixed boundary conditions. Numer. Methods Partial

Differential Equations, 27:702–720, 2011.

[21] H. Fujii. Some remarks on finite element analysis of time-dependent field problems. In Theory

and Proactice in Finite Element Structural Analysis, pages 91–106. University of Tokyo, Tokyo,

1973.

16



(a): UN (b): (UN )+

Figure 11: The two-dimensional lubrication problem. Contours of the numerical solutions at t = 0.001

before and after cutoff.
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[31] M. Kř́ıžek and Q. Lin. On diagonal dominance of stiffness matrices in 3D. East-West J. Numer.

Math., 3:59–69, 1995.
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