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Abstract

In this contribution, we develop a variational integrator for the simulation of (stochastic and multiscale) electric
circuits. When considering the dynamics of an electrical circuit, one is faced with three special situations: 1. The
system involves external (control) forcing through external (controlled) voltage sources and resistors. 2. The system
is constrained via the Kirchhoff current (KCL) and voltage laws (KVL). 3. The Lagrangian is degenerate. Based on
a geometric setting, an appropriate variational formulation is presented to model the circuit from which the equations
of motion are derived. A time-discrete variational formulation provides an iteration scheme for the simulation of
the electric circuit. Dependent on the discretization, the intrinsic degeneracy of the system can be canceled for the
discrete variational scheme. In this way, a variational integrator is constructed that gains several advantages compared
to standard integration tools for circuits; in particular, a comparison to BDF methods (which are usually the method
of choice for the simulation of electric circuits) shows that even for simple LCR circuits, a better energy behavior and
frequency spectrum preservation can be observed using the developed variational integrator.

Keywords: structure-preserving integration, variational integrators, degenerate systems, electric circuits, noisy
systems, multiscale integration

1. Introduction

Variational integrators have mainly been developed and used for a wide variety of mechanical systems. However,
real-life systems are generally not of purely mechanical character. In fact, more and more systems become multidis-
ciplinary in the sense, that not only mechanical parts, but also electric and software subsystems are involved, resulting
in mechatronic systems. Since the integration of these systems with a unified simulation tool is desirable, the aim of
this work is to extend the applicability of variational integrators to mechatronic systems. In particular, as the first step
towards a unified simulation, we develop a variational integrator for the simulation of electric circuits.

Overview. Variational integrators [30] are based on a discrete variational formulation of the underlying system, e.g.
based on a discrete version of Hamilton’s principle for conservative mechanical systems. The resulting integrators
given by the discrete Euler-Lagrange equations are symplectic and momentum-preserving and have an excellent long-
time energy behavior. Choosing different variational formulations (e.g. Hamilton, Lagrange-d’Alembert, Hamilton-
Pontryagin, etc.), variational integrators have been developed for classical conservative mechanical systems (for an
overview see [24, 25]), forced [18] and controlled [34] systems, constrained systems (holonomic [26, 27] and non-
holonomic systems [19]), nonsmooth systems [11], stochastic systems [6], and multiscale systems [39]. Most of
these systems share the assumption, that they are non-degenerate, i.e. the Legendre transformation of the correspond-
ing Lagrangian is a diffeomorphism. Applying Hamilton’s principle to a regular Lagrangian system, the resulting
Euler-Lagrange equations are ordinary differential equations of second order and equivalent to Hamilton’s equations.
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The Lagrangian formulation for LC circuits is based on the electric and magnetic energies in the circuit and the
interconnection constraints expressed in the Kirchhoff laws. There exist a large variety of different approaches for a
Lagrangian or Hamiltonian formulation of electric circuits (see e.g. [9, 21, 10, 2, 38] and references therein). All of
theses authors treat the question of which choice of the Lagrangian coordinates and derivatives is the most appropriate
one. Several settings have been proposed and analyzed, e.g. a variational formulation based on capacitor charges
and currents, on inductor fluxes and voltages, and a combination of both settings, as well as formulations based on
linear combinations of the charges and flux linkages. Typically, one wants to find a set of generalized coordinates,
such that the resulting Lagrangian is non-degenerate. However, within such a formulation, the variables are not easily
interpretable in terms of original terms of a circuit.

A recently-considered alternative formulation is based on a redundant set of coordinates resulting in a Lagrangian
system for which the Lagrangian is degenerate. For a degenerate Lagrangian system, i.e. the Legendre transform is
not invertible, the Euler-Lagrange equations involve additional hidden algebraic constraints. Then, the equations do
not have a unique solution, and additional constraints are required for unique solvability of the system. For the circuit
case, these are provided by the Kirchhoff Current Law (KCL). From a geometric point of view, the KCL provides a
constraint distribution that induces a Dirac structure for the degenerate system. The associated system is then denoted
by an implicit Lagrangian system. In [42] and [41], it was shown that nonholonomic mechanical systems and LC
circuits as degenerate Lagrangian systems can be formulated in the context of induced Dirac structures and associated
implicit Lagrangian systems. The variational structure of an implicit Lagrange system is given in the context of the
Hamiltonian-Pontryagin-d’Alembert principle, as shown in [43]. The resulting Euler-Lagrange equations are called
the implicit Euler-Lagrange equations [42, 43, 32], which are semi-explicit differential-algebraic equations that con-
sist of a system of first order differential equations and an additional algebraic equation that constrains the image of the
Legendre transformation (called the set of primary constraints). Thus, the modeling of electric circuits involves both
primary constraints as well as constraints coming from Kirchhoff’s laws. In [17], an extension towards the intercon-
nection of implicit Lagrange systems for electric circuits is demonstrated. For completeness, we have to mention that
the corresponding notion of implicit Hamiltonian systems and implicit Hamiltonian equations was developed earlier
by [3, 31, 4]. An intrinsic Hamiltonian formulation of dynamics of LC circuits as well as interconnections of Dirac
structures have been developed, e.g. in [31] and [8], respectively.

There are only a few works dealing with the variational simulation of degenerate systems, e.g. in [36], variational
integrators with application to point vertices as a special case of degenerate Lagrangian system are developed. Al-
though there exists a variety of different variational formulations for electric circuits, variational integrators for their
simulation have not been concretely investigated and applied thus far. In [22], a framework for the description of the
discrete analogues of implicit Lagrangian and Hamiltonian systems is proposed. This framework is the foundation
for the development of an integration scheme. However, no concrete simulation scenarios have yet been performed.
Furthermore, the discrete formulation of the variational principle is slightly different from the approach presented in
this work, thus resulting in a different scheme.

Contribution. In this work, we present a unified variational framework for the modeling and simulation of electric
circuits. The focus of our analysis is on the case of ideal linear circuit elements, consisting of inductors, capacitors,
resistors and voltage sources. However, this is not a restriction of this approach, and the variational integrators can also
be developed for nonlinear circuits, which is left for future work. A geometric formulation of the different possible
state spaces for a circuit model is introduced. This geometric view point forms the basis for a variational formula-
tion. Rather than dealing with Dirac structures, we work directly with the corresponding variational principle, where
we follow the approach introduced in [43]. When considering the dynamics of an electric circuit, one is faced with
three specific situations that lead to a special treatment within the variational formulation and thus the construction
of appropriate variational integrators: 1. The system involves external (control) forcing through external (controlled)
voltage sources. 2. The system is constrained via the Kirchhoff current (KCL) and voltage laws (KVL). 3. The La-
grangian is degenerate leading to primary constraints. For the treatment of forced systems, the Lagrange-d’Alembert
principle is the principle of choice. Involving constraints, one has to consider constrained variations resulting in a
constrained principle. The degeneracy requires the use of the Pontryagin version; thus, the principle of choice is
the constrained Lagrange-d’Alembert-Pontryagin principle [43]. Two variational formulations are considered: First,
a constrained variational formulation is introduced for which the KCL constraints are explicitly given as algebraic
constraints, whereas the KVL are given by the resulting Euler-Lagrange equations. Second, an equivalent reduced
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constrained variational principle is developed, for which the KCL constraints are eliminated due to a representation of
the Lagrangian on a reduced space. In this setting, the charges and flux linkages are the differential variables, whereas
the currents play the role of algebraic variables. The number of inductors in the circuit and the circuit topology de-
termine the degree of degeneracy of the system. For the reduced version, we show for which cases the degeneracy
of the system is canceled via the KCL constraints. Based on the variational formulation, a variational integrator for
electric circuits can be constructed. For the case of a degenerate system, the applicability of the variational integrator
is dependent on the choice of discretization. Based on the type and order of the discretization, the degeneracy of the
continuous system is canceled for the resulting discrete scheme. Three different integrators and their applicability to
different electric circuits are investigated. The generality of a unified geometric (and discrete) variational formulation
is advantageous for the analysis – for very complex circuits in particular. Using the geometric approach, the main
structure-preserving properties of the (discrete) Lagrangian system can be derived. In particular, good energy behav-
ior and preservation of the spectrum of high frequencies of the solutions can be observed. Furthermore, preserved
momentum maps due to symmetries of the Lagrangian system can be derived. Going one step further, we extend the
approach to a stochastic and multiscale setting. Due to the variational framework, the resulting stochastic integrator
will well capture the statistics of the solution (see for instance [7]), and the resulting multiscale integrator will still be
variational [39].

Outline. In Section 2, we first review the basic notation for electric circuits followed by a graph representation to
describe the circuit topology. In addition, we introduce a geometric formulation that gives an interpretation of the dif-
ferent state spaces of a circuit model. Based on the geometric view point, the two (reduced and unreduced) variational
formulations are derived in Section 3. The equivalence of both formulations as well as conditions for obtaining a non-
degenerate reduced system are proven. In Section 4, the construction of different variational integrators for electric
circuits is described and conditions for their applicability are derived. The main structure-preserving properties of the
Lagrangian system and the variational integrator are summarized in Section 5. In Section 6, the approach is extended
for the treatment of noisy circuits. In Section 7, the efficiency of the developed variational integrators is demonstrated
by means of numerical examples. A comparison with standard circuit modeling and circuit integrators is given. In
particular, the applicability of the multiscale method FLAVOR [39] is demonstrated for a circuit with different time
scales.

2. Electric circuits

2.1. Basic notations

Considering an electric circuit, we introduce the following notations (following [33]): A node is a point in the
circuit where two or more elements meet. A path is a trace of adjacent elements, with no elements included more than
once. A branch is a path that connects two nodes. A loop is a path that begins and ends at the same node. A mesh
(also called fundamental loop) is a loop that does not enclose any other loops. A planar circuit is a circuit that can be
drawn on a plane without crossing branches.

Let q(t), v(t), u(t) ∈ Rn be the time-dependent charges, the currents and voltages of the circuit elements with
t ∈ [0,T ], where qJ(t), vJ(t), uJ(t) ∈ RnJ , J ∈ {L,C,R,V} are the corresponding quantities through the nL inductors,
the nC capacitors, the nR resistors, and the nV voltage sources. In addition, we give each of those devices an assumed
current flow direction. In Table 1, the characteristic equations for basic elements are listed. For the analysis in this
work, we focus on ideal linear circuit elements, resulting in the following constitutive laws:

uL(t) = Lv̇L(t), vC(t) = Cu̇C(t), uR(t) = RvR(t),

with inductance L, capacitance C and resistance R = G−1 with conductance G and where in general it holds q̇(t) = v(t).
The flux linkage for each element is denoted by p(t) ∈ Rn and for an inductor, it is defined as the time integral of the
voltage across the inductor. Note that in the case of an inductor (resp. a capacitor), the associated charge qL (resp. flux
linkage pC) is an artificial variable. Similarly, for the resistors and the voltage sources, the associated charges qR, qV

and flux linkages pR, pV are artificial variables.
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device linear nonlinear
resistor vR = GuR vR = g(uR, t)
capacitor vC = C d

dt uC vC = d
dt qC(uC , t)

inductor uL = L d
dt vL uL = d

dt pL(vL, t)

device independent controlled
voltage source uV = v(t) uV = v(uctrl, vctrl, t)
current source vI = i(t) vI = v(uctrl, vctrl, t)

Table 1: Characteristic equations for basic circuit elements.

Ideal inductors and capacitors are purely reactive, i.e. they dissipate no energy. Thus, the magnetic energy stored
in one inductor with inductance L is

Emag =
1
2

Lv2
L

where the amount of energy storage in one capacitor with capacitance C is

Eel =

∫ qC

q=0
uC dq =

∫ qC

q=0

q
C

dq =
1
2

1
C

q2
C .

2.2. Graph representation

Consider now a circuit as a connected, directed graph with n edges and m + 1 nodes. On the ith edge, there are: a
capacitor with capacitance Ci, an inductor with inductance Li, a voltage source εi and a resistor with resistance Ri, one
or several of which can be zeros (cf. Figure 1). Thus, branches in the circuit correspond to edges in the graph. In the

+ !

Li Ci Ri "i

Figure 1: A typical branch of a circuit. On this edge, there are: an inductor Li, a capacitor Ci, a resistor Ri, and a voltage source εi, one or several
of which can be zeros.

special case that each edge in the graph represents only one circuit element, the number of edges in the graph equals
the number of circuit elements, and the number of nodes of the circuit and the graph are the same. For simplicity, we
use the notions from circuit theory, i.e. talking about branches and meshes in the graph.

For the analysis with circuits, one is faced with the following two basic laws:

1. The Kirchhoff Current Law (KCL) states that the sum of currents leading to and leaving from any node is equal
to zero.

2. The Kirchhoff Voltage Law (KVL) states that the sum of voltages along each mesh (or fundamental loop) of the
network is equal to zero.

Let K ∈ Rn,m be the Kirchhoff Constraint matrix of a given circuit represented via a graph defined by

Ki j =


−1 branch i connected inward to node j
+1 branch i connected outward to node j
0 otherwise.

(1)

In the special case where the two ends of an edge are connected to the same node, we set Ki j = 0. Since the ground
node is excluded, the Kirchhoff Constraint matrix has only m rather than m + 1 columns. Allowing only one circuit
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element for one branch, either inductor, capacitor, resistor, or voltage source, K can be expressed as

K =


KL

KC

KR

KV

 ,
where KJ ∈ RnJ ,m, J ∈ {L,C,R,V} is the Constraint Matrix for the set of nL inductors, nC capacitors, nR resistors, and
nV voltage sources, respectively with nL + nC + nR + nV = n. The Kirchhoff Constraint Matrix provides the Kirchhoff

current constraints as KT v = 0. For connected, planar graphs, the number of meshes l is determined via l = n − m,
where n is the number of branches and m + 1 the number of nodes. This is a direct consequence from Euler’s formula
[13]. We can thus define the Fundamental Loop matrix K2 ∈ Rn,n−m by

K2,i j =


−1 branch i is a backward branch in mesh j
+1 branch i is a forward branch in mesh j
0 branch i does not belong to mesh j,

(2)

where again K2 can be expressed as

K2 =


K2,L
K2,C
K2,R
K2,V


with K2,J ∈ RnJ ,n−m, J ∈ {L,C,R,V} is the Loop Matrix for the set of nL inductors, nC capacitors, nR resistors, and nV

voltage sources, respectively. The Fundamental Loop Matrix provides the Kirchhoff voltage constraints as KT
2 u = 0.

An alternative expression of the Kirchhoff voltage constraints is given by Kû = u, where û are the node voltages of
the circuit. By u ∈ ker(KT

2 ) and u ∈ im(K) it follows directly ker(KT
2 ) = im(K) and thus im(K2) ⊥ im(K).

2.3. Geometric setting
Using a geometric approach for analyzing circuits, we define the configuration manifold to be the charge space

Q ⊆ Rn of circuit branches with points on the manifold denoted by q ∈ Q. For a particular charge configuration q, the
tangent bundle T Q is the current space with currents v ∈ TqQ ⊆ Rn passing through the branches. The corresponding
cotangent bundle T ∗Q is the flux linkage space with the flux linkages p ∈ T ∗q Q ⊆ Rn. Note that due to the analogon
of the quantities, configuration, velocity and momentum in mechanical systems we stick with the notation (q, v, p) for
charge, current and flux linkage. The branch voltages u are the analogon of forces for the mechanical system and are
thus assumed to be covectors in the cotangent space T ∗q Q.

Let ∆Q ⊂ T Q be a constraint distribution, which is locally given by

∆Q(q) = {v ∈ TqQ | 〈wa, v〉 = 0, a = 1, . . . ,m} ⊂ TqQ (3)

with the natural pairing 〈·, ·〉 : T ∗q Q × TqQ → R of cotangent and tangent vectors. wa are m independent one-forms
that form the basis for the annihilator ∆0

Q(q) ⊂ T ∗Q which is locally given by

∆0
Q(q) = {w ∈ T ∗q Q | 〈w, v〉 = 0 ∀v ∈ ∆Q(q)} ⊂ T ∗q Q. (4)

Using the matrix KT as local coordinate representation for the one-forms wa, the distribution (3) forms the con-
straint KCL space given by the submanifold

∆Q(q) = {v ∈ TqQ |KT v = 0} ⊂ TqQ,

that is spanned by ker(KT ). Its annihilator ∆0
Q(q) can thus locally expressed by the image im(K) of K. Chooing this

coordinate representation and with ker(KT
2 ) = im(K), the annihilator (4) decribes the constraint KVL space by

∆0
Q(q) = {u ∈ T ∗q Q |KT

2 u = 0} ⊂ T ∗q Q
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Note, that the choices of K and K2 are in general not unique. The only design criterium for K2 is the condition
im(K) ⊥ im(K2). Alternative to (2), a matrix K2 can be constructed using a QR-decomposition of K. Thus, this
approach is not restricted to cases, where the mesh topology is obvious as for planar graphs. However, in the following
we work with the Fundamental Loop matrix as candidate for the matrix K2 due to the physical interpretation.

From a geometric point of view we can distinguish between three different spaces: Let B denote the space of
branches, M the space of meshes and N the space of nodes, where we exclude the one node defined as ground.
(q, v, p, u) denote the branch charges, currents, flux linkages, and voltages, and (q̃, ṽ, p̃, ũ) and (q̂, v̂, p̂, û) the corre-
sponding quantities in mesh and node space, respectively. From KCL and KVL we know that the node currents (and
charges) as well as the mesh voltages are zero. For M and N, we define the corresponding configuration, tangent and
cotangent spaces M ⊆ Rn−m,Tq̃M ⊆ Rn−m,T ∗q̃ M ⊆ Rn−m and N ⊆ Rm,Tq̂N ⊆ Rm,T ∗q̂ N ⊆ Rm. Then, branch, loop
and node space are defined to be the Pontryagin bundle consisting of the direct sum of tangent and cotangent space,
i.e. B = ∆Q ⊕ ∆0

Q, M = T M ⊕ T ∗M and N = T N ⊕ T ∗N.
The following diagram gives the relation between the defined spaces in terms of the Kirchhoff Constraint matrix

K and the Fundamental Loop matrix K2

T ∗N
K

−−−−−→ ∆0
Q

KT
2

−−−−−→ T ∗M

N B M
nodes branches meshes

T N ←−−−−−
KT

∆Q ←−−−−−
K2

T M

(5)

with the linear maps KT : ∆Q → T N and K2 : T M → ∆Q, and their adjoints K : T ∗N → ∆0
Q and KT

2 : ∆0
Q → T ∗M. As

already stated above, the branch currents consistent with KCL are determined by ker(KT ), where the branch voltages
consistent with KVL are given by ker(KT

2 ). On the other hand, from diagram (5) we can directly follow, that the set
of branch currents fulfilling the KCL can alternatively expressed as v = K2ṽ, whereas the set of branch voltages that
fulfill the KVL are in the image of K as u = Kû. These are the standard relations between branch currents v(t) and
mesh currents ṽ(t) and branch voltages u(t) and node voltages û(t), respectively, given by KCL and KVL.

Note, that diagram (5) represents the general relations between the tangent bundles T Q,T N, and T M, and the cor-
responding cotangent bundles. The matrices K and K2 are local coordinate choices for the embeddings of the different
spaces. These are not unique, however using different coordinates representations, the submanifolds T N,T ∗N,T M,
and T ∗M loose their physical meaning.

Following the lines of [43] the tangent space at q can be splitted such that TqQ = Hq ⊕ Vq, whereHq = ∆q(q) is
the horizontal space andVq the vertical space at q. The matrix KT is a local matrix representation of the Ehresmann
connection Aq : TqQ→Vq.

Remark 1. A branch can consist of more than one circuit element in a row. In this case, the branch voltage is assumed
to be the sum of the voltages of all elements in this branch.

3. Variational formulation for electric circuits

In the following, we derive the equations of motion for the circuit system, making use of variational principles
known in mechanics. Due to the constrained system (via KCL and KVL), we present two different variational formu-
lations that distinguish the way the constraints are involved.

3.1. Constrained variational formulation

We can define a Lagrangian L : T Q→ R of the circuit system consisting of the difference between magnetic and
electric energy as

L(q, v) =
1
2

vT Lv −
1
2

qT Cq (6)
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with L = diag(L1, . . . , Ln) and C = diag
(

1
C1
, . . . , 1

Cn

)
. In the case where no inductor (resp. no capacitor) is on branch i,

the corresponding entry Li (resp. 1
Ci

) in the matrix L (resp. C) is zero. In the presence of mutual inductors rather than
self inductors, the matrix L is not diagonal anymore, but always positive semi-definite. If not explicitly mentioned the
following theory and construction is also valid for mutual inductors. The Legendre transform FL : T Q → T ∗Q is
defined by

FL(q, v) = (q, ∂L/∂v) = (q, Lv). (7)

Note that the Lagrangian can be degenerate if the Legendre transform is not invertible, i.e. L is singular. The constraint
flux linkage subspace1 is defined by the Legendre transform as

P = FL(∆Q) ⊂ T ∗Q,

where ∆Q ⊂ T Q is the distribution. The Lagrangian force of the system consists of a damping force that results from
the resistors and an external force being the voltage sources

fL(q, v, t) = −diag(R)v + diag(E)u (8)

with R = (R1, . . . ,Rn)T and E = (ε1, . . . , εn)T . If no resistor is on branch i, the corresponding entry Ri in the vector R is
zero. For the entries of the vector E, it holds εi = 0 if no voltage source is on branch i and εi = 1 otherwise. Here we
assume that the time evolution of the voltage sources is given as time dependent function us(t). Thus, in the following,
we replace diag(E)u by us(t) for a given function us : [0,T ]→ Rn.

To derive the equations of motion for the circuit system, we make use of the Lagrange-d’Alembert-Pontryagin
principle, i.e. we are searching for curves q(t), v(t) and p(t) fulfilling

δ

∫ T

0
L(q(t), v(t)) + 〈p(t), q̇(t) − v(t)〉 dt +

∫ T

0
fL(q(t), v(t), t) · δq(t) dt = 0 (9)

with fixed initial and final variations δq(0) = δq(T ) = 0 and constrained variations δq ∈ ∆Q(q).
Taking variations gives us∫ T

0

[〈
∂L

∂q
+ fL, δq

〉
− 〈 ṗ, δq〉 + 〈δp, q̇ − v〉 +

〈(
∂L

∂v

)
− p, δv

〉]
dt = 0 (10)

for arbitrary variations δv and δp, KT v = 0 and constrained variations δq ∈ ∆Q(q). This leads to the constrained
Euler-Lagrange equations

∂L

∂q
− ṗ + fL ∈ ∆0

Q(q) (11a)

q̇ = v (11b)
∂L

∂v
− p = 0 (11c)

KT v = 0. (11d)

For the Lagrangian (6) and the forces (8), the constrained Euler-Lagrange equations are

ṗ = −Cq − diag(R)v + us + Kλ (12a)
q̇ = v (12b)
p = Lv (12c)

KT v = 0, (12d)

1also denoted by the set of primary constraints
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where λ represent the node voltages û ∈ T ∗N. Thus, the first line corresponds to the KVL equations of the form
Kû = u, and the last line are the KCL equations. System (12) is a differential-algebraic system with differential
variables q and p and algebraic variables v and λ. The involvement of the function us(t) makes the system a non-
autonomous system. Equation (12c) (also denoted by primary constraints) reflects the degeneracy of the Lagrangian
system: since FL is not invertible (i.e. L is singular), we can not eliminate the algebraic variable v to obtain a purely
Hamiltonian formulation. However, in the next step, we eliminate the algebraic variable λ by the use of a reduced
constrained variational principle.

3.2. Reduced constrained variational formulation

With the following reduced principle, we derive a slightly different form of the resulting differential-algebraic
system. This reduced formulation is advantageous from different perspectives: First, the reduced formulation is less
redundant, such that the Lagrange multipliers are eliminated and the state space dimension is reduced. Second, for
specific circuits, the degeneracy of the Lagrangian is canceled. Third, the reduced state space still has a physical and
geometric interpretation: The reduced Lagrangian is defined on the mesh space T M ⊆ R2(n−m) rather than on the
branch space T Q ⊆ R2n.

For the reduction, instead of treating the KCL as extra constraint in the form KT v = 0, we directly involve the
KCL form K2ṽ = v with ṽ ∈ TqM ⊆ Rn−m for the definition of the new Lagrangian system. Since K is constant, the
constraints are integrable, i.e. the configurations q are constrained to be in the submanifold

C = {q ∈ Q |KT q = 0}

for consistent initial values q0 ∈ C. This simply means that topological relationships that apply for currents will also
hold for charges to within a constant vector. Then, it holds TqC = ∆Q(q) and the branch charges q can be expressed
by the mesh charges q̃ ∈ M ⊆ Rn−m as q = K2q̃. We define the constrained Lagrangian LM : T M → R via pullback
as LM := K∗2L : T M → R with

LM(q̃, ṽ) = L(K2q̃,K2ṽ) =
1
2

ṽT KT
2 LK2ṽ −

1
2

q̃T KT
2 CK2q̃ (13)

with the Legendre transform FLM : T M → T ∗M

FLM(q̃, ṽ) = (q̃, ∂LM/∂ṽ) = (q̃,KT
2 LK2ṽ).

Depending on the inductor matrix L and the graph topology, the matrix KT
2 LK2 can still be singular, i.e. the Lagrangian

system can still be degenerate. The cotangent bundle T ∗M is given by

T ∗M = {(q̃, p̃) ∈ Rn−m,n−m | (q̃, p̃) = FLM(q̃, ṽ) with (q̃, ṽ) ∈ T M}

= {(q̃, p̃) ∈ Rn−m,n−m | (q̃, p̃) = (q̃,KT
2 p) with p ∈ P}.

Thus, the constrained force f M
L in T ∗M is defined as

f M
L (q̃, ṽ, t) = KT

2 fL(K2q̃,K2ṽ, t) = −KT
2 diag(R)K2ṽ + KT

2 us(t). (14)

With p̃ ∈ T ∗q̃ M ⊂ Rn−m given as p̃ = KT
2 p we obtain the following reduced Lagrange-d’Alembert-Pontryagin principle

δ

∫ T

0
LM(q̃(t), ṽ(t)) +

〈
p̃(t), ˙̃q(t) − ṽ(t)

〉
dt +

∫ T

0
f M
L (q̃(t), ṽ(t), t) · δq̃(t) dt = 0 (15)

with fixed initial and final variations δq̃(0) = δq̃(T ) = 0. Taking variations gives us∫ T

0

[〈
∂LM

∂q̃
+ f M

L , δq̃
〉
− 〈 ˙̃p, δq̃〉 +

〈
δ p̃, ˙̃q − ṽ

〉
+

〈(
∂LM

∂ṽ

)
− p̃, δṽ

〉]
dt = 0 (16)
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for arbitrary variations δṽ and δ p̃ and δq̃. This results in the reduced Euler-Lagrange equations

∂LM

∂q̃
− ˙̃p + f M

L = 0 (17a)

˙̃q = ṽ (17b)

∂LM

∂ṽ
− p̃ = 0. (17c)

For the Lagrangian (13) and the forces (14), the constrained Euler-Lagrange equations are

˙̃p = KT
2
(
−CK2q̃ − diag(R)K2ṽ + us

)
(18a)

˙̃q = ṽ (18b)

p̃ = KT
2 LK2ṽ. (18c)

Here, the first equation is now the KVL in the form KT
2 u = 0, in which the KCL in the form K2ṽ = v is also

involved. System (18) is a differential-algebraic system with differential variables q̃ and p̃ and algebraic variables ṽ.
The algebraic equation (18c) is the Legendre transformation of the system. If this is invertible (i.e. the matrix KT

2 LK2
is regular), the algebraic variable v can be eliminated. In this case, the Euler-Lagrange equations (18) represent a
non-degenerate Lagrangian system.

In the following proposition we show for which cases the reduced Lagrangian system is non-degenerate for LC
circuits, i.e. for which cases the KVL cancels the degeneracy. The statements for RCL and RCLV circuits can be
derived in an analogous way (see Remark 2b)).

Proposition 1. For LC circuits (including only self inductors), the system is non-degenerate if the number of capaci-
tors equals the number of independent constraints involving the currents through the capacitives’ branches.

Proof. We have to show that ker(KT
2 LK2) = {0}. Let nC be the number of capacitors, m the number of Kirchhoff

Constraints such that KT
C ∈ R

m,nC . Let lC ≤ m be the number of independent constraints involving the currents through
the capacitives branches. With nC = lC ≤ m we have rank(KT

C ) = nC , thus ker(KT
C ) = {0}. On the other hand, it holds

ker(L) = {v ∈ TqQ | vL = 0}

and

R(K2) = ker(KT ) = {v ∈ TqQ |KT v = 0} = {v ∈ TqQ | (KT
L KT

C )
(

vL

vC

)
= 0}

With ker(KT
C ) = {0} this results in

R(K2) ∩ ker(L) = {v ∈ TqQ |KT
C vC = 0} = {0}. (19)

and thus ker(LK2) = {0}. Since L is a diagonal matrix, we can split KT
2 LK2 into KT

2

√
LT
√

LK2, where
√

L corresponds
to the diagonal matrix with diagonal elements

√
Li, Li > 0, i = 1, . . . , n. Since K2 has full column rank, we know with

(19) that
√

LK2 also has full column rank. It follows for y ∈ Rn−m and y ∈ ker(KT
2 LK2)

KT
2 LK2y = 0⇒ yT KT

2 LK2y = 0⇔ yT KT
2

√
LT
√

LK2y = 0⇔ ‖
√

LK2y‖2 = 0

and thus y = 0 since ker(
√

LK2) = {0}. We therefore have ker(KT
2 LK2) = ker(

√
LK2) = {0} and the matrix KT

2 LK2 is
invertible.

Remark 2. a) Intuitively spoken, the degeneracy of the original Lagrangian is due to the lack of magnetic energy
terms for the capacitors. With each independent constraint on the capacitor currents, one degree of freedom of
the system can be removed. Hence, as many capacitors constraints are required to remove the capacitor current
(cf. [10]).
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b) In addition, for a RLC (resp. RCLV) non-degenerate circuit, the number of resistors (resp. and voltage sources)
has to equal the number of independent constraints involving the currents through the resistor (resp. and voltage
source) branches.

Theorem 1 (Equivalence). The system (11) and the reduced system (17) are equivalent in the following sense:

(i) Let (q̃, p̃, ṽ) be a solution of the reduced system (17) and let q = K2q̃, v = K2ṽ and (q, p) = FL(q, v). Then
(q, v, p) is a solution to system (11) and it holds p̃ = KT

2 p.

(ii) Let (q, v, p) be a solution to system (11) and q̃ = K+
2 q, ṽ = K+

2 v and let p̃ = KT
2 p with the well-defined pseudo-

inverse K+
2 of K2 (with K+

2 K2 = I). Then (q̃, p̃, ṽ) is a solution of the reduced system (17).

Proof. (i) Assume (q̃, p̃, ṽ) is a solution of (17). From the assumption p = FL(q, v) it follows p − ∂
∂vL(q, v) = 0.

With LM = K∗2L it holds

∂LM

∂q̃
(q̃, ṽ) =

∂L

∂q̃
(K2q̃,K2ṽ) =

(
∂q
∂q̃

)T
∂L

∂q
(K2q̃,K2ṽ) = KT

2
∂L

∂q
(q, v).

Similarly, it holds
∂LM

∂ṽ
(q̃, ṽ) = KT

2
∂L

∂v
(q, v) and thus it follows

p̃ =
∂LM

∂ṽ
(q̃, ṽ) = KT

2
∂L

∂v
(q, v) = KT

2 p.

Together with (14), this gives

KT
2 ṗ = ˙̃p =

∂LM

∂q̃
+ f M

L = KT
2

(
∂L

∂q
+ fL

)
⇒ KT

2

(
∂L

∂q
− ṗ + fL

)
= 0⇒

∂L

∂q
− ṗ + fL ∈ ker(KT

2 ).

With ker(KT
2 ) = im(K), it follows

∂L

∂q
− ṗ + fL ∈ im(K) = ∆0

Q(q)

as can be seen from diagram (5). Furthermore, we have

q̇ = K2 ˙̃q = K2ṽ = v.

and since it holds v = K2ṽ, it follows from diagram (5) KT v = 0. Both expressions are equivalent formulations
of the KCL.

(ii) Now assume (q, p, v) is a solution of (11). With ker(KT
2 ) = im(K) and (14), it follows immediately

˙̃p = KT
2 ṗ = KT

2

(
∂L

∂q
+ fL

)
=
∂LM

∂q̃
+ f M

L .

Furthermore, from q̇ = v we get K+
2 q̇ = K+

2 v which gives ˙̃q = ṽ. Finally, we have p̃ = KT
2 p = KT

2
∂L

∂v
=
∂LM

∂ṽ
.

Remark 3. We require the assumption (q, p) = FL(q, v) (the fulfillment of the Legendre transformation) in Theo-
rem 1(i) for the fulfillment of the relation (11c). A unique derivation of p directly from p̃ is in general not possible
from p̃ = KT

2 p as it is for q and v: Although there is a canonical projection KT
2 : T ∗Q→ T ∗M, there is no correspond-

ing canonical embedding of T ∗M into T ∗Q (see also [30]). Assuming p̃ = KT
2 p instead of (q, p) = FL(q, v) in (i), we

only get the relation KT
2 (p − ∂L/∂v) = 0, and (11c) may not be fulfilled.
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4. Discrete variational principle for electric circuits

In this section, we derive a discrete variational principle that leads to a variational integrator for the circuit sys-
tem. Since the solution of the reduced system (17) can be easily transformed to a solution of the full system (11)
(Theorem 1), we restrict the discrete derivation to the reduced case. For the case of a degenerate reduced system, the
choice of discretization is important to obtain a variational integrator that manages to bypass the difficulty of intrinsic
degeneracy and thus is applicable for a simulation. In this section, three different discretizations are introduced that
result in three different discrete variational schemes for which the solvability conditions are derived.

For the discrete variational derivation, we introduce a discrete time grid ∆t = {tk = kh | k = 0, . . . ,N}, Nh = T ,
where N is a positive integer and h the step size. We replace the charge q̃ : [0,T ]→ M, the current ṽ : [0,T ]→ Tq̃M
and the flux linkage p̃ : [0,T ] → T ∗q̃ M by their discrete versions q̃d : {tk}Nk=0 → M, ṽd : {tk}Nk=0 → Tq̃M and
p̃d : {tk}Nk=0 → T ∗q̃ M, where we view q̃k = q̃d(kh), ṽk = ṽd(kh) and p̃k = p̃d(kh) as an approximation to q̃(kh), ṽ(kh) and
p̃(kh), respectively.

4.1. Forward Euler
We replace the reduced Lagrange-d’Alembert-Pontryagin principle with a discrete version

δ

h
N−1∑
k=0

(
LM(q̃k, ṽk) +

〈
p̃k,

q̃k+1 − q̃k

h
− ṽk

〉) + h
N−1∑
k=0

f M
L (q̃k, ṽk, tk)δq̃k = 0, (20)

where in (20) the time derivative q̇(t) is approximated by the forward difference operator and the force evaluated at
the left point.

For discrete variations δq̃k that vanish in the initial and final points as δq̃0 = δq̃N = 0 and discrete variations δṽk

and δ p̃k this gives〈
∂LM

∂ṽ
(q̃0, ṽ0) − p̃0, δṽ0

〉
+

N−1∑
k=1

[〈
∂LM

∂q̃
(q̃k, ṽk) −

1
h

( p̃k − p̃k−1) + f M
L (q̃k, ṽk, tk), δq̃k

〉
〈
δ p̃k−1,

q̃k − q̃k−1

h
− ṽk−1

〉
+

〈
∂LM

∂ṽ
(q̃k, ṽk) − p̃k, δṽk

〉]
+

〈
δ p̃N−1,

q̃N − q̃N−1

h
− ṽN−1

〉
= 0.

(21)

This leads to the discrete reduced constrained Euler-Lagrange equations

∂LM

∂ṽ
(q̃0, ṽ0) = p̃0 (22a)

∂LM

∂q̃
(q̃k, ṽk) −

1
h

( p̃k − p̃k−1) + f M
L (q̃k, ṽk, tk) = 0

q̃k − q̃k−1

h
= ṽk−1

∂LM

∂ṽ
(q̃k, ṽk) = p̃k


k = 1, . . . ,N − 1 (22b)

q̃N − q̃N−1

h
= ṽN−1. (22c)

For the Lagrangian defined in (13) and the Lagrangian forces defined in (14), this results in

p̃0 = KT
2 LK2ṽ0 (23a)

p̃k − p̃k−1

h
= KT

2
(
−CK2q̃k − diag(R)K2ṽk + us(tk)

)
q̃k − q̃k−1

h
= ṽk−1

KT
2 LK2ṽk = p̃k


k = 1, . . . ,N − 1 (23b)

q̃N − q̃N−1

h
= ṽN−1. (23c)
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This gives the following update rule: For given (q̃0, ṽ0), use (23a) to compute p̃0. Then, use the iteration scheme
I 0 0
0 KT

2 LK2 −I
hKT

2 CK2 hKT
2 diag(R)K2 I



q̃k

ṽk

p̃k

 =


I hI 0
0 0 0
0 0 I



q̃k−1

ṽk−1

p̃k−1

 +


0
0

hKT
2

 us(tk) for k = 1, . . . ,N (24)

to compute q̃1, . . . , q̃N , ṽ1, . . . , ṽN and p̃1, . . . , p̃N .

Proposition 2. System (24) is uniquely solvable if the matrix KT
2 (L + hdiag(R))K2 is regular.

Proof. System (24) is uniquely solvable if the iteration matrix A =


I 0 0
0 KT

2 LK2 −I
hKT

2 CK2 hKT
2 diag(R)K2 I

 has zero nullspace.

For Az = 0 for z = (q̃, ṽ, p̃), it holds (i) q̃ = 0, (ii) p̃ = KT
2 LK2ṽ, (iii) hKT

2 CK2q̃ + hKT
2 diag(R)K2ṽ + p̃ = 0. Substituting

(i) and (ii) in (iii) gives KT
2 (L + hdiag(R))K2ṽ = 0. Thus z = 0 is the unique solution of Az = 0 iff KT

2 (L + hdiag(R))K2
has zero nullspace.

4.2. Backward Euler
Approximating the time derivative q̇(t) by the backward difference operator rather than by the forward difference

operator as

δ

h
N∑

k=1

(
LM(q̃k, ṽk) +

〈
p̃k,

q̃k − q̃k−1

h
− ṽk

〉) + h
N∑

k=1

f M
L (q̃k, ṽk, tk)δq̃k = 0 (25)

with discrete variations δq̃k, that vanish in the initial and final points as δq̃0 = δq̃N = 0 and discrete variations δṽk and
δ p̃k yields 〈

δ p̃1,
q̃1 − q̃0

h
− ṽ1

〉
+

〈
∂LM

∂ṽ
(q̃1, ṽ1) − p̃1, δṽ1

〉
+

N∑
k=2

[〈
δp̃k,

q̃k − q̃k−1

h
− ṽk

〉
+

〈
∂LM

∂q̃
(q̃k−1, ṽk−1) −

1
h

(p̃k − p̃k−1) + f M
L (q̃k−1, ṽk−1, tk−1), δq̃k−1

〉
+

〈
∂LM

∂ṽ
(q̃k, ṽk) − p̃k, δṽk

〉]
= 0.

(26)

This gives a slight, but in this case significant, modification for the Euler-Lagrange equations as

q̃1 − q̃0

h
= ṽ1 (27a)

∂LM

∂ṽ
(q̃1, ṽ1) = p̃1 (27b)

∂LM

∂q̃
(q̃k−1, ṽk−1) −

1
h

( p̃k − p̃k−1) + f M
L (q̃k−1, ṽk−1, tk−1) = 0

q̃k − q̃k−1

h
= ṽk

∂LM

∂ṽ
(q̃k, ṽk) = p̃k


k = 2, . . . ,N (27c)

Note that in contrast to the variational scheme (22) consisting of an explicit update for the charges q and an implicit
update for the fluxes p, we now get an implicit scheme for q and an explicit scheme for p. In particular, for the
Lagrangian (13) and the forces (14), we obtain the following update rule: For given (q̃0, ṽ0) compute p̃0 via p̃0 =

KT
2 LK2ṽ0. Then, use the iteration scheme

I −hI 0
0 KT

2 LK2 −I
0 0 I



q̃k

ṽk

p̃k

 =


I 0 0
0 0 0

−hKT
2 CK2 −hKT

2 diag(R)K2 I



q̃k−1

ṽk−1

p̃k−1

 +


0
0

hKT
2

 us(tk−1) for k = 1, . . . ,N (28)

to compute q̃1, . . . , q̃N , ṽ1, . . . , ṽN and p̃1, . . . , p̃N .
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Proposition 3. System (28) is uniquely solvable if the matrix KT
2 LK2 is regular.

Proof. System (28) is uniquely solvable if the iteration matrix A =


I −hI 0
0 KT

2 LK2 −I
0 0 I

 has zero nullspace. For Az = 0

with z = (q̃, ṽ, p̃), it holds (i) q̃ = hṽ, (ii) p̃ = KT
2 LK2ṽ, (iii) p̃ = 0. Thus z = 0 is the unique solution of Az = 0 iff

KT
2 LK2 has zero nullspace.

Proposition 3 says that whenever the KCL cancels the degeneracy of the system, the backward Euler scheme is ap-
plicable, whereas the forward Euler scheme is applicable to a wider class of circuit systems (cf. Proposition 2) for h
sufficiently large. The resulting variational Euler schemes (22) and (27) consisting of a combination of implicit and
explicit updates are first order variational integrators. The construction of higher order implicit schemes (e.g. varia-
tional partitioned Runge-Kutta (VPRK) methods along the lines of [5]) allows the simulation of arbitrary circuits. As
an example, we present in the following a variational integrator based on the implicit midpoint rule.

4.3. Implicit Midpoint Rule

We introduce internal stages Q̃k, P̃k, Ṽk, k = 1, . . . ,N − 1 that are given on a second time grid ∆τ = {τk =

(k + 1
2 )h | k = 0, . . . ,N − 1} and define the internal stage vectors Q̃d : {τk}

N−1
k=0 → M, Ṽd : {τk}

N−1
k=0 → Tq̃M and

P̃d : {τk}
N−1
k=0 → T ∗q̃ M to be Ṽk = ṽ(tk + 1

2 h), Q̃k = q̃k + 1
2 hṼk, P̃k = ∂LM

∂ṽ (Q̃k, Ṽk). The approximations at the nodes are

then determined by the internal stages via q̃k+1 = q̃k + hṼk and p̃k+1 = p̃k + h ∂LM

∂q̃ (Q̃k, Ṽk).
Taking variations δq̃k, δQ̃k, δp̃k, δP̃k, δṼk for the following discrete Lagrange-d’Alembert-Pontryagin principle

with δqN = 0 but free δq̃0 and initial value q̃0

δ

h
N−1∑
k=0

(
LM(Q̃k, Ṽk) +

〈
P̃k,

Q̃k − q̃k

h
−

1
2

Ṽk

〉
+

〈
p̃k+1,

q̃k+1 − q̃k

h
− Ṽk

〉)
+ 〈p̃0, q̃0 − q̃0〉


+h

N−1∑
k=0

f M
L (Q̃k, Ṽk, τk)δQ̃k = 0

(29)

gives

N−1∑
k=0

[〈
∂LM

∂q̃
(Q̃k, Ṽk) +

P̃k

h
+ f M

L (Q̃k, Ṽk, τk), δQ̃k

〉
+

〈
∂LM

∂ṽ
(Q̃k, Ṽk) −

1
2

P̃k − p̃k+1, δṼk

〉
+

〈
δP̃k,

Q̃k − q̃k

h
−

1
2

Ṽk

〉
+

〈
δ p̃k+1,

q̃k+1 − q̃k

h
− Ṽk

〉
+

〈
−P̃k − p̃k+1 + p̃k

h
, δq̃k

〉]
+

〈
δ p̃0, q̃0 − q̃0

〉
= 0.

(30)

The Euler-Lagrange equations are

∂LM

∂q̃
(Q̃k, Ṽk) +

P̃k

h
+ f M

L (Q̃k, Ṽk, τk) = 0 (31a)

∂LM

∂ṽ
(Q̃k, Ṽk) −

1
2

P̃k − pk+1 = 0 (31b)

Q̃k − q̃k

h
−

1
2

Ṽk = 0 (31c)

q̃k+1 − q̃k

h
− Ṽk = 0 (31d)

−P̃k − p̃k+1 + p̃k = 0, k = 0, . . . ,N − 1 (31e)

q̃0 − q̃0 = 0. (31f)
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Eliminating P̃k by equation (31e) together with Ṽk = ṽk+ 1
2
, Q̃k =

q̃k+q̃k+1
2 (which follows from (31c) and (31d)) and

τk = tk+tk+1
2 = tk+ 1

2
leads to the iteration scheme

p̃k+1 = p̃k + h
∂LM

∂q̃

( q̃k + q̃k+1

2
, ṽk+ 1

2

)
+ h f M

L

( q̃k + q̃k+1

2
, ṽk+ 1

2
, tk+ 1

2

)
(32a)

q̃k+1 = q̃k + hṽk+ 1
2

(32b)

p̃k + p̃k+1

2
=
∂LM

∂ṽ

( q̃k + q̃k+1

2
, ṽk+ 1

2

)
, k = 0, . . . ,N − 1. (32c)

Remark 4. The integrator (32) is equivalent to a Runge-Kutta scheme with coefficients a = 1
2 , b = 1, c = 1

2 (implicit
midpoint rule integrator) applied to the corresponding Hamiltonian system.

For the circuit case with Lagrangian (13) and forces (14), we start with given (q̃0, p̃0) to solve iteratively for
(q̃k+1, ṽk+ 1

2
, p̃k+1), k = 0, . . . ,N − 1 for given us(t) using the scheme

I −hI 0
0 KT

2 LK2 − 1
2 I

1
2 hKT

2 CK2 hKT
2 diag(R)K2 I



q̃k+1

ṽk+ 1
2

p̃k+1

 =


I 0 0
0 0 1

2 I
− 1

2 hKT
2 CK2 0 I




q̃k

ṽk− 1
2

p̃k

 +


0
0

hKT
2

 us

(
tk+ 1

2

)
(33)

for k = 0, . . . ,N − 1.

Remark 5. The discrete current ṽk+ 1
2
, playing the role of the algebraic variable in the continuous setting, is only ap-

proximated between two discrete time nodes tk and tk+1. Also, note that ṽk− 1
2

is not explicitly used for the computation
of (q̃k+1, ṽk+ 1

2
, p̃k+1) (which corresponds to a zero column in the matrix of the right hand side of (33)). This means, that

the computation of the magnitudes at time point tk+1 depends only on the discrete magnitudes within the time interval
[tk, tk+1], which is characteristic for a one-step scheme. In particular, ṽ− 1

2
(k = 0) is a pseudo-variable that is not used.

Proposition 4. System (33) is uniquely solvable if the matrix KT
2 (2L + hdiag(R) + 1

2 h2C)K2 is regular.

Proof. System (33) is uniquely solvable if the iteration matrix A =


I −hI 0
0 KT

2 LK2 − 1
2 I

1
2 hKT

2 CK2 hKT
2 diag(R)K2 I

 has zero

nullspace. For Az = 0 with z = (q̃, ṽ, p̃), it holds (i) q̃ = hṽ, (ii) p̃ = 2KT
2 LK2ṽ, (iii) 1

2 hKT
2 CK2q̃+hKT

2 diag(R)K2ṽ+ p̃ =

0. Substituting (i) and (ii) in (iii) gives KT
2 (2L + hdiag(R) + 1

2 h2C)K2ṽ = 0 Thus, z = 0 is the unique solution of Az = 0
if KT

2 (2L + hdiag(R) + 1
2 h2C)K2 has zero nullspace.

Note that for linear circuits, the condition given in Proposition 4 is fulfilled for h sufficiently large, if the continuous
system (18) has a unique solution.

Remark 6 (Condition numbers). From Proposition 1, we see that the continuous reduced system (17) may be still
degenerate due to the intrinsic degeneracy of the circuit topology and configuration. On the discrete side, both the
forward Euler and the midpoint integrator show some regularization property: by perturbing KT

2 LK2 in magnitude
proportional to the time step size h, both integrators can render the degenerate continuous reduced system (17) into
regular discrete systems (24) and (33), respectively. However, this regularization comes at the price of possible large
condition numbers as explained in the following. The iteration matrices A of the different schemes can be written

as A = A0 + hE with A0 =

 I 0 0
0 KT

2 LK2 −I
0 0 I

 and E given by the respective iteration scheme. If the reduced

system is regular (i.e. KT
2 LK2 is non singular), A0 is non singular with positive constant condition number κ(A0) and

κ(A) approaches a positive constant when the step size h goes to zero (e.g. one can compute the singular values of
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the perturbed matrix A0 + hE using arguments from perturbation theory). In this case all iteration schemes are well
conditioned independent of the step size h. However, if the reduced system is degenerate, i.e. KT

2 LK2 is singular,
also A0 is singular and the condition numbers of the forward Euler and the midpoint scheme grow reciprocally to the
time step size h, i.e. κ(A) ≈ O(1/h) for small h. When the circuit topology is fixed, the circuit’s physical parameters
are constants and the time step h is also fixed, preconditioner can be precomputed and applied to the systems (24)
and (33) to improve their numerical stabilities. Since this work mainly focus on the theoretical aspects of variational
integrators, we leave this stability issues for future work and assume thereafter no such issues in the subsequent
discussion.

5. Structure-preserving properties

In this section, we summarize the main structure-preserving properties of variational integrators (see e.g. [30]) and
their interpretation for the case of electric circuits.

5.1. Symplecticity and preservation of momentum maps induced by symmetries

Symplecticity. The flow on T ∗Q of the Euler-Lagrange equations preserves the canonical symplectic form of the
Hamiltonian system. Variational integrators are symplectic, i.e. the same property holds for the discrete flow of the
discrete Euler-Lagrange equations; the canonical symplectic form is exactly preserved for the discrete solution. Using
techniques from backward error analysis (see e.g. [15]), it can be shown that symplectic integrators also have good
energy properties, i.e. for long-time integrations, there is no artificial energy growth or decay due to numerical errors.
This can also be observed for our circuit examples in Section 7. In the case of linear LC circuits that involve a
quadratic potential, a second order variational integrator, e.g. the midpoint variational integrator as derived in Section
4.3, even exactly preserves the energy (magnetic plus electric energy).

Preservation of momentum maps induced by symmetries. Noether’s theorem states that momentum maps that are
induced by symmetries in the system are preserved. More precisely, let G be a Lie group acting on Q by Φ : G×Q→
Q. We write Φg := Φ(g, ·). The tangent lift of this action ΦT Q : G × T Q→ T Q is given by Φ

T Q
g (vq) = T (Φg) · vq with

vq ∈ T Q. The action is associated with a corresponding momentum map J : T Q→ g∗, where g∗ is the dual of the Lie
algebra g of G. The momentum map is defined by

〈J(q, v), ξ〉 =

〈
∂L

∂v
, ξQ(q)

〉
= 〈p, ξQ(q)〉 ∀ξ ∈ g,

where ξQ is the infinitesimal generator of the action on Q, i.e. ξQ(q) := d
dt

∣∣∣
t=0 Φ(exp (tξ), q) and exp : g → G is the

exponential function. Having a holonomic system described by a Lagrangian L and a holonomic constraint h(q) = 0,
then this system has a symmetry if the Lagrangian and the constraint are both invariant under the (lift of the) group
action, i.e. L ◦Φ

T Q
g = L and h ◦Φg(q) = 0 for all g ∈ G. Noether’s theorem states, that if the system has a symmetry,

the corresponding momentum map is preserved. In presence of external forces, this statement is still true, if the force
is orthogonal to the group action. The discrete version of Noether’s theorem [30] states, that if the discrete Lagrangian
has a symmetry, the corresponding momentum map is still preserved. The variational integrator based on this discrete
Lagrangian is thus exactly momentum-preserving. For constrained and forced systems, the preservation still holds
with the additional invariance and orthogonality conditions on constraints and forces analogous to the continuous
case.

Considering an electric circuit, we are faced with a constrained distribution given by the KCL and external forces
due to resistors and voltage sources. The KCL are formulated on the tangent space; however, since these are linear,
they are integrable resulting in KCL on the configuration space. Thus, in the following, we are able to apply the theory
of holonomic systems to derive a preserved quantity for an eletrical circuit under some topology assumptions of the
underlying graph.

Proposition 5 (Invariance of Lagrangian). The Lagrangian (6) of the unreduced system is invariant under the trans-
lation of qL.
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Proof. Consider the group G = RnL with group element g ∈ G. Let Φ : G × Q → Q be the action of G
defined as Φ(g, q) = (qL + g, qC) for each g ∈ G with tangent lift ΦT Q : G × T Q → T Q,ΦT Q(g, (q, v)) =

(qL + g, qC , qR, qV , vL, vC , vR, vV ). Then, it holds

L ◦ ΦT Q
g (q, v) =

1
2


vL

vC

vR

vV


T

L


vL

vC

vR

vV

 − 1
2


qL + g

qC

qR

qV


T

C


qL + gL

qC

qR

qV


=

1
2

vT Lv −
1
2

qT Cq = L(q, v),

since C = diag
(

1
C1
, . . . , 1

Cn

)
with the first nL diagonal elements being zero.

Assumption 1 (Topology assumption). For every node j, j = 1, . . . ,m in the circuit (except ground), the same
amount of inductor branches connect inward and outward to node j.

In particular, Assumption 1 implies, that the sum of each row of KT
L is zero, i.e.

∑nL
j=1(KT

L )i j = 0 for i = 1, . . . ,m.

Proposition 6 (Invariance of distribution). Under Assumption 1, the KCL on configuration level are invariant under
equal translation of qL.

Proof. The group element g ∈ G describing an equal translation of all components of qL can be expressed as g = a1
with a ∈ R and 1 being a vector in RnL with each component 1. It follows

KT ◦ Φg(q) = KT


qL + g

qC

qR

qV

 = KT q + KT
L g = KT q + KT

L 1a = KT q,

since the sum of each row of KT
L is zero.

Proposition 7 (Orthogonality of external force). The external force fL (8) is orthogonal to the action of the group
G = RnL being translations of qL.

Proof. Let ξ ∈ g = RnL be an element of the Lie algebra. For the group action Φg(q) = (qL + g, qC , qR, qV ), the
infinitesimal generator can be calculated as

ξQ(q) =
d
dt

∣∣∣∣∣
t=0

Φexp tξ(q) =
d
dt

∣∣∣∣∣
t=0

(qL + exp tξ, qC , qR, qV ) = (ξ, 0, 0, 0)

It thus holds,
〈 fL, ξQ(q)〉 = 〈−diag(R)v + diag(E)u, ξQ(q)〉 = 0,

since diag(R) and diag(E) have zero entries in the first nL lines and columns.

Theorem 2 (Preservation of flux). Under Assumption 1, the sum of all inductor fluxes in the electric circuit de-
scribed by the Lagrangian (6), the external forces (8), and the KCL is preserved.

Proof. From Proposition 5, 6, and 7 we know that the Lagrangian and the KCL are invariant under the group action
Φg(q) = (qL + g, qC , qR, qV ) with g ∈ G = RnL and the external force fL is orthogonal to this group action. It follows
with Noether’s theorem, that the induced momentum map is preserved by the flow of the system. For the momentum
map, we calculate

〈J(q, v), ξ〉 =

〈
∂L

∂v
, ξQ(q)

〉
=
∂L

∂vi
ξi

Q(q) =
∂L

∂vLi

ξi.

Thus, the preserved momentum map is J(q, v) =
∑nL

i=1 pnLi
, i.e. the sum of the fluxes of all inductors in the circuit.
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Remark 7 (Proof based on Euler-Lagrange equations). An alternative proof can be derived based on the Euler-
Lagrange equations in the following way. From (12a), it holds

ṗL = KLλ.

For the time derivative of the sum of all inductors, it follows

d
dt

nL∑
i=1

pi =

nL∑
i=1

ṗi =

nL∑
i=1

m∑
j=1

(KL)i jλ j =

m∑
j=1

λ j

nL∑
i=1

(KL)i j = 0,

since with Assumption 1, it holds 0 =
∑nL

i=1(KT
L ) ji =

∑nL
i=1(KL)i j for j = 1, . . . ,m. Thus,

∑nL
i=1 pi is preserved.

Remark 8 (Momentum map for reduced system). Also, for the reduced system described by the Lagrangian (13),
the same momentum map can be computed by considering the group action Φg̃(q̃) = q̃ + g̃ with the group element

g̃ ∈ G̃ ⊂ Rn−m defined as g̃ = K+
2

(
g
0

)
with K+

2 being the well-defined pseudo-inverse of K2.

Lemma 3 (Preserved momentum map). For any linear circuit described by the Lagrangian (6), the external forces
(8), and the KCL, the momentum map defined by ηT ∂L

∂v with η ∈ ker(KT
L ) is preserved.

Proof. Using the Euler-Lagrange equations, we see immediately

d
dt
ηT ∂L

∂v
= ηT ṗ = ηT KLλ = 0,

since ηT ∈ ker(KT
L ) ⊥ im(KL) 3 KLλ and thus, ηT ∂L

∂v = const.

The discrete Lagrangian system, including constraints and forces introduced in Section 4, inherits the same sym-
metry and orthogonality property as the continuous system. Due to the discrete Noether theorem, the resulting
variational integrators exactly preserves the sum of inductor fluxes under Assumption 1 (compare Section 7.4 for
a numerical example).

5.2. Frequency spectrum
As can be observed in numerical examples (see Section 7), the frequency spectrum of the discrete solutions is

much better preserved using variational integrators than other integrators.
We want to analytically demonstrate this phenomenon by means of a simple harmonic 1d oscillator. Assume the

curves (q(t), p(t)) on [0,T ] describe the oscillatory behavior of the system. Consider the discrete solution {(qk, pk)}Nk=0
defined on the discrete time grid {tk}nk=0 with t0 = 0, tN = T and h = tk+1 − tk that is obtained from the one-step update
scheme (qk+1, pk+1)T = A(qk, pk)T , k = 0, . . . ,N − 1, where A ∈ R2,2 depends on the constant time step h. We assume
that the discrete solution {(qk, pk)}Nk=0 converges to the solution (q(t), p(t)) for decreasing h. Since this solution is
oscillating and due to the convergence of the scheme, at least one eigenvalue λ1 of A has to be complex (with nonzero
imaginary part) for a small enough time step h. Since A ∈ R2,2 the second eigenvalue λ2 has to be complex conjugate
to the first one. Thus, the corresponding eigenvectors are linearly independent and A is diagonalizable as A = QVQ−1

with V = diag(λ1, λ2). With the coordinate transformation (xk, yk)T = Q−1(qk, pk)T it holds (xk+1, yk+1)T = V(xk, yk)T ,
i.e. xk+1 = λ1xk and yk+1 = λ2yk.

We demonstrate the preservation of the frequency spectrum for the 1d oscillator in two steps: (i) We show that
for a convergent scheme the update matrix A has two eigenvalues both of norm 1 if and only if the update scheme is
symplectic. (ii) We show that methods defined by matrices with norm 1 eigenvalues preserve the frequency spectrum
defined on different time spans.

(i) “⇐”: Assume the scheme defined by A is symplectic, then det(A) = 1 (see e.g. [29]). It follows with λ1 complex
conjugate to λ2 (λ2 = λ∗1): 1 = det(Q) · det(V) · det(Q−1) = λ1 · λ2 = |λ1|

2 = |λ2|
2 and thus |λi| = 1, i = 1, 2.

“⇒”: Assume A has two complex conjugate eigenvalues λ1 = λ∗2 with |λ1| = |λ2| = 1, i.e. we write λ1 = eiθ

and λ2 = e−iθ with θ ∈ R and V = diag(eiθ, e−iθ). Note that θ depends on the constant time step h that is used
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for the discretization. Let J =

(
0 1
−1 0

)
be the canonical symplectic form and introduce the non-canonical

symplectic form J̃ = QT JQ. We show that V preserves J̃, and therefore A preserves J, i.e. A is symplectic.

Since J is skew-symmetric with zero diagonal, J̃ is of the form
(

0 4

−4 0

)
with 4 ∈ R. It follows

VT J̃V =

(
eiθ 0
0 e−iθ

) (
0 4

−4 0

) (
eiθ 0
0 e−iθ

)
=

(
0 eiθe−iθ4

−e−iθeiθ4 0

)
=

(
0 4

−4 0

)
= J̃.

(ii) Suppose that the discrete values x1, x2, . . . , xN determined by the update scheme A are known, and admit the
following discrete inverse Fourier transformation

xk =
1
N

N∑
n=1

x̃n exp
(

2πi
N

kn
)
, k = 1, . . . ,N.

Consider a sequence of discrete points {Xk}
N
k=1 that is shifted by one time step such that Xk = xk+1 = λ1xk, k =

1, . . . ,N, i.e. {Xk}
N
k=1 approximates the solution on a later time interval than {xk}

N
k=1. This admits the following

discrete inverse Fourier transformation

Xk =
1
N

N∑
n=1

λ1 x̃n exp
(

2πi
N

kn
)
, k = 1, . . . ,N,

i.e., X̃n = λ1 x̃n. By the definition of the frequency spectrum, it holds X̃∗n X̃n = x̃∗nλ
∗
1λ1 x̃n = x̃∗n|λ1|

2 x̃n = x̃∗n x̃n,
where the last equality relies on the symplecticity. Shifting the discrete solution arbitrary times, we see, that
the spectrum will be preserved using different time intervals for the frequency analysis. This means that, in
particular for long-time integration, a frequency analysis on a later time interval yields the same results as
on an earlier time interval, which we denote by preservation of the frequency spectrum. The analysis for y
follows analogously, and with the linear transformation Q the same holds for q and p. On the other hand, if
|λi, j| , 1, i, j = 1, 2 (such as for non-symplectic or non-convergent methods), the frequency spectrum will either
shrink or grow unbounded.

Although the analysis was only performed for the simple case of a 1d harmonic oscillator (in particular statement
(i) is restricted to this case), we believe that for higher-dimensional systems, a similar statement as in (ii) can also be
shown, which is left for future work.

Relation to numerical results. For the numerical computations in Section 7, we perform a frequency analysis in
two different ways: Firstly, we calculate the frequency spectrum on different time subintervals of the overall time
integration interval [0,T ]. This is directly connected to the analytical result of frequency preservation, i.e. we can
observe that the spectrum is independent on the specific time interval using a symplectic integrator; however, using
a non-symplectic method, the spectrum is damped calculated on a later time interval. Secondly, we use a fixed time
interval [0,T ] for the frequency analysis, but use different time steps resulting in different iteration matrices A. As we
saw for the harmonic oscillator using a symplectic method, the magnitude of the two eigenvalues is independent on
the time step h where it might de- or increase for increasing h for a non-symplectic method (e.g. using the explicit
Euler method, the absolute value of the eigenvalues is 1 +O(h2) and the frequency spectrum would grow for larger h).

6. Noisy circuits

In this section, we extend the constructed variational integrator to the simulation of noisy electric circuits, for
which noise is added to each edge of the circuit. Following the description in [6], in the stochastic setting, the
constrained stochastic variational principle is

δ

∫ T

0
L(q(t), v(t)) + 〈p(t), q̇(t) − v(t)〉 dt +

∫ T

0
fL(q(t), v(t), t) · δq(t) dt +

∫ T

0
δq(t) · (Σ ◦ dWt) = 0 (34)
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with constrained variations δq ∈ ∆Q(q), where Σ is a n × n matrix, usually constant and diagonal, indicating the
amplitude of noise at each edge, Wt is a n-dimensional Brownian motion, and the last stochastic integral is in the
sense of Stratonovich. This principle leads to the constrained stochastic differential equation

∂L

∂q
− ṗ + fL + Σ ◦

dWt

dt
∈ ∆0

Q(q) (35a)

dq = vdt (35b)
∂L

∂v
− p = 0 (35c)

KT v = 0, (35d)

where by (35a) we mean that it holds
∫ T

0

(
∂L

∂q
dt − dp + fLdt + Σ ◦ dWt

)
=

∫ T

0
X(q) dt for a vector fieldX(q) ∈ ∆0

Q(q)

for any T . Correspondingly, the reduced stochastic variational principle reads

δ

∫ T

0
LM(q̃(t), ṽ(t)) +

〈
p̃(t), ˙̃q(t) − ṽ(t)

〉
dt +

∫ T

0
f M
L (q̃(t), ṽ(t), t) · δq̃(t) dt +

∫ T

0
δq̃(t) · (KT

2 Σ ◦ dWt) = 0. (36)

This results in the reduced stochastic Euler-Lagrange equations

∂LM

∂q̃
dt − dp̃ + f M

L dt + KT
2 Σ ◦ dWt = 0 (37a)

dq̃ = ṽdt (37b)

∂LM

∂ṽ
− p̃ = 0. (37c)

To derive the discrete equations with noise, the Stratonovich integral is approximated by a discrete version. For
simplicity, we present the equations for the forward Euler iteration scheme only. On the interval [tk, tk+1] the integral∫ tk+1

tk
δq̃(t) · (KT

2 Σ ◦ dWt) is approximated by the discrete expression δq̃k · (KT
2 Σ)Bk with Bk ∼ N(0, h), k = 0, . . . ,N − 1

(see also [6]). In this way, we obtain the following reduced stochastic discrete variational principle

δ

h
N−1∑
k=0

(
LM(q̃k, ṽk) +

〈
p̃k,

q̃k+1 − q̃k

h
− ṽk

〉) + h
N−1∑
k=0

f M
L (q̃k, ṽk, tk)δq̃k +

√
h

N−1∑
k=0

KT
2 Σξk · δq̃k = 0, (38)

where for each k = 0, . . . ,N − 1, ξk is a n-dimensional vector with entries being independent standard normal random
variables. The discrete reduced stochastic Euler-Lagrange equations that give the symplectic forward Euler iteration
scheme is then given by

∂LM

∂q̃
(q̃k, ṽk) −

1
h

( p̃k − p̃k−1) + f M
L (q̃k, vk, tk) + 1

√
h
KT

2 Σξk = 0

q̃k − q̃k−1

h
= ṽk−1

∂LM

∂v
(q̃k, ṽk) = p̃k, k = 1, . . . ,N.

Different symplectic variational schemes (e.g. backward Euler or midpoint scheme) can be derived in the same way as
in Section 4 with an appropriate discretization for the Stratonovich integral. In [6], it is shown that the stochastic flow
of a stochastic mechanical system on T ∗Q preserves the canonical symplectic form almost surely (i.e., with probability
one with respect to the noise). Furthermore, an extension of Noether’s theorem says that in presence of symmetries of
the Lagrangian, the corresponding momentum map is preserved almost surely.

7. Examples

In the following section, we demonstrate the variational integration scheme by means of simple circuit examples.
The numerical results are compared with solutions resulting from standard modeling and simulation techniques from
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circuit theory. In particular, we compare the variational integrator results based on Lagrangian models with solutions
obtained with a Runge-Kutta scheme of fourth order as well with solutions obtained by applying Backward Differen-
tiation Formula (BDF) methods to models derived using the Modified Nodal Analysis (MNA). For all methods, we
use a constant step size h.

For all examples, we use the convention, that the charge vector q ∈ Rn is ordered as q = (qL, qC , qR, qV ), and
correspondingly the current, voltage, and linkage flux vectors as well as the Kirchhoff Constraint and the Fundamental
Loop matrix.

7.1. Short introduction to MNA
In most circuit simulators, the Modified Nodal Analysis (MNA) is used to assemble the system of equations. In

the following, we present the standard modified nodal analysis. We follow the description in [40]. A more detailed
description can be found, for example, in [40, 14, 1]. The MNA consists of three steps: 1. Apply the Kirchhoff

Constraint Law to every node except the ground. 2. Insert the representation for the branch current of resistors,
capacitors and current sources. 3. Add the representation for inductors and voltage sources explicitly to the system.

The combination of Kirchhoff’s laws and the characteristic equations of the different elements yields the system
of differential and algebraic equations

KT
C q̇C(KC û, t) + KT

R g(KRû, t) + KT
L vL + KT

V vV + KT
I vI(Kû, q̇C(KC û, t), vL, vV , t) = 0 (39a)

ṗL(vL, t) − KLû = 0 (39b)
uV (Kû, q̇C(KC û, t), vL, vV , t) − KV û = 0 (39c)

with node voltages û, branch currents through voltage and flux controlled elements vV and vL, voltage dependent
charges through capacitors qC and current dependent fluxes through inductors pL, voltage dependent conductance g,
and controlled current and voltage sources vI and uV . System (39) can be rewritten in compact form as

A[d(x(t), t)]′ + b(x(t), t) = 0 (40)

with

x =

 û
vL

vV

 , A =

 KT
C 0

0 I
0 0

 , d(x, t) =

[
qC(KC û, t)
pL(vL, t)

]
and the obvious definition of b. The prime [d(x, t)]′ = d

dt [d(x(t), t)] denotes differentiation with respect to time. Since
the matrix A ∂d(x,t)

∂x might be singular, equation (40) is not an ordinary differential equation but of differential algebraic
type. For a detailed description of the properties of these equations, we refer to e.g. [20].

The standard approach to numerically solve the system of equations (40) is to apply implicit multistep methods
for the time discretization, in particular lower-order BDF schemes or the trapezoidal rule. For a detailed description
of these methods, we refer to e.g. [40, 16]. The advantage of BDF methods is the low computational cost compared
to implicit Runge-Kutta methods. However, they may have bad stability properties (cf. [40]) and, in particular, they
are not symplectic.

7.2. RLC circuit
Consider the graph consisting of four boundary edges and two diagonal edges of a square (see Figure 2). On each

edge of this graph, we have a pair of capacitor (with capacitance Ci = 1, i = 1, . . . , 6) and inductor (with inductance
Li = 1, i = 1, . . . , 5) except on one edge.2 On this edge, there is only one capacitor which leaves a degenerate
Lagrangian. The corresponding planar graph consists of n = 6 branches and m + 1 = 4 nodes, thus we have l = 3
meshes.

The matrix Kirchhoff Constraint matrix K ∈ Rn,m and the Fundamental Loop matrix K2 ∈ Rn,n−m are (with the
fourth node assumed to be grounded)

2The values for inductance and capacitance are just chosen for demonstration purpose of the variational integrator. For real circuits, the values
are typically of different order, resulting in a dynamical behavior on a different scale as in our numerical examples.
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Figure 2: Graph representation of a RLC circuit.

K =



1 −1 0
0 −1 1
0 0 1
−1 0 0
0 −1 0
1 0 −1


, K2 =



1 0 −1
0 −1 1
0 1 0
1 0 0
−1 1 0
0 0 1


. (41)

The matrix KT
2 LK2 is non-singular with L = diag(L1, . . . , L5, 0); thus, the degeneracy of the system is eliminated

by the constraints on the system, and all three variational integrators derived in Section 4 can be applied.
In Figure 3 a) the oscillating behavior of the current on the first branch is shown (the currents on the other branches

behave in a similar way). For the energy behavior of the LC circuit, we compare the exact solution with solutions
obtained with the three different variational integrators, a Runge-Kutta method of fourth order, and a BDF method
of second order. Since no resistor or voltage source is involved, this energy should be preserved. For the variational
integrator based on the midpoint rule (VI), the energy is exactly preserved since the electric potential is only quadratic.
For this relatively short integration time span, we observe that also the solution with the Runge-Kutta scheme (RK4)
preserves the energy (the red, blue and black lines in Figure 3 b) lie on top of each other). Using the forward (VI
EFD, magenta) or backward Euler (VI EBD, green) variational integrator the energy oscillates around its real value,
however, no dissipation or artificial growth of the energy occurs in contrast to the solution obtained by a BDF method
(MNA BDF): Here, the energy rapidly decreases using a second order BDF method (see the cyan line in Figure 3
b)). These results are based on a step size of h = 0.1. Increasing the step size to h = 0.4, a phase shifting of
the currents computed with variational integrators is observed (which is a typical behavior observed for variational
integrators) in contrast to solutions obtained by the Runge-Kutta scheme (see Figure 4 a)).3 However, considering the
energy behavior shown in Figure 4 b), energy is dissipating for the Runge-Kutta solution, whereas for the variational
integrators it (its median, respectively) is preserved. The performance of the BDF method is even worse: The energy

3Note that the Runge-Kutta method is of higher order (fourth order) than the variational integrators, and thus solution curves are of higher
accuracy.
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Figure 3: LC circuit (no resistors) with step size h = 0.1. a) The oscillating behavior of the current on the first branch is shown. b) Comparison
of the exact energy behavior (exact) and the numerical solution using the three different variational integrators, midpoint rule (VI), backward Euler
(VI EBD), and forward Euler (VI EFD), a Runge-Kutta method of fourth order (RK), and a BDF method of second order based on MNA (MNA
BDF). The energy is (qualitatively) preserved for VI, VI EBD, VI EFD, and RK. The use of BDF leads to an artificial energy decay.

is dissipating very fast. This can also be observed considering the current in Figure 4 a). The amplitude of the current
oscillations is damped to almost zero after a certain integration time.

We investigate this phenomenon even more by comparing the amplitude of the oscillating branch current and the
corresponding spectrum in frequency domain for the different integration methods. The solution of the first branch
current oscillates with two frequencies, ω1 = 1 and ω2 =

√
2. In Figure 5, the branch current and the frequency

spectrum for the discrete solution computed with two different step sizes (h = 0.1, 0.4) and different integrators are
compared. For a bigger step size h, the amplitude of the oscillations and the spectrum of the higher frequency are
artificially damped for the Runge-Kutta and the BDF method. However, using a variational integrator, the frequency
is slightly shifted, but the spectrum is much better preserved. For h = 0.4, we compute the frequency spectrum for
three different time intervals,

[
0, T

3

]
,
[

T
3 ,

2T
3

]
, and

[
2T
3 ,T

]
. Corresponding to our analytical result regarding frequency

preservation (see Section 5.2), we see in Figure 6 that the frequency spectrum is the same independent on the integra-
tion time using a variational integrator. However, using the Runge-Kutta or BDF method it is damped choosing a time
interval after a longer integration time.

In each branch of the circuit, we now add a small resistor with resistance Ri = 0.001, i = 1, . . . , 6. Again, we
compare the oscillating behavior and the energy behavior of the numerical solution obtained by different integrators.
Due to the resistors, the energy in the system decays. The rate of energy decay is shown for the exact solution in
Figure 7 b). The variational integrator solution respects this energy decay much better than the Runge-Kutta and BDF
scheme.

7.3. Oscillating LC circuit

As second example, we consider the LC circuit given in Figure 8. It consists of two inductors with inductance
L1 = 1 and L2 = 1 and two capacitors with capacitance C1 = 1 and C2 = 10 and thus has n = 4 branches and m+1 = 3
nodes. The Kirchhoff Constraint matrix K ∈ Rn,m and the Fundamental Loop matrix K2 ∈ Rn,n−m are (with the third
node assumed to be grounded)

K =


1 0
0 −1
0 −1
−1 1

 , K2 =


1 0
0 1
1 −1
1 0

 . (42)
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Figure 4: LC circuit (no resistors) with step size h = 0.4. Comparison of the exact solution (exact) and the numerical solution using the three
different variational integrators, midpoint rule (VI), backward Euler (VI EBD), and forward Euler (VI EFD), a Runge-Kutta method of fourth order
(RK4), and a BDF method of second order based on MNA (MNA BDF). a) The use of variational integrators (VI, VI EBD, VI EFD) leads to a
phase shifting in the numerical solution of the current. With the BDF method, the oscillations are damped out. b) The energy is (qualitatively)
preserved for VI, VI EBD, and VI EFD. The use of RK4 and BDF leads to an artificial energy decay.

L1

L2
C1

C2

1

2

3

Figure 8: Oscillating LC circuit.

With nC = 2 and KC =

(
0 −1
−1 1

)
having full rank, we can

follow from Proposition 1, that the reduced Lagrangian system is
non-degenerate, i.e. all three variational integrators derived in Sec-
tion 4 can be applied.

In Figure 9, the oscillating behavior of the branch currents on
the inductors (a)–b)) and of the branch charges on the capacitors
(c)–d)) is depicted. For a long-time simulation, we compare the
exact energy behavior of the LC circuit with the energy behavior
of the solution obtained with the three different variational integra-
tors (VI, VI EBD, VI EFD), a Runge-Kutta method of fourth order
(RK4), and a BDF method of second order based on MNA (BDF
MNA). As for the previous example, independent on the step size
h, the energy is exactly preserved using VI based on midpoint rule,
whereas the solutions using the Euler VI oscillate around the real
energy value without dissipation or artificial growth of the energy
(see Figure 10). Using the BDF method, the energy rapidly de-
creases for increasing time step h. The solution of the Runge-Kutta
scheme shows a similar decreasing energy behavior for the step
size h = 0.1, 0.2, 0.4. However, for a step size of h = 0.6, the energy seems to converge to constant value that is not
the exact energy value, but slightly lower. This might be due to the fact that the amplitude of the first lower frequency
is almost preserved and only the amplitude corresponding to the higher frequency is damped out for increasing inte-
gration time, as shown in Figure 11 for different time spans and a step size of h = 0.6. The same property is reflected
by the plots in the frequency domain in Figure 12 for h = 0.4, where for increasing integration time the spectrum of
the high frequency (ω2 ≈ 1.43) is damped for the Runge-Kutta and BDF method and preserved using a symplectic
method. This phenomenon is also confirmed by the frequency spectrum plot in Figure 13 for different step sizes. As
for the previous example, the spectrum corresponding to the higher frequency is damped out for higher step sizes h
for the BDF and the Runge-Kutta method.
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Figure 5: Current of first branch of LC circuit (left) and corresponding frequency spectrum (right). Comparison of the exact solution (exact) and
the numerical solution using the three different variational integrators, midpoint rule (VI), backward Euler (VI EBD), and forward Euler (VI EFD),
a Runge-Kutta method of fourth order (RK4), and a BDF method of second order based on MNA (MNA BDF). For increasing step size h, the
damping of the amplitude of the oscillations and of the higher frequency spectrum increases using RK4 and BDF. For VI, VI EBD, and VI EFD,
the frequency is slightly shifted, but the spectrum and the current amplitude is much better preserved.

7.4. LC transmission line

1 2L1 L2 L3

C1 C2

Figure 14: LC transmission line.

To demonstrate the momentum map preservation
properties of the variational integrator, we consider
the LC transmission line consisting of a chain of in-
ductors and capacitors as illustrated in Figure 14.
The matrix Kirchhoff Constraint matrix K ∈ Rn,m

and the Fundamental Loop matrix K2 ∈ Rn,n−m are
(with the third node assumed to be grounded),

K =


−1 0
1 −1
0 1
1 0
0 1

 , K2 =


1 0 0
0 1 0
0 0 1
1 −1 0
0 1 −1

 .
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Figure 6: Frequency spectrum of first branch current of LC circuit (no resistors) (h = 0.4) computed on time interval [0,T/3], [T/3, 2T/3],
[2T/3,T ]. Comparison of the exact solution (exact) and the numerical solution using the three different variational integrators, midpoint rule (VI),
backward Euler (VI EBD), and forward Euler (VI EFD), a Runge-Kutta method of fourth order (RK4), and a BDF method of second order based
on MNA (MNA BDF). Using RK4 and BDF the spectrum is damped for higher integration times and preserved using a variational integrator.

With nC = 2 and KC =

(
1 0
0 1

)
having full rank, we can follow from Proposition 1, that the reduced Lagrangian

system is non-degenerate. For this circuit, the topology assumption 1 holds, i.e. all nodes except ground have exactly
one branch connected and inward and outward to the node. Thus, from Theorem 2 it holds that the sum of the inductor
fluxes pL1 + pL2 + pL3 is a conserved quantity that can be also seen from the variational simulation results depicted in
Figure 15.

7.5. Validation on the stochastic variational integrator
Consider the stochastic differential equation

dx = Axdt + Σ̄dWt, (43)

where Σ̄ is a n-by-m matrix, not necessarily full rank, x = (x1, x2, . . . , xn) ∈ Rn, A ∈ Rn,n and Wt is an m-dimensional
Brownian motion (with independent components). A common way to verify the quality of a numerical solution is to
consider statistical moments of the solution; in particular, we focus on the expectation and the variance, i.e., E(x(t))
and D(x(t)) = E(x(t))2 − (E(x(t)))2.

On the analytical side, by Ito’s formula (see e.g. [35]) we have with B(t) = exp(At)

E(x(t)) = B(t)x(0) (44a)

D(x(t)) =

∫ t

0
B(τ)Σ̄Σ̄T B(τ)T dτ. (44b)

The expectation and the variance can always be computed if A and Σ̄ are given. For big systems, however, such a
mundane computation is quite complex. On the numerical side, we run an ensemble of simulations (of total number
M), all starting from the same initial condition but for each simulation an independent set of noise (i.e., different ξk) is
used. The ensemble are indicated by x1(t), x2(t), . . . , xM(t) where for any j, x j(t) = (x j

1(t), x j
2(t), . . . , x j

n(t)) is a vector.
We compute the empirical moments by

Ē(x(t)) ≈
1
M

M∑
j=1

x j(t) (45a)

D̄(x(t)) ≈
1
M

M∑
j=1

(x j(t))2 −
1

M2

 M∑
j=1

x j(t)


2

. (45b)
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Figure 7: LCR circuit (with resistors) with step size h = 0.4. Comparison of the exact solution (exact) and the numerical solution using the three
different variational integrators, midpoint rule (VI), backward Euler (VI EBD), and forward Euler (VI EFD), a Runge-Kutta method of fourth order
(RK4), and a BDF method of second order based on MNA (MNA BDF). a) The use of variational integrators (VI, VI EBD, VI EFD) leads to a
phase shifting in the numerical solution of the current. With the BDF method, the oscillations are artificially damped out. b) The energy decay is
much better preserved for VI, VI EBD, and VI EFD as for RK4 and BDF.

The numerical method is validated if for large enough M the empirical moments (45) are close to the analytical ones
(44).

In our setting, we can rewrite the reduced stochastic Euler-Lagrange equations (37) in the form of (43) with

x = (q̃, p̃) ∈ R2(n−m), Σ̄ =

(
0 0
0 KT

2 Σ

)
∈ R2(n−m),2n, and the obvious definition of A ∈ R2(n−m),2(n−m) with Σ ∈ Rn,n

and K2 ∈ Rn,n−m. The analytical variance matrix D((q̃(t), p̃(t)) ∈ R2(n−m),2(n−m) for the reduced system can now be
calculated using equation (44b). The corresponding variance matrix for the full system can then be calculated as

D(q(t), p(t)) =

(
K2 0
0 K2

)
D(q̃(t), p̃(t))

(
KT

2 0
0 KT

2

)
∈ R2n,2n.

As a demonstration, we calculate the empirical and analytical moments for the circuit introduced in Section 7.3. For
the experiments throughout this section, we defined Σ as 4-by-4 diagonal matrix with diagonal entries Σ j j = 0.01, j =

1, . . . 4. The step size is h = 0.1, the integration time for each simulation is T = 30, and we start with the initial
conditions q̃0 = (1, 0), ṽ0 = (0, 0), and p̃0 = (0, 0). The empirical averages are calculated over an ensemble of
M = 100000 independent simulations.

The analytical variance of pL1 and pL2 , i.e., the fifth and sixth diagonal elements of the variance matrix in the full
system, are plotted as functions of time (see Figure 16, red dotted line). Notice, that pL1 and pL2 in our case are just the
currents through inductor branch 1 and 2, the inductances are L1 = L2 = 1. The result using the stochastic variational
integrator is also shown in Figure 16 (blue solid line). Both function shapes and ranges agree very well. In particular,
all the little bumps in the variance that are subtly different are approximated correctly. This classical test serves as an
evidence that the stochastic integration works fine.

7.6. Multiscale integration with FLAVORS

When the circuit exhibits behavior in two time scales, our integrators can be FLAVORized [39] to capture the slow
time scale without resolving the fast time scale to greatly reduce integration time. We first give a brief description of
FLAVORS (FLow AVeraging integratORS). For more details, we refer to [39].

Consider an ordinary differential system on Rd

u̇ε = G(uε) +
1
ε

F(uε) (46)
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Figure 9: LC circuit. a) Current on inductor 1. b) Current on inductor 2. c) Charge on capacitor 1. d) Charge on capacitor 2.

with ε � 1. In the context of Lagrangian systems, we consider a multiscale Lagrangian as

L(q, v) =
1
2

vT Lv − V(q) −
1
ε

U(q) (47)

where V(q) is denoted as “slow” and 1
ε
U(q) denoted as “fast” potential. In the case of a linear circuit, the slow potential

corresponds to the charge potential of a capacitor with high capacitance, whereas the fast potential corresponds to a
capacitor with very small capacitance. For instance, consider the oscillating LC circuit in Section 7.3 with C1 = 1 and
C2 = ε (ε = 1 in Section 7.3). The corresponding potential in (47) can be written as the sum of slow and fast potential
as

V(q) =
1
2

q2
C1
, U(q) =

1
2

q2
C2
.

The smaller ε (i.e. C2) is, the wider the two time scales will be separated.
FLAVORS are based on the averaging of the instantaneous flow of the differential equation (46) with hidden

slow and fast variables. The way to FLAVORize any of our integrators for circuits is to break each timestep into a
composition of two substeps. The first one uses a timestep of length τ, and the second one uses a timestep δ− τ. τ has
to be small enough to resolve the stiffness, but δ−τ does not. In fact, in the first substep one integrates the entire system
with the original value of the stiffness 1/ε, whereas in the second substep one integrates the system with the stiffness
turned off, i.e., 1/ε is temporarily set to 0. Of course, for the first substep of the next step, 1/ε has to be restored to

its original big value again. To be more precise, FLAVOR is implemented using an arbitrary legacy integrator Φ
1
ε

h for
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Figure 10: Energy of oscillating LC circuit: Solutions obtained with the midpoint variational integrator exactly preserve the energy (VI) independent
on the step size h. The energy computed with the forward (VI EFD) and backward (VI EBD) Euler variational integrators oscillates around the real
energy value without dissipation or artificial growth. For solutions obtained with a second order BDF method (BDF MNA), the energy dissipates
due to numerical errors. The solution of the Runge-Kutta scheme (RK4) dissipate energy, but seems to converge to lower constant energy value.

(46) in which the parameter 1
ε

can be controlled. By switching on and off the stiff parameter, FLAVOR approximates
the flow of (46) over a coarse time step H (resolving the slow time scale) by the flow

ΦH :=
(
Φ0

H
M −τ
◦ Φ

1
ε
τ

)M
,

where τ is a fine time step resolving the “fast” time scale (τ � ε) and M is a positive integer corresponding to the
number of “samples” used to average the flow (δ = H/M). Since FLAVORS are obtained by flow composition, they
inherit the structure-preserving properties (for instance, symplecticity and symmetries under a group action) of the
legacy integrator for Hamiltonian systems.

Theorem 1.4 in [39] guarantees the accuracy of FLAVORS for δ � h0, τ � ε and
(
τ
ε

)2
� δ � τ

ε
, where h0

is the stability limit of step length for the legacy integrator. Furthermore, if the hidden fast and slow variables are
affine functions of the original variables (such as in our case of linear circuit), the condition relaxes to δ � h0, τ � ε
and δ � τ

ε
. A intuitive interpretation of that theorem is, the numerically integrated slow variable will convergence

strongly (as a function of time) to the solution to an averaged effective equation, and the fast variable will converge
weakly to its local ergodic measure.

We use FLAVORS to simulate the LC circuit with ε = 10−3, τ = 0.1ε = 10−4, H = 0.1 and M = 100. The
charges and currents as functions of time are plotted in Figure 17. Notice that the slow components in the solution are
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Figure 11: Charge on capacitor 1 of LC circuit (h = 0.6). Comparison of the exact solution (exact) and the numerical solution using the three
different variational integrators, midpoint rule (VI), backward Euler (VI EBD), and forward Euler (VI EFD), a Runge-Kutta method of fourth order
(RK4), and a BDF method of second order based on MNA (MNA BDF). For the variational integrators the amplitudes for low and high frequencies
are preserved. Using the Runge-Kutta method, the amplitude corresponding to the high frequency is damped out for increasing integration time
whereas the amplitude of the lower one seems to be preserved. Using the BDF method, the amplitudes of both frequencies are damped.

captured strongly, but the fast components may have altered wave shapes: for instance, Figure 18 shows a zoomed-in
investigation of the current through the second branch, which is a superposition of a slow global oscillation and a
fast local oscillation; the slow one is obviously well-captured in the usual sense, and the fast one is captured in the
less-commonly-used sense of averaging.

8. Conclusions

In this contribution, we presented a unified framework for the modeling and simulation of electric circuits. Start-
ing with a geometric setting, we formulate a unified variational formulation for the modeling of electric circuits.
Analogous to the formulation of mechanical systems, we define a degenerate Lagrangian on the space of branches
consisting of electric and magnetic energy, dissipative and external forces that describe the influence of resistors and
voltage sources as well as (non-)holonomic constraints given by the KCL of the circuit. The Lagrange-d’Alembert-
Pontryagin principle is used to derive in a variational way the implicit Euler-Lagrange equations being differential-
algebraic equations to describe the system’s dynamics. A reduced version on the space of meshes is presented that is
shown to be equivalent to the original system and for which under some topology assumptions the degeneracy of the
Lagrangian is canceled.

Based on the reduced version, a discrete variational approach is presented that provides different variational in-
tegrators for the simulation of circuits. In particular, the generated integrators are symplectic, preserve momentum
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Figure 12: Frequency spectrum of charge on capacitor 1 of LC circuit (h = 0.4) computed on time interval [0,T/3], [T/3, 2T/3], [2T/3,T ].
Comparison of the exact solution (exact) and the numerical solution using the three different variational integrators, midpoint rule (VI), backward
Euler (VI EBD), and forward Euler (VI EFD), a Runge-Kutta method of fourth order (RK4), and a BDF method of second order based on MNA
(MNA BDF). Using RK4 and BDF the spectrum is damped for higher integration times and preserved using a variational integrator.

maps in presence of symmetries and have good long-time energy bahvior. Furthermore, we observe that the spec-
trum of high frequencies is especially better preserved compared to simulations using Runge-Kutta or BDF methods.
Having the variational framework for the model and the simulation, extensions of the approach using already-existing
types of different variational integrators can be easily accomplished. As an example, we presented the extension for
the simulation of noisy circuits using stochastic variational integrator approaches as well as multiscale methods (in
particular FLAVORS) for an efficient treatment of circuits with multiple time scales.

In the future, we will extend the approach to the simulation and analysis of more complicated nonlinear and
magnetic circuits that might include nonlinear inductors, capacitors, resistors and transistors. Since a variational for-
mulation in terms of energies, forces and constraints is still valid for the nonlinear case, the presented integrators will
be derived and applied in straight forward way. Furthermore, the inclusion of controlled sources allows for the con-
sideration of optimal control problems for circuits for which techniques also based on a variational formulation can
be easily applied (see e.g. [34]). The variational simulation of combined mechanical and electric (electro-mechanical)
systems is the natural next step towards the development of a unified variational modeling and simulation method for
mechatronic systems. Furthermore, at nanoscales, thermal noise and electromagnetic interactions become an essential
component of the dynamic of electric circuits. We plan to investigate the coupling of variational integrators for circuits
with multi-symplectic variational integrators for EM fields and continuum mechanics (see e.g. [23, 28, 37]) to produce
a robust structure-preserving numerical integrator for Microelectromechanical and Nanoelectromechanical systems.
Recently, Mike Giles has developed a Multilevel Monte Carlo method for differential equations with stochastic forc-
ings [12] that shows huge computation accelerations, 100 times in some cases. The extension of the current method to
multilevel stochastic variational integrators is straight forward and may further accelerate computation dramatically,
especially for multiscale problems, while preserving certain properties of the circuit network.
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Figure 13: Frequency spectrum of charge on capacitor 1 of LC circuit. Comparison of the exact solution (exact) and the numerical solution using
the three different variational integrators, midpoint rule (VI), backward Euler (VI EBD), and forward Euler (VI EFD), a Runge-Kutta method
of fourth order (RK4), and a BDF method of second order based on MNA (MNA BDF). For increasing step size h, the damping of the higher
frequency spectrum increases using RK4 and BDF. For VI, VI EBD, and VI EFD, the frequency is slightly shifted, but the spectrum is much better
preserved.
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Figure 17: Simulations of a multiscale system: a) Benchmark solution computed with a variational integrator (h = 10−4) b) FLAVOR with
τ = 10−4, δ = 10−3 and ε = 10−3.
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Figure 18: Simulations of a multiscale system: a) Benchmark solution computed with a variational integrator (h = 10−4) b) FLAVOR with
τ = 10−4, δ = 10−3 and ε = 10−3.
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