
    

 

 

 
 
This is an electronic reprint of the original article.  
This reprint may differ from the original in pagination and typographic detail. 
 

Author(s): 

 

 

Title: 

 

Year: 

Version:  

 

Please cite the original version: 

 

 

  

 

 

All material supplied via JYX is protected by copyright and other intellectual property rights, and 
duplication or sale of all or part of any of the repository collections is not permitted, except that 
material may be duplicated by you for your research use or educational purposes in electronic or 
print form. You must obtain permission for any other use. Electronic or print copies may not be 
offered, whether for sale or otherwise to anyone who is not an authorised user. 

 

An optimization-based approach for solving a time-harmonic multiphysical wave
problem with higher-order schemes

Mönkölä, Sanna

Mönkölä, S. (2013). An optimization-based approach for solving a time-harmonic
multiphysical wave problem with higher-order schemes. Journal of Computational
Physics, 242, 439-459. https://doi.org/10.1016/j.jcp.2013.02.022

2013



An optimization-based approach for solving a

time-harmonic multiphysical wave problem

with higher-order schemes

Sanna Mönkölä ∗
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Abstract

This study considers developing numerical solution techniques for the computer sim-
ulations of time-harmonic fluid-structure interaction between acoustic and elastic
waves. The focus is on the efficiency of an iterative solution method based on a con-
trollability approach and spectral elements. We concentrate on the model, in which
the acoustic waves in the fluid domain are modeled by using the velocity potential
and the elastic waves in the structure domain are modeled by using displacement.

Traditionally, the complex-valued time-harmonic equations are used for solving
the time-harmonic problems. Instead of that, we focus on finding periodic solutions
without solving the time-harmonic problems directly. The time-dependent equations
can be simulated with respect to time until a time-harmonic solution is reached, but
the approach suffers from poor convergence. To overcome this challenge, we follow
the approach first suggested and developed for the acoustic wave equations by Bris-
teau, Glowinski, and Périaux. Thus, we accelerate the convergence rate by employing
a controllability method. The problem is formulated as a least-squares optimization
problem, which is solved with the conjugate gradient (CG) algorithm. Computa-
tion of the gradient of the functional is done directly for the discretized problem. A
graph-based multigrid method is used for preconditioning the CG algorithm.
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1 Introduction

The basic idea of the controllability approach is to steer a dynamical (i.e.,
time-dependent) system from an initial state to a particular state by using an
appropriate control (see, e.g., [1,2]). The controlling approach is used in several
areas such as shape design, inverse problems and controllability of models
described by the PDEs. In this article, we use optimal control theory as a tool
to find a periodic solution for a coupled wave equation. To be more precise,
we consider the model, in which the acoustic waves in the fluid domain are
modeled by using the velocity potential and the elastic waves in the structure
domain are modeled by using displacement. We follow the idea of Bristeau,
Glowinski, and Périaux, presented in [3,4,5,6,7], and avoid solving indefinite
systems by returning to time-dependent equations. The difference between the
initial condition and the terminal condition of the time-dependent system is
minimized by an optimization algorithm.

Recently, the controllability approach is applied with finite element -based
space discretizations for simulating time-dependent acoustic, elastic, and elec-
tromagnetic problems until the time-harmonic solution is reached in, e.g.,
[8,9,10,11]. The idea of using controllability approach was extended to solve a
coupled acousto-elastic problems and first published in [12]. Coupling between
the pressure and the displacement was discussed. Because of the choice of the
least-squares functional, the method suffered from poor convergence rate. In
this paper, we will present improvements for the mathematical formulation
and computational algorithms.

The drawback of using the traditional formulation of the wave equations is
that the energy norm is then of H1-type, and as such, the control prob-
lem needs preconditioning implying an additional computational cost. The
preconditioning also makes it more complicated to implement the solver to
utilize the parallel computing. In [13], a mixed finite element method is pre-
sented. Within that approach, the elliptic problem is not needed to be solved
at the preconditioning stage and thus saving the computing time. For solving
the generalized Maxwell equations, combining the controllability method with
discrete exterior calculus provides even more promising alternative [14].

We consider minimizing the quadratic functional

J(e) =
1

2
eTAe− bTe + c, (1)

where A is a symmetric and positive definite matrix of size N̂ × N̂ and the
vectors e, b, and c are of size N̂ . As we focus on large problems, the set of fea-
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sible optimization algorithms is restricted to the methods with small memory
requirements. That is why we neglect Newton-type methods and concentrate
on the conjugate gradient (CG) method introduced by Hestenes and Stiefel in
1952 [15].

This article is organized as follows. First, the coupled model for acoustic and
elastic waves is constructed in Section 2. Then, we discretize the coupled prob-
lem in a space domain with spectral elements in Section 3. For time discretiza-
tion we use the fourth-order Runge–Kutta scheme in Section 4. In Section 5,
we expand the control approach to the coupled problem. The objective func-
tional is presented in Section 5.1. Further, we compute the gradient of the
functional, an essential point of the method, using the adjoint state tech-
nique in Section 5.2. The optimization algorithm is considered in Section 6.
To guarantee the smooth initial approximation for the CG algorithm we use
a transition procedure, suggested by Mur [16]. The main principles of the CG
method are presented in Section 6.1. For speeding up the convergence rate
of the CG algorithm, we use the graph-based multigrid method, introduced
in [17], in Section 6.2. Numerical experiments concerning the multiphysical
propagation of time-harmonic waves show the efficiency of the algorithm in
Section 7. The concluding remarks are presented in Section 8.

2 Coupled elastic-acoustic wave equations

Various formulations exist for the interaction between acoustic and elastic
waves. Naturally, the models have been tailored corresponding to the applica-
tions. For instance, gravity effects are employed by Andrianarison and Ohayon
in [18] and by Komatitsch and Tromp in [19].

Typically, the displacement is solved in the elastic structure. The fluid can be
modeled using finite element formulations based on fluid pressure, displace-
ment, velocity potential or displacement potential [20]. Two approaches, in
which the displacement is solved in the elastic structure, predominate in mod-
eling the interaction between acoustic and elastic waves. Expressing the acous-
tic wave equation by the pressure in the fluid domain leads to a non-symmetric
formulation (see, e.g., [21,22,23,24]), while using the velocity potential results
in a symmetric system of equations (see, e.g., [25,26,27,28]). We applied the
exact controllability to the non-symmetric formulation in [12], whereas in this
paper we consider the symmetric formulation.

The domain Ω ⊂ R2 modeling the geometry of the phenomena is divided into
a fluid part Ωf and a structure part Ωs (see Figure 1). The fluid domain is
bounded by the boundary Γf = Γ0f

⋃
Γef

⋃
Γi, and Γs = Γ0s

⋃
Γes

⋃
Γi consti-

tutes the boundary for the structure domain Ωs. On the boundaries Γ0f and
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Γ0s we use the Dirichlet boundary conditions, whereas on the artificial bound-
aries Γef and Γes we impose the conventional first order absorbing boundary
conditions [29,30]. On the interface Γi between fluid and structure domains,
we assume the continuity of normal components of displacements and traction
forces. The outward normal vectors to domains Ωf and Ωs are presented as
nf = (nf1, nf2)T and ns = (ns1, ns2)T . From the controllability point of view,
it is a convenient choice to model the acoustic waves in the fluid domain Ωf by
using the velocity potential and the elastic waves in the structure domain Ωs

by using the displacement variable. Thus, we present a symmetric formulation
(see, e.g. [25,26,28])

1

c(x)2

∂2φ

∂t2
−∇2φ = fφ, in Qf = Ωf × [0, T ], (2)

φ = 0, on γ0f = Γ0f × [0, T ], (3)

1

c(x)

∂φ

∂t
+

∂φ

∂nf
= yφext, on γef = Γef × [0, T ], (4)

∂us

∂t
· ns +

∂φ

∂nf
= 0, on γi = Γi × [0, T ], (5)

ρs(x)
∂2us

∂t2
−∇ · σ(us) = f , in Qs = Ωs × [0, T ], (6)

us = 0, on γ0s = Γ0s × [0, T ], (7)

ρs(x)B
∂us

∂t
+ σ(us)ns = gext, on γes = Γes × [0, T ], (8)

σ(us)ns + ρf (x)
∂φ

∂t
nf = 0, on γi = Γi × [0, T ]. (9)

where fφ, yφext, f , and gext are the source terms. Length of the time interval
is marked as T , φ denotes the velocity potential, and us = (us1,us2)T is
the displacement field. Coefficients ρf (x) and ρs(x) represent the densities of
media in domains Ωf and Ωs, respectively, and c(x) is the speed of sound in
fluid domain. The stress tensor is expressed as σ(us) = λ(∇ · us)I + 2µε(us)

Γ i

Γ es
Γ ef

x
1=0 Γ efΓ es

Γ es Γ efΩ    fΩ    s

Figure 1. The domain Ω is divided into the structure part Ωs and the fluid part Ωf .
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with the linearized strain tensor ε = 1
2

(
∇us + (∇us)

T
)
, the identity matrix

I, and the Lamé parameters µ and λ. The symmetric positive definite matrix
B is defined as [29,30]

B =

 cp(x)n2
s1 + cs(x)n2

s2 ns1ns2(cp(x)− cs(x))

ns1ns2(cp(x)− cs(x)) cp(x)n2
s2 + cs(x)n2

s1

 ,
with elements cp(x) and cs(x) representing the speed of the pressure waves
and the speed of the shear waves, respectively.

Furthermore, we complete the time-dependent system (2)-(9) by the initial
conditions e = (e0, e1)T such that e0 = (eφf0, es0)T and e1 = (eφf1, es1)T , and

φ(x, 0) = eφf0, in Ωf , (10)

∂φ

∂t
(x, 0) = eφf1, in Ωf , (11)

us(x, 0) = es0, in Ωs, (12)

∂us(x, 0)

∂t
= es1, in Ωs. (13)

For the weak formulation of the system (2)-(9) we introduce the function
spaces V and V by

V = {v ∈ H1(Ωf ) such that v = 0 on Γ0f}, (14)

V = {v ∈ H1(Ωs)×H1(Ωs) such that v = 0 on Γ0s}. (15)

By multiplying Equation (2) with any test function v in the space V , and (6)
with any test function v in the space V, using Green’s formula, and substitut-
ing the boundary conditions results in the following weak formulation: Find
(φ,us) satisfying (φ(t),us(t)) ∈ (V ×V) for any t ∈ [0, T ] and

aφf (φ, v) +
∫
Γi

∂us

∂t
· nsv ds = fφf (v), (16)

as(us, v) +
∫
Γi

ρf (x)
∂φ

∂t
nf · v ds = fs(v), (17)
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for any (v, v) ∈ (V ×V) and t ∈ [0, T ], where

aφf (φ, v) :=
∫

Ωf

1

c(x)2

∂2φ

∂t2
v dx+

∫
Ωf

∇φ · ∇v dx+
∫

Γef

1

c(x)

∂φ

∂t
v ds, (18)

fφf (v) :=
∫

Ωf

fφv dx+
∫

Γef

yφextv ds, (19)

as(us, v) :=
∫
Ωs

ρs(x)
∂2us

∂t2
· v dx+

∫
Ωs

σ(us) : ε(v) dx+
∫

Γes

ρs(x)B
∂us

∂t
· v ds,

fs(v) :=
∫
Ωs

f · v dx+
∫

Γes

gext · v ds. (20)

Further, we multiply (16) by ρf (x), sum up (16) and (17), and make substi-
tutions v = ∂φ

∂t
and v = ∂us

∂t
to get the total energy

Eφsf (φ,us) =
1

2

∫
Ωf

(
ρf (x)

c(x)2

∣∣∣∣∂φ∂t
∣∣∣∣2 + ρf (x)

∣∣∣∣∇φ∣∣∣∣2
)
dx+

1

2

∫
Ωs

(
ρs(x)

∣∣∣∣∂us

∂t

∣∣∣∣2 + σ(us) : ε (us)

)
dx.

(21)

The time-derivative of the total energy is

d

dt
Eφsf (φ,us) = −

∫
Γef

ρf (x)

c(x)

∣∣∣∣∂φ∂t
∣∣∣∣2 ds− ∫

Γes

ρs(x)
∂us

T

∂t
B
∂us

∂t
ds

+
∫

Ωf

ρf (x)fφ
∂φ

∂t
dx+

∫
Γef

ρf (x)yφext
∂φ

∂t
ds+

∫
Ωs

f · ∂us

∂t
dx+

∫
Γes

gext ·
∂us

∂t
ds.

For fφ = 0, yφext = 0, f = 0, and gext = 0, the energy dissipates due to
the absorbing boundary conditions on the boundaries Γef and Γes. That is,
d
dt
Eφsf (φ,us) ≤ 0 is fulfilled, and the problem at hand is stable. In the special

case d
dt
Eφsf (φ,us) = 0, the energy is conserved and for a given initial solution

(eφf , es)
T holds Eφsf (φ,us) = Eφsf (eφf , es) for all t. For certain non-negative

right-hand side terms fφ, yφext, f , and gext the energy is non-dissipative, which
may cause stability issues.

3 Spectral element discretization

The key factor in developing efficient solution methods is the use of high-order
approximations to get high accuracy without computationally demanding ma-

6



trix inversions. We attempt to meet these requirements by using the spectral
element [31] method (SEM) for space discretization.

In order to produce an approximate solution for the problem, the given domain
Ω is discretized into a collection of Ne elements Ωi, i = 1, . . . , Ne, such that
Ω =

⋃Ne
i=1 Ωi. The elements are associated with a mesh, which defines the

geometry of the domain. After the domain is decomposed into elements, a local
polynomial basis is introduced in each element. The basis functions consist of
sets of higher-order polynomials and are used to give the discrete values of the
approximated solution. In particular, the geometry of the elements is described
by invertible affine mappings Gi : Ωref → Ωi of a reference element Ωref = [0, 1]2

onto an element Ωi in the physical coordinates.

In order to compute the elementwise integrals in the reference element, we in-
troduce a set of Gauss–Lobatto points ξi ∈ [0, 1], i = 1, . . . , r+1 in each direc-
tion of the reference element. We use quadrilateral elements and Lagrangian
method of interpolation for defining a polynomial of order r, the values of
which can be determined at r + 1 space discretization points. The quadra-
ture points and the set of basis functions of the reference element in higher
dimensions are achieved by products of the (r + 1) one-dimensional Lagrange
interpolants. The degrees of freedom corresponding to the basis functions are
located at the Gauss–Lobatto integration points of the elements. With the
Gauss–Lobatto integration rule, this makes the mass matrices diagonal with-
out reducing the order of accuracy. Thus, the inversion of the mass matrix is
a trivial and computationally efficient operation.

The spectral element method is obtained from the weak formulation of the
model (16)-(17) by restricting the problem presented in the infinite-dimensional
spaces V and V into the finite-dimensional subspaces V r

h ⊂ V and Vr
h ⊂ V,

respectively, such that

V r
h = {vh ∈ V such that vh|Ωi

◦ Gi ∈ Qr}, (22)

Vr
h = {vh = (vh1, vh2) ∈ V such that vhk|Ωi

◦ Gi ∈ Qr, k = 1, 2}, (23)

where

Qr(Ωi) = {v(ξ, ζ) =
r∑
p=0

r∑
q=0

apqξ
pζq, apq ∈ R} (24)

is the set of polynomial basis functions of order r in each variable in space. The
dimension of the space V r

h is the number of space discretization points, whereas
the dimension of the space Vr

h is twice the number of space discretization
points. The dimensions of the spaces V r

h and Vr
h are N̂f and N̂s, respectively.
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By u ∈ RN̂ we denote the global block vector containing the values of the
variables in both fluid and structure domains at time t at the Gauss–Lobatto
points. The weak formulation for the problem (2)-(9) can now be rewritten in
the matrix form

M∂2u

∂t2
+ S ∂u

∂t
+Ku = F . (25)

The entries of the N̂ × N̂ matrices M, S, and K, and the right-hand side
vector F , are given by the formulas

M =

Ms 0

0 Mf

 , S =

 Ss Asf

Afs Sf

 ,
K =

Ks 0

0 Kf

 , F =

 fs

fφf

 ,

where the Nf ×Nf matrix blocks corresponding to the fluid domain are

(Mf )ij =
∫

Ωf

ρf (x)

c(x)2
ϕiϕjdx,

(Sf )ij =
∫

Γef

ρf (x)

c(x)
ϕiϕjds,

(Kf )ij =
∫

Ωf

ρf (x)∇ϕi · ∇ϕjdx,

where i, j = 1, . . . , Nf . The Nf -dimensional right-hand side vector correspond-
ing to the fluid domain is

(fφf )i =
∫

Ωf

ρf (x)fφϕidx+
∫

Γef

ρf (x)yφextϕids.

The 2Ns × 2Ns block matrices and the 2Ns-dimensional vector representing
the elastic waves have the components
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((Ms)11)ij =
∫
Ωs

ρs(x)ψjψi dx,

((Ms)12)ij = 0,

((Ms)21)ij = 0,

((Ms)22)ij =
∫
Ωs

ρs(x)ψjψi dx,

((Ss)11)ij =
∫

Γes

ρs(x)
(
cpn

2
s1 + csn

2
s2

)
ψjψi ds,

((Ss)12)ij =
∫

Γes

ρs(x)(cp − cs)ns1ns2ψjψi ds,

((Ss)21)ij =
∫

Γes

ρs(x)(cp − cs)ns1ns2ψjψi ds,

((Ss)22)ij =
∫

Γes

ρs(x)
(
cpn

2
s2 + csn

2
s1

)
ψjψi ds,

((Ks)11)ij =
∫
Ωs

(
λ
∂ψj
∂x1

∂ψi
∂x1

+ 2µ

(
∂ψj
∂x1

∂ψi
∂x1

+
1

2

∂ψj
∂x2

∂ψi
∂x2

))
dx,

((Ks)12)ij =
∫
Ωs

(
λ
∂ψj
∂x2

∂ψi
∂x1

+ µ
∂ψj
∂x1

∂ψi
∂x2

)
dx,

((Ks)21)ij =
∫
Ωs

(
λ
∂ψj
∂x1

∂ψi
∂x2

+ µ
∂ψj
∂x2

∂ψi
∂x1

)
dx,

((Ks)22)ij =
∫
Ωs

(
λ
∂ψj
∂x2

∂ψi
∂x2

+ 2µ

(
1

2

∂ψj
∂x1

∂ψi
∂x1

+
∂ψj
∂x2

∂ψi
∂x2

))
dx,

((fs)1)i =
∫
Ωs

f1ψi dx+
∫

Γes

gext1ψi ds,

((fs)2)i =
∫
Ωs

f2ψi dx+
∫

Γes

gext2ψi ds,

where i, j = 1, . . . , Ns. The matrices arising from the coupling between acous-

tic and elastic wave equations areAfs =
(
(Afs)1), (Afs)2

)
andAsf =

(
(Asf)1, (Asf)2

)T
,

for which holds that
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((Afs)1)ij =
∫
Γi

ρf (x)ns1ψjϕi ds,

((Afs)2)ij =
∫
Γi

ρf (x)ns2ψjϕi ds,

((Asf)1)ij =
∫
Γi

ρf (x)nf1ϕjψi ds,

((Asf)2)ij =
∫
Γi

ρf (x)nf2ϕjψi ds.

For Afs, i = 1, . . . , Nf and j = 1, . . . , Ns, whereas for Asf , i = 1, . . . , Ns and
j = 1, . . . , Nf .

The computation of the elementwise matrices and vectors involves the inte-
gration over the elementwise subregions. In practice, we replace the integrals
by finite sums, in which we use Gauss-Lobatto weights and nodal points. The
values of these sums are computed element by element with the Gauss-Lobatto
integration rule. Collocation points are now the nodes of the spectral element.
All but one of the shape functions will be zero at a particular node. Thus, for
i 6= j, (Mf )ij = 0 and (Ms)ij = 0 meaning that the matrix M is diagonal.
Thus, the inverse of the matrix M can be easily computed. In practice, the
stiffness matrix K is assembled once at the beginning of the simulation. It is
stored by using the compressed column storage including only the non-zero
matrix elements. The other options would have been using a mixed spectral
element formulation [32,33].

4 Time discretization

After space discretization, the time-harmonic equations can, in principle, be
solved by either direct or iterative solvers. In practice, direct solvers are rea-
sonable only for small problems. For large problems, iterative methods and
efficient preconditioners are needed. Since developing efficient preconditioners
is a challenging task, we return to another approach and use time-dependent
equations for creating time-harmonic solutions. To continue towards that goal,
we consider the time discretization. Previously, we used the central finite
difference (CD) scheme for time discretization of acoustic and multiphysical
problems in [34,12], and comparison with the Runge–Kutta (RK) method for
disjoint acoustic and elastic domains was made in [10,11]. Although at each
time step the computational effort of the RK method is approximately four
times that of the CD scheme, the RK method seems to be more efficient in
conjunction with the controllability approach.
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The state equation (25) can be presented as a system of differential equations

∂y

∂t
= f(t,y(t)), (26)

where y = (u,v)T is a vector of time-stepping variables u and v = ∂u
∂t

, and
the function f(t, y(t)) = (f1(t,u,v), f2(t,u,v))T has components

f1(t,u,v) = v, (27)

f2(t,u,v) = −M−1 (Sv +Ku−F) . (28)

To this modified form, we can apply the fourth-order Runge–Kutta method,
which is a Taylor series method. In general, the Taylor series methods keep
the errors small, but there is the disadvantage of requiring the evaluation of
higher derivatives of the function f(t,y(t)). The advantage of the Runge–
Kutta method is that explicit evaluations of the derivatives of the function
f(t,y(t)) are not required, but linear combinations of the values of f(t,y(t))
are used to approximate y(t). In the fourth-order Runge–Kutta method, the
approximate y at the ith time step is defined as

yi = yi−1 +
∆t

6
(k1 + 2k2 + 2k3 + k4) , (29)

where yi =
(
ui, ∂u

i

∂t

)T
contains the global block vector ui, including the values

of the variables in both the fluid and the structure domain at the ith time
step, and its derivative vi = ∂ui

∂t
at time t = i∆t, i = 1, . . . , N . The initial

condition is given by y0 = e = (e0, e1)T , and kj = (kj1, kj2)T , j = 1, 2, 3, 4, are
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the differential estimates as follows:

 k11

k12

 =

 f1(i∆t,ui,vi)

f2(i∆t,ui,vi)

 , (30)

 k21

k22

 =

 f1(i∆t+ ∆t
2
,ui + k11

2
,vi + k12

2
)

f2(i∆t+ ∆t
2
,ui + k11

2
,vi + k12

2
)

 , (31)

 k31

k32

 =

 f1(i∆t+ ∆t
2
,ui + k21

2
,vi + k22

2
)

f2(i∆t+ ∆t
2
,ui + k21

2
,vi + k22

2
)

 , (32)

 k41

k42

 =

 f1(i∆t+ ∆t,ui + k31,v
i + k32)

f2(i∆t+ ∆t,ui + k31,v
i + k32)

 . (33)

In other words, in order to get the differential estimates (30)-(33), the function
f is evaluated at each time step four times by using the formulas (27)-(28),
and then the successive approximation of y is calculated by the formula (29).
To make the application of the adjoint equation technique in Section 5 more
convenient, we present the fully discrete state equation in the case of the
Runge–Kutta time discretization as

s(e, ŷ(e)) =



I

N I
. . . . . .

N I

N I





y0

y1

...

yN−1

yN


−



I

0

0
...

0


e−



0

F̂1

...

F̂N−1

F̂N


= 0, (34)

where ŷ = (y0,y1, . . . ,yN−1,yN)T includes the vectors yi =
(
ui, ∂u

i

∂t

)T
, e =

(e0, e1)T contains the initial values, and the matrix N and the vector F̂ i are
defined by
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N = −



Ĉ

2Ĉ

2Ĉ

Ĉ



T 

I

B̂ I

B̂ I

2B̂ I



−1

2B̂

2B̂

2B̂

2B̂


− I, (35)

F̂ i = −



Ĉ

2Ĉ

2Ĉ

Ĉ



T 

I

B̂ I

B̂ I

2B̂ I



−1

D̂i−1

D̂i− 1
2

D̂i− 1
2

D̂i


. (36)

The matrix blocks Ĉ and B̂ and the vector blocks D̂i are given by the formulas

Ĉ =

−1
6
I 0

0 −1
6
I

 ,
B̂ =

 0 −∆t
2
I

∆t
2
M−1K ∆t

2
M−1S

 ,
D̂i =

 0

∆tM−1F i

 ,
where I is the identity matrix, F i is the vector F at time t = i∆t. In practice,
the solution yi at t = i∆t is achieved by first solving k = (k1, k2, k3, k4)T from
the equation



I

B̂ I

B̂ I

2B̂ I





k1

k2

k3

k4


+



2B̂

2B̂

2B̂

2B̂


yi−1 −



D̂i−1

D̂i− 1
2

D̂i− 1
2

D̂i


= 0. (37)

Then, yi is solved from the equation
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yi = yi−1 −
(
Ĉ 2Ĉ 2Ĉ Ĉ

)


k1

k2

k3

k4


. (38)

Since the matrix M is diagonal, the only matrix inversion needed in time-
stepping (e.g., M−1 in Equation (28)) is computed simply by inverting each
diagonal element in the matrix M. This requires only n̂ floating point opera-
tions, which is the number of diagonal elements in the matrixM, and known
as the number of degrees of freedom in the space discretization.

5 Exact controllability approach

The time-harmonic solution of the acoustic-elastic interaction problem is needed
in many applications. Our objective is to return to the time-dependent wave
equation and achieve the time-harmonic solution by minimizing the differ-
ence between initial conditions and the corresponding variables after one time
period. Thus, the basic idea is to have preassigned initial and final states
such that beginning from the initial state, the final state can be achieved by
controlling the initial conditions. Proceeding in this way, the problem of time-
harmonic wave scattering can be handled with time-dependent equations as
a least squares problem, which can be solved by a conjugate gradient (CG)
algorithm.

Solving the time-harmonic equation is equivalent to finding a time-periodic
solution for the corresponding time-dependent wave equation with the initial
conditions

u(x, 0) = e0,
∂u(x, 0)

∂t
= e1. (39)

The time period corresponding to the angular frequency ω is given by T =
2π
ω

. The exact controllability problem for computing T−periodic solution for
the wave equation involves finding such initial conditions e0 and e1 that the
solution u and its time derivative ∂u

∂t
at time T would coincide with the initial

conditions.

Thus, we formulate the exact controllability problem as follows: Find initial
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conditions e = (e0, e1)T such that the weak formulation holds with the termi-
nal conditions

u(x, T ) = e0,
∂u(x, T )

∂t
= e1. (40)

The purpose of optimal control problems is to minimize an objective functional
(cost function) J defined in a control space Z = (V × V )× L2(Ω)).

5.1 Objective functional

The algorithm involves computation of the gradient of a least-squares func-
tional J , which is an essential stage of the algorithm. We have chosen to
minimize the functional based on the natural energy norm associated with the
energy formulation (21).

In order to define the optimal control, an objective functional corresponding
to the energy formulation (21) is defined as

J(e, ŷ(e)) =
1

2

∫
Ωf

(
ρf (x)

∣∣∣∣∇(φ(x, T )− ef0)
∣∣∣∣2 +

ρf (x)

c(x)2

∣∣∣∣∂φ(x, T )

∂t
− ef1

∣∣∣∣2
)
dx

+
1

2

∫
Ωs

(
2µs

∣∣∣∣ε(us(x, T )− es0)
∣∣∣∣2 + λs

∣∣∣∣∇ · (us(x, T )− es0)
∣∣∣∣2 + ρs(x)

∣∣∣∣∂us(x, T )

∂t
− es1

∣∣∣∣2
)
dx,

(41)

where e = (e0, e1) ∈ Z and ŷ is the solution of the state equation. The
optimal control problem can then be reformulated as seeking the control that
minimizes the objective functional. The discrete counterpart of the objective
functional (41) is

J(e, ŷ(e)) =
1

2

(
yN − e

)T K 0

0 M

(yN − e
)
, (42)

where yi are given by Equation (34).

In order to solve the exact controllability problem, we use the least-squares
formulation

min
e∈Z

J(e, ŷ(e)), (43)
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where ŷ(e) solves the transient initial value problem (state equation (34)) and
J(e, ŷ(e)) is the discretized objective functional. The result of the minimiza-
tion problem (43) is the optimal control e∗ and the corresponding state ŷ(e∗) is
the optimal state. The purpose is to minimize the functional J , which depends
on the initial conditions both directly and indirectly through the solution of
the wave equation. Since the vector ŷ depends linearly on the initial condi-
tions e0 and e1, J is a quadratic functional. Thus, solving the minimization
problem (43) is equivalent to finding initial conditions e∗ ∈ Z such that the
gradient of J is zero, that is,

∇J(e∗, ŷ(e∗)) = 0. (44)

Since J is a quadratic functional, (44) defines a linear system, and the mini-
mization problem can be solved by a conjugate gradient (CG) algorithm. Each
iteration step of the algorithm requires the gradient of J with respect to the
control variables e0 = (e01 , e02 , . . . e0(2Ns+Nf )

)T and e1 = (e11 , e12 , . . . e1(2Ns+Nf )
)T .

One option for computing the gradient would be using the central finite dif-
ference approximation of the gradient of the objective functional. In order
to implement an efficient algorithm, we proceed in a more practical way and
compute the derivative of J by the adjoint equation technique. For condensing
the formulation, we represent the state equation (34) in the generic form

s(e, ŷ(e)) = 0, (45)

where e = (e0, e1)T contains the initial values and ŷ contains the vectors

yi =
(
ui, ∂u

i

∂t

)T
. By s0(e, ŷ(e)) = 0 we denote the state equation in the special

case with F i = 0 for all i.

Using the standard adjoint equation technique of the optimal control theory
(see, e.g., [35]), we see that

dJ(e, ŷ(e))

dek
=
∂J(e, ŷ)

∂ek
− ẑT

∂s(e, ŷ)

∂ek
, k = 0, 1, (46)

where ẑ is the adjoint state vector containing the vectors pi presenting the
adjoint state variable at time i∆t. The vector ẑ is the solution of the adjoint
equation

(
∂s(e, ŷ)

∂ŷ

)T
ẑ = (∇ŷJ(e, ŷ))T . (47)
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Computing the gradient in the whole domain by the adjoint equation technique
requires computing the state and the corresponding adjoint state equation and
some additional matrix-vector multiplications. The CPU time for computing
the state equation is approximately the same as for computing the correspond-
ing adjoint state equation. This computational cost is much larger than that
needed for the additional matrix-vector multiplications. On the other hand,
computing the gradient component with respect to the variable ek with the
finite difference approximation requires solving the state equation twice per
each degree of freedom. Hence, computing the gradient by the adjoint equa-
tion technique takes only half of the time that is consumed for computing the
gradient for each degree of freedom with the finite difference formula.

5.2 Gradient for the fourth-order Runge–Kutta time discretization

In the case of the fourth-order Runge–Kutta time discretization, the adjoint
equation corresponding to the state equation (34) is



I N T

I N T

. . . . . .

I N T

I





z0

z1

...

zN−1

zN


=



0

0
...

0

∂J
∂yN


, (48)

where zi = (pi, ∂p
i

∂t
)T contains the solution of the adjoint equation and its time

derivative at t = i∆t, i = N, . . . , 0. The non-zero right-hand side terms are
defined as

∂J

∂yN
=

 K(uN − e0)

M(∂u
N

∂t
− e1)

 .
Thus, the evolution in time with the adjoint state equation starts with the
value zN , and after one time period we get the solution z0. Then, we can
compute the gradient components for the fourth-order Runge–Kutta scheme,
which are
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dJ(e, ŷ(e))

de0

= K(e0 − uN) + p0, (49)

dJ(e, ŷ(e))

de1

=M
(
e1 −

∂uN

∂t

)
+
∂p0

∂t
. (50)

In practice, k = (k1, k2, k3, k4)T is solved at each time step from the equation



I ĤT

I ĤT

I 2ĤT

I





k1

k2

k3

k4


=



−R̂

−2R̂

−2R̂

−R̂


zi+1, (51)

and zi is computed by the formula

zi = zi+1 −
(

2ĤT 2ĤT 2ĤT 2ĤT

)


k1

k2

k3

k4


. (52)

6 Optimization algorithm

Although the CG method has been shown to be robust with respect to the
initial values in conjunction with the exact controllability approach (see, e.g.,
[6]), it is important to have smooth initial approximations for e0 and e1, which
satisfy the boundary conditions. In [6], a special procedure suggested by Mur
in [16] was used leading to faster convergence to the time-harmonic solution
of scattering problems for harmonic planar waves by purely reflecting non-
convex obstacles. That is, they focused on acoustic scattering with sound-soft
obstacles and electromagnetic applications with perfectly conducting obsta-
cles. Now, we generalize the same procedure to the coupled problem, and first
define a smooth transition function θ(t), which increases from zero to one in
the time interval [0, Ttr] as follows:
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θ(t) =


(
2− sin

(
πt/2Ttr

))
sin

(
πt/2Ttr

)
, if 0 ≤ t ≤ Ttr,

1, if t ≥ Ttr.
(53)

The length of the time interval should be chosen as a multiple of the period
T , that is, Ttr = nT with n a positive integer. we solve the following initial
value problem:

1

c(x)2

∂2φ

∂t2
−∇2 = θ(t)fφ, in Qf = Ωf × [0, Ttr], (54)

φ = 0, on γ0f = Γ0f × [0, Ttr], (55)

1

c(x)

∂φ

∂t
+

∂φ

∂nf
= θ(t)yφext, on γef = Γef × [0, Ttr], (56)

∂us

∂t
· ns +

∂φ

∂nf
= 0, on γi = Γi × [0, Ttr], (57)

ρs(x)
∂2us

∂t2
−∇ · σ(us) = θ(t)f , in Qs = Ωs × [0, Ttr], (58)

us = 0, on γ0s = Γ0s × [0, Ttr], (59)

ρs(x)B
∂us

∂t
+ σ(us)ns = θ(t)gext, on γes = Γes × [0, Ttr], (60)

σ(us)ns + ρf (x)
∂φ

∂t
nf = 0, on γi = Γi × [0, Ttr], (61)

φ(x, 0) = 0, in Ωf , (62)

∂φ

∂t
(x, 0) = 0, in Ωf , (63)

us(x, 0) = 0, in Ωs, (64)

∂us

∂t
(x, 0) = 0, in Ωs. (65)

After solving the problem (54)-(65), the initial approximations for the control
variables e0 and e1 are constructed to consist of the solutions φ and us and
their time derivatives at time Ttr such that

e0
0 = (φ(x, Ttr),us(x, Ttr))

T ,

e0
1 =

(
∂φ

∂t
(x, Ttr),

∂us

∂t
(x, Ttr)

)T
.

If there are no interacting reflections, already this initial procedure may con-
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verge rapidly to the time-harmonic solution. However, in general the conver-
gence is slow and we need to continue with the control algorithm.

6.1 Conjugate gradient method

In the conjugate gradient (CG) method, the first search direction is chosen to
be the direction of the steepest descent, that is, w0 = −∇J(e0). The successive
directions wi, i = 1, 2, . . . are generated to be conjugant with the matrix A.
Thus, the inner product of wi and Awj is zero, that is, (wi,Awj) = 0, i 6= j

meaning that the vectors w0,w1, . . . ,wN̂−1 are said to be A-conjugate. A set of
non-zero A-conjugate vectors are linearly independent and form a basis which
spans the vector space of e. Assume we are given a starting point e0 and a
A-conjugate set {w0,w1, . . . ,wN̂−1}. Since the vectors w0,w1, . . . ,wN̂−1 form
a basis, we can write the vector representing the move from e0 to the minimum
point e∗ as a linear combination of these vectors, in other words, we have

e∗ = e0 +
N̂−1∑
i=0

ηiwi = ek +
N̂−1∑
i=k

ηiwi, (66)

where ηi, i = 0, . . . , N̂ − 1 are scalars. Multiplying the previous equation by
(wj)TA and substituting b for Ae∗ gives

(wj)
T

(b− Aek) =
N̂−1∑
i=k

ηi(wj)
T
Awi. (67)

If w0,w1, . . . ,wN̂−1 were not A-conjugate, determining η0, η1, . . . , ηN̂−1 would
involve solving N̂ linear equations in N̂ unknowns. A-conjugacy eliminates the
cross terms and gives a closed form equation for ηi, i = 0, . . . , N̂−1 such that
the line search parameter is

ηi =
−(wi)

T
gi

(wi)TAwi
, (68)

where gi = Aei−b is the gradient of J at point ei. Since gi−gi−1 = A(ei−ei−1),
we can, in practice, compute the gradient by gi = gi−1 + ηi−1Awi−1.

Each conjugate gradient iteration step requires computation of the gradient
of the least-squares functional, ∇J by the formulas (49)-(50), which involves
the solution of the (34) and the corresponding adjoint equation (48), the solu-
tion of a linear system with the preconditioner, and some other matrix-vector
operations.
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The convergence of the CG method is dependent on the spectrum of the eigen-
values of the matrix A. For problems with a large condition number, we acceler-
ate the convergence rate by preconditioning. That is, we decrease the condition
number by multiplying the linear problem Ae = b by a matrix L−1 implying
that instead of seeking a solution from the space e0 + Kj(g

0,A), where Kj

is the j:th Krylov subspace defined as Kj(g
0,A) = span(g0,Ag0, . . . ,Aj−1g0),

we are seeking the solution from the space e0 + Kj(L−1g0,L−1A). The ge-
ometrical interpretation of preconditioning is that we minimize a functional
with contourlines more spherical than in the case of the original functional
(for more information, see, e.g., [36]).

The new direction is determined as a linear combination of the previous di-
rection and the steepest descent direction by using the scaling factor γi. By
choosing a Fletcher–Reeves type formula for computing γi and the stopping
criterion measuring the relative norm of the residual such that the iteration
stops as

√
c
c0
< ε, we get the following algorithm:

Algorithm 1 Preconditioned CG algorithm

Compute the initial value e0 = (e0
0, e

0
1)T .

Solve the state equation s(e0, ŷ(e0)) = 0 by the formula (34).

Solve the adjoint state equation
(
∂s(e0,ŷ(e0))
∂ŷ(e0)

)T
ẑ =

(
∂J(e0,ŷ(e0))

∂ŷ(e0)

)T
by the formula (47).

Compute the gradient g0 = (g0
0, g

0
1)T by the formulas (49)-(50).

Solve linear system with the preconditioner Lw0 = −g0.

Set c0 = −(w0,g0), c = c0 and ` = 1.

Repeat until
√

c
c0
< ε

Solve the state equation s0(w`−1, ŷ(w`−1)) = 0 by the formula (34) with F i = 0 for all i.

Solve the adjoint state equation
(
∂s(w`−1,ŷ(w`−1))

∂ŷ(w`−1)

)T
ẑ =

(
∂J(w`−1,ŷ(w`−1))

∂ŷ(w`−1)

)T
by the formula (47).

Compute the gradient update ν`−1 = (v`−1
0 , v`−1

1 )T by the formulas (49)-(50) .

Compute η`−1 = c
(w`−1,v`−1)

.

Update the control vector e` = e`−1 + η`−1w`−1.

Update the residual vector g` = g`−1 + η`−1ν`−1.

Solve linear system with the preconditioner Lν` = −g`.
Compute γ`−1 = 1

c
, c = −(ν`,g`), γ`−1 = cγ`−1.

Update minimizing direction w` = ν` + γ`−1w`−1.

Set ` = `+ 1,

Compute the time-harmonic solution ê∗,

where ` refers to the number of iterations. Values of the control variables e
at the `th iteration are denoted by e`0 and e`1, ŷ is the solution of the state
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equation (34), ẑ = (p0, ∂p
0

∂t
) is the solution of the adjoint state equation (48),

and the gradient variable g = (g0, g1) is computed by the formulas (49)-(50).
By s0(w, ŷ(w)) = 0 we denote the state equation (34), where F i = 0 for
all i. The algorithm provides the time-harmonic computational solution, that
is, ê∗. The time-dependence of the model (2)-(9) is supposed to be of the
form exp(iωt), where i is the imaginary unit and ω is the angular frequency,
implying that ê∗ = e`−1

0 − i e`−1
1 /ω.

6.2 Preconditioning using the graph-based multigrid

From the formula (42), we see that the functional depends on the initial con-
ditions both directly and indirectly through the solution of the linear wave
equation. By substituting ŷ = Be + d into (42) and comparing with the for-
mula (1), we get

A = (B− I)T

K 0

0 M

 (B− I), (69)

b = −dT
K 0

0 M

 (B− I), c =
1

2
dT

K 0

0 M

 (B− I)d. (70)

Since the block-matrix diag{K,M} is symmetric, also the matrix A, as pre-
sented above, is symmetric.

We use a block-diagonal preconditioner

L =

K 0

0 M

 , (71)

which corresponds to the energy formulation (21). The solution of the linear
system with the block-diagonal preconditioner requires the solution of systems
with the stiffness matrix K and the diagonal mass matrixM. Efficient solution
of linear systems with the matrix K is critical for the overall efficiency of the
control method. At this stage, we use the graph-based multigrid (GBMG)
method [17] that we have applied to acoustic and elastic problems in separate
domains, e.g., in the papers [10,11]. As a smoother of the GBMG we have used
successive over-relaxation (SOR), with over-relaxation parameter 1.2, unless
mentioned otherwise. One iteration of the SOR is used for pre- and post-
smoothing. Additionally, at the beginning of every multigrid iteration, four
iterations of the SOR are used to smooth the solution initially. The so called
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(a) Structure domain. (b) Fluid domain.

Figure 2. Accuracy of the numerical solution of the state equation obtained by the
second-order central finite difference (CD) and the fourth-order Runge–Kutta (RK)
time discretizations.

W-cycle [37,38] is utilized as a multigrid iteration until the residual norm of
the solution is smaller than 10−6.

7 Numerical examples

In what follows, we show numerical results in order to validate the controllabil-
ity method discussed in previous chapters and to demonstrate some properties
of the proposed algorithm. The simulation results are peresented for several
geometries. All of these geometries are truncated by the absorbing boundary,
and the computational domain is divided into square-elements, each having
a side length h. For each element order r, we construct meshes, which are
matching on the interface Γi between the domains. The iterative process set
by Algorithm 1 is continued until the convergence requirement with ε = 10−5

is reached. The practical realization of the algorithm is implemented in For-
tran 95/2003, and numerical experiments are carried out on an Intel Xeon
E7-8837 processor at 2.67 GHz.

7.1 Accuracy of the time discretization

In the first example, we show how the accuracy of the numerical solution of
the state equation, as a part of the control algorithm, is improved as higher-
order Runge–Kutta (RK) time discretization is applied. That is, we solve state
equation (34) and compare the accuracy with the results obtained by solving
the corresponding equation discretized in time domain by the second-order
central finite difference (CD) method (see, [10,11]).

The spatial domain consists of two parts, Ωs and Ωf , such that Ωs = [−1, 0]×
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Table 1
Mesh stepsizes, number of time steps, and number of degrees of freedom for different
spectral orders with ω = 4π.

r 1 2 3

Mesh stepsize 1/20 1/10 1/7

Number of time steps 100 100 130

Number of degrees of freedom 1323 1323 1452

[0, 1] and Ωf = [0, 1] × [0, 1] (see Figure 1). We use square-element meshes
with mesh stepsize h = 1/20. The coupling interface Γi is set at x1 = 0
for x2 ∈ [0, 1], and on the other boundaries we set the absorbing boundary
conditions. The material parameters in the fluid domain are ρf (x) = 1.0 and
c(x) = 1.0. In the structure domain, we use the values λ = 51.1, µ = 26.3, and
ρs(x) = 2.7. The angular frequency ω, satisfying ωT = 2π, is ω = 4π for both
media. Further, we set the propagation direction (1, 0) by the vector such that
ω = (ω1, ω2) = (1, 0)ω.

The right-hand sides and initial conditions in Equations (2)-(13) are defined
to satisfy the analytical solution φ = − sin(ω · x) sin(ωt), and us = (cos(ω ·
x/cp(x)) cos(ωt), cos(ω · x/cs(x)) cos(ωt))T . The time domain [0, T ] is divided
into N time steps, each of size ∆t = T/N . Several numbers of time steps
between N = 100 and N = 3000 are tested. This time step refinement gives
a series of numerical results with various lengths of the time step for each
element order r.

The maximum errors compared to analytical formulas, computed as L∞-norms
after one time period, are reported with respect to ∆t/h in Figure 2. The solu-
tion for each element order r with the RK time-stepping is at least as accurate
as the one computed with the CD time-stepping. It is also seen that for higher-
order space discretization combined by sufficiently sparse time discretization
the RK time-stepping provides better accuracy than the CD approach.

7.2 Comparison between symmetric and non-symmetric approaches

In this section, we consider the convergence rate of the iterative process set by
Algorithm 1. The right-hand side source functions, the material parameters,
and the meshes are the same as the ones used in the previous example. The
number of time steps N is chosen for each element order as reported in Table
1.

Further, we show the key difference of the performance between the symmetric
approach presented in this paper and the non-symmetric approach presented
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in [12]. The right-hand side source functions in the fluid domain for the non-
symmetric approach are defined to satisfy pf = ωρf (x) sin(ω · x) cos(ωt) for
the pressure variable (see, [12]), while the other variables and parameters
remain the same as for the symmetric formulation. From Figure 3, we can
see that the number of iterations is two orders of magnitude smaller with
the symmetric approach presented in this paper than with the non-symmetric
approach presented in [12].

In Figure 4, we present the convergence histories for solving the symmetric
problem and the corresponding non-symmetric problem with r = 1. In the
case of the non-symmetric problem, the convergence rate is remarkably slow
implying computational inefficiency. From Figure 5 we can further see that also
the value of the objective functional is several orders of magnitude smaller in
the case of the symmetric formulation. The objective functional, that we have
used for the both formulations, can be derived as a natural energy functional
for the symmetric formulation. That accounts for the improvement made by
replacing the non-symmetric formulation with the symmetric one. Thus, we
can conclude that choosing a proper functional for minimization has a crucial
role in the efficiency of the method.
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Figure 3. Number of iterations with respect to element order.

7.3 Accuracy of the control approach

We test the accuracy of the control method in a domain consisting of two
parts, Ωs and Ωf , such that Ωs = [−1, 0] × [0, 1] and Ωf = [0, 1] × [0, 1] (see
Figure 1). We use square-element meshes with mesh stepsize h. The coupling
interface Γi is set at x1 = 0 for x2 ∈ [0, 1], and on the other boundaries we
set the absorbing boundary conditions. We solve a time-harmonic problem,
satisfying the analytical solution
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Figure 4. Convergence histories of the relative euclidean norm of the residual with
respect to the number of iterations for the non-symmetric and the symmetric ap-
proach.
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Figure 5. Values of the functional with respect to the number of iterations for the
non-symmetric and the symmetric approach.

e∗ =


(1 + i) (sin(ω · x)− cos(ω · x))

(1− i)
(
sin

(
ω·x
cp

)
+ cos

(
ω·x
λ+2µ

))
0

 , (72)

comparable to the numerical solution ê∗ solved by Algorithm 1. Accordingly,
for the systems (2)-(9) and (54)-(61), we use the source functions fφ = 0,
yφext = ((w + cω · nf ) cos(ωt+ ω · x) + (w − cω · nf ) sin(ωt− ω · x)) /c, f =
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0, and gext = (ω (ns1(ns1 + 1) cos(ωt+ ω · x)− (ns1 − 1)ns1 sin(ωt− ω · x)) , 0)T ,
and the material parameters, ρf (x) = 1, c(x) = 1, cp(x) = 1, cs(x) = 1/2,
ρs(x) = 1, µ = 1/4, λ = 1/2. Furthermore, we set the propagation direction
(1, 0) by the vector ω = (ω1, ω2) = (1, 0)ω.

We set the time period T = 2π/ω by using angular frequency ω = 4π in
both domains. The number of time steps, each of size ∆t = T/N , is chosen
to be N = 180. We carry out spectral basis order refinement (r-refinement)
corresponding to the SEM discretization by using the mesh with h = 1/10,
and increasing the order of the spectral basis r from 1 to 5. For comparison, we
perform the mesh step refinement (h-refinement) corresponding to the classical
FEM discretization with linear elements. For this purpose, we construct a
hierarchy of quadrilateral element meshes with smaller and smaller element
sizes by dividing the mesh stepsizes of each element of the mesh with h = 1/10
to 2, 3, 4 and 5 mesh stepsizes of equal length. Thus, we use the meshes
with h = {1/10, 1/20, 1/30, 1/40, 1/50} to get results with the same numbers
of degrees of freedom as in the test with r-refinement. Since the number of
optimization variables is twice the number of degrees of freedom, the density
of the spatial discretization is essential for the computational efficiency. The
difference between the control algorithm solution ê∗ and the analytical solution
e∗ is measured in domains Ωf and Ωs using the L∞-norm. The results are
presented, with respect to the number of optimization variables, in Figure 6.

The comparison between numerical and analytical solution shows that in both
media the accuracy improves when the element order grows until a certain er-
ror level is reached. This error level represents the level of the dominating error
source, which is caused by some factor other than the spatial discretization.
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Figure 6. Maximum error for h-refinement and r-refinement in domains Ωf and Ωs

computed as L∞-norms versus number of optimization variables. The number of
time steps is fixed to be N = 180.
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The error becomes smaller also with mesh step refinement, but the conver-
gence rate is higher for r-refinement than h-refinement. Slightly larger errors
are observed in domain Ωf than in domain Ωs for both r-refinement and h-
refinement. With r = 2, we obtain in the both domains a level of accuracy
that is better than with the densest h-refinement in this test. On the other
hand, the computational cost seems to depend linearly on the number of op-
timization variables for the both refinements (see Figure 7). Based on these
results, it seems clear that, instead of refining the mesh with bilinear elements,
it is better to increase the order of the basis to improve the computational effi-
ciency. As the order of element increases in the SEM space discretization, also
the memory consumption increases (see Figure 8). This, along with the fact
that the fourth order Runge-Kutta method is not very efficient in temporal
discretization for the element orders higher than r = 4, makes the element
orders r = 2, 3, 4 the most feasible choices for this kind of simulations.

In the last computational experiment, we test if the accuracy is maintained
when higher frequencies are involved. We solve the problem with angular fre-
quencies ω = {4π, 8π, 16π, 32π, 64π, 128π} by increasing the element order r
in both parts of the domain from 1 to 5. In these experiments, the resolution
of the spatial discretization per acoustic wavelength, that is, the number of
degrees of freedom, is r2π/hω ≈ 10. The time interval T = 2π/ω is divided
into N = 5(r+2) steps, each of equal size, to guarantee the stability condition
for each element order r. The errors between the control algorithm solution
and the analytical solution in domain Ωf is presented, as L∞-norm, with re-
spect to angular frequency in Figure 9. It is shown that for high frequencies
better accuracy is achieved when higher-order elements are used.
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Figure 7. CPU time in seconds consumed for solving the problem formulated by
the FEM space discretization with different mesh densities and by the SEM space
discretization with different element orders. The number of time steps is fixed to be
N = 180.
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Figure 8. Memory requirement, in kilobytes, for solving the problem formulated by
the FEM space discretization with different mesh densities and by the SEM space
discretization with different element orders. The number of time steps is fixed to be
N = 180.
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Figure 9. Errors, observed in domain Ωf , with respect to angular frequency.

7.4 Scattering experiments

In this section, we compare the simulation results with acoustic scattering by
a sound-soft obstacle with scattering by an elastic obstacle. If the scatterer
is assumed to be sound-soft, the obstacles are surrounded by the boundary
Γ0f . When an elastic obstacle is involved, the obstacles defining the scatterer
Ωs are surrounded by the boundary Γi. The obstacles are centered in the
computational domain Ω and located at the perpendicular distance of 1 from
the boundary Γef truncating the domain.
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In these experiments, we use the angular frequency ω = 4π, which implies
that the artificial boundary is located at distance of two wavelengths from the
scatterer. We consider the acoustic wave equation with an incident plane wave
implying yφext = (ω − ω · ns) sin(ω · x− ωt). Furthermore, there are no other
source terms in the systems (2)-(9) and (54)-(61), that is, fφ = 0, f = 0, and
gext = 0. Since the velocity is higher in the structure medium than in the fluid
medium, we need to use more time steps to satisfy the stability conditions when
the elastic obstacle is considered (see Table 2). The propagation direction is

chosen to be ω = ω
(
− 1√

2
, 1√

2

)
. We have set densities ρf (x) = 1 and ρs(x) = 2.7

and the propagation speeds c(x) = 1, cp(x) = 5.95 and cs(x) = 3.12.

The domain Ω with a square obstacle with side length 2 was defined such
that the surrounding boundary Γef coincided with the border of the square
[0, 4]× [0, 4]. In Figure 10, we present an example of the meshes for the fluid
domain and for the elastic obstacle with element order r = 1 and mesh step-
size h = 1/16. For these geometries, the number of degrees of freedom is

3
((

2r
h

+ 1
)2
− 1

)
in the fluid domain and 2

(
2r
h

+ 1
)2

in the structure do-

main. The simulation results with r = 3 and h = 1/28 are seen in Figure 11.
In this test, the number of degrees of freedom is 85680 in the fluid domain and
57122 in the structure domain.

(a) Mesh for the fluid domain. (b) Mesh for the elastic obstacle.

Figure 10. Matching meshes for the computational domains with r = 1 and
h = 1/16.
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(a) Sound-soft convex obstacle. (b) Elastic convex obstacle.

Figure 11. Scattering by a convex obstacle with r = 3 and h = 1/28.

(a) Sound-soft non-convex semi-open obsta-
cles.

(b) Elastic non-convex semi-open obstacles.

Figure 12. Scattering by a system of two non-convex semi-open obstacles with r = 3
and h = 1/28.
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Table 2
Mesh stepsizes and number of time steps for different spectral orders with ω = 4π.

r 1 2 3 4 5

Mesh stepsize h 1/80 1/40 1/28 1/20 1/16

Number of time
steps N

sound-soft obstacle 60 100 140 150 150

elastic obstacle 300 360 480 540 600

(a) Sound-soft non-convex semi-open obstacle.

(b) Elastic non-convex semi-open obstacle.

Figure 13. Scattering by a non-convex semi-open obstacle with r = 3 and h = 1/28.

Scattering by two semi-open obstacles (see Figure 12) is solved in a domain
with the artificial boundary Γef coinciding with the perimeter of the rectangle
[0, 5] × [0, 4]. The internal width and the height of each obstacle is 3/4 and
5/4. The thickness of the wall is 1/4, and the distance between the obstacles
is 1. The number of degrees of freedom is 137

8
r2

h2
+ 63

4
r
h
− 1 in the fluid domain

and 13
4
r2

h2
+ 14 r

h
+ 4 in the structure domain. The simulation results with r = 3
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Table 3
The number of iterations of the preconditioned CG algorithm with different scat-
terers.

Element order r

Geometry and type of the obstacle 1 2 3 4 5

convex obstacle (square) sound-soft 59 75 74 76 75

elastic 111 115 107 107 109

non-convex semi-open obstacle sound-soft 211 300 301 300 299

elastic 189 188 188 188 188

two non-convex semi-open obstacles sound-soft 123 146 145 145 145

elastic 133 165 163 144 164

and h = 1/28 are presented in Figure 12. The number of degrees of freedom
is 122156 in the fluid domain and 24112 in the structure domain.

In simulations with one non-convex semi-open obstacle (see Figure 13), the
shape of the object resembles a tuning fork. The lower left corner of the rect-
angular computational domain surrounding the obstacle is at the point (0, 0)
and the upper right corner is at the point (7.25, 3.75). The internal width
and the height of the obstacle are 5 and 5/4, and the thickness of the wall is
1/4. The number of degrees of freedom is 97

4
r2

h2
+ 23 r

h
in the fluid domain and

47
8
r2

h2
+ 24 r

h
+ 2 in the structure domain. The simulation results with r = 3 and

h = 1/28 presented in Figure 13. The number of degrees of freedom is 173040
in the fluid domain and 43472 in the structure domain.

As we can see from the results presented in Table 3, the number of itera-
tions is substantially smaller in the case of convex square scatterer than in
the cases of non-convex scatterers. Further, in all the experiments it appears
that preconditioning keeps the number of CG iterations bounded with re-
spect to r. Numerical solutions with r = 3 are illustrated in Figures 11-13.
The acoustic part of the solution is presented as the contour lines of the real
part of the velocity potential in the fluid domain, whereas the elastic part
of the time-harmonic solution is demonstrated as a combination of the real
part of the time-harmonic displacement vectors and the displacement ampli-
tudes, expressing the euclidean norm of the real part of the displacement in
the structure domain. As we can see, there are differences in the wave motion,
especially on the backside of the scatterer, depending on whether the scatterer
is modeled as a sound-soft or an elastic obstacle.
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8 Conclusions

Solving the time-harmonic problems was accomplished by using the time-de-
pendent equation and utilizing the exact controllability method by following
the idea of Bristeau, Glowinski, and Périaux. That is, complex-valued indef-
inite linear systems were not involved. The main idea of the method was to
find such initial conditions that after one time period the solution and its time
derivative coincide with the initial conditions.

We reformulated the controllability problem as a least-squares optimization
problem and used a preconditioned conjugate gradient algorithm for solving
the time-harmonic problem via transient equations. First, we discretized the
wave equation and the objective function. Then, we computed the gradient di-
rectly for the discretized problem by following the adjoint equation technique.

We concentrated on the symmetric system of equations coupling the displace-
ment in the structure domain with the velocity potential in the fluid domain,
and applied the corresponding natural energy formulation for an objective
function to be minimized. Significant improvements are obtained by using the
symmetric approach compared to the non-symmetric one. Thus, the objective
function is shown to play a key role in the efficiency of the method.

The simulation results show that the number of iterations required to attain
the stopping criterion is independent of the element order. A certain difference
between the scattering simulations of sound-soft and elastic obstacles was
discovered. Hence, accurate results can not be achieved if elastic obstacles
are approximated as sound-soft scatterers in the fluid-structure simulations.

The validation of the accuracy of the control approach is done by comparing
the results with a known analytical solutions. The accuracy of the spatial
discretization is shown to increase with the element order until an error factor,
such as time discretization or a stopping criterion, disturbs the approach.
The computational effort of the method seems to have linear dependence on
the number of optimization variables. For high-frequency problems, better
accuracy is achieved when higher-order elements are used.
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[10] E. Heikkola, S. Mönkölä, A. Pennanen, T. Rossi, Controllability method for the
Helmholtz equation with higher-order discretizations, Journal of Computational
Physics 225 (2) (2007) 1553–1576.
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