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Abstract

A multi-cube method is developed for solving systems opéttiand hyperbolic partial dier-
ential equations numerically on manifolds with arbitrapagal topologies. It is shown that any
three-dimensional manifold can be represented as a seneéverlapping cubic regions, plus a
set of maps to identify the faces of adjoining regions. Theedéntial structure on these mani-
folds is fixed by specifying a smooth reference metric tendi@atching conditions that ensure the
appropriate levels of continuity andftérentiability across region boundaries are developed for
arbitrary tensor fields. Standard numerical methods areuked to solve the equations with the
appropriate boundary conditions, which are determinenhftioese inter-region matching con-
ditions. Numerical examples are presented which use psspeictral methods to solve simple
elliptic equations on multi-cube representations of mald# with the topologied 3, S? x St
andS3. Examples are also presented of numerical solutions oflsitmgperbolic equations on
multi-cube manifolds with the topologi€®x T3, Rx S? x St andRx S°.

Keywords: topological manifolds, numerical methods, partidfetiential equations

1. Introduction

The need to solve partialfiiérential equations on manifolds having non-trivial sgatipolo-
gies arises in many areas of physical science: from model®ohholes or the global structure
of the universe in general relativity theory to global clation models of the earth’s atmo-
sphere in meteorology and climatology. This paper devefiypstical methods for solving a
variety of partial dfferential equations on manifolds having arbitrary spatipbtogies. Every
n-dimensional manifold (by definition) can be mapped locaip a portion ofn-dimensional
Euclidean spaceR". A number of diferent numerical methods are capable of solving partial
differential equations locally on open subsetdR8f The topological structure of a manifold,
however, &ects the global solutions to partialfidirential equations in profound ways. This
paper develops methods for fitting together local solutiatgained from standard numerical
methods, to form the desired global solutions on manifoldk @arbitrary topologies. The dis-
cussion here focuses on solving elliptic systems of eqnatim three-dimensional manifoléls
with arbitrary topologies, and also hyperbolic systemsaqfations on four-dimensional mani-
folds with topologieR x X.

Solving partial dfferential equations numerically on manifolds with arbireopologies re-
quires the creation of computational infrastructures @mejthose needed to solve the equations
numerically on open subsets Bf') that meet two basic requirements. The first requirement is
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that the manifold must be represented in a way that allowpdthets in the manifold, and the
values of scalar and tensor fields defined at those points teferencedféciently in a way
that respects the underlying topological structure of tlamifiold. The second requirement is to
create a way to specify the globafigirential structure of the manifold, i.e. the computational
method must provide a way of representing globally contirsuand dfiferentiable scalar and
tensor fields on these manifolds. The goal here is to deveakgipal methods that can be used
on arbitrary manifolds by a wide range ofiirent numerical methods.

The first requirement is to find a systematic way of represgntianifolds with arbitrary
topologies. Every-dimensional manifold can be mapped locally into a portibn-dimensional
Euclidean spac®". For computationalféiciency (and to avoid certain types of numerical in-
stabilities) each manifold is represented here by a catleaf non-overlapping-dimensional
cubes which cover the manifold, plus a set of maps that iffethie faces of adjoining-cubes.
This decomposition is analogous to representing a man#sld collection of non-intersecting
n-simplexes (i.e., triangles far = 2 and tetrahedrons far = 3) that cover the manifold, plus
maps that identify neighboring faces. Many numerical mégh@ncluding the pseudo-spectral
methods used to produce illustrative examples for this page easier to use in computational
domains based amcubes rather tham-simplexes. Points in each of thecube regions are iden-
tified by local Cartesian coordinates, and these coordirerezused to represent the solutions to
the diferential equations in eachcube. This type of representation has been used for soree tim
in numerical methods for solving partialtérential equations on a tWO-SthEH]]DZ, 3], and also
in three-dimensional manifolds that are subsellégqa,BBD[BEbEO]. Those ideas are gener-
alized in Sed. 12, and it is shown that these generalizatiande applied to two-dimensional or
three-dimensional manifolds having arbitrary topologiExamples of these multi-cube repre-
sentations are given A for the three-dimendioranifolds with the topologie$?,

S? x St, andS?®.

The second requirement is to develop a method of represge(dtreast in the continuum
limit) continuous and dferentiable tensor fields on the multi-cube representatbnsanifolds
developed in Se€l] 2. Representing tensor fields within efittlem-cube regions is straightfor-
ward: their components can be expressed in the tensor besmsated with the local Cartesian
coordinates. These tensor components are functions & twmsdinates, and their continuity (or
differentiability) determines the continuity (orfidirentiability) of the tensor field itself. In gen-
eral, however, the coordinate tensor bases associatedliffithentn-cube regions are not even
continuous (and can not be made continuous globally) a¢chesmterfaces that join them. The
problem of defining the continuity andft#rentiability of tensor fields acrosscube interfaces
is therefore non-trivial. The method introduced here makes of a smooth reference metric
tensor. This reference metric must be supplied (along kighcollection ofn-cube regions and
the associated interface maps) as part of the specificatiarparticular manifold. This metric
is used to construct geometrical normal vectors at eachfacie, and these normals are used to
construct the Jacobian matrices that map vectors (andri®@resoss interfaces. Thefldirentia-
bility of tensors across the-cube interfaces is defined in terms of the continuity of theaciant
derivatives of those tensors, using the covariant devieassociated with the reference metric.
The details of these continuity andfi@irentiability conditions are given in Sdd. 3. Examples
of reference metrics which can be used to implement thestncity and diferentiability con-
ditions are given ifi Appendix JA for the three-dimensionalnifiids with the topologie§ 3,

S2 x S, andS®.

Systems of dterential equations can be solved numerically on multi-a@peesentations

of manifolds by fitting together local solutions from eatlcube region. The appropriate local
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solutions are determined in each region by applying theecvtvoundary conditions on the
cube faces. The appropriate boundary conditions are the thaé enforce the needed level of
continuity and diferentiability of the global solution at the region bounedari These boundary
conditions are developed in S&¢. 4 for second-order styagitiptic systems, and also for first-
order symmetric hyperbolic systems of equations. Thesady conditions select the unique
local solution in a particulan-cube that equals the desired global solution in that regidre
collection of local solutions to the equations construdtettis way provides the desired global
solution.

The multi-cube method of solving systems of partidgtetiential equations numerically on
manifolds with non-trivial topologies is illustrated hdsg solving a series of test problems in
Secs[b anfl6. Simple second-order elliptic equations, asddiider symmetric hyperbolic
equations, are solved numerically on manifolds with spatipologiesT3, S? x St, andS®.
These tests use pseudo-spectral methods to produce Idetbss on each cubic region. The
results are shown to converge exponentially (ilAmorm) to the exact global solutions (which
are known analytically for these test problems) as the numigrid points used for the solution
is increased.

2. Building M ulti-Cube Manifolds

This section describes hawdimensional manifolds can be represented using the rouitte
method. The idea is quite simple:dimensional multi-cube representations of manifoldsstsin
of a set of non-overlapping-cubes that cover the manifold, plus a set of maps that ifyenti
the boundary faces of neighboring cubes. An argument isepted in Sed_2]1 that all two-
dimensional and all three-dimensional manifolds (withitaaloy topologies) can be represented
in this way. A large class (but not all) higher-dimensionahifiolds can also be represented using
this multi-cube method. The multi-cube method provides & afarepresenting manifolds that
facilitates the design of computational tools for solviraytfal differential equations on them.
A simple infrastructure is introduced in Séc.12.2 for systéoally building, referencing and
identifying the faces of the needed setsiafubes in these manifolds. Theseube regions are
joined together to form the desired topological manifolthgsmaps that identify points on the
faces of neighboring-cubes. A simple framework for building and referencingsthenaps is
presented. Only a small number of topologically distincpsiare needed for the case of three-
dimensional manifolds (the main focus of this paper), ahdfahose maps are given explicitly.

2.1. Existence of Multi-Cube Representations

This subsection considers the question of whether two-taea tdimensional manifolds with
arbitrary topologies admit multi-cube representationise Tirst step is to show that every two-
manifold is homeomorphic to a set of squares (i.e. 2-cublesdgtogether along their edges.
The proof is based on the result of Ra(Lﬂ [@, 12] that all dimensional manifolds admit
triangulations, i.e. that any two-manifold is homeomocpioi a set of triangles glued together
along their edges. It is easy to show that a simple refinemeahy triangulation on a two-
dimensional manifold produces a multi-cube representaifchat manifold. As illustrated in
Fig.[, let points “A”, “B”, and “C” denote the vertexes of onéthe triangles in the triangulation.
Add the midpoints of each edge of this triangle as additimealexes, labeled “ab”, “bc”, and
“ac” in Fig.[d. Next, add the centroid of the triangle, the mdabeled “d”, and finally add
as additional edges the line segments that connect “d” Wwigthmidpoints “ab”, “bc” and “ac”.



The resulting complex consists of three quadrilaterals. elvall of the triangles in a given
triangulation are refined in this way, the result is a multbe representation of the two-manifold.
The refinement consists of a set of quadrilaterals that aiedglogether edge to edge. Since the
additional edge vertexes, “ab”, etc. are always added agéloenetrical midpoints, the edges
of neighboring quadrilaterals constructed in this way aiWays coincide. These quadrilaterals
are homeomorphic to squares (2-cubes). So the topolodicatsre of a two-manifold can be
thought of as a collection of non-overlapping 2-cubes tbaecthe manifold, plus a set of maps
that identify the edges of adjoining 2-cubes.

ac

ab
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Figure 1: Each triangle in a triangulation of a two-dimensiomanifold is refined by the addition of extra vertexes and
edges to produce three quadrilaterals. This is done by fidihg as new vertexes the midpoints of each edge, i.e. the
points “ab”, “bc” and “ac” in the figure on the left. Next therteoid of the triangle, i.e. the point “d” in the figure on
the right, is also added as a new vertex. Finally the line segsthat join “d” to the midpoints “ab”, “bc”, and “ac”, the
dashed lines in the figure on the right, are added as new edges.

A similar argument shows that every three-dimensional folhhas a multi-cube represen-
tation, i.e. that every three-dimensional manifold is homerphic to a set of non-overlapping
“distorted” cubes glued together at their faces. The predidsed on a result of Moiéaf%fm]
that all three-dimensional manifolds admit triangulatidoy tetrahedrons, i.e. that any three-
dimensional manifold is homeomorphic to a set of non-oygriiag tetrahedrons glued together
at their faces. It is easy to show that any tetrahedron carebendposed into four “distorted”
cubes glued together at their faces. (The term distorte@ ulised here to describe a solid
having six faces, each of which is a plane quadrilateral $tddied cubes are homeomorphic
to geometrical cubes. It follows that every triangulatidradhree-manifold can be refined (by
adding appropriate vertexes, edges and faces) to obtaiftaaube representation, i.e. a set of
non-overlapping distorted cubes glued together at thegda This argument demonstrates the
existence of multi-cube representations for any threeedsional manifold.

The key to this argument is the representation of a singlattetron as four distorted cubes
glued together. This can be done by refining the tetrahednmugh the addition of vertexes,
edges and faces as summarized in Elg. 2. Begin with a tetrah&dth vertexes labeled “A’,
“B”, “C”and “D". First add vertexes to the midpoints of eactige, plus vertexes to the centroids
of each face, the points “a”, “b”, “c” and “d” shown in the togft of Fig.[2. Adding the extra
edges connecting “a”, “b”, “c” and “d” to the midpoints of édaedge of the original tetrahedron
completes the decomposition of each face into a set of tist@quares. Add one last vertex at
the centroid of the tetrahedron, labeled “O” in the top righFig.[2. Connect “O” to the facial
centroids, “a”, “b”, “c” and “d”, by adding the edges showndesh-dot line segments in the top
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right of Fig.[2. Finally add the six internal quadrilaterat&s that include the point “O” as an
edge vertex. These additional vertexes, edges, and fadds the tetrahedron into four volume
regions (one adjacent to each tetrahedron vertex). Therhait Fig[2 shows these four regions
more clearly. The regions adjacent to the vertexes “A” antidf@ shown with opaque faces,
while those adjacent to “B” and “D” are shown with transparfaces.

D D

Figure 2: Top Left: Label the vertexes of the tetrahedron “8”, “C” and “D”. Add vertexes at the midpoints of each
edge, and additional vertexes at the centroid of each fatteedetrahedron, labeled “a” for the centroid of face “BCD”,
“b” for face “ACD”, etc. Also add additional edges (shown aasHed line segments) connecting each centroid to the
midpoint of each adjoining edge. Top Right: Add one addailorertex, labeled “O” at the centroid of the tetrahedron.
Add additional edges (shown as dash-dot line segments3dhatect “O” to the centroids of each face, and six additional
faces that include “O” as a vertex. Bottom: Four “distortedbes that make up the tetrahedron are illustrated. The two
cubes adjacent to vertexes “A” and “C” are shown with opaduagled faces, while the faces of the cubes adjacent to “B”
and “D” are transparent.

Each of the four volume regions constructed above has sésfand each of these faces has
four edges and four vertexes. These faces are thereforeilgacls. It only remains to show
that these quadrilaterals are planar. Call two edges ofrigeal tetrahedron “complimentary”
if they do not intersect at a vertex, e.g. the edges “AC” an®™Bre complimentary. Now
consider the six bisecting planes of the tetrahedron, eaeliasmed by an edge and the midpoint
of the complementary edge of the tetrahedron. Each biggptime passes through the midpoint
of the complementary edge, the centroid “O”, as well as tlo@afaentroids of the two faces
adjacent to the complementary edge. For example, the biggdine formed by the edge “AC”
and midpoint “bd” intersects “O” as well as the facial ceidso“a” and “c”. The quadrilateral
formed by the vertexes “bd”, “a”, “O”, and “c” is therefore &apar quadrilateral. It follows that
each of the faces of the four volume regions is a planar glaaeiral, and therefore each volume
region is a distorted cube.

The vertexes added in this construction were placed at themggic centroids of the trian-



gular faces, and at the centroid of the original tetrahedfére edges added in this construction
were also placed in geometrically determined ways: all efittalong one of the bisecting planes
of each edge of the original tetrahedron. These geomdiricahstructed features will therefore

match on the triangular boundaries between neighborimghetirons in any triangulation of a

three-dimensional manifold. It follows that the distortedbes constructed in this way will match

face-to-face across all the tetrahedron boundaries agreelfor a multi-cube representation of

the manifold.

2.2. Infrastructure for Multi-Cube Manifolds

Now turn to the problem of finding a systematic way of congtngcmulti-cube manifolds.
The goal is to develop methods that can be used as part of thputational infrastructure
for solving systems of partial fierential equations on such manifolds. The discussion here
is focused on three-dimensional manifoldsbut generalizations to other dimensions should
be fairly straightforward. Le3 denote a collection of geometrical cubic region®Rh The
subscripta = {1, ..., N} is used to label the individual regioﬂsThese cubes are used here as the
domains of coordinate charts for the multi-cube represemafX. LetW, denote the invertible
coordinate map that takes the regiBp into a subset ok: Wa(8a) c Z. It will be useful to
denote the boundary faces of these regionRiras d,8a, wherea = +x denotes the faces
intersecting theex axesa = +y the faces intersecting they axes, etc.

The discussion above shows that every three-manifold cacobered by a collection of
non-overlapping cubesua¥a(Ba) = . Non-overlapping here means that the images of the
regions are non-intersectinga(8a) N Ye(Bs) = 0, for points in the interiors 0B, and Bg
when azg. It is convenient to choose the regioftg in R® to be scaled so they all have the
same sizé, and are all oriented along the same global Cartesian auatalaxes ifR°. In this
case the regiom, is completely determined therefore simply by specifying fibcation of its
centeréa = (C%a, A, C%a) in R®. It is also convenient to arrange the regiddsin R® so they
intersect (if at all) inR® only at points on faces whose images also intersekt im the multi-
cube representations of manifolds satisfying these cimmdit each point in the interior of the
regions represents a unique poinkirand each point i is the image of at least one point in the
closure ofupBa. The Cartesian coordinates&f therefore provide a global way of identifying
points inX. Tensor fields are represented on these multi-cube masifyl@jiving the values of
their components (expressed in the coordinate bas®)afs functions of these global Cartesian
coordinates.

A multi-cube manifold consists of a set of cubic regiof#a, for A = {1, ..., N} that can be
specified simply by giving the locations of their centéks along with a set of rules that deter-
mine how the faces of these cubes are to be identified with nathar. When points on the
images of two boundary facé(d,8,) and¥g(0sBg) intersect in%, then the associated coor-
dinate charts provide an invertible map from one boundary fa the otherd,Ba = ‘Pég(aﬁBB)

Where\P’gg = ‘P,;l o Wg for points on the), B anddsBg faces. Since the cub&s have uniform
size and orientation iR®, there are only a small number of simple m&@ needed to represent

all the topologically distinct ways of mapping one face oatmther. It is sfiicient to consider

1The term region in this paper is used to refer to the cébethat form the basic topological structure of the manifold.
It might be useful for computationatieciency to subdivide some (or all) of the cubic regions int@ection of smaller
cubes, e.g. by cutting a cubic region into two, four, or eigmialler cubes. Those smaller cubic subsets ofBhare
referred to as subregions.



maps that identify the faces of two cubic region first by rigittanslating so the centers of the
facesd,Ba anddsBg coincide, and then rigidly rotating afat reflecting to align the two faces
in the desired way. Thus it is fiicient to consider the simple ma}i’%g that take the Cartesian
coordinateséB of points indgBg to the Cartesian coordinatei§ of the corresponding points in
0.8 in the following way,

Xy = Cp + Ty + Chal(x4 — ch — 1)), (1)

The vectorGa + ff, is the location of the center of th&, B, face, andcg” is the combined
rotation and reflection matrix needed to achieve the desiriethtation. Examples of the use of
these methods is given[in Appendi¥ A where explicit multbewepresentations are constructed
for manifolds with the topologie§?, S? x St andS?®.

Multi-cube manifolds are specified by giving the list of ctibégionsBa needed to cover the
manifold, the vectorg, that determine the locations of their centersRh) and the map¥4?
that determine how the regions are glued together. These,dafined in Eq[{1), depend on the
vectorsé, andf,, and the matriﬁ’gg, so these quantities must all be specified to determine each
map. The vectof, is the position of the center of theface relative to the center of the region.
Since the cubic regions are chosen to have uniform sizesr:imutaiions,f; has the same form
in each cubic region:

f.x = 1L(+1,0,0),
fiy = 1L(0.£10). (2)
f., = 1L(0,0,+1),

wherel is the size of the cubes. Since all of the cubic regions agmatl, the class of pos-
sible rotations and reflections needed @Qg is quite small. These can all be constructed by
combining 90-degree rotations about the normal to one ofabes,R,, with mirror reflections
about some (possibly fierent) directionMg. Table[1 gives explicit expressions for the ma-
trices that describe these elementary rotations and riefiscin three dimensions. The most

Table 1: Elementary Transformations

a = +X @ ==ty o ==xZ
1 0 O 0 0 #1 0O F#1 O
R, 0O 0 %1 0O 1 0 +1 0 O
0 1 O F1 0 O 0O 0 1

-1 0 0 1 0 O 1 0 O

M, 0O 1 0 0 -1 0 01 O
0O 0 1 0 0 1 0 0 -1

general transformation of one face onto another can be rmtest! by taking products of these
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elementary transformations. The group of poss in three dimensions generated in this
way is therefore the octahedral symmetry groOp, which has 48 distinct elemeng_[14]. The
orientation preserving subgroup generated by the rotatidone has 24 elements. Note that
R, -R_, = R = M2 = |, wherel is the identity matrix. Since the number of possible m#
constructed in this way is so small, it is easy to write a flexitode that is capable of setting
up the multi-cube structures and all the needed gluing mapthfee-manifolds with arbitrary
topologies.

3. Specifying Differential Structureson Multi-Cube M anifolds

This section describes a practical arfliaient way to defineCk differential structures on
multi-cube manifolds. It is useful to begin with a brief dission of the traditional way such
structures are defined. Thefférential structure on a manifold provides the frameworkdeele
to represent dierentiable scalar and tensor fields on that manifold. Thalusethod of spec-
ifying a differential structure is to cover the manifold with a set of tgping domainDa,
and set of map¥'a that assign coordinates to the points in each dom&i(D,) c R". These
coordinate maps provide aftéirential structure for the manifold if they have the propéiiat
the composition map‘ai"g = T,;l o T are diferentiable (oICk*1) transformations from the co-
ordinates of one patch to the other for points in the oveflapn Dg. The Jacobian matrices
associated with these coordinate transformatlt@?& 6xiA/6xé3 determine the transformations

for CK differentiable tensors from one coordinate representationdthar in these overlaps.

It is possible to use the traditional method of defininffetential structures on multi-cube
manifolds, but to do so requires that non-trivial additiiosteuctures must be added to the basic
multi-cube construction (since the domains that definelthaic structure do not overlap). The
most straightforward approach would be to require that eachi-cube manifold be provided
with an additional set of overlapping domaifs > ¥a(B4) and a set o€¥*! related coordinate
mapsY 4 for the new overlappin@®, domains. An alternative, more minimalist, approach would
be to require that suitable Jacobian matridgg, in addition to the connection maﬁ%g, be
provided on each interface between regions in multi-cubgifolals. This minimal structure
would provide the transformations needed to defiketkntiable scalar and continuous tensor
fields on these manifolds. IE%*! differentiable scalars o2 differentiable tensor fields are
needed, then in addition a7, all of their k" order derivativesiJ5; would also have to be
specified on each interface between regions.

It might seem redundant and unnecessary to require thahtubihn matriceslé”i. and their
derivatives be specified on the interfaces in multi-cubeifolds, in addition to the interface
coordinate mapsl”gg defined in Eq.[{lL). After all, the Jacobian matrices assediatith those

interface mapsJ4st = Ca%t, and their derivativesiscJgs) = dekCpy; = 0, could be used to trans-
form tensor fields at the boundary interfaces. Unfortuydtes easy to see that the coordinate
maps¥a used in Sed.]2 to construct the multi-cubes are not suitaislednstructing a global
Ck differential structure on most manifolds. If they were, the dasctorsd, associated with
these coordinates would be smooth global non-vanishingwéelds. These vector fields could
be used in this case to construct a global smooth flat metrtb@manifold. Since most mani-
folds do not admit global flat metrics, the existence of a cletepset of smooth non-vanishing
coordinate vector fields can not exist on most manifoldsufei@, drawn from the perspective
of a smooth coordinate patch that covers both sides of arfaete boundary, illustrates how

the multi-cube coordinates in neighboring regions can beicoous while failing to be dier-



entiable across region boundaries. The coordinate regjoon the left, matches to coordinate
regionB; on the right across th¥; = X; interface in Fig[B. The coordinate vectors tangent to
this interface, e.gdy, anddy,, are continuous across this interface, while those noetaitg the
boundary, i.edx, anddy,, are discontinuous there.

Figure 3: Maps¥a define continuous but (typically) nonftrentiable transitions between cubic regions. This exampl
shows that the basis vectors tangent to the boundaranddy,, are continuous, while those not tangent to the boundary,
dx, anddy,, are not.

Both approaches described above for specifyirfigential structures on a multi-cube man-
ifolds require that a great deal of extra structure be predidrhis paper proposes a third, more
elegant and moreflecient, approach that can be incorporated more easily igtocdmputational
infrastructure for solving partial ffierential equations numerically. Every manifold witlCt
differential structure admits a symmetric positive defi@itelifferentiable metric tensg;. The
method proposed here for specifying the globdlledential structure on a multi-cube manifold
requires that the components of (any) one of the$elifferentiable reference metricg,;, be
provided in the global Cartesian coordinate basis used finedthe multi-cube manifold. The
components of this reference metgig will be C* functions of the multi-cube Cartesian coordi-
nates within each regiaBa, but will (in general) be discontinuous across the intexfdoetween
regions. The only requirement on this reference metricasitmust be sfiiciently smoothC¥,
when represented in a glob@¥*! coordinate atlas. The ! coordinate chart¥'s themselves
need not be given as part of the specification of the multeaulanifold. Their only use in this
method is to ensurapriori that the reference metric meets the needed smoothnessamgunis.

Once a suitable reference metgg is provided, it is straightforward to construct the Jaco-
bian matricesJ42! and the dual Jacobian matricégf' needed to transform continuous tensor
fields across the interface boundaries in multi-cube matsfoAssume that thé, 8, bound-
ary of regionB, is identified with thedzBg boundary of regior8g by the map‘I’gg given in
Eq. (1). The transformation taking the regifg representation of a vectu'g into the regiorBa
representatios, at one of these identified boundary points is an expressitimedbrm

Vi = JRsivE, 3)

WhereJQg} is in effect the Jacobian matrix of the transformation. The analsg@nsformation
law for covectorswg; is,

Wa = Jp wej, (4)
Where\],’;f:fj is in effect the dual Jacobian matrix.
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Let ga; denote the coordinate components of the reference metiiieimulti-cube coordi-
nate basis of regiof3,, and letna,; denote the outward directed normal covector to the surface
0.8a. This interface is a surface of constant coordingteso the geometrical normal covector
is proportional taa; xx. The normal covector is therefore given by

iﬁ/_\ixa
Nani = k—A (5)
GADA X0,

wheregiAj is the inverse of the reference metyig;. The sign is chosen in this expression to make
Naei the outgoing unit normal. The unit normal vecn'g[y is related tana,; by niA” = gi/inAm-,.

The Jacobian matrices needed to transform vectors and tcosdaend therefore any type
of tensor field) across boundary interfaces are simple fomgtof the quantitieé:égij andCEfii’
(which define the identification maﬁ%g), as well as the normals to the boundary surfa);g,

NAgi» n'Bﬁ andngg;:

Aai Adi [k Kk i

Jas; = Chi (5 i nBﬁnBﬁj) = M, Negsis (6)
«BBj Kk K BBi i

JAa/ligJ = (6I — Naqgi nA”) CAijJ( - nminéﬁ. (7)

The Jacobian matrices defined in Eg$. (6) &md (7) are the emiges with the properties:
a) They map the geometrical normai§ﬁ into —n,, andngg; iNto —Npyi,

Maa = —J86 N (8)
Naei = —J;f\?f]ngﬁj, (9)

(i.e. the outward directed normal of one region is identifiéth the inward directed normal of
its neighbor).

b) The Jacobian matrix&l% transforms any vectadt tangent to the boundary (i.e. any vector
satisfyingt'n; = 0) using the continuity of th&’@g maps:

th = JENtd = Coita (10)

¢) The Jacobian matrixég} and its duall;*" are inverses

Sy = Jha I (12)
This last property ensures that tensor contractions amedransform properly under these
boundary interface mappings.

The Jacobian matrices constructed in Egs. (6) Bhd (7) usmglentification map&’@;‘; and
the reference metrig;; define the transformations needed to connect arbitrarptdiedds across
the interface boundaries of multi-cube manifolds. Theaedformations make it possible there-
fore to define what it means for a global tensor field to be catiis on multi-cube manifolds: A
tensor field is continuous on a multi-cube manifold if its tralibe coordinate components are
continuous within each regidfa, and if its multi-cube coordinate components at each iaterf
boundary point are equal to the transform of its componeota the neighboring region.
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The reference metric can also be used to define a smooth damec
T = 39° (ngfk + 0kQrj — 5€9jk), (12)

that can be used to define a covariant derivative opeRatorhis covariant derivative is related
to the coordinate partial derivatives (within each regi8y) by the usual expressions for the case
of vectors and covectors:

ViVl = g+ T (13)
Vin = 6in - r:(jWk. (14)
The covariant gradients of tensors, elgv! andV;w;, are themselves tensor fields. Therefore

they are transformed at interface boundaries using thebEtmatrices defined in Eqg] (6) and
(@) as well. Thus, for example, the gradients of vectors avectors transform as,

Vavh = o IeIVes, (15)
VAiWAj = JZE?kJZE'I;KVBkWBf. (16)

Using these transformation laws it is straightforward téreeewhat it means for a global tensor
field to be diferentiable on a multi-cube manifold: A tensor field iffelientiable if the tensor
and its covariant gradient are continuous everywhere dietpacross all multi-cube interfaces.
The concept oCX tensors can be built up in a straightforward way simply byrigk!" order
covariant gradients of tensors and demanding that the temsball gradients up througki"
order be continuous global tensor fields.

The addition of a smooth (i.eC* differentiable) positive definite reference megigthere-
fore provides all the additional information needed to defirglobalC differential structure on
any multi-cube manifold.

4. Interface Boundary Conditionsfor Multi-Cube M anifolds

The multi-cube representations of manifolds provide atralframework in which to solve
systems of partial dierential equations numerically on manifolds with nonitigpatial topolo-
gies. The idea is to solve those equations on each of the cefionsB, separately, using
boundary conditions on the facé8sBa that ensure the combination of local solutions from each
region satisfies the system of equations globally—inclgdinthe boundaries. Solvingftr-
ential equations using multi-patch methods is a commontigeim computational physics on
manifolds that are subsets Bf [E] BB,D’,DSEBIEO]. Such methods are used for example in
the pseudo-spectral code SpEC (developed by the CARleniell numerical relativity collabo-
ration [15/ 16/ 17, 18, 19]) to solve Einstein’s equationke Tulti-cube framework developed
here extends the class of problems accessible to such cgdsolwing them to solve prob-
lems on computational domains that can not be covered bygesgiobal coordinate chart.
This generalization provides a method of solvinfietiential equations on two-dimensional and
three-dimensional manifolds with arbitrary topologiesaddition to a very large class of higher
dimensional manifolds. The code changes needed to impletmese more general multi-cube
methods require fairly minor generalizations of the way fdary conditions are imposed at
the interfaces between cubic regions in standard multifpabdes. The needed generalizations
are described here in some detail for second-order queesalistrongly-elliptic and first-order
symmetric-hyperbolic systems of equations.
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4.1. Interface Boundary Conditionsfor Elliptic Systems

A second-order quasi-linear strongly-elliptic system gtiations for a collection of tensor
fieldsu”™ can be written in the form

Vi [M*g(u)Vir®] = F¥(u, Vu), (17)

whereV; is some covariant derivative operati*”3(u) may depend on the fields but not their
derivatives, andr%(u, Vu) may depend on the fields and their first derivatives. Th@strilexes

4, 8, ¢, ... in these expressions label the components of the tiolkeof tensor fields that make
up u™. Such a system is strongly elliptic if there is a positive nigdi metric on the space of
fields, Sz, a positive definite spatial metrig)], on the manifold (e.g. the reference metric used
to define the multi-cube structure) and a positive cons@nt,0, such that

WWMI € 7S vIVE > C glwjwy Sap vVIVE (18)

for everyv™ and everyw; [@].

All di fferentiable soltuions to second-order elliptic systemsisftype are smooth, assum-
ing the quantitiesvl 'y andF? are smooth@O]. Boundary conditions for these equations at
internal inter-region boundaries are therefore quite &mhe solutionsu™ and their normal
derivativesn'V;u” (wheren' is the normal to the boundary) must be continuous when trans-
formed appropriately across inter-region boundaries.

These continuity conditions can only be imposed at thefiaerboundaries by transforming
the fieldsu”™ computed in one regiog, into the tensor basis used by its neighboring regi?n,

The fieldsu™ are (by assumption) a collection of tensor fields whose corapts are transformed
across region boundaries using the Jacobian as defined ir{@gmd [#). Thus the fields}
(expressed in the tensor basis associated with the cotedixiafrom the regiorBg) are related
to the fieldsuf (in the tensor basis associated with the coordinﬂ,];e‘som the regiorB,) by a
transformation of the form,

ud = 77 ug, (19)

whereJ 7% is the multi-component Jacobian appropriate for each tepeit of u?. For exam-
ple, a system whose fields consist of a scalar, a vector, angecoru® = {y,Vv,w}, would
transform as follows,

T 75§ = s, IV, LFwe). (20)

The boundary conditions for second-order elliptic systeiss place conditions on the nor-
mal derivatives of the fields)V;u”. The covariant gradient of a tensor field is itself a tensor
field, so these gradients are transformed across regiordaoies by an equation analogous to

Eq. (19):
VAl = 33 g7vgus. (21)

It may be more convenient in some cases to impose the needéduity conditions on the par-
tial derivativesn'd;u”, rather than the covariant derivatives of the field¥,;u”. The interface
boundary transformations needed in this case are easy aindbom Eq. [21): the covariant
derivativesVax and Vg that appear in this condition are re-expressed in terms efptrtial
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derivativesia anddy,i, and the connection c(*]“ﬁ:ientsl",Ljk andl"iBjk. For the case of vector and
co-vector fields, the resulting partial derivative tramsiation laws are given by,

i *BBL i j «BBL i i j
Oy = Jpy J5at Oeev + (Jpcy IhenThes — Ja7 Tagn) Vs (22)
*BBC 1+xBBj *BBC 1xBAN | *BBj
OAWA = ‘]Aozﬁ ‘]Amﬁl dBVBj — (‘]Aaﬁ JAj rém - ‘]Azyﬁ] rRki)WBi' (23)

The needed interface boundary conditions for second-ettijgtic systems can now be stated
precisely: LetBa andBg represent cubic regions whose fadg$a anddgBg are identified. Let
u andug' denote the fields evaluated in the cubic regiBasand Bz respectively. The required
interface boundary conditions can then be written as,

ug = J %A ug, (24)
to be imposed on the boundary fagg8s, and the equation,
MVAUD = a7 7, Ve, (25)

to be imposed on the boundary fageBa.

The required continuity conditions can be imposed numbyibg replacing the elliptic sys-
tem, Eq. [(IV), with the equation for the continuity of thedi®bn the grid points of one of the
boundary faces)zBg, and the equation for the continuity of the normal derivedion the grid
points of the other facé&,Ba. Together these boundary conditions ensure that the gsolhation
to Eq. [IT) will have the required continuity andférentiability at interface boundaries. Second-
order strongly-elliptic systems can be solved using eibiechlet or Neumann type boundary
conditions. Thus the continuity conditions imposed heeeexactly those needed to ensure the
well-posedness of the boundary value problem within eablicaegion.

Boundary conditions of this type are already used succkgaiud routinely in elliptic-solver
codes that implement traditional multi-patch methods ésge Ref. Eb]). The only dierence
between the boundary conditions used in those traditiondfi4match codes and the ones in-
troduced here is the form of the Jacobian matrices usednsftran the components of tensors
and their derivatives at the interfaces between regiongatifitional multi-patch methods these
Jacobians are just identity matrices, because in those theee was always a smooth global
coordinate basis that could be used to represent tensos fielall computational subdomains.
In the multi-cube method introduced here, these Jacobm@msin critical information about the
differential topology of the manifold.

4.2. Interface Boundary Conditions for Hyperbolic Systems

Afirst-order symmetric-hyperbolic system of equationgfer dynamical fields” (assumed
here to be a collection of tensor fields) can be written in tdrenf

Hu™ + A% () Viu? = F(u), (26)

where the characteristic matrid”?z(u), and source ternk“(u), may depend on the fields®

but not their derivatives. The script indexess, ¢, ... in these expressions label the components
of the collection of tensor fields that make uf. These systems are called symmetric because,
by assumption, there exists a positive definite metric osplaee of fieldsS #s, that can be used

to transform the characteristic matrix into a symmetriefo 4o A€z = A&B = Agﬂ.
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Boundary conditions for symmetric-hyperbolic systems ugsimposed on the incoming
characteristic fields of the system. The characteristidgiék (whose indexc labels the collec-
tion of characteristic fields) are projections of the dyneahfieldsu” onto the left eigenvectors
of the characteristic matrix (cf. Ref 21) 22)),

0% = €4 (n)u”, (27)
defined by the equation,
& a(n) A5 (U) = Vi) €¥5(n). (28)

The co-vecton, that appears in this definition is the outward pointing unitmal to the surface
on which the characteristic fields are evaluated. The e@apsv) are often referred to as the
characteristic speeds of the system. The characteriditis fi& represent the independent dy-
namical degrees of freedom at the boundaries. These chaséictfields propagate at the speeds
Vix) (in the short wavelength limit), so boundary conditions tries given for each incoming
characteristic field, i.e., for each field with spegg < 0. No boundary condition is required (or
allowed) for outgoing characteristic fields, i.e., for arejdiwith vg) > 0.

The boundary conditions on the dynamical fieldsthat ensure the equations are satisfied
across the faces of adjoining cubic regions are quite singigta for the incoming characteristic
fields at the boundary of one region are supplied by the ontgoharacteristic fields from the
neighboring region. The boundary conditions at an interfaetween cubic regions require that
the dynamical fieldsﬁ‘ in region8Ba be transformed into the tensor basis used in the neighboring
regionBg. When the dynamical fields” are a collection of tensor fields (as assumed here) their
components are transformed from one coordinate repregenta another using the Jacobian of
the transformation as described in Hg.](19). In this caseéeeled boundary conditions can be
stated precisely for hyperbolic evolution problems: Cdastwo cubic region$, andBg whose
boundaries), B anddsBg are identified by the maﬂ’g’é\ as defined in Eq[{1). The required
boundary conditions on the dynamical fieldg consist of fixing the incoming characteristic
fieIdSLﬂA‘, i.e., those with speedgy, < 0, at the boundarg, B with data,ug, from the fields on
the neighboring boundagBe:

X = angisus. (29)

The matrix of eigenvectorg/ 4(n), that appears in this expression is to be evaluated usig th
fields from regiorBg that have been transformed into regiBnwhere the boundary condition is
to be imposed. This boundary condition must be applied tb @amming characteristic field on
each internal cube face, i.e., on each face that is identifigdthe face of a neighboring region.

This type of boundary condition is used routinely and susftély by hyperbolic evolution
codes, such as the Calt¢Clornell SpEC code, that implement traditional multi-patoéthods.
Those traditional applicationsftier from the multi-cube methods discussed here only in the fac
that tensors in those traditional cases could always be=sgpd in terms of the global coordinate
basis. The generalized Jacobigié g needed to transform tensors across interface boundaries
in those traditional applications of multi-patch methodstaerefore just the identity map. In the
more general multi-cube construction introduced in S8emd®3, the Jacobians contain critical
information about the dierential topology of the manifold, so the transformatiossdihere
must be slightly more complicated than those used in thétiwadl multi-patch case. Other than
that simple diference, however, the boundary conditions introduced hertha same as those
used in the traditional multi-patch methods.
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In some cases, like systems representing second-order t@ase equations, the dynami-
cal fields will include a collection of primary tensor fieldkip a collection of secondary fields
representing the first derivatives of the primary fields. losincases the secondary fields can
be defined using a covariant derivative, thus making thersatefields as well. The Einstein
equations are somewhat problematic, because the mosahatuvariant derivative of the metric
tensor (the primary tensor field in this case) vanishes idalfy. Thus first-order symmetric-
hyperbolic representations of the Einstein equations atgenerally co—varianEiZ]. They can
be made fully covariant however by defining the secondaryadvyinal fields using the covariant
derivative associated with the non-dynamical referenceiothat defines the lierential topol-
ogy of the manifold. This type of fully covariant first-ord@presentation of the Einstein system
will be discussed in detail in a future publication.

5. Numerical Tests of a Multi-Cube Elliptic Equation Solver

This section discusses a series of tests of the numericatiolof elliptic equations on
compact three-manifolds using the multi-cube methodsrideest in Secd 1213, arid 4. These
tests find numerical solutions to the equation

V'V -y = f, (30)

wherey is a scalar fieldV; represents the covariant derivative associated with a fredoth
positive-definite metrig;; on a particular three-manifold,is a constant, andl is a fixed source
function. The constant term, witt? > 0, ensures the solution to this equation is unique on
any compact three-manifold. This equation is solved hertherthree-manifolds whose multi-
cube representations are described in Appendix Awith a flat metric,S? x St with a round
constant-curvature metric, agd with the standard round constant-curvature metric. Thecgou
functions f for these tests are chosen to ensure that the solugicar® non-trivial functions
which are known analytically.

The accuracy andfiectiveness of the numerical solutions of Hg.](30) are evatuim two
ways. The first accuracy indicator used here is the resid®jakhich measures how well the
numerical solutions satisfy the discrete form of th@atential equations. This numerical residual
is defined as

R=V'Viun — un - f, (31)

whereyy is the numerical solution of the discrete form of Hq.](30) e Hize of this residual is
monitored for each numerical solution by evaluating #sorm and computing the normalized
residual error quantityg, defined as

R2 \/gd3x
Er = fi (32)
[ f2ygd3x
The second accuracy indicator used here measures the ertloe numerical solution itself:

Ay = ye—yN, Whereye andyy represent the exact analytical solution and the discretesnigal
solutions respectively. The magnitude/of is evaluated using the scale invariadtmeasure of

the solution error:
Ay)2+/gd3
6, | [awPvadx )
JuEVad3x
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The numerical tests described here were performed usingllthBc equation solver that is
part of the SpEC codHhG]. This code, developed originajiyie CaltecfCornell numerical
relativity collaboration, uses pseudo-spectral methodgpresent functions and evaluate their
spatial derivatives. It solves elliptic equations using BETSc toolkit of linear and non-linear
equation solvers. Each cubic region in the tests descrikeglib subdivided into one or more
computational subregions, on which field components areesepted using Chebyshev basis
functions at the Gauss-Lobatto collocation points. Thecstire of these subregions was chosen
to achieve fairly uniform spatial resolution. The parteuthoice of subregions is described in
the discussion of each test.

These numerical tests verify that several new ideas intredin Sec$.]2]8] 4 ahd Appendi§ A
are correct, and that these ideas have been implementegtitpin the SpEC code. The most
fundamental new ideas tested here are the inter-regiondaoyiconditions, Eqs[[(24) and (25),
for elliptic equations. These internal boundary condgiaepend on the Jacobians and their
derivatives, which depend in turn on the inter-region bargianaps in a critical way for man-
ifolds with non-trivial topologies. These Jacobian termsatcibute to the boundary conditions
in a non-trivial way even for the simple scalar elliptic ejoa (30) used in these tests. These
tests also depend in a non-trivial way on the multi-cubegs@ntations of the reference metrics
Egs. [A9) and[{A.20) and their associated covariant dévies on the manifold$? x S* and
S3. If any of these new elements of the multi-cube method wegeriect (or were implemented
incorrectly in the code) the numerical tests described &neld not achieve the exponential
convergence in the solution error meastiyethat is seen in these tests.

5.1. Tests of a Multi-Cube Elliptic Equation Solver on T

The numerical tests described here use the multi-cubegeptaion of the three-manifold

with topology T2 given in[Appendix_A:]L. The reference metric in this case ésftat Euclidean
metric, Eq.[(Ad), so the covariant derivatives which appeahe elliptic Eq. [3D) are just the

Cartesian coordinate partial derivatives. When writteteims of the multi-cube Cartesian co-
ordinates orT 3, therefore, this equation takes the simple form,

V'Viy — Gy = %y + 0%y + 0oy — Py = 1. (34)

This equation is solved numerically in these tests usingthece functiorf given by,

f(XY,2) = —(w? + ) cos[% (kx + ty + mz)|, (35)

wherek, ¢, andmare integers; is a constant = 1/L, andw is given by

on 2
2 _ 2 2
w ‘(T) (k2 + €2+ 7). (36)
The exact analytical solution to this equation is given by
2n

ve(XY,2) = cos T (kx+ ty + m2)|. (37)

The numerical tests of the solutions to EQS] (34)-(36) wertopmed using a source function
with k = £ = m = 2. These tests were performed on a set of eight computatsoaégions
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using a range of numerical resolutions havishg: 8, 10, 12, 14, 16, 18 and 20 collocation points
respectively in each spatial direction in each subregidrese subregions divide the one cubic
region8; needed to represet into eight cubes: each half the size of the region in eachapat
direction. The internal boundary maps between these sidme@re just the trivial identity
maps. The graphs of the solution errésand the residual erroig, as defined in Eqs_(B2)
and [33), for these tests are shown in Eig. 4. The elliptiesfor these tests were run until the
residual error§x were reduced to the level of numerical roufid@hese results demonstrate that
the boundary conditions introduced here on region bouadavere implemented correctly and
efficiently: successfully achieving the exponential conveogeexpected of spectral numerical
methods.
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Figure 4: Errors in the numerical solutionsy of the elliptic Eq. [3%) orl® with k = ¢ = m = 2, as quantified by
the error measureS, andEr. The parameteN is the number of collocation points used for these tests ¢h saatial
direction in each computational subregion.

5.2. Tests of a Multi-Cube Elliptic Equation Solver on S? x St

The numerical tests described here use the multi-cubegeptation of the three-manifold
with topology S? x S* given in[Appendix A.R. The reference metric used in this dasie
constant-curvature round metric given in terms of angwardinateqy, 6, ¢} in Eq. (A.8), and
in the multi-cube Cartesian coordinates used in theseitekts. (A.9). This choice of reference
metric makes the elliptic EqQL(B0) somewhat more complitatethis case. In terms of the
standard angular coordinates this equation has the form

i By 9y [sinbogy] o2y
ViV~ ¢y = E " R2sing " R2sirf 6 -

This equation is solved numerically in these tests with ac®tunctionf given by,

Ay = f. (38)

Fx.6.9) = (0 + AR [€4Yim(6.4) | (39)

whereY;m(6, ¢) is the standar&®? spherical harmonic functiork, £, andm are integersg is a
constant = 1/R,, w is given by

{(C+1 'S

W2 ( Rg ) 5
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andR[Q] denotes the real part of a quanty The exact analytical solution to this equation is
given by

ver.0.9) = R[€4Ym(0.9)]. (41)

The numerical solution to this equation is carried out usirggCartesian coordinates of the
multi-cube description 082 x S* described i Appendix_A]2. The covariant derivatives used
by the SpEC code for this test are evaluated using the Cantesiordinate representation of the
round metric given in EqQL(AI9). The source functibthat appears on the right side of Hg.J(38),
is evaluated in the multi-cube Cartesian coordinates uzeithése tests with the transformations
between the angular and Cartesian coordinates given iedZbl and’A.b.

The tests performed here used the source function givensn{B8)-{40) withk = £ = m =
2. These tests used a set of twelve computational subremioapresent the six cubic regions of
S?x S, cf. Fig.[A10. These subregions divide each region in thigeally identifiedz direc-
tion into two subregions. These tests were performed udirgs, 10, 12, 14, 16, 18, 20 and 22
collocation points respectively in each spatial directioeach of the computational subregions.
The boundary conditions at the inter-region boundariedased on the maps specified in Ta-
ble[A3. The graphs of the solution errd@g and the residual erroig, as defined in Eqs_(B2)
and [33), for these tests are shown in Eig. 5. The elliptieséor these tests were run until the
residual error&€g were reduced to the level of numerical roufiddhis graph demonstrates, for
the non-trivialS? x S* case, that the computational region boundary conditiomsldped here
have been implemented correctly arlicently, achieving the exponential convergence expected
of spectral numerical methods.
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Figure 5: Errors in the numerical solutions of the elliptic Eq. [38) ors? x St with k = £ = m = 2, as quantified by

the error measureS, and&g. The parameteN is the number of collocation points used for these tests ¢h epatial
direction in each computational subregion.

5.3. Tests of a Multi-Cube Elliptic Equation Solver on S3

The numerical tests described here use the multi-cubegeptaion of the three-manifold

with topology S® given in[Appendix A.B. The reference metric used in this daside stan-
dard constant-curvature round metric 8t given in terms of angular coordinatgg 6, ¢} in

Eqg. (A19), and in the multi-cube Cartesian coordinatesl iise¢hese tests in Eq._(A.R0). This
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choice of reference metric fixes the elliptic Eg.](30) to heneform,

Oy [Sinz)(axl/f] g [SiNBOgY] 02y

R2sir y ! R2 singsir? y ’ R2sir? gsir y -~y =t (42)

V'Viy - ¢y =

when expressed in terms of the standard angular coordipat&sy} used onS3. The source
function f used in these numerical tests is given by,

f(x, 6, 9) = —(w? + )R [Yiemly, 6> )] » (43)

where theYigm(y. 6, ¢) are theS® spherical harmonics described in AppendikkB¢, andm are
integerscis a constant = 1/R3, andw is given by

2 _ k(k +2)
The exact analytical solution to this equation is given by

lpE (X» 9» ‘10) = R [Yk[m(X» 9» ‘10)] . (45)

The numerical solutions of Eq._(42) are carried out for thesés using the multi-cube rep-
resentation o6* described ifif Appendix_A]3. The covariant derivatives usgthie SpEC code
for this test are evaluated using the multi-cube Cartesiandinate representation of the round
metric onS® given in Eq. [A20). The source functioh defined in Eq.[{43), is evaluated in
terms of the multi-cube Cartesian coordinates for theds tesing the transformations between
the angular and the Cartesian coordinates given in TabBard A.9.

(44)
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Figure 6: Errors in the numerical solutions of the elliptic Eq.[2) oS3 with k = ¢ = m = 2 as quantified by the error
measuress, and&g. The parameteN is the number of collocation points used for these tests ¢h epatial direction
in each computational subregion.

The numerical tests described here solved the elliptic @@-[44) with the parameter val-
uesk = ¢ = m = 2 in the source functiorf. These tests were done using a set of eight
computational subregions, corresponding to the eightocidgjions needed to represé&i;, cf.
Fig.[AI1. These tests uséti= 8, 10, 12, 14, 16, 18, 20 and 22 collocation points respédgtive
in each spatial direction in each of the computational sgibres. The boundary conditions at
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the region boundaries for these tests are based on thegicgadentification maps specified in
Table[A8. The graphs of the solution err@kgs and the residual erro&g, defined in Eqs[{32)
and [33), for these tests are shown in Eig. 6. The elliptieséor these tests were run until the
residual error&g were reduced to the level of numerical roufid@his graph demonstrates for
another non-trivial example that the inter-region bougdanditions developed here have been
implemented correctly andfeciently. Figurd 6 also demonstrates that these numeristal bawve
achieved the exponential convergence expected of spacimatrical methods.

6. Numerical Tests of a Multi-Cube Hyperbolic Equation Solver

This section discusses numerical tests of the multi-culiads for solving hyperbolic evo-
lution equations on compact three-manifolds as describ&ecs[ P13, and 4. These tests find
numerical solutions to the scalar wave equation

—0fy + V'Viy =0, (46)

whereV; represents the spatial covariant derivative on the fixedngey of the spatial three-
manifold. This equation is solved here on the three-matsfalescribed ifi Appendix |AT?
with a flat metric,S? x S with the constant curvature round metric, a®tlwith the standard
constant-curvature round metric.

These wave equations are converted to first-order symrngtgerbolic form before solving
them numerically. The list of dynamical field§ = {y,I1, ®;} is therefore expanded to include
the first derivatives ofy: 1 = —dyp, and®; = 9. Constraint damping is used to enforce the
constraint,

Ci=oy—-0=0, 47

using the methods developed in Ref.J[23] with constraint piagparametey, = 1.

Exact analytical solutions exist to these wave equatiornttemhree-manifolds used in these

tests. Therefore thefectiveness andiciency of the evolution code can be tested in these cases
by comparing numerical solutions, to this equation with the known analytical solutions.
The accuracy, and convergence properties, of the code careaésured therefore by monitoring
the L? norms of Ay = y& — ¢y Using the solution error measure defined in Eg] (33). Itis als
useful to monitor the constraint violation err@s This is done by constructing the constraint
error measure:

6 J [dicicjygdex 48)

- fgij ((Diq)j + (9“&(9](&) \/§d3x'

This constraint error measure is invariant under chang#sioverall scale of the solution, and
to changes in the coordinates used to represent the salution

The tests performed here use the scalar wave evolutionnsytbg is implemented as part
of the SpEC codéﬂﬁq. This code, developed originallyth®y CaltecfCornell numerical
relativity collaboration, uses pseudo-spectral methadevialuate spatial derivatives, and the
method of lines to approximate the hyperbolic system ofigladifferential equations as sets of
coupled ordinary dierential equations on each collocation point. These tegtsin eighth order
Dormand-PrinchS] algorithm to integrate the methodmédi ordinary dierential equations in
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time. Each cubic region in these tests is subdivided intoarmaore computational subregions,
on which field components are represented using Chebysk&/fhactions at the Gauss-Labatto
collocation points. The structure of these subregions Wasen to achieve fairly uniform spatial

resolution. The particular choice of subregions is desctiin the discussion of each particular
test.

6.1. Tests of a Multi-Cube Hyperbolic Equation Solver on T3

The numerical tests described here use the multi-cubegeptaion of the three-manifold
with topology T2 given in[Appendix _A:]L. The reference metric in this case ésftat Euclidean
metric, Eq.[(A1), so the spatial covariant derivativesahhappear in the wave Ed._(46) are just
the Cartesian coordinate partial derivatives. When writteterms of the multi-cube Cartesian
coordinates off 3, therefore, the wave equation takes the simple form,

— 02y + V'Vity = =02y + 02w + 02y + 02y = 0. (49)

The idea is to solve this equation numerically with initiata:

Yt XY, Do = COS[% (kx + ty + mz) |, (50)
| 2n
3t'ﬁ(t’ X, y: Z) |t=0 = —w SIN [T (kX + fy + rnz) ) (51)
wherek, £, andmare integers, ana is given by
o 2
2 _ 2 2
w ‘(T) (k2 + €2+ P). (52)
The exact solution to this initial value problem is given lgtiaally by
2n
ve(t, Xy, 2) = cos|wt + T (kx+ ty + mz)|. (53)

The numerical solution of the wave Ef. {49) for these tests peaformed on a set of eight
computational subregions. These subregions divide thewalnie region needed to represaiit
into eight cubes, each half the size of the region in eachamhitection. The internal boundary
maps between these subregions are just the trivial identifys. These hyperbolic evolution tests
were performed using the initial data given in Es] (50) &) (vithk = £ = m = 2. These tests
used computational subregions havig= 16, 18, 20 and 22 collocation points respectively in
each spatial direction. The graphs of the solution eré&yrand the constraint violation errors
&c for these tests are shown in Fig. 7. These graphs demonsiedtéhe numerical methods
described here successfully achieve the exponential cgenee expected of spectral numerical
methods. The slow growth in time of the solution e&t seen in the left side of Fif] 7 is linear
in time. This type of error is a common feature of the ordindifferential equation integrator
used for these tests.

6.2. Tests of a Multi-Cube Hyperbolic Equation Solver on S? x St

The numerical tests described here use the multi-cubegeptaion of the three-manifold
with topology S? x S* given in[Appendix A.R. The reference metric used in this daste
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Figure 7: Left: Errors in the numerical solutionsy for the T evolutions withk = £ = m = 2 as measured by the
quantity&,. Right: Constraint errorg; for the T3 evolutions withk = £ = m = 2 as measured by the quantity.

constant-curvature round metric given in terms of angwardinatey, 6, ¢} in Eq. (A.8), and
in the multi-cube Cartesian coordinates used in theseitekts. (A.9). This choice of reference
metric fixes the wave Eq._(B0) to have the form

@ + 69 [Sln969t//] + aflﬁ -0
R RZsing RZsirf g -

when expressed in terms of the angular coordinates ¢} used orS? x St. The idea is to solve
this equation numerically with initial data:

— 02y + V'Viy = =02y +

(54)

R [€4Yim(0.4)|. (55)
R [iwe  Yum(6, ¢)| (56)

(L, 6, . x -0
6t'ﬁ(t’ 97 ‘P’X)t:O

whereY,m(0, ) are the standar8? spherical harmonics, ¢, andm are integersy is given by

,_ 1) K

R R
andR[Q] denotes the real part of the quantfly The exact solution to this initial value problem
is given analytically by

(57)

Ve(t.0,0.x) = R[HY(0,4)]. (58)

The numerical solution of EJ._(b4) is carried out using thee€dan coordinates of the multi-
cube description 082 x S* described iff Appendix_A]2. The spatial covariant derivegiused
by the SpEC code for this test are evaluated using the Cantesiordinate representation of the
round metric given in EqL(AI9). The initial data, Eqs.](55)da58), used for these tests are
evaluated in the multi-cube Cartesian coordinates withrdaesformations between the angular
and Cartesian coordinates given in Talpled A.4[andl A.5.

The numerical solution of the scalar wave Hqg.l(54) for theststwas performed on a set
of twelve computational subregions. These subregionsléithie six cubic regions needed to
represenB? x S, cf. Fig.[A10, into cubes that are half the size of the regiotie z direction.
The internal boundary maps between these subregions argusivial identity maps, while

22



the maps between regions are those given in Tablk A.3. Thgmsltholic evolution tests were
performed using the initial data given in Eds.](55) and (58hw = ¢ = m = 2. These tests
were performed on computational subregions hawng 16, 18, 20 and 22 collocation points
respectively in each spatial direction. The graphs of thetiem errorsS, and the constraint vio-
lation errorsE¢ for these tests are shown in Hig. 8. These graphs demontstaathe numerical
methods described here successfully achieve the expaheativergence expected of spectral
numerical methods. The slow growth in time of the solutiaweg,,, seen in left side of Fifl8 is
(mostly) linear in time. This growth in the error is a commeature of the ordinary derential
equation integrator used for these tests.
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Figure 8: Left: Errors in the numerical solutions for the S? x S* evolutions withk = £ = m = 2 as measured by the
quantity&,. Right: Constraint errorg; for the S? x S evolutions withk = £ = m = 2 as measured by the quantify.

6.3. Tests of a Multi-Cube Hyperbolic Equation Solver on S8

The numerical tests described here use the multi-cubegeptation of the three-manifold

with topology S® given in[Appendix A.B. The reference metric used in this daside stan-
dard constant-curvature round metric 8t given in terms of angular coordinatgg 6, ¢} in

Eq. (AJ9), and in the multi-cube Cartesian coordinatesliise¢hese tests in Eq._(A.R0). This
choice of reference metric fixes the wave KEql (46) to havedha f

dy [sirP x| 5, [sinogu] a2y

— 02 + V'Viy = —0? =
VY e R2sir? y +R§sin95in2X+R§sinzesin2X

0,  (59)

when expressed in terms of the standard angular coordipat®s} used onS2. This equation
is solved numerically with initial data:

'ﬁ(t’ 97 QD’X)I=O pat [kam(/\/7 97 ‘10)] s (60)
(L, 0, o, x)=0 R [iwYiem(x, 6, ¢)] (61)

whereYi.m is theS* spherical harmonic function defined[in Appendix k3¢, andmare integers,
andw is given by

, k(k+2)

-

(62)
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The solution to this initial value problem is given analglly by

vet.0.0.0) = R[€“Yimlr.0,¢)]. (63)

The numerical solution of EJ._(b9) is carried out using thete€dan coordinates of the multi-
cube description 08* described irf Appendix _A]3. The spatial covariant derivegiused by
the SpEC code for this test are evaluated using the Cartesiandinate representation of the
round metric given in EqQ[(A.20). The initial data, Eds.](@d)d [61), used for these tests are
evaluated in the multi-cube Cartesian coordinates withrdmesformations between the angular
and Cartesian coordinates given in TdblelA.8[and A.9.

The numerical solution of the scalar wave Hg.l(59) for theststwas performed on a set
of eight computational subregions. These subregions @mtiahl to the eight cubic regions
needed to represeBt, cf. Fig.[AI1. The maps between regions are those givenhireTA7.
The hyperbolic evolution test was performed using theahifiata given in Eqs[{60) and {(61)
with k = £ = m = 2. These tests were performed on computational subregianadN =
16, 18, 20 and 22 collocation points respectively in eachiapdirection. The graphs of the
solution errorsS, and the constraint violation erro&: for these tests are shown in F[g. 9.
These graphs demonstrate that the numerical methods ldeddrere successfully achieve the
exponential convergence expected of spectral numerictdads. The slow growth in time of
the solution erro€,, seen in the left side of Figl 9 is (mostly) linear in time. growth in the
error is a common feature of the ordinaryfdrential equation integrator used for these tests.
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Figure 9: Left: Errors in the numerical solutionsy for the S3 evolutions withk = £ = m = 2 as measured by the
quantity&, . Right: Constraint error§; for the S evolutions withk = ¢ = m = 2 as measured by the quantity.
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Appendix A. Examplesof Multi-Cube Representations of Three-Manifolds

This appendix describes the construction of multi-cubeesgntations of manifolds using
the methods developed in SeCh. 2 &hd 3. Each multi-cubesepetion consists of a set of
non-overlapping cube$, that cover the manifold, a set of maﬁ@g that identify the faces
of neighboring cubes, and finally a smooth positive defirgference metrig;; used to define
the diferential structure on the manifold. The construction osthenulti-cube structures is
described here for three common three-manifolds: the toees T2 with a flat reference metric,
the spherical-torus? x S! with a constant-curvature round-sphere metric, and treetsphere
S® with the standard constant-curvature round-sphere mdtniese examples are used in SEEs. 5
and® to illustrate the solution of partialférential equations on multi-cube manifolds using the
methods developed in Ség. 4.

Appendix A.1. Multi-Cube Representation of T3

The simplest example of a multi-cube manifold is the thme, T3, Only a single cub&;
is needed to cover this manifold, and it is most convenietddate this cube at the origin R®
soC; = (0,0,0). Opposite faces of this cube are identified without rotatr reflection to obtain
the T3 topology:d.xB1 © d_xB1, d.yB1 & d_yB1, andd. By © §_,B1. The mapswiz, ¥,
and¥1*, needed to ect these identifications are defined by Ed. (1) with the imtanatrices,
Cgg, being just the identity matriceCI™) = Cﬂ = CI*Z = |. The three-torud® admits a

smooth flat metric, so a convenient ch0|ce of reference mtetrlthls manifold is:
ds® = gi;dX'dx! = dx® + dy? + dZ, (A.1)
wherex, y andz are the multi-cube Cartesian coordinates that label poirss.

Appendix A.2. Multi-Cube Representation of S? x S*

The manifoldS? x S* can be covered by a set of six cubic regidgswith A = {1, ...,6}. A
convenient way to arrange these cubeRirns illustrated in FigCAID. The values of the cube-
center location vector&, for this configuration is summarized in Table’A.2. The inrads of
the touching cubes in Fif_AIL0 are connected by identitysmwpile the outer faces are identi-
fied using the maps described by Hg. (1) with the rotation icesCg2 s givenin TabldAB. This

representation d? x St is constructed by taking the Cartesian produchKthe periodically
identified z-axis in this representation) with the commonly used “cubplere” representation

of 2 [1,12,[3].

Table A.2: Cube-Center Locations f8F x St

¢ =(0,-L,0) | G&=(0,L,0) | G =(L,0,0)
& =(0,0,0) | G =(0,2L,0) | G = (-L,0,0)

It is useful to discuss the method used to construct the ‘Gigpdere” representation 8¢ in
some detail here, since this method is usé¢d in Appendi} AtBeamodel for constructing a new
representation o&°. Let {X,y, Z denote Cartesian coordmates inRh and letx® + y? + 22 = r?
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Figure A.10: The three-manifol82 x S is represented using the six cubic regions illustrated. iehe faces of these
cubes are identified using the maps described in Table A.& répresentation 082 x St is based on the commonly
used “cubed-sphere” representatiorSaf

Table A.3: Cube Face Identification®, 8a <> dsBs, and rotation matrices:gg, for the interface maps i62 x St.

0.Ba o 9sBs  Chy Cl |l 0.8aeo 988 Cha CJF
0:B10 B 1 1 | dyBiedyB 1|
OyBredwBy 1 | || 0nBrodyBs R R,
04B1 o 0.yBs R, Ri | 0:2800,8 | |
duBr > dyBs 1 | || 0Bro04Bs ||
08B0 058, | | || B30 08 ||
OBz dyBy | | || 0nBseodyBs R, Ry
04B3 & 0.yBs Riz Ry | i85 0,8, | |
0ixBs 0 0585 RZ, R%, || 0810 0,85 R, R
0:B50 B85 | | | 085008 1 |

denote a two-spher®? of radiusr. It is useful for some purposes to identify points on tffs
using standard angular coordinaflesndy:

X = rsinfcosy, (A.2)
y = rsingsing, (A.3)
Z = rcosb. (A.4)

Now consider a cub@ centered at the origin, of siZe = 2r/ V3 (which just fits inside the
sphere), whose orientation is aligned with {lxgy, zZ} axes. Let)zB represent the six faces of
this cube, witha = +X, etc., labeling the various faces. The images of these sbsfaan be
arranged in a plane, like the = +z faces of the cubes shown in Fig._Al10. The goal here is to
construct a representation®f x S, so it will also be useful to make a correspondence between
these cube facel B with the cubes shown in FIg_AILO. Table A.4 gives the relettp between

the cube-face identifiekg = +x, etc. and the cubic region labelsi.2....s shown in Fig[[AD.

26



Points on each of the cube-facés$, can be identified by their local Cartesian coordinates.
For example, points on the = +z face, i.e. thex = 2 face in Fig[AID, can be identified by
the coordinates$x, y}. Itis also useful to introduce scaled local Cartesian cioaites,{Xa, Ya}
to represent the points on these faces. Forahe +z face for example, it is useful to set
{X2,Y2} = {X/zy/Z}. Each coordinate has been divided hywhich is constant on this face,
to ensure that the scaled coordina¥s, Y2} are confined to the rangesl < X; < 1 and
-1 < Y, < 1. Similar definitions are made on the other faces, cf. TAh® &at ensure
the Xa and Y, are all oriented the same way as in Fig,A.10, and all satigfyx Xa < 1 and
-1 < Ya < 1. Using Eqs.[fAR)£(Al4), this construction provides aunatidentification between
points on the original sphere, labeled by their angular dioates, ¢}, and the Cartesian cube-
face coordinategXy, Ya} via the equations summarized in Talles]A.4and A.5.

Table A.4: Cubed-Sphere Representatiois#éf Angular to Cartesian Coordinate Map.

Al a Xa YA

1|-y| -5 = -coty -Z = —cotfcscy
2| +z| ¥ = tandcosp Y = tandsing
3| +y % = coty —% = —cotfcscy
4| -Z|-%¥ = —tanfcosp | L = tangsing
5|+X|-Z = -—cotdseqp | L = tang

6| -X| -2 = -—cotfsep | -L = —tang

The {Xa, Ya} defined in this way are local Cartesian coordinates. Theskld® converted
to global coordinates by adding in the appropriafiiset for each facex} = c} + %LXA and
Xy = Ca+3LYa. Alternatively, the angles tah X, and tan Y could be used as local “Cartesian”
coordinates on these cube faces. These angle-based @artesirdinates have the advantage
of giving a more uniform mapping of the Euclidean plane oti® image of the cube face on
the sphere, so they are the preferred choice for numericed.w@lobal Cartesian coordinates
constructed from these angle-based coordinates are défjned

2L

X5 = Cx + — tarm! Xa, (A.5)
T
2L

Xy =Ch+ — tan ™t Ya, (A.6)

whereXa and Y, are functions of the standard angular coordinétasd¢ by the expressions
given in Tabld A4,

For representations & x S, an appropriate coordinate is also needed for the peritigica
identifiedz direction in Fig[AID. Introduce an angje whose range isx < y <, that labels
the points in theS! subspace. Then define the global Cartesian coordinateiassbuith this
direction as

v4

L
X5 =Cp+ X (A.7)
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Table A.5: Cartesian to Angular Coordinate Map for the CuBptiere Representation 8f. The range of the local
Cartesian coordinat¥a is -1 < Xa < 1, and the range df is 0 < 6 < & in these expressions. The rangespdbr
different values oY are specified in the table.

A | Ya-range cosp p-range cost

1 -1<Yi<1| X/ (14X | Z2p>% | Y/ 1+ X2+ Y2
2| 12Y220 | X/ (X5+Y5 | n2920 | 1/ J1+X2+Y]

2| -1<Y2<0 | X/ C+YZ | 21> 92n | 1 J14X2+Y2

3| -1<Vasl| Xo/ (14X | 222 | Y/ J1+X2+ V2
41 1>2Y3>0 | Xa/ JX54Y2 | 2n>9>nm | -1/ |1+ X2+Y2
41 -1<Ya<O0| X/ X24+Y2 | w2920 | -1/ \1+X2+Y2
5| -1<Ys<0| 1/\1+Y2 |2t>9p2 2 | X/ \J1+ X2+ Y2
51 12Y520 | 1/ J1+YZ | 22920 | —Xs/ 1+ X2+ Y2
6| -1<Ys<0| -1/ J1+Y2 | >po>n | Xo/ |1+ X2+Y2
6 12Y20 | -1/ J1+Y2 | 729> Z | Xo/ \J1+ X2+ Y2

The standard constant-curvature “round” metric3¥nx St is smooth, and it is therefore an
acceptable choice for the reference metric to define tfferdntial structure on this manifold.
The simplest representation of this round metric uses thalancoordinates, ¢, andy:

ds? = R5(d6? + sir? 9dy?) + Redy?, (A.8)

whereR, andR; are constants that specify the radii of t8&andS* parts of the geometry re-
spectively. Using the transformations given in EGS. {A(B)#) and Tablé&AM}, a straightforward
(but lengthy) calculation gives the global multi-cube @aian-coordinate representation of this
metric onS? x St

4e - (77_R2)2(1+Xi)(1+Yi)
2L T+ X2+ v2p2

N 2Ry

L

(@ + XR)(dx)? — 2XaYadxxdx + (1 + YA)(dx))?|

2
) CPAR (A.9)

The Xa and Y that appear in this expression are thought of as the furetidrthe Cartesian
coordinates obtained by inverting the expressions givétgs [AB) and(AB):

- n(Xy —Cr)

Xa = tan[T} , (A.10)
R RSN

Ya = tan T} (A.11)
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The functionsXa andYa depend on the location of a particular coordinate regioough the pa-
rameterscy andc‘,g. However, beyond this dependence the multi-cube coormlirgiresentation
of the S? x S* round metric given in Eq[{A]9) is the same in each of the sixdimate regions
Ba.

These multi-cube Cartesian coordinaf®s Ya, za} turn out to be harmonic with respect to
the round metric o1$? x S, i.e., each coordinate is a solution (locally within eachictregion,
not globally across the interface boundaries) to the camatiaplace equation, 8 ViAVAi Xa =
ViAVAi YA = ViAVAi Za, WhereV,; is the covariant derivative associated with 8fex ST metric in
regiona. These conditions are equivalent te=Qa; ( \/g_Ag',i) wherega = detgajj andg), is the
inverse of the metrigy;; expressed in terms of the multi-cube Cartesian coordinategjiona.

Appendix A.3. Multi-Cube Representation of S3

The locations of the eight cubic regions used to constristrépresentation d8° are illus-
trated in FigCAIll. The values of the cube-center locatieatarsca for this configuration is
summarized in Tablg_Al6. The inner faces of the touching sube-ig.[A.11 are assumed to
be connected by identity maps. The outer faces of these eidfit regions are identified using
the maps described in Tallle A.7. This “cubed-sphere” remtasion ofS? is a natural three-
dimensional generalization of the two-dimensional cubgdere representation 8f described
in[Appendix_A.2. Itis constructed by inserting a four-dins&mal cube into a three-dimensional
sphereS® in R, and then identifying points on the faces of the four-cubiiawie points on the
three-sphere that are connected by rays extending outwardthe origin.

Figure A.11: The three-manifol82 can be represented using the eight cubic regions illusttatee. Cubic regioB,,
centered at the origigz = (0,0,0) is hidden betweerB; and Bg in this figure. The outer faces of these cubes are
identified using the maps described in T4RIEIA.7.

Table A.6: Cube-Center Locations f6f

¢ =(0,-L,0) | &=(0,L,0) |c=(L00) |c=(0,0L)
& =(0,0,0) | ¢ =(0,2L,0) | G =(-L,0,0) | ¢ =(0,0,-L)
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0uBa & 9sBs | Ch3 | CF || 0.8a o 3pBs | Cha | CF
OB o By | 1| 1| 0yBredyBs| 1| |
04xB1 & dyBs | Riz | Rz || 05810 0485 | Rz | Rz
0:2B1 © 0yB7 | Ry | Rux || 0281 ¢ 9yBs | Rix | Rex
dBo o 0yBs | | | | | 0nBreodBs | || |
B0 0B | | | | || 0.Bood 87 | | | |
0B 0. Bs | | | | | 0yBsodyBs| | | |
0:xB3 © 91yBs | Rz | Riz || 083 © 0yBs | Riz | R;
0:2B3 © 04yB7 | Rix | Rox || 0283 © 94yBs | Rox | Rux
0:xBs o 0,85 | R2, | RE, | 0.xBs o 048 | RZ, | R,
0284 © 0,87 | R4, | RE, || 0284 0 0,85 | R, | RE,
9:2B5 © 0xB7 | Rey | Ruy || 0285 © 9.:xBs | Ruy | Ry
0:2B5 © 0-B7 | Ry | Ry | 086 © 9B | Ry | Ry

Table A.7: Cubic Region Face Identificatiod,B8a < dsBp , and rotation matrice{,’ég, for the interface maps i8°.

It is appropriate to discuss this “cubed-sphere” represiant of S® in some detail, since it
does not appear to have been used or described in the lietatfore. Let(X,y,z w} denote
Cartesian coordinates R, and letx? + y? + Z + W? = r? denote a three-sphe®?, of radiusr.

It is often useful to identify points i8* using the angular coordinatesé ande:

X = r siny sinf cosy, (A.12)
y =rsiny sindsing, (A.13)
Z=rsiny cosd, (A.14)

W = I COSy. (A.15)

Now consider a four-cube centered at the origin, of size r (which just fits inside the three-
sphere), whose orientation is aligned with flxey, Z w} axes. Letd;B denote the eight faces
of this four-cube (each of which is a three-cube) labeledHgyindexa = +X, etc. Arrange
the images of these eight three-cubed_iat the locations given in Tab[e_A.6, as shown in
Fig.[A.11. Tabld’A.B gives the relationship between the fouive face identifiers = +x, etc.
and the three-cube region identifiets.2....s shown in FigCATL.

Points on each of the four-cube facés®B, can be identified by their local Cartesian coor-
dinates. For example, points on the=+w face, i.e. thea = 2 region in Fig[AIL, can be
identified by the coordinatds, y, Z}. It is convenient to introduce scaled local Cartesian cieord
nates{Xa, Ya, Za} to represent the points on these faces. Fouthe +w face for example, set

face, to ensure that the scaled coordin&¥esY-, Z,} are confined to the rangesl < X, < 1,
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-1<Y, <1,and-1 < Z, < 1. Similar definitions are made on the other faces, cf. Tab& A
that ensure th&a, Ya, andZ, are all oriented the same way as in Hig._A.11, and all satisfy
-1<Xpa<1,-1<Ya<1,and-1< Zx < 1. Using Egs.[[ATR)E(ATS), this construction pro-
vides a natural identification between points on the origim@e-sphere, labeled by their angular
coordinategy, 6, ¢}, and the local Cartesian coordinat&a, Ya, Za} on each four-cube face via
the equations summarized in Talles]A.8 A.9.

Table A.8: Cubed-Sphere Representatiosaf

Al a Xa Ya Zy

1] -y —% = —cotyp —"—yV:= — coty €Sch cSCy —)—Z/: = —cotfcscy
2| +w V—% = tany siné cosy % = tany sindsing M%: = tany cosd
3| +y £ = cot —¥ = —cotycschcsep | £ = cotdcscy

4| —w —v—% = —tany sinf cosy \Tyv: = tany sindsing —V—% = —tany cost
5| +X —"—)f: = — coty csco secy % =tang ;Z(: = cottsecy

6 | —x | - = - coty cscdsecy ~Y = _tang ~Z = —cotfsecy
7| +z X = tand cosy L = tangsing ¥ =~ coty secs
8| -z| -%f=-tandcosy ~¥ = _tangsing ~% = _coty sed

The{Xa, Ya, Za} defined using this cubed-sphere construction are locaéSiart coordinates
on each of the faces of the four-cube. They could be convéstgtbbal coordinates by adding
the appropriate f6set for each cubext = cX + $LXa, Xy = C + sLYa, andxi = c; + 1LZa.
Alternatively, the angles tah Xa, tarr® Y, and tan' Z, also provide local Cartesian-like coor-
dinates for these cubes. These angle-based Cartesiariraiesdgive a more uniform mapping
of Euclidean space onto the image of the four-cube face othtiee-sphere. So as in the two-
dimensional cubed-sphere case, these angle-based @artesirdinates are the preferred choice
for numerical work on the multi-cube representatiorséf Global multi-cube Cartesian coordi-
nates constructed from these angle-based coordinatesfamediby

2L

XA =Ca+ — tarm™ Xa, (A.16)
2L

X} = Cy + — tarm™ Ya, (A.17)
2L

X5 = Ch + — tarm' Za, (A.18)
T

whereXa, Ya, andZ, are functions of the hyper-spherical angular coordingtésande given

by the expressions in Tablgs'A.8 dndJA.9.
The standard constant-curvature “round” metric3¥is smooth, and it is therefore an ac-

ceptable choice for the reference metric to define tifemdintial structure on this manifold. The
simplest representation of this round metric uses the angobrdinateg, 6, andy:

ds® = RG(dy” +sinfy do® + siry sir? 0.dg?), (A.19)
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Table A.9: Cartesian to Angular Coordinate Map for the CuBptiere Representation 8f. The range of the local
Cartesian coordinatXa is -1 < Xa < 1, the range oZa is -1 < Zp < 1, the range of the angular coordinatés
0 <6< andthe range of is 0 < y < xin these expressions. The rangesgaorresponding to dierent ranges ofa

are specified in the table. The quantitiédg = /1 + Xﬁ + Yﬁ + Zﬁ are used to simplify the expressions for gos

A Ya-range COSyp p-range cosd cosy

1 -1<Y1<1| X/ (J1+X2 | Z>p> 50 Zi/ 1+ X2+ 22 | Yy/Wy
21 12Y,20 | X/ X+ Y2 | 712920 | Zo/XC+Y2+22 | 1/W,

2| -1<Y2<0| X/ X24Y2 | 2n>p2m | Zo/ X2+ Y2422 | 1/Wp

3| -1<Ys<l| Xa/(J1+X2 | T >p>Z | Zg/ J1+X2+Z2 | —Y3/W;
41 12Ys>0 | Xa/(X2+Y2 | 2n>p2m | Za/ K2+ Y2+22 | —1/W,
4] -1<Ys<0 | Xaf (JX2+YZ | 12020 | Z4/ X2+ Y2422 | —1/W,
5|-1<Ys<0| 1/ J1+Y2 |21>9> 2 | Zg/ J1+Y2+2Z2 | —Xs/Ws
5| 1>Y5>0 1/ 1+ Y2 2>90>0 | Zs/ 1+ Y2+2Z2 | —Xs/Ws
6| -1<Ye<O0| -1/ J1+Y2 | FT>p>m | Zg/JL+Y2+2Z2 | Xe/Ws
6| 12Y20 | -1/ J1+YZ | m29>% | Zg/ J1+Y2+22 | Xo/We
71 12Y720 | X7/ ((X2+Y2 | 7>¢>0 1/ 1+ X2+Y2 | -Z7/Wy
7] -1<Yr<0 | X/ \2+Y2 | 2r>p>n | 1/ J1+X2+Y2 | —Zy/Wy
8| 1>VYg>0 | Xg/ JX3+Y5 | n2¢>0 —1/,/1+X§+Y§ Zg/Ws
8| —1<VYg<0| Xe/ X2+ Y2 | 2r>p>m | =1/ \J1+X2+Y2 | Zg/We

whereR; is a constant that specifies the radius of 8% Using the transformations given in

Egs. (AI6){(AIB) and in TablesA.8 and A.9, a straightfamv(but lengthy) calculation gives
the global multi-cube Cartesian-coordinate representatf this metric ors®:

2XaYa

2 (1+ X)L+ Y2)(1+ZA)[(1+ X2)(1+ Y2+ 272
0@ - (R BN ZY INA G Z) gy Datag
2L)  (1+ X2+ Y2+ 22) (1+Y(1+Z}) 1+24
1+ Y)(1+ X2+ 22 2XaZ
LYW 28 e - 202z
(1+X)A+2Z3) 1+Y3
1+22)(1+ X2 +Y? 2YaZ
( A)(2 A _ A)(dXZA)Z_ A ';ddexi, (A.20)
a+ XA)(l + YA) 1+ X3

The Xa, Ya, andZa that appear in EqL{A.20) are thought of as the functionseffibbal multi-
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cube Cartesian coordinates obtained by inverting the sgjes given in Eq9_(A.16/=(A18):

N

Xn = tan % , (A.21)
i Xy —Cy :

Ya = tan % , (A.22)
- XZ —CZ -

Zi = tan % . (A.23)

The functionsXa, Ya andZa depend on the location of a particular coordinate regioaugh
the parameters;, CX andc,. However, beyond this dependence the multi-cube cooreliregt-
resentation of th&* round-sphere metric given in E._{A]20) is the same in eadhefkight
coordinate region$a.

These multi-cube Cartesian coordinaf®s ya, za} turn out to be harmonic with respect to
the round metric o1$3, i.e., each coordinate is a solution (locally within eachictregion, not
globally across the interface boundaries) to the covatiaplace equation, G ViAVAi Xa =
ViVaya = Vi,V za, WhereVy is the covariant derivative associated with ®&metric in
regiona. These conditions are equivalent te=Qa; ( \/g_Ag',i) wherega = detga; andgx is the
inverse of the metrigy;; expressed in terms of the multi-cube Cartesian coordinategiona.

Appendix B. Spherical Harmonicson S*

This appendix derives expressions for the eigenfunctibtied_aplace operator on the three-
sphereS3. These eigenfunctions are referred to here as three-spaermnics. These functions
are defined as solutions of the equation

VIViY = -2, (B.1)

whereV; is the covariant derivative operator 88, and. is an eigenvalue. These functions have
been studied previously by a number of authbrs [L_ZbEﬂB,HZQre a slightly diferent repre-
sentation is introduced that allows these harmonics (afrarly order) to be evaluated accurately
in a straightforward way. Using the angular coordinate@spntation of the round metric &%
from Eq. [A19), it is straightforward to write the co-vanta_aplace operator explicitly as

oy [SiPx3:Y| 3y [sinean] azY
vViY = RZsir? y " R2singsir’ y ’ R2sin? s’y (8.2)

The eigenvalue problem, Eq.(B.1), can be solved then byratipa of variables. The non-
singular solutions to this equation have the form:

Niem 0+ 3

M Q, "% (cosy)PY(cost)e™, (B.3)
Jsiny <tz
whereP, andQ, are the associated Legendre functions of the first and sddoddespectively.
The eigenvalue associated with tNjgn, is
k(k + 2)
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These functions are non-singular A only for integer, £ andm satisfying

k>0, (B.5)
k>¢>0, (B.6)
{>m>—¢(. (B.7)

1 . .
The half-integer associated Legendre functi@é:si (X) with x = cosy are non-singular for
2

-1 < x <1, and can be evaluated re-cursively. For fiXetthe functions wittk < ¢ can be shown
to vanish,

Qi =0 (B.8)

u§ing§3.4 Eqg. (13)in Ref.|EO]. Fok = ¢ a similar argument using3.6.1 Eq. (14) in Ref]EO]
gives
Qii () = (-1y2'a T (1- xz)g 3 (B.9)
The functions wittk > ¢ can be determined from these using the recursion relation,
(S 2)Q‘+2 (x) =2k +2) xQ‘*z ) - (k++ 2)Q"+2 (%), (B.10)
from §3.8 Eq. (12) in Ref.|EO]. Evaluating Eq.{(BJ10) fle= ¢ — 1 gives

”2(x) =20+ 1)xQ”2(x) (B.11)

using Eq.[(B3B). Thng+2 (x) with k > ¢ + 2 can then be generated recursively using Eq.(B.10).

This recursion relation is known to be a stable and accuratetavgenerate the Legendre func-
tions of the first kind P(x), cf. Ref. [31]. Our numerical tests indicate that it is adspaccurate

way to generate the half-integer Legendre functions of doesd kind Q“2 ().

The orthogonallty properties of thé.m(y, 0, ¢) are determined by the orthogonality proper-
ties on 1(008)() P! (cos) andé™. The needed condition f(@ 2 can be obtained from the
assomated Legendreftiirential equation,

d d 2
0- &[1 Q“ V(v +1)— XZ}Q‘V‘, (B.12)
from which it follows that
d
a [(1—x2) (Q“ Q59 )} O =)+ + DAL (B.13)

The half-integer associated Legendre functions are wéilhbed in the interval1l < x < 1,
therefore integrating Eq._{B.1L3) over this interval gives

1
=0 -V +V +1) f JEACEACEE (B.14)

34



It follows that thle:j (x) with k > 0 and¢ > 0 satisfy the orthogonality condition:
2

1
(+5

2 el
Micdkwc= | Q.1 (¥Q, 1 (¥ dx.

whereMy, is the numerical constant,

2 mAk+€+1)!
KT Ak+ 1)k- 0!

The analogous orthogonality relations feff(cosd) ande™ are well known:
) 1
Nirdc = [ PROIPTO) .
271' . .
Zﬂémm = f eII'Tf(pe—II'TY,Dd‘,D’
0

where
2 (¢ + m)!
Me-mi(e+d)
From these conditions then, it follows that by choosing thiemalization constants

1

Nk[ = —7
" V272 My Nim

the Yim satisfy the following orthogonality conditions &¥,

T T 21
Rgf d)‘f daf de sir? x siné Yieem Yms
0 0 0

| et Vi v

tm
1 (% . ,
X Zjo\ e'm¢e'm‘pdtp},

R} Sk cOmvm.
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(B.15)

(B.16)

(B.17)

(B.18)

(B.19)

(B.20)

1 bl [+1 1 1
" [ k,+;(x)ok+;(x)dxHN—2 [ P??(y)PL”(y)dy]

(B.21)
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