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Abstract

A multi-cube method is developed for solving systems of elliptic and hyperbolic partial differ-
ential equations numerically on manifolds with arbitrary spatial topologies. It is shown that any
three-dimensional manifold can be represented as a set of non-overlapping cubic regions, plus a
set of maps to identify the faces of adjoining regions. The differential structure on these mani-
folds is fixed by specifying a smooth reference metric tensor. Matching conditions that ensure the
appropriate levels of continuity and differentiability across region boundaries are developed for
arbitrary tensor fields. Standard numerical methods are then used to solve the equations with the
appropriate boundary conditions, which are determined from these inter-region matching con-
ditions. Numerical examples are presented which use pseudo-spectral methods to solve simple
elliptic equations on multi-cube representations of manifolds with the topologiesT 3, S 2 × S 1

andS 3. Examples are also presented of numerical solutions of simple hyperbolic equations on
multi-cube manifolds with the topologiesR × T 3, R × S 2 × S 1 andR × S 3.

Keywords: topological manifolds, numerical methods, partial differential equations

1. Introduction

The need to solve partial differential equations on manifolds having non-trivial spatial topolo-
gies arises in many areas of physical science: from models ofwormholes or the global structure
of the universe in general relativity theory to global circulation models of the earth’s atmo-
sphere in meteorology and climatology. This paper developspractical methods for solving a
variety of partial differential equations on manifolds having arbitrary spatial topologies. Every
n-dimensional manifold (by definition) can be mapped locallyinto a portion ofn-dimensional
Euclidean space,R n. A number of different numerical methods are capable of solving partial
differential equations locally on open subsets ofR n. The topological structure of a manifold,
however, affects the global solutions to partial differential equations in profound ways. This
paper develops methods for fitting together local solutions, obtained from standard numerical
methods, to form the desired global solutions on manifolds with arbitrary topologies. The dis-
cussion here focuses on solving elliptic systems of equations on three-dimensional manifoldsΣ
with arbitrary topologies, and also hyperbolic systems of equations on four-dimensional mani-
folds with topologiesR × Σ.

Solving partial differential equations numerically on manifolds with arbitrary topologies re-
quires the creation of computational infrastructures (beyond those needed to solve the equations
numerically on open subsets ofR n) that meet two basic requirements. The first requirement is
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that the manifold must be represented in a way that allows thepoints in the manifold, and the
values of scalar and tensor fields defined at those points, to be referenced efficiently in a way
that respects the underlying topological structure of the manifold. The second requirement is to
create a way to specify the global differential structure of the manifold, i.e. the computational
method must provide a way of representing globally continuous and differentiable scalar and
tensor fields on these manifolds. The goal here is to develop practical methods that can be used
on arbitrary manifolds by a wide range of different numerical methods.

The first requirement is to find a systematic way of representing manifolds with arbitrary
topologies. Everyn-dimensional manifold can be mapped locally into a portion of n-dimensional
Euclidean spaceR n. For computational efficiency (and to avoid certain types of numerical in-
stabilities) each manifold is represented here by a collection of non-overlappingn-dimensional
cubes which cover the manifold, plus a set of maps that identify the faces of adjoiningn-cubes.
This decomposition is analogous to representing a manifoldas a collection of non-intersecting
n-simplexes (i.e., triangles forn = 2 and tetrahedrons forn = 3) that cover the manifold, plus
maps that identify neighboring faces. Many numerical methods (including the pseudo-spectral
methods used to produce illustrative examples for this paper) are easier to use in computational
domains based onn-cubes rather thann-simplexes. Points in each of then-cube regions are iden-
tified by local Cartesian coordinates, and these coordinates are used to represent the solutions to
the differential equations in eachn-cube. This type of representation has been used for some time
in numerical methods for solving partial differential equations on a two-sphere [1, 2, 3], and also
in three-dimensional manifolds that are subsets ofR3 [4, 5, 6, 7, 8, 9, 10]. Those ideas are gener-
alized in Sec. 2, and it is shown that these generalizations can be applied to two-dimensional or
three-dimensional manifolds having arbitrary topologies. Examples of these multi-cube repre-
sentations are given in Appendix A for the three-dimensional manifolds with the topologiesT 3,
S 2 × S 1, andS 3.

The second requirement is to develop a method of representing (at least in the continuum
limit) continuous and differentiable tensor fields on the multi-cube representationsof manifolds
developed in Sec. 2. Representing tensor fields within each of the n-cube regions is straightfor-
ward: their components can be expressed in the tensor bases associated with the local Cartesian
coordinates. These tensor components are functions of those coordinates, and their continuity (or
differentiability) determines the continuity (or differentiability) of the tensor field itself. In gen-
eral, however, the coordinate tensor bases associated withdifferentn-cube regions are not even
continuous (and can not be made continuous globally) acrossthe interfaces that join them. The
problem of defining the continuity and differentiability of tensor fields acrossn-cube interfaces
is therefore non-trivial. The method introduced here makesuse of a smooth reference metric
tensor. This reference metric must be supplied (along with the collection ofn-cube regions and
the associated interface maps) as part of the specification of a particular manifold. This metric
is used to construct geometrical normal vectors at each interface, and these normals are used to
construct the Jacobian matrices that map vectors (and tensors) across interfaces. The differentia-
bility of tensors across then-cube interfaces is defined in terms of the continuity of the covariant
derivatives of those tensors, using the covariant derivative associated with the reference metric.
The details of these continuity and differentiability conditions are given in Sec. 3. Examples
of reference metrics which can be used to implement these continuity and differentiability con-
ditions are given in Appendix A for the three-dimensional manifolds with the topologiesT 3,
S 2 × S 1, andS 3.

Systems of differential equations can be solved numerically on multi-cuberepresentations
of manifolds by fitting together local solutions from eachn-cube region. The appropriate local
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solutions are determined in each region by applying the correct boundary conditions on then-
cube faces. The appropriate boundary conditions are the ones that enforce the needed level of
continuity and differentiability of the global solution at the region boundaries. These boundary
conditions are developed in Sec. 4 for second-order strongly elliptic systems, and also for first-
order symmetric hyperbolic systems of equations. These boundary conditions select the unique
local solution in a particularn-cube that equals the desired global solution in that region. The
collection of local solutions to the equations constructedin this way provides the desired global
solution.

The multi-cube method of solving systems of partial differential equations numerically on
manifolds with non-trivial topologies is illustrated hereby solving a series of test problems in
Secs. 5 and 6. Simple second-order elliptic equations, and first-order symmetric hyperbolic
equations, are solved numerically on manifolds with spatial topologiesT 3, S 2 × S 1, andS 3.
These tests use pseudo-spectral methods to produce local solutions on each cubic region. The
results are shown to converge exponentially (in anL2 norm) to the exact global solutions (which
are known analytically for these test problems) as the number of grid points used for the solution
is increased.

2. Building Multi-Cube Manifolds

This section describes hown-dimensional manifolds can be represented using the multi-cube
method. The idea is quite simple:n-dimensional multi-cube representations of manifolds consist
of a set of non-overlappingn-cubes that cover the manifold, plus a set of maps that identify
the boundary faces of neighboring cubes. An argument is presented in Sec. 2.1 that all two-
dimensional and all three-dimensional manifolds (with arbitrary topologies) can be represented
in this way. A large class (but not all) higher-dimensional manifolds can also be represented using
this multi-cube method. The multi-cube method provides a way of representing manifolds that
facilitates the design of computational tools for solving partial differential equations on them.
A simple infrastructure is introduced in Sec. 2.2 for systematically building, referencing and
identifying the faces of the needed sets ofn-cubes in these manifolds. Thesen-cube regions are
joined together to form the desired topological manifold using maps that identify points on the
faces of neighboringn-cubes. A simple framework for building and referencing these maps is
presented. Only a small number of topologically distinct maps are needed for the case of three-
dimensional manifolds (the main focus of this paper), and all of those maps are given explicitly.

2.1. Existence of Multi-Cube Representations

This subsection considers the question of whether two- and three-dimensional manifolds with
arbitrary topologies admit multi-cube representations. The first step is to show that every two-
manifold is homeomorphic to a set of squares (i.e. 2-cubes) glued together along their edges.
The proof is based on the result of Radó [11, 12] that all two-dimensional manifolds admit
triangulations, i.e. that any two-manifold is homeomorphic to a set of triangles glued together
along their edges. It is easy to show that a simple refinement of any triangulation on a two-
dimensional manifold produces a multi-cube representation of that manifold. As illustrated in
Fig. 1, let points “A”, “B”, and “C” denote the vertexes of oneof the triangles in the triangulation.
Add the midpoints of each edge of this triangle as additionalvertexes, labeled “ab”, “bc”, and
“ac” in Fig. 1. Next, add the centroid of the triangle, the point labeled “d”, and finally add
as additional edges the line segments that connect “d” with the midpoints “ab”, “bc” and “ac”.
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The resulting complex consists of three quadrilaterals. When all of the triangles in a given
triangulation are refined in this way, the result is a multi-cube representation of the two-manifold.
The refinement consists of a set of quadrilaterals that are glued together edge to edge. Since the
additional edge vertexes, “ab”, etc. are always added at thegeometrical midpoints, the edges
of neighboring quadrilaterals constructed in this way willalways coincide. These quadrilaterals
are homeomorphic to squares (2-cubes). So the topological structure of a two-manifold can be
thought of as a collection of non-overlapping 2-cubes that cover the manifold, plus a set of maps
that identify the edges of adjoining 2-cubes.

A

C

B
ab

ac
bc

A

C

B

d

Figure 1: Each triangle in a triangulation of a two-dimensional manifold is refined by the addition of extra vertexes and
edges to produce three quadrilaterals. This is done by first adding as new vertexes the midpoints of each edge, i.e. the
points “ab”, “bc” and “ac” in the figure on the left. Next the centroid of the triangle, i.e. the point “d” in the figure on
the right, is also added as a new vertex. Finally the line segments that join “d” to the midpoints “ab”, “bc”, and “ac”, the
dashed lines in the figure on the right, are added as new edges.

A similar argument shows that every three-dimensional manifold has a multi-cube represen-
tation, i.e. that every three-dimensional manifold is homeomorphic to a set of non-overlapping
“distorted” cubes glued together at their faces. The proof is based on a result of Moise [12, 13]
that all three-dimensional manifolds admit triangulations by tetrahedrons, i.e. that any three-
dimensional manifold is homeomorphic to a set of non-overlapping tetrahedrons glued together
at their faces. It is easy to show that any tetrahedron can be decomposed into four “distorted”
cubes glued together at their faces. (The term distorted cube is used here to describe a solid
having six faces, each of which is a plane quadrilateral.) Distorted cubes are homeomorphic
to geometrical cubes. It follows that every triangulation of a three-manifold can be refined (by
adding appropriate vertexes, edges and faces) to obtain a multi-cube representation, i.e. a set of
non-overlapping distorted cubes glued together at their faces. This argument demonstrates the
existence of multi-cube representations for any three-dimensional manifold.

The key to this argument is the representation of a single tetrahedron as four distorted cubes
glued together. This can be done by refining the tetrahedron through the addition of vertexes,
edges and faces as summarized in Fig. 2. Begin with a tetrahedron with vertexes labeled “A”,
“B”, “C” and “D”. First add vertexes to the midpoints of each edge, plus vertexes to the centroids
of each face, the points “a”, “b”, “c” and “d” shown in the top left of Fig. 2. Adding the extra
edges connecting “a”, “b”, “c” and “d” to the midpoints of each edge of the original tetrahedron
completes the decomposition of each face into a set of distorted squares. Add one last vertex at
the centroid of the tetrahedron, labeled “O” in the top rightof Fig. 2. Connect “O” to the facial
centroids, “a”, “b”, “c” and “d”, by adding the edges shown asdash-dot line segments in the top
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right of Fig. 2. Finally add the six internal quadrilateral faces that include the point “O” as an
edge vertex. These additional vertexes, edges, and faces divide the tetrahedron into four volume
regions (one adjacent to each tetrahedron vertex). The bottom of Fig. 2 shows these four regions
more clearly. The regions adjacent to the vertexes “A” and “C” are shown with opaque faces,
while those adjacent to “B” and “D” are shown with transparent faces.

A

D

C

B

b

d

a

c

O

A
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Figure 2: Top Left: Label the vertexes of the tetrahedron “A”, “B”, “C” and “D”. Add vertexes at the midpoints of each
edge, and additional vertexes at the centroid of each face ofthe tetrahedron, labeled “a” for the centroid of face “BCD”,
“b” for face “ACD”, etc. Also add additional edges (shown as dashed line segments) connecting each centroid to the
midpoint of each adjoining edge. Top Right: Add one additional vertex, labeled “O” at the centroid of the tetrahedron.
Add additional edges (shown as dash-dot line segments) thatconnect “O” to the centroids of each face, and six additional
faces that include “O” as a vertex. Bottom: Four “distorted”cubes that make up the tetrahedron are illustrated. The two
cubes adjacent to vertexes “A” and “C” are shown with opaque shaded faces, while the faces of the cubes adjacent to “B”
and “D” are transparent.

Each of the four volume regions constructed above has six faces, and each of these faces has
four edges and four vertexes. These faces are therefore quadrilaterals. It only remains to show
that these quadrilaterals are planar. Call two edges of the original tetrahedron “complimentary”
if they do not intersect at a vertex, e.g. the edges “AC” and “BD” are complimentary. Now
consider the six bisecting planes of the tetrahedron, each one formed by an edge and the midpoint
of the complementary edge of the tetrahedron. Each bisecting plane passes through the midpoint
of the complementary edge, the centroid “O”, as well as the facial centroids of the two faces
adjacent to the complementary edge. For example, the bisecting plane formed by the edge “AC”
and midpoint “bd” intersects “O” as well as the facial centroids “a” and “c”. The quadrilateral
formed by the vertexes “bd”, “a”, “O”, and “c” is therefore a planar quadrilateral. It follows that
each of the faces of the four volume regions is a planar quadrilateral, and therefore each volume
region is a distorted cube.

The vertexes added in this construction were placed at the geometric centroids of the trian-
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gular faces, and at the centroid of the original tetrahedron. The edges added in this construction
were also placed in geometrically determined ways: all of them along one of the bisecting planes
of each edge of the original tetrahedron. These geometrically constructed features will therefore
match on the triangular boundaries between neighboring tetrahedrons in any triangulation of a
three-dimensional manifold. It follows that the distortedcubes constructed in this way will match
face-to-face across all the tetrahedron boundaries as required for a multi-cube representation of
the manifold.

2.2. Infrastructure for Multi-Cube Manifolds

Now turn to the problem of finding a systematic way of constructing multi-cube manifolds.
The goal is to develop methods that can be used as part of the computational infrastructure
for solving systems of partial differential equations on such manifolds. The discussion here
is focused on three-dimensional manifoldsΣ, but generalizations to other dimensions should
be fairly straightforward. LetBA denote a collection of geometrical cubic regions inR3. The
subscriptA = {1, ...,N} is used to label the individual regions.1 These cubes are used here as the
domains of coordinate charts for the multi-cube representation ofΣ. LetΨA denote the invertible
coordinate map that takes the regionBA into a subset ofΣ: ΨA(BA) ⊂ Σ. It will be useful to
denote the boundary faces of these regions inR3 as ∂αBA, whereα = ±x denotes the faces
intersecting the±x axes,α = ±y the faces intersecting the±y axes, etc.

The discussion above shows that every three-manifold can becovered by a collection of
non-overlapping cubes:∪AΨA(BA) = Σ. Non-overlapping here means that the images of the
regions are non-intersecting,ΨA(BA) ∩ ΨB(BB) = ∅, for points in the interiors ofBA andBB

when A,B. It is convenient to choose the regionsBA in R3 to be scaled so they all have the
same sizeL, and are all oriented along the same global Cartesian coordinate axes inR3. In this
case the regionBA is completely determined therefore simply by specifying the location of its
center~cA = (cx

A, cy
A, cz

A) in R3. It is also convenient to arrange the regionsBA in R3 so they
intersect (if at all) inR3 only at points on faces whose images also intersect inΣ. In the multi-
cube representations of manifolds satisfying these conditions, each point in the interior of the
regions represents a unique point inΣ, and each point inΣ is the image of at least one point in the
closure of∪ABA. The Cartesian coordinates ofR3 therefore provide a global way of identifying
points inΣ. Tensor fields are represented on these multi-cube manifolds by giving the values of
their components (expressed in the coordinate basis ofR3) as functions of these global Cartesian
coordinates.

A multi-cube manifold consists of a set of cubic regions,BA for A = {1, ...,N} that can be
specified simply by giving the locations of their centers~cA, along with a set of rules that deter-
mine how the faces of these cubes are to be identified with one another. When points on the
images of two boundary facesΨA(∂αBA) andΨB(∂βBB) intersect inΣ, then the associated coor-
dinate charts provide an invertible map from one boundary face to the other:∂αBA = Ψ

Aα
Bβ (∂βBB)

whereΨAα
Bβ ≡ Ψ−1

A ◦ΨB for points on the∂αBA and∂βBB faces. Since the cubesBA have uniform

size and orientation inR3, there are only a small number of simple mapsΨAα
Bβ needed to represent

all the topologically distinct ways of mapping one face ontoanother. It is sufficient to consider

1The term region in this paper is used to refer to the cubesBA that form the basic topological structure of the manifold.
It might be useful for computational efficiency to subdivide some (or all) of the cubic regions into a collection of smaller
cubes, e.g. by cutting a cubic region into two, four, or eightsmaller cubes. Those smaller cubic subsets of theBA are
referred to as subregions.
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maps that identify the faces of two cubic region first by rigidly translating so the centers of the
faces∂αBA and∂βBB coincide, and then rigidly rotating and/or reflecting to align the two faces
in the desired way. Thus it is sufficient to consider the simple mapsΨAα

Bβ that take the Cartesian

coordinatesxi
B of points in∂βBB to the Cartesian coordinatesxi

A of the corresponding points in
∂αBA in the following way,

xi
A = ci

A + f i
α +CAα i

Bβ j(x j
B − c j

B − f j
β ). (1)

The vector~cA + ~fα is the location of the center of the∂αBA face, andCAα
Bβ is the combined

rotation and reflection matrix needed to achieve the desiredorientation. Examples of the use of
these methods is given in Appendix A where explicit multi-cube representations are constructed
for manifolds with the topologiesT 3, S 2 × S 1 andS 3.

Multi-cube manifolds are specified by giving the list of cubic regionsBA needed to cover the
manifold, the vectors~cA that determine the locations of their centers inR3, and the mapsΨAα

Bβ
that determine how the regions are glued together. These maps, defined in Eq. (1), depend on the
vectors~cA and ~fα, and the matrixCAα

Bβ , so these quantities must all be specified to determine each

map. The vector~fα is the position of the center of theα face relative to the center of the region.
Since the cubic regions are chosen to have uniform sizes and orientations,~fα has the same form
in each cubic region:

~f±x = 1
2 L(±1, 0, 0),

~f±y = 1
2 L(0,±1, 0), (2)

~f±z = 1
2 L(0, 0,±1),

whereL is the size of the cubes. Since all of the cubic regions are aligned, the class of pos-
sible rotations and reflections needed forCAα

Bβ is quite small. These can all be constructed by
combining 90-degree rotations about the normal to one of thefaces,Rα, with mirror reflections
about some (possibly different) direction,Mβ. Table 1 gives explicit expressions for the ma-
trices that describe these elementary rotations and reflections in three dimensions. The most

Table 1: Elementary Transformations

α = ±x α = ±y α = ±z

Rα

























1 0 0

0 0 ∓1

0 ±1 0

















































0 0 ±1

0 1 0

∓1 0 0

















































0 ∓1 0

±1 0 0

0 0 1

























Mα

























−1 0 0

0 1 0

0 0 1

















































1 0 0

0 −1 0

0 0 1

















































1 0 0

0 1 0

0 0 −1

























general transformation of one face onto another can be constructed by taking products of these
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elementary transformations. The group of possibleCAα
Bβ in three dimensions generated in this

way is therefore the octahedral symmetry group,Oh, which has 48 distinct elements [14]. The
orientation preserving subgroup generated by the rotations alone has 24 elements. Note that
Rα ·R−α = R4

α =M2
α = I, whereI is the identity matrix. Since the number of possible mapsΨAα

Bβ
constructed in this way is so small, it is easy to write a flexible code that is capable of setting
up the multi-cube structures and all the needed gluing maps for three-manifolds with arbitrary
topologies.

3. Specifying Differential Structures on Multi-Cube Manifolds

This section describes a practical and efficient way to defineCk differential structures on
multi-cube manifolds. It is useful to begin with a brief discussion of the traditional way such
structures are defined. The differential structure on a manifold provides the framework needed
to represent differentiable scalar and tensor fields on that manifold. The usual method of spec-
ifying a differential structure is to cover the manifold with a set of overlapping domainsDA,
and set of mapsΥA that assign coordinates to the points in each domain:Υ−1

A (DA) ⊂ Rn. These
coordinate maps provide a differential structure for the manifold if they have the property that
the composition mapsΥA

B = Υ
−1
A ◦ ΥB are differentiable (orCk+1) transformations from the co-

ordinates of one patch to the other for points in the overlapDA ∩ DB. The Jacobian matrices
associated with these coordinate transformationsJAi

B j = ∂xi
A/∂x j

B determine the transformations

for Ck differentiable tensors from one coordinate representation to another in these overlaps.
It is possible to use the traditional method of defining differential structures on multi-cube

manifolds, but to do so requires that non-trivial additional structures must be added to the basic
multi-cube construction (since the domains that define thatbasic structure do not overlap). The
most straightforward approach would be to require that eachmulti-cube manifold be provided
with an additional set of overlapping domainsDA ⊃ ΨA(BA) and a set ofCk+1 related coordinate
mapsΥA for the new overlappingDA domains. An alternative, more minimalist, approach would
be to require that suitable Jacobian matricesJAαi

Bβ j, in addition to the connection mapsΨAα
Bβ , be

provided on each interface between regions in multi-cube manifolds. This minimal structure
would provide the transformations needed to define differentiable scalar and continuous tensor
fields on these manifolds. IfCk+1 differentiable scalars orCk differentiable tensor fields are
needed, then in addition toJAαi

Bβ j, all of their kth order derivatives∂k
BJAi

B j would also have to be
specified on each interface between regions.

It might seem redundant and unnecessary to require that the Jacobian matricesJAαi
Bβ j and their

derivatives be specified on the interfaces in multi-cube manifolds, in addition to the interface
coordinate mapsΨAα

Bβ defined in Eq. (1). After all, the Jacobian matrices associated with those
interface maps,JAαi

Bβ j = CAαi
Bβ j, and their derivatives,∂BkJAαi

Bβ j = ∂BkCAαi
Bβ j = 0, could be used to trans-

form tensor fields at the boundary interfaces. Unfortunately it is easy to see that the coordinate
mapsΨA used in Sec. 2 to construct the multi-cubes are not suitable for constructing a global
Ck differential structure on most manifolds. If they were, the basis vectors∂Ai associated with
these coordinates would be smooth global non-vanishing vector fields. These vector fields could
be used in this case to construct a global smooth flat metric onthe manifold. Since most mani-
folds do not admit global flat metrics, the existence of a complete set of smooth non-vanishing
coordinate vector fields can not exist on most manifolds. Figure 3, drawn from the perspective
of a smooth coordinate patch that covers both sides of an interface boundary, illustrates how
the multi-cube coordinates in neighboring regions can be continuous while failing to be differ-
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entiable across region boundaries. The coordinate regionB1 on the left, matches to coordinate
regionB2 on the right across theX1 = X2 interface in Fig. 3. The coordinate vectors tangent to
this interface, e.g.∂Y1 and∂Y2, are continuous across this interface, while those not tangent to the
boundary, i.e.∂X1 and∂X2, are discontinuous there.

∂X 2

∂X 1
∂

2Y∂
1Y

1Y
Y2

X 1

X 2

=

Figure 3: MapsΨA define continuous but (typically) non-differentiable transitions between cubic regions. This example
shows that the basis vectors tangent to the boundary,∂Y1 and∂Y2 , are continuous, while those not tangent to the boundary,
∂X1 and∂X2 , are not.

Both approaches described above for specifying differential structures on a multi-cube man-
ifolds require that a great deal of extra structure be provided. This paper proposes a third, more
elegant and more efficient, approach that can be incorporated more easily into the computational
infrastructure for solving partial differential equations numerically. Every manifold with aCk+1

differential structure admits a symmetric positive definiteCk differentiable metric tensorgi j. The
method proposed here for specifying the global differential structure on a multi-cube manifold
requires that the components of (any) one of theseCk differentiable reference metrics,gi j, be
provided in the global Cartesian coordinate basis used to define the multi-cube manifold. The
components of this reference metricgi j will be Ck functions of the multi-cube Cartesian coordi-
nates within each regionBA, but will (in general) be discontinuous across the interfaces between
regions. The only requirement on this reference metric is that it must be sufficiently smooth,Ck,
when represented in a globalCk+1 coordinate atlas. TheCk+1 coordinate chartsΥA themselves
need not be given as part of the specification of the multi-cube manifold. Their only use in this
method is to ensurea priori that the reference metric meets the needed smoothness requirements.

Once a suitable reference metricgi j is provided, it is straightforward to construct the Jaco-
bian matricesJAαi

Bβ j and the dual Jacobian matricesJ∗Bβ j
Aαi needed to transform continuous tensor

fields across the interface boundaries in multi-cube manifolds. Assume that the∂αBA bound-
ary of regionBA is identified with the∂βBB boundary of regionBB by the mapΨAα

Bβ given in

Eq. (1). The transformation taking the regionBB representation of a vectorvi
B into the regionBA

representationvi
A at one of these identified boundary points is an expression ofthe form

vi
A = JAαi

Bβ jv
j
B, (3)

whereJAαi
Bβ j is in effect the Jacobian matrix of the transformation. The analogous transformation

law for covectorswBi is,

wAi = J∗Bβ j
Aαi wB j, (4)

whereJ∗Bβ j
Aαi is in effect the dual Jacobian matrix.
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Let gAi j denote the coordinate components of the reference metric inthe multi-cube coordi-
nate basis of regionBA, and letnAαi denote the outward directed normal covector to the surface
∂αBA. This interface is a surface of constant coordinatexαA, so the geometrical normal covector
is proportional to∂AixαA. The normal covector is therefore given by

nAαi =
±∂AixαA

√

g jk
A ∂A jxαA∂AkxαA

, (5)

wheregi j
A is the inverse of the reference metricgAi j. The sign is chosen in this expression to make

nAαi the outgoing unit normal. The unit normal vectorni
Aα is related tonAαi by ni

Aα = gi j
AnAα j..

The Jacobian matrices needed to transform vectors and covectors (and therefore any type
of tensor field) across boundary interfaces are simple functions of the quantitiesCAαi

Bβ j andCBβ j
Aαi

(which define the identification mapsΨAα
Bβ), as well as the normals to the boundary surface,ni

Aα,

nAαi, ni
Bβ andnBβi:

JAαi
Bβ j = CAαi

Bβk

(

δk
j − nk

BβnBβ j

)

− ni
AαnBβ j, (6)

J∗Bβ j
Aαi =

(

δk
i − nAαin

k
Aα

)

CBβ j
Aαk − nAαin

j
Bβ. (7)

The Jacobian matrices defined in Eqs. (6) and (7) are the unique ones with the properties:
a) They map the geometrical normalsn j

Bβ into−ni
Aα andnBβ j into−nAαi,

ni
Aα = −JAαi

Bβ j n j
Bβ, (8)

nAαi = −J∗Bβ j
Aαi nBβ j, (9)

(i.e. the outward directed normal of one region is identifiedwith the inward directed normal of
its neighbor).
b) The Jacobian matrixJAαi

Bβ j transforms any vectorti tangent to the boundary (i.e. any vector

satisfyingtini = 0) using the continuity of theΨAα
Bβ maps:

t i
A = JAαi

Bβ j t j
B = CAαi

Bβ j t j
B. (10)

c) The Jacobian matrixJAαi
Bβ j and its dualJ∗Bβ j

Aαi are inverses

δAi
A j = JAαi

Bβk J∗Bβk
Aα j . (11)

This last property ensures that tensor contractions and traces transform properly under these
boundary interface mappings.

The Jacobian matrices constructed in Eqs. (6) and (7) using the identification mapsΨAα
Bβ and

the reference metricgi j define the transformations needed to connect arbitrary tensor fields across
the interface boundaries of multi-cube manifolds. These transformations make it possible there-
fore to define what it means for a global tensor field to be continuous on multi-cube manifolds: A
tensor field is continuous on a multi-cube manifold if its multi-cube coordinate components are
continuous within each regionBA, and if its multi-cube coordinate components at each interface
boundary point are equal to the transform of its components from the neighboring region.
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The reference metric can also be used to define a smooth connection

Γi
jk =

1
2giℓ

(

∂ jgℓk + ∂kgℓ j − ∂ℓg jk

)

, (12)

that can be used to define a covariant derivative operator∇i. This covariant derivative is related
to the coordinate partial derivatives (within each regionBA) by the usual expressions for the case
of vectors and covectors:

∇iv
j = ∂iv

j + Γ
j
ikvk, (13)

∇iw j = ∂iw j − Γk
i jwk. (14)

The covariant gradients of tensors, e.g.∇iv j and∇iw j, are themselves tensor fields. Therefore
they are transformed at interface boundaries using the Jacobian matrices defined in Eqs. (6) and
(7) as well. Thus, for example, the gradients of vectors and covectors transform as,

∇Aiv
j
A = J∗Bβk

Aαi JAα j
Bβℓ∇BkvℓB, (15)

∇AiwA j = J∗Bβk
Aαi J∗BβℓAα j ∇BkwBℓ. (16)

Using these transformation laws it is straightforward to define what it means for a global tensor
field to be differentiable on a multi-cube manifold: A tensor field is differentiable if the tensor
and its covariant gradient are continuous everywhere including across all multi-cube interfaces.
The concept ofCk tensors can be built up in a straightforward way simply by taking kth order
covariant gradients of tensors and demanding that the tensor and all gradients up throughkth

order be continuous global tensor fields.
The addition of a smooth (i.e.Ck differentiable) positive definite reference metricgi j there-

fore provides all the additional information needed to define a globalCk differential structure on
any multi-cube manifold.

4. Interface Boundary Conditions for Multi-Cube Manifolds

The multi-cube representations of manifolds provide a practical framework in which to solve
systems of partial differential equations numerically on manifolds with non-trivial spatial topolo-
gies. The idea is to solve those equations on each of the cubicregionsBA separately, using
boundary conditions on the faces∂αBA that ensure the combination of local solutions from each
region satisfies the system of equations globally—including at the boundaries. Solving differ-
ential equations using multi-patch methods is a common practice in computational physics on
manifolds that are subsets ofR3 [4, 5, 6, 7, 8, 9, 10]. Such methods are used for example in
the pseudo-spectral code SpEC (developed by the Caltech/Cornell numerical relativity collabo-
ration [15, 16, 17, 18, 19]) to solve Einstein’s equations. The multi-cube framework developed
here extends the class of problems accessible to such codes by allowing them to solve prob-
lems on computational domains that can not be covered by a single global coordinate chart.
This generalization provides a method of solving differential equations on two-dimensional and
three-dimensional manifolds with arbitrary topologies, in addition to a very large class of higher
dimensional manifolds. The code changes needed to implement these more general multi-cube
methods require fairly minor generalizations of the way boundary conditions are imposed at
the interfaces between cubic regions in standard multi-patch codes. The needed generalizations
are described here in some detail for second-order quasi-linear strongly-elliptic and first-order
symmetric-hyperbolic systems of equations.
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4.1. Interface Boundary Conditions for Elliptic Systems

A second-order quasi-linear strongly-elliptic system of equations for a collection of tensor
fieldsuA can be written in the form

∇ j

[

M jkA
B(u)∇kuB

]

= FB(u,∇u), (17)

where∇i is some covariant derivative operator,M jkAB(u) may depend on the fields but not their
derivatives, andFB(u,∇u) may depend on the fields and their first derivatives. The script indexes
A, B, C, ... in these expressions label the components of the collection of tensor fields that make
up uA. Such a system is strongly elliptic if there is a positive definite metric on the space of
fields,SAB, a positive definite spatial metric,gi j, on the manifold (e.g. the reference metric used
to define the multi-cube structure) and a positive constant,C > 0, such that

w jwk M jkC
AS CB vAvB ≥ C g jkw jwk SAB vAvB (18)

for everyvA and everyw j [20].
All differentiable soltuions to second-order elliptic systems of this type are smooth, assum-

ing the quantitiesM jkAB andFB are smooth [20]. Boundary conditions for these equations at
internal inter-region boundaries are therefore quite simple: the solutionsuA and their normal
derivativesni∇iuA (whereni is the normal to the boundary) must be continuous when trans-
formed appropriately across inter-region boundaries.

These continuity conditions can only be imposed at the interface boundaries by transforming
the fieldsuA computed in one region,BB, into the tensor basis used by its neighboring region,BA.
The fieldsuA are (by assumption) a collection of tensor fields whose components are transformed
across region boundaries using the Jacobian as defined in Eqs. (3) and (4). Thus the fieldsuAB
(expressed in the tensor basis associated with the coordinatesxi

B from the regionBB) are related
to the fieldsuAA (in the tensor basis associated with the coordinatesxi

A from the regionBA) by a
transformation of the form,

uAA = J AB uBB , (19)

whereJ AB is the multi-component Jacobian appropriate for each tensor part ofuB. For exam-
ple, a system whose fields consist of a scalar, a vector, and a covectoruB = {ψ, vi,wi}, would
transform as follows,

J AB uBB =
{

ψB, JAα j
Bβi vi

B, J∗Bβi
Aα j wBi

}

. (20)

The boundary conditions for second-order elliptic systemsalso place conditions on the nor-
mal derivatives of the fields,ni∇iuA. The covariant gradient of a tensor field is itself a tensor
field, so these gradients are transformed across region boundaries by an equation analogous to
Eq. (19):

∇Aiu
A
A = J∗Bβ j

Aαi JAB ∇B ju
B
B . (21)

It may be more convenient in some cases to impose the needed continuity conditions on the par-
tial derivatives,ni∂iuA, rather than the covariant derivatives of the fields,ni∇iuA. The interface
boundary transformations needed in this case are easy to obtain from Eq. (21): the covariant
derivatives∇Ak and∇Bk that appear in this condition are re-expressed in terms of the partial
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derivatives∂Ai and∂Ai, and the connection coefficientsΓ i
A jk andΓ i

B jk. For the case of vector and
co-vector fields, the resulting partial derivative transformation laws are given by,

∂Akvi
A = J∗BβℓAαk JAαi

Bβ j ∂Bℓv
j
B +

(

J∗BβℓAαk JAαi
Bβn Γ

n
Bℓ j − JAαn

Bβ j Γ
i
Akn

)

v j
B, (22)

∂AkwAi = J∗BβℓAαk J∗Bβ j
Aαi ∂BℓvB j −

(

J∗BβℓAαk J∗Bβn
Aαi Γ

j
Bℓn − J∗Bβ j

Aαn Γ
n
Aki

)

wB j. (23)

The needed interface boundary conditions for second-orderelliptic systems can now be stated
precisely: LetBA andBB represent cubic regions whose faces∂αBA and∂βBB are identified. Let
uAA anduAB denote the fields evaluated in the cubic regionsBA andBB respectively. The required
interface boundary conditions can then be written as,

uBB = J BA uAA , (24)

to be imposed on the boundary face∂βBB, and the equation,

ni
A∇Aiu

A
A = ni

AJ∗Bβk
Aαi J

A
B ∇BkuBB , (25)

to be imposed on the boundary face∂αBA.
The required continuity conditions can be imposed numerically by replacing the elliptic sys-

tem, Eq. (17), with the equation for the continuity of the fields on the grid points of one of the
boundary faces,∂βBB, and the equation for the continuity of the normal derivatives on the grid
points of the other face∂αBA. Together these boundary conditions ensure that the globalsolution
to Eq. (17) will have the required continuity and differentiability at interface boundaries. Second-
order strongly-elliptic systems can be solved using eitherDirichlet or Neumann type boundary
conditions. Thus the continuity conditions imposed here are exactly those needed to ensure the
well-posedness of the boundary value problem within each cubic region.

Boundary conditions of this type are already used successfully and routinely in elliptic-solver
codes that implement traditional multi-patch methods (seee.g. Ref. [16]). The only difference
between the boundary conditions used in those traditional multi-patch codes and the ones in-
troduced here is the form of the Jacobian matrices used to transform the components of tensors
and their derivatives at the interfaces between regions. Intraditional multi-patch methods these
Jacobians are just identity matrices, because in those cases there was always a smooth global
coordinate basis that could be used to represent tensor fields in all computational subdomains.
In the multi-cube method introduced here, these Jacobians contain critical information about the
differential topology of the manifold.

4.2. Interface Boundary Conditions for Hyperbolic Systems

A first-order symmetric-hyperbolic system of equations forthe dynamical fieldsuA (assumed
here to be a collection of tensor fields) can be written in the form

∂tu
A + AkA

B(u)∇kuB = FA(u), (26)

where the characteristic matrix,AkAB(u), and source term,FA(u), may depend on the fieldsuA

but not their derivatives. The script indexesA, B, C, ... in these expressions label the components
of the collection of tensor fields that make upuA. These systems are called symmetric because,
by assumption, there exists a positive definite metric on thespace of fields,SAB, that can be used
to transform the characteristic matrix into a symmetric form: SACAkCB ≡ Ak

AB = Ak
BA.
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Boundary conditions for symmetric-hyperbolic systems must be imposed on the incoming
characteristic fields of the system. The characteristic fields ûK (whose indexK labels the collec-
tion of characteristic fields) are projections of the dynamical fieldsuA onto the left eigenvectors
of the characteristic matrix (cf. Refs. [21, 22]),

ûK = eKA(n) uA, (27)

defined by the equation,

eKA(n) nkAkA
B(u) = v(K) eKB(n). (28)

The co-vectornk that appears in this definition is the outward pointing unit normal to the surface
on which the characteristic fields are evaluated. The eigenvaluesv(K) are often referred to as the
characteristic speeds of the system. The characteristic fields ûK represent the independent dy-
namical degrees of freedom at the boundaries. These characteristic fields propagate at the speeds
v(K) (in the short wavelength limit), so boundary conditions must be given for each incoming
characteristic field, i.e., for each field with speedv(K) < 0. No boundary condition is required (or
allowed) for outgoing characteristic fields, i.e., for any field with vK) ≥ 0.

The boundary conditions on the dynamical fieldsuA that ensure the equations are satisfied
across the faces of adjoining cubic regions are quite simple: data for the incoming characteristic
fields at the boundary of one region are supplied by the outgoing characteristic fields from the
neighboring region. The boundary conditions at an interface between cubic regions require that
the dynamical fieldsuAA in regionBA be transformed into the tensor basis used in the neighboring
regionBB. When the dynamical fieldsuA are a collection of tensor fields (as assumed here) their
components are transformed from one coordinate representation to another using the Jacobian of
the transformation as described in Eq. (19). In this case theneeded boundary conditions can be
stated precisely for hyperbolic evolution problems: Consider two cubic regionsBA andBB whose
boundaries∂αBA and∂βBB are identified by the mapΨαA

βB as defined in Eq. (1). The required

boundary conditions on the dynamical fieldsuAA consist of fixing the incoming characteristic
fieldsûKA , i.e., those with speedsv(K) < 0, at the boundary∂αBA with data,uBB , from the fields on
the neighboring boundary∂βBB:

ûKA = eKA(n)JAB uBB . (29)

The matrix of eigenvectors,eKA(n), that appears in this expression is to be evaluated using the
fields from regionBB that have been transformed into regionBA where the boundary condition is
to be imposed. This boundary condition must be applied to each incoming characteristic field on
each internal cube face, i.e., on each face that is identifiedwith the face of a neighboring region.

This type of boundary condition is used routinely and successfully by hyperbolic evolution
codes, such as the Caltech/Cornell SpEC code, that implement traditional multi-patchmethods.
Those traditional applications differ from the multi-cube methods discussed here only in the fact
that tensors in those traditional cases could always be expressed in terms of the global coordinate
basis. The generalized JacobiansJAB needed to transform tensors across interface boundaries
in those traditional applications of multi-patch methods are therefore just the identity map. In the
more general multi-cube construction introduced in Secs. 2and 3, the Jacobians contain critical
information about the differential topology of the manifold, so the transformations used here
must be slightly more complicated than those used in the traditional multi-patch case. Other than
that simple difference, however, the boundary conditions introduced here are the same as those
used in the traditional multi-patch methods.
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In some cases, like systems representing second-order tensor wave equations, the dynami-
cal fields will include a collection of primary tensor fields plus a collection of secondary fields
representing the first derivatives of the primary fields. In most cases the secondary fields can
be defined using a covariant derivative, thus making them tensor fields as well. The Einstein
equations are somewhat problematic, because the most natural covariant derivative of the metric
tensor (the primary tensor field in this case) vanishes identically. Thus first-order symmetric-
hyperbolic representations of the Einstein equations are not generally co-variant [22]. They can
be made fully covariant however by defining the secondary dynamical fields using the covariant
derivative associated with the non-dynamical reference metric that defines the differential topol-
ogy of the manifold. This type of fully covariant first-orderrepresentation of the Einstein system
will be discussed in detail in a future publication.

5. Numerical Tests of a Multi-Cube Elliptic Equation Solver

This section discusses a series of tests of the numerical solution of elliptic equations on
compact three-manifolds using the multi-cube methods described in Secs. 2, 3, and 4. These
tests find numerical solutions to the equation

∇i∇iψ − c2ψ = f , (30)

whereψ is a scalar field,∇i represents the covariant derivative associated with a fixedsmooth
positive-definite metricgi j on a particular three-manifold,c is a constant, andf is a fixed source
function. The constant term, withc2 > 0, ensures the solution to this equation is unique on
any compact three-manifold. This equation is solved here onthe three-manifolds whose multi-
cube representations are described in Appendix A:T 3 with a flat metric,S 2 × S 1 with a round
constant-curvature metric, andS 3 with the standard round constant-curvature metric. The source
functions f for these tests are chosen to ensure that the solutionsψ are non-trivial functions
which are known analytically.

The accuracy and effectiveness of the numerical solutions of Eq. (30) are evaluated in two
ways. The first accuracy indicator used here is the residual,R, which measures how well the
numerical solutions satisfy the discrete form of the differential equations. This numerical residual
is defined as

R = ∇i∇iψN − c2ψN − f , (31)

whereψN is the numerical solution of the discrete form of Eq. (30). The size of this residual is
monitored for each numerical solution by evaluating itsL2 norm and computing the normalized
residual error quantity,ER, defined as

ER =

√

√∫

R2√g d 3x
∫

f 2√g d 3x
. (32)

The second accuracy indicator used here measures the error in the numerical solution itself:
∆ψ = ψE−ψN , whereψE andψN represent the exact analytical solution and the discrete numerical
solutions respectively. The magnitude of∆ψ is evaluated using the scale invariantL2 measure of
the solution error:

Eψ =

√

√∫

(∆ψ)2√g d 3x
∫

ψ2
E
√

g d 3x
. (33)
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The numerical tests described here were performed using theelliptic equation solver that is
part of the SpEC code [16]. This code, developed originally by the Caltech/Cornell numerical
relativity collaboration, uses pseudo-spectral methods to represent functions and evaluate their
spatial derivatives. It solves elliptic equations using the PETSc toolkit of linear and non-linear
equation solvers. Each cubic region in the tests described here is subdivided into one or more
computational subregions, on which field components are represented using Chebyshev basis
functions at the Gauss-Lobatto collocation points. The structure of these subregions was chosen
to achieve fairly uniform spatial resolution. The particular choice of subregions is described in
the discussion of each test.

These numerical tests verify that several new ideas introduced in Secs. 2, 3, 4 and Appendix A
are correct, and that these ideas have been implemented correctly in the SpEC code. The most
fundamental new ideas tested here are the inter-region boundary conditions, Eqs. (24) and (25),
for elliptic equations. These internal boundary conditions depend on the Jacobians and their
derivatives, which depend in turn on the inter-region boundary maps in a critical way for man-
ifolds with non-trivial topologies. These Jacobian terms contribute to the boundary conditions
in a non-trivial way even for the simple scalar elliptic equation (30) used in these tests. These
tests also depend in a non-trivial way on the multi-cube representations of the reference metrics
Eqs. (A.9) and (A.20) and their associated covariant derivatives on the manifoldsS 2 × S 1 and
S 3. If any of these new elements of the multi-cube method were incorrect (or were implemented
incorrectly in the code) the numerical tests described herewould not achieve the exponential
convergence in the solution error measureEψ that is seen in these tests.

5.1. Tests of a Multi-Cube Elliptic Equation Solver on T 3

The numerical tests described here use the multi-cube representation of the three-manifold
with topologyT 3 given in Appendix A.1. The reference metric in this case is the flat Euclidean
metric, Eq. (A.1), so the covariant derivatives which appear in the elliptic Eq. (30) are just the
Cartesian coordinate partial derivatives. When written interms of the multi-cube Cartesian co-
ordinates onT 3, therefore, this equation takes the simple form,

∇i∇iψ − c2ψ = ∂2
xψ + ∂

2
yψ + ∂

2
zψ − c2ψ = f . (34)

This equation is solved numerically in these tests using thesource functionf given by,

f (x, y, z) = −(ω2 + c2) cos

[

2π
L

(kx + ℓy + mz)

]

, (35)

wherek, ℓ, andm are integers,c is a constantc = 1/L, andω is given by

ω2 =

(

2π
L

)2
(

k2 + ℓ2 + m2
)

. (36)

The exact analytical solution to this equation is given by

ψE(x, y, z) = cos

[

2π
L

(kx + ℓy + mz)

]

. (37)

The numerical tests of the solutions to Eqs. (34)–(36) were performed using a source function
with k = ℓ = m = 2. These tests were performed on a set of eight computationalsubregions
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using a range of numerical resolutions havingN = 8, 10, 12, 14, 16, 18 and 20 collocation points
respectively in each spatial direction in each subregion. These subregions divide the one cubic
regionB1 needed to representT 3 into eight cubes: each half the size of the region in each spatial
direction. The internal boundary maps between these subregions are just the trivial identity
maps. The graphs of the solution errorsEψ and the residual errorsER, as defined in Eqs. (32)
and (33), for these tests are shown in Fig. 4. The elliptic sover for these tests were run until the
residual errorsER were reduced to the level of numerical roundoff. These results demonstrate that
the boundary conditions introduced here on region boundaries were implemented correctly and
efficiently: successfully achieving the exponential convergence expected of spectral numerical
methods.
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Figure 4: Errors in the numerical solutions∆ψ of the elliptic Eq. (34) onT 3 with k = ℓ = m = 2, as quantified by
the error measuresEψ andER. The parameterN is the number of collocation points used for these tests in each spatial
direction in each computational subregion.

5.2. Tests of a Multi-Cube Elliptic Equation Solver on S 2 × S 1

The numerical tests described here use the multi-cube representation of the three-manifold
with topologyS 2 × S 1 given in Appendix A.2. The reference metric used in this caseis the
constant-curvature round metric given in terms of angular coordinates{χ, θ, ϕ} in Eq. (A.8), and
in the multi-cube Cartesian coordinates used in these testsin Eq. (A.9). This choice of reference
metric makes the elliptic Eq. (30) somewhat more complicated in this case. In terms of the
standard angular coordinates this equation has the form

∇i∇iψ − c2ψ =
∂2
χψ

R2
1

+
∂θ

[

sinθ∂θψ
]

R2
2 sinθ

+
∂2
ϕψ

R2
2 sin2 θ

− c2ψ = f . (38)

This equation is solved numerically in these tests with a source functionf given by,

f (χ, θ, ϕ) = −(ω2 + c2)ℜ
[

eikχYℓm(θ, ϕ)
]

, (39)

whereYℓm(θ, ϕ) is the standardS 2 spherical harmonic function,k, ℓ, andm are integers,c is a
constantc = 1/R2, ω is given by

ω2 =
ℓ(ℓ + 1)

R2
2

+
k2

R2
1

, (40)
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andℜ[Q] denotes the real part of a quantityQ. The exact analytical solution to this equation is
given by

ψE(χ, θ, ϕ) = ℜ
[

eikχYℓm(θ, ϕ)
]

. (41)

The numerical solution to this equation is carried out usingthe Cartesian coordinates of the
multi-cube description ofS 2 × S 1 described in Appendix A.2. The covariant derivatives used
by the SpEC code for this test are evaluated using the Cartesian coordinate representation of the
round metric given in Eq. (A.9). The source functionf that appears on the right side of Eq. (38),
is evaluated in the multi-cube Cartesian coordinates used for these tests with the transformations
between the angular and Cartesian coordinates given in Tables A.4 and A.5.

The tests performed here used the source function given in Eqs. (39)–(40) withk = ℓ = m =
2. These tests used a set of twelve computational subregionsto represent the six cubic regions of
S 2× S 1, cf. Fig. A.10. These subregions divide each region in the periodically identifiedz direc-
tion into two subregions. These tests were performed usingN = 8, 10, 12, 14, 16, 18, 20 and 22
collocation points respectively in each spatial directionin each of the computational subregions.
The boundary conditions at the inter-region boundaries arebased on the maps specified in Ta-
ble A.3. The graphs of the solution errorsEψ and the residual errorsER, as defined in Eqs. (32)
and (33), for these tests are shown in Fig. 5. The elliptic sover for these tests were run until the
residual errorsER were reduced to the level of numerical roundoff. This graph demonstrates, for
the non-trivialS 2 × S 1 case, that the computational region boundary conditions developed here
have been implemented correctly and efficiently, achieving the exponential convergence expected
of spectral numerical methods.

10 12 14 16 18 20 22

10
-15

10
-12

10
-9

10
-6

10
-3

N

Eψ

E
R

Figure 5: Errors in the numerical solutions∆ψ of the elliptic Eq. (38) onS 2 × S 1 with k = ℓ = m = 2, as quantified by
the error measuresEψ andER. The parameterN is the number of collocation points used for these tests in each spatial
direction in each computational subregion.

5.3. Tests of a Multi-Cube Elliptic Equation Solver on S 3

The numerical tests described here use the multi-cube representation of the three-manifold
with topologyS 3 given in Appendix A.3. The reference metric used in this caseis the stan-
dard constant-curvature round metric forS 3 given in terms of angular coordinates{χ, θ, ϕ} in
Eq. (A.19), and in the multi-cube Cartesian coordinates used in these tests in Eq. (A.20). This

18



choice of reference metric fixes the elliptic Eq. (30) to havethe form,

∇i∇iψ − c2ψ =
∂χ

[

sin2 χ∂χψ
]

R2
3 sin2 χ

+
∂θ

[

sinθ∂θψ
]

R2
3 sinθ sin2 χ

+
∂ 2
ϕ ψ

R2
3 sin2 θ sin2 χ

− c2ψ = f , (42)

when expressed in terms of the standard angular coordinates{χ, θ, ϕ} used onS 3. The source
function f used in these numerical tests is given by,

f (χ, θ, ϕ) = −(ω2 + c2)ℜ [

Ykℓm(χ, θ, ϕ)
]

, (43)

where theYkℓm(χ, θ, ϕ) are theS 3 spherical harmonics described in Appendix B,k, ℓ, andm are
integers,c is a constantc = 1/R3, andω is given by

ω2 =
k(k + 2)

R2
3

. (44)

The exact analytical solution to this equation is given by

ψE(χ, θ, ϕ) = ℜ [

Ykℓm(χ, θ, ϕ)
]

. (45)

The numerical solutions of Eq. (42) are carried out for thesetests using the multi-cube rep-
resentation ofS 3 described in Appendix A.3. The covariant derivatives used by the SpEC code
for this test are evaluated using the multi-cube Cartesian coordinate representation of the round
metric onS 3 given in Eq. (A.20). The source functionf , defined in Eq. (43), is evaluated in
terms of the multi-cube Cartesian coordinates for these tests using the transformations between
the angular and the Cartesian coordinates given in Tables A.8 and A.9.
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Figure 6: Errors in the numerical solutions∆ψ of the elliptic Eq. (42) onS 3 with k = ℓ = m = 2 as quantified by the error
measuresEψ andER. The parameterN is the number of collocation points used for these tests in each spatial direction
in each computational subregion.

The numerical tests described here solved the elliptic Eqs.(42)–(44) with the parameter val-
uesk = ℓ = m = 2 in the source functionf . These tests were done using a set of eight
computational subregions, corresponding to the eight cubic regions needed to representS 3, cf.
Fig. A.11. These tests usedN = 8, 10, 12, 14, 16, 18, 20 and 22 collocation points respectively
in each spatial direction in each of the computational subregions. The boundary conditions at
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the region boundaries for these tests are based on the interface identification maps specified in
Table A.8. The graphs of the solution errorsEψ and the residual errorsER, defined in Eqs. (32)
and (33), for these tests are shown in Fig. 6. The elliptic sover for these tests were run until the
residual errorsER were reduced to the level of numerical roundoff. This graph demonstrates for
another non-trivial example that the inter-region boundary conditions developed here have been
implemented correctly and efficiently. Figure 6 also demonstrates that these numerical tests have
achieved the exponential convergence expected of spectralnumerical methods.

6. Numerical Tests of a Multi-Cube Hyperbolic Equation Solver

This section discusses numerical tests of the multi-cube methods for solving hyperbolic evo-
lution equations on compact three-manifolds as described in Secs. 2, 3, and 4. These tests find
numerical solutions to the scalar wave equation

− ∂ 2
t ψ + ∇i∇iψ = 0, (46)

where∇i represents the spatial covariant derivative on the fixed geometry of the spatial three-
manifold. This equation is solved here on the three-manifolds described in Appendix A:T 3

with a flat metric,S 2 × S 1 with the constant curvature round metric, andS 3 with the standard
constant-curvature round metric.

These wave equations are converted to first-order symmetric-hyperbolic form before solving
them numerically. The list of dynamical fieldsuα = {ψ,Π,Φi} is therefore expanded to include
the first derivatives ofψ: Π = −∂tψ, andΦi = ∂iψ. Constraint damping is used to enforce the
constraint,

Ci ≡ ∂iψ − Φi = 0, (47)

using the methods developed in Ref. [23] with constraint damping parameterγ2 = 1.
Exact analytical solutions exist to these wave equations onthe three-manifolds used in these

tests. Therefore the effectiveness and efficiency of the evolution code can be tested in these cases
by comparing numerical solutionsψN to this equation with the known analytical solutionsψE .
The accuracy, and convergence properties, of the code can bemeasured therefore by monitoring
the L2 norms of∆ψ = ψE − ψN using the solution error measure defined in Eq. (33). It is also
useful to monitor the constraint violation errorsCi. This is done by constructing the constraint
error measure:

EC ≡

√

√

√

∫

gi jCiC j
√

g d 3x
∫

gi j
(

ΦiΦ j + ∂iψ∂ jψ
) √

g d 3x
. (48)

This constraint error measure is invariant under changes inthe overall scale of the solution, and
to changes in the coordinates used to represent the solution.

The tests performed here use the scalar wave evolution system that is implemented as part
of the SpEC code [23, 24]. This code, developed originally bythe Caltech/Cornell numerical
relativity collaboration, uses pseudo-spectral methods to evaluate spatial derivatives, and the
method of lines to approximate the hyperbolic system of partial differential equations as sets of
coupled ordinary differential equations on each collocation point. These tests use an eighth order
Dormand-Prince [25] algorithm to integrate the method of lines ordinary differential equations in
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time. Each cubic region in these tests is subdivided into oneor more computational subregions,
on which field components are represented using Chebyshev basis functions at the Gauss-Labatto
collocation points. The structure of these subregions was chosen to achieve fairly uniform spatial
resolution. The particular choice of subregions is described in the discussion of each particular
test.

6.1. Tests of a Multi-Cube Hyperbolic Equation Solver on T 3

The numerical tests described here use the multi-cube representation of the three-manifold
with topologyT 3 given in Appendix A.1. The reference metric in this case is the flat Euclidean
metric, Eq. (A.1), so the spatial covariant derivatives which appear in the wave Eq. (46) are just
the Cartesian coordinate partial derivatives. When written in terms of the multi-cube Cartesian
coordinates onT 3, therefore, the wave equation takes the simple form,

− ∂ 2
t ψ + ∇i∇iψ = −∂ 2

t ψ + ∂
2
xψ + ∂

2
y ψ + ∂

2
z ψ = 0. (49)

The idea is to solve this equation numerically with initial data:

ψ(t, x, y, z) |t=0 = cos

[

2π
L

(kx + ℓy + mz)

]

, (50)

∂tψ(t, x, y, z) |t=0 = −ω sin

[

2π
L

(kx + ℓy + mz)

]

, (51)

wherek, ℓ, andm are integers, andω is given by

ω2 =

(

2π
L

)2
(

k2 + ℓ2 + m2
)

. (52)

The exact solution to this initial value problem is given analytically by

ψE(t, x, y, z) = cos

[

ωt +
2π
L

(kx + ℓy + mz)

]

. (53)

The numerical solution of the wave Eq. (49) for these tests was performed on a set of eight
computational subregions. These subregions divide the onecubic region needed to representT 3

into eight cubes, each half the size of the region in each spatial direction. The internal boundary
maps between these subregions are just the trivial identitymaps. These hyperbolic evolution tests
were performed using the initial data given in Eqs. (50) and (51) withk = ℓ = m = 2. These tests
used computational subregions havingN = 16, 18, 20 and 22 collocation points respectively in
each spatial direction. The graphs of the solution errorsEψ and the constraint violation errors
EC for these tests are shown in Fig. 7. These graphs demonstratethat the numerical methods
described here successfully achieve the exponential convergence expected of spectral numerical
methods. The slow growth in time of the solution errorEψ, seen in the left side of Fig. 7 is linear
in time. This type of error is a common feature of the ordinarydifferential equation integrator
used for these tests.

6.2. Tests of a Multi-Cube Hyperbolic Equation Solver on S 2 × S 1

The numerical tests described here use the multi-cube representation of the three-manifold
with topologyS 2 × S 1 given in Appendix A.2. The reference metric used in this caseis the
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Figure 7: Left: Errors in the numerical solutions∆ψ for the T 3 evolutions withk = ℓ = m = 2 as measured by the
quantityEψ. Right: Constraint errorsCi for theT 3 evolutions withk = ℓ = m = 2 as measured by the quantityEC.

constant-curvature round metric given in terms of angular coordinates{χ, θ, ϕ} in Eq. (A.8), and
in the multi-cube Cartesian coordinates used in these testsin Eq. (A.9). This choice of reference
metric fixes the wave Eq. (30) to have the form

− ∂ 2
t ψ + ∇i∇iψ = −∂ 2

t ψ +
∂ 2
χψ

R2
1

+
∂θ

[

sinθ∂θψ
]

R2
2 sinθ

+
∂ 2
ϕψ

R2
2 sin2 θ

= 0. (54)

when expressed in terms of the angular coordinates{χ, θ, ϕ} used onS 2×S 1. The idea is to solve
this equation numerically with initial data:

ψ(t, θ, ϕ, χ)t=0 = ℜ
[

eikχYℓm(θ, ϕ)
]

, (55)

∂tψ(t, θ, ϕ, χ)t=0 = ℜ
[

iωeikχYℓm(θ, ϕ)
]

, (56)

whereYℓm(θ, ϕ) are the standardS 2 spherical harmonics,k, ℓ, andm are integers,ω is given by

ω2 =
ℓ(ℓ + 1)

R2
2

+
k2

R2
1

, (57)

andℜ[Q] denotes the real part of the quantityQ. The exact solution to this initial value problem
is given analytically by

ψE(t, θ, ϕ, χ) = ℜ
[

eiωt+ikχYℓm(θ, ϕ)
]

. (58)

The numerical solution of Eq. (54) is carried out using the Cartesian coordinates of the multi-
cube description ofS 2 × S 1 described in Appendix A.2. The spatial covariant derivatives used
by the SpEC code for this test are evaluated using the Cartesian coordinate representation of the
round metric given in Eq. (A.9). The initial data, Eqs. (55) and (56), used for these tests are
evaluated in the multi-cube Cartesian coordinates with thetransformations between the angular
and Cartesian coordinates given in Tables A.4 and A.5.

The numerical solution of the scalar wave Eq. (54) for these tests was performed on a set
of twelve computational subregions. These subregions divide the six cubic regions needed to
representS 2 × S 1, cf. Fig. A.10, into cubes that are half the size of the regionin thez direction.
The internal boundary maps between these subregions are just the trivial identity maps, while
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the maps between regions are those given in Table A.3. These hyperbolic evolution tests were
performed using the initial data given in Eqs. (55) and (56) with k = ℓ = m = 2. These tests
were performed on computational subregions havingN = 16, 18, 20 and 22 collocation points
respectively in each spatial direction. The graphs of the solution errorsEψ and the constraint vio-
lation errorsEC for these tests are shown in Fig. 8. These graphs demonstratethat the numerical
methods described here successfully achieve the exponential convergence expected of spectral
numerical methods. The slow growth in time of the solution errorEψ, seen in left side of Fig. 8 is
(mostly) linear in time. This growth in the error is a common feature of the ordinary differential
equation integrator used for these tests.
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Figure 8: Left: Errors in the numerical solutions∆ψ for theS 2 × S 1 evolutions withk = ℓ = m = 2 as measured by the
quantityEψ. Right: Constraint errorsCi for theS 2 × S 1 evolutions withk = ℓ = m = 2 as measured by the quantityEC.

6.3. Tests of a Multi-Cube Hyperbolic Equation Solver on S 3

The numerical tests described here use the multi-cube representation of the three-manifold
with topologyS 3 given in Appendix A.3. The reference metric used in this caseis the stan-
dard constant-curvature round metric forS 3 given in terms of angular coordinates{χ, θ, ϕ} in
Eq. (A.19), and in the multi-cube Cartesian coordinates used in these tests in Eq. (A.20). This
choice of reference metric fixes the wave Eq. (46) to have the form,

− ∂ 2
t ψ + ∇i∇iψ = −∂ 2

t ψ +
∂χ

[

sin2 χ∂χψ
]

R2
3 sin2 χ

+
∂θ

[

sinθ∂θψ
]

R2
3 sinθ sin2 χ

+
∂ 2
ϕ ψ

R2
3 sin2 θ sin2 χ

= 0, (59)

when expressed in terms of the standard angular coordinates{χ, θ, ϕ} used onS 3. This equation
is solved numerically with initial data:

ψ(t, θ, ϕ, χ)t=0 = ℜ [

Ykℓm(χ, θ, ϕ)
]

, (60)

∂tψ(t, θ, ϕ, χ)t=0 = ℜ [

iωYkℓm(χ, θ, ϕ)
]

, (61)

whereYkℓm is theS 3 spherical harmonic function defined in Appendix B,k, ℓ, andm are integers,
andω is given by

ω2 =
k(k + 2)

R2
3

. (62)
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The solution to this initial value problem is given analytically by

ψE(t, θ, ϕ, χ) = ℜ
[

eiωtYkℓm(χ, θ, ϕ)
]

. (63)

The numerical solution of Eq. (59) is carried out using the Cartesian coordinates of the multi-
cube description ofS 3 described in Appendix A.3. The spatial covariant derivatives used by
the SpEC code for this test are evaluated using the Cartesiancoordinate representation of the
round metric given in Eq. (A.20). The initial data, Eqs. (60)and (61), used for these tests are
evaluated in the multi-cube Cartesian coordinates with thetransformations between the angular
and Cartesian coordinates given in Table A.8 and A.9.

The numerical solution of the scalar wave Eq. (59) for these tests was performed on a set
of eight computational subregions. These subregions are identical to the eight cubic regions
needed to representS 3, cf. Fig. A.11. The maps between regions are those given in Table A.7.
The hyperbolic evolution test was performed using the initial data given in Eqs. (60) and (61)
with k = ℓ = m = 2. These tests were performed on computational subregions having N =
16, 18, 20 and 22 collocation points respectively in each spatial direction. The graphs of the
solution errorsEψ and the constraint violation errorsEC for these tests are shown in Fig. 9.
These graphs demonstrate that the numerical methods described here successfully achieve the
exponential convergence expected of spectral numerical methods. The slow growth in time of
the solution errorEψ, seen in the left side of Fig. 9 is (mostly) linear in time. This growth in the
error is a common feature of the ordinary differential equation integrator used for these tests.
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Figure 9: Left: Errors in the numerical solutions∆ψ for the S 3 evolutions withk = ℓ = m = 2 as measured by the
quantityEψ. Right: Constraint errorsCi for theS 3 evolutions withk = ℓ = m = 2 as measured by the quantityEC.

Acknowledgment

We thank Michael Holst for helpful discussions about elliptic systems of equations and about
triangulations of topological manifolds, and we thank Oliver Rinne and Manuel Tiglio for pro-
viding a number of useful comments on a draft of this paper. Part of this research was completed
while LL was visiting the Max Planck Institute for Gravitational Physics (Albert Einstein In-
stitute) in Golm, Germany. This research was supported in part by a grant from the Sherman
Fairchild Foundation, and by NSF grants PHY-1005655, PHY-1068881 and DMS-1065438.

24



Appendix A. Examples of Multi-Cube Representations of Three-Manifolds

This appendix describes the construction of multi-cube representations of manifolds using
the methods developed in Secs. 2 and 3. Each multi-cube representation consists of a set of
non-overlapping cubesBA that cover the manifold, a set of mapsΨAα

Bβ that identify the faces
of neighboring cubes, and finally a smooth positive definite reference metricgi j used to define
the differential structure on the manifold. The construction of these multi-cube structures is
described here for three common three-manifolds: the three-torusT 3 with a flat reference metric,
the spherical-torusS 2 × S 1 with a constant-curvature round-sphere metric, and the three-sphere
S 3 with the standard constant-curvature round-sphere metric. These examples are used in Secs. 5
and 6 to illustrate the solution of partial differential equations on multi-cube manifolds using the
methods developed in Sec. 4.

Appendix A.1. Multi-Cube Representation of T 3

The simplest example of a multi-cube manifold is the three-torus,T 3. Only a single cubeB1

is needed to cover this manifold, and it is most convenient tolocate this cube at the origin inR3

so~c1 = (0, 0, 0). Opposite faces of this cube are identified without rotation or reflection to obtain
theT 3 topology:∂+xB1↔ ∂−xB1, ∂+yB1 ↔ ∂−yB1, and∂+zB1↔ ∂−zB1. The maps,Ψ1±x

1∓x,Ψ
1±y
1∓y,

andΨ1±z
1∓z, needed to effect these identifications are defined by Eq. (1) with the rotation matrices,

CAα
Bβ , being just the identity matrices:C1+x

1−x = C1+y
1−y = C1+z

1−z = I. The three-torusT 3 admits a
smooth flat metric, so a convenient choice of reference metric for this manifold is:

ds2 = gi jdxidx j = dx2 + dy2 + dz2, (A.1)

wherex, y andz are the multi-cube Cartesian coordinates that label pointsin B1.

Appendix A.2. Multi-Cube Representation of S 2 × S 1

The manifoldS 2 × S 1 can be covered by a set of six cubic regionsBA with A = {1, ..., 6}. A
convenient way to arrange these cubes inR3 is illustrated in Fig. A.10. The values of the cube-
center location vectors~cA for this configuration is summarized in Table A.2. The inner faces of
the touching cubes in Fig. A.10 are connected by identity maps, while the outer faces are identi-
fied using the maps described by Eq. (1) with the rotation matricesCAα

Bβ given in Table A.3. This

representation ofS 2 × S 1 is constructed by taking the Cartesian product ofS 1 (the periodically
identifiedz-axis in this representation) with the commonly used “cubed-sphere” representation
of S 2 [1, 2, 3].

Table A.2: Cube-Center Locations forS 2 × S 1

~c1 = (0,−L, 0) ~c3 = (0, L, 0) ~c5 = (L, 0, 0)

~c2 = (0, 0, 0) ~c4 = (0, 2L, 0) ~c6 = (−L, 0, 0)

It is useful to discuss the method used to construct the “cubed-sphere” representation ofS 2 in
some detail here, since this method is used in Appendix A.3 asthe model for constructing a new
representation ofS 3. Let {x̄, ȳ, z̄} denote Cartesian coordinates in anR3, and let ¯x2 + ȳ2 + z̄2 = r2
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Figure A.10: The three-manifoldS 2 × S 1 is represented using the six cubic regions illustrated here. The faces of these
cubes are identified using the maps described in Table A.3. This representation ofS 2 × S 1 is based on the commonly
used “cubed-sphere” representation ofS 2.

Table A.3: Cube Face Identifications,∂αBA ↔ ∂βBB, and rotation matrices,CAα
Bβ , for the interface maps inS 2 × S 1.

∂αBA ↔ ∂βBB CAα
Bβ CBβ

Aα ∂αBA ↔ ∂βBB CAα
Bβ CBβ

Aα

∂+zB1↔ ∂−zB1 I I ∂+yB1↔ ∂−yB2 I I

∂−yB1↔ ∂+yB4 I I ∂+xB1↔ ∂−yB5 R+z R−z

∂−xB1↔ ∂−yB6 R−z R+z ∂+zB2↔ ∂−zB2 I I

∂+yB2↔ ∂−yB3 I I ∂+xB2↔ ∂−xB5 I I

∂−xB2↔ ∂+xB6 I I ∂+zB3↔ ∂−zB3 I I

∂+yB3↔ ∂−yB4 I I ∂+xB3↔ ∂+yB5 R−z R+z

∂−xB3↔ ∂+yB6 R+z R−z ∂+zB4↔ ∂−zB4 I I

∂+xB4↔ ∂+xB5 R2
+z R2

+z ∂−xB4↔ ∂−xB6 R2
+z R2

+z

∂+zB5↔ ∂−zB5 I I ∂+zB6↔ ∂−zB6 I I

denote a two-sphereS 2 of radiusr. It is useful for some purposes to identify points on thisS 2

using standard angular coordinatesθ andϕ:

x̄ = r sinθ cosϕ, (A.2)

ȳ = r sinθ sinϕ, (A.3)

z̄ = r cosθ. (A.4)

Now consider a cubēB centered at the origin, of sizeL = 2r/
√

3 (which just fits inside the
sphere), whose orientation is aligned with the{x̄, ȳ, z̄} axes. Let∂ᾱB̄ represent the six faces of
this cube, with ¯α = ±x̄, etc., labeling the various faces. The images of these six faces can be
arranged in a plane, like theα = +z faces of the cubes shown in Fig. A.10. The goal here is to
construct a representation ofS 2× S 1, so it will also be useful to make a correspondence between
these cube faces∂ᾱB̄with the cubes shown in Fig. A.10. Table A.4 gives the relationship between
the cube-face identifiers ¯α = ±x̄, etc. and the cubic region labelsA=1,2,...,6 shown in Fig. A.10.
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Points on each of the cube-faces,∂ᾱB̄, can be identified by their local Cartesian coordinates.
For example, points on the ¯α = +z̄ face, i.e. theA = 2 face in Fig. A.10, can be identified by
the coordinates{x̄, ȳ}. It is also useful to introduce scaled local Cartesian coordinates,{XA, YA}
to represent the points on these faces. For the ¯α = +z̄ face for example, it is useful to set
{X2, Y2} = {x̄/z̄, ȳ/z̄}. Each coordinate has been divided by ¯z, which is constant on this face,
to ensure that the scaled coordinates{X2, Y2} are confined to the ranges,−1 ≤ X2 ≤ 1 and
−1 ≤ Y2 ≤ 1. Similar definitions are made on the other faces, cf. Table A.4, that ensure
the XA andYA are all oriented the same way as in Fig. A.10, and all satisfy−1 ≤ XA ≤ 1 and
−1 ≤ YA ≤ 1. Using Eqs. (A.2)–(A.4), this construction provides a natural identification between
points on the original sphere, labeled by their angular coordinates{θ, ϕ}, and the Cartesian cube-
face coordinates{XA, YA} via the equations summarized in Tables A.4 and A.5.

Table A.4: Cubed-Sphere Representation ofS 2: Angular to Cartesian Coordinate Map.

A ᾱ XA YA

1 −ȳ − x̄
ȳ = − cotϕ − z̄

ȳ = − cotθ cscϕ

2 +z̄ x̄
z̄ = tanθ cosϕ ȳ

z̄ = tanθ sinϕ

3 +ȳ x̄
ȳ = cotϕ − z̄

ȳ = − cotθ cscϕ

4 −z̄ − x̄
z̄ = − tanθ cosϕ ȳ

z̄ = tanθ sinϕ

5 +x̄ − z̄
x̄ = − cotθ secϕ ȳ

x̄ = tanϕ

6 −x̄ − z̄
x̄ = − cotθ secϕ − ȳ

x̄ = − tanϕ

The {XA, YA} defined in this way are local Cartesian coordinates. These could be converted
to global coordinates by adding in the appropriate offset for each face:xx

A = cx
A +

1
2LXA and

xy
A = cy

A+
1
2 LYA. Alternatively, the angles tan−1 XA and tan−1 YA could be used as local “Cartesian”

coordinates on these cube faces. These angle-based Cartesian coordinates have the advantage
of giving a more uniform mapping of the Euclidean plane onto the image of the cube face on
the sphere, so they are the preferred choice for numerical work. Global Cartesian coordinates
constructed from these angle-based coordinates are definedby

xx
A = cx

A +
2L
π

tan−1 XA, (A.5)

xy
A = cy

A +
2L
π

tan−1 YA, (A.6)

whereXA andYA are functions of the standard angular coordinatesθ andϕ by the expressions
given in Table A.4.

For representations ofS 2 × S 1, an appropriate coordinate is also needed for the periodically
identifiedz direction in Fig. A.10. Introduce an angleχ, whose range is−π ≤ χ ≤ π, that labels
the points in theS 1 subspace. Then define the global Cartesian coordinate associated with this
direction as

xz
A = cz

A +
L
2π
χ, (A.7)
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Table A.5: Cartesian to Angular Coordinate Map for the Cubed-Sphere Representation ofS 2. The range of the local
Cartesian coordinateXA is −1 ≤ XA ≤ 1, and the range ofθ is 0 ≤ θ ≤ π in these expressions. The ranges ofϕ for
different values ofYA are specified in the table.

A YA-range cosϕ ϕ-range cosθ

1 −1 ≤ Y1 ≤ 1 X1/
√

1+ X2
1

7π
4 ≥ ϕ ≥ 5π

4 Y1/
√

1+ X2
1 + Y2

1

2 1 ≥ Y2 ≥ 0 X2/
√

X2
2 + Y2

2 π ≥ ϕ ≥ 0 1/
√

1+ X2
2 + Y2

2

2 −1 ≤ Y2 < 0 X2/
√

X2
2 + Y2

2 2π > ϕ ≥ π 1/
√

1+ X2
2 + Y2

2

3 −1 ≤ Y3 ≤ 1 X3/
√

1+ X2
3

3π
4 ≥ ϕ ≥ π

4 −Y3/
√

1+ X2
3 + Y2

3

4 1 ≥ Y4 > 0 X4/
√

X2
4 + Y2

4 2π > ϕ ≥ π −1/
√

1+ X2
4 + Y2

4

4 −1 ≤ Y4 ≤ 0 X4/
√

X2
4 + Y2

4 π ≥ ϕ ≥ 0 −1/
√

1+ X2
4 + Y2

4

5 −1 ≤ Y5 < 0 1/
√

1+ Y2
5 2π > ϕ ≥ 7π

4 −X5/
√

1+ X2
5 + Y2

5

5 1 ≥ Y5 ≥ 0 1/
√

1+ Y2
5

π
4 ≥ ϕ ≥ 0 −X5/

√

1+ X2
5 + Y2

5

6 −1 ≤ Y6 < 0 −1/
√

1+ Y2
6

5π
4 ≥ ϕ > π X6/

√

1+ X2
6 + Y2

6

6 1 ≥ Y6 ≥ 0 −1/
√

1+ Y2
6 π ≥ ϕ ≥ 3π

4 X6/
√

1+ X2
6 + Y2

6

The standard constant-curvature “round” metric onS 2 × S 1 is smooth, and it is therefore an
acceptable choice for the reference metric to define the differential structure on this manifold.
The simplest representation of this round metric uses the angular coordinatesθ, ϕ, andχ:

ds2 = R2
2(dθ2 + sin2 θdϕ2) + R2

1dχ2, (A.8)

whereR2 andR1 are constants that specify the radii of theS 2 andS 1 parts of the geometry re-
spectively. Using the transformations given in Eqs. (A.5)–(A.7) and Table A.4, a straightforward
(but lengthy) calculation gives the global multi-cube Cartesian-coordinate representation of this
metric onS 2 × S 1:

ds2 =

(

πR2

2L

)2 (1+ X2
A)(1+ Y2

A)

(1+ X2
A + Y2

A)2

[

(1+ X2
A)(dxx

A)2 − 2XAYAdxx
Adxy

A + (1+ Y2
A)(dxy

A)2
]

+

(

2πR1

L

)2

(dxz
A)2. (A.9)

The XA andYA that appear in this expression are thought of as the functions of the Cartesian
coordinates obtained by inverting the expressions given inEqs. (A.5) and (A.6):

XA = tan

[

π(xx
A − cx

A)

2L

]

, (A.10)

YA = tan

[

π(xy
A − cy

A)

2L

]

. (A.11)
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The functionsXA andYA depend on the location of a particular coordinate region through the pa-
rameterscx

A andcy
A. However, beyond this dependence the multi-cube coordinate representation

of theS 2 × S 1 round metric given in Eq. (A.9) is the same in each of the six coordinate regions
BA.

These multi-cube Cartesian coordinates{xA, yA, zA} turn out to be harmonic with respect to
the round metric onS 2× S 1, i.e., each coordinate is a solution (locally within each cubic-region,
not globally across the interface boundaries) to the covariant Laplace equation, 0= ∇i

A∇Ai xA =

∇i
A∇Ai yA = ∇i

A∇Ai zA, where∇Ai is the covariant derivative associated with theS 2 × S 1 metric in

regionA. These conditions are equivalent to 0= ∂Ai

(√
gA gi j

A

)

wheregA = detgAi j andgi j
A is the

inverse of the metricgAi j expressed in terms of the multi-cube Cartesian coordinatesin regionA.

Appendix A.3. Multi-Cube Representation of S 3

The locations of the eight cubic regions used to construct this representation ofS 3 are illus-
trated in Fig. A.11. The values of the cube-center location vectors~cA for this configuration is
summarized in Table A.6. The inner faces of the touching cubes in Fig. A.11 are assumed to
be connected by identity maps. The outer faces of these eightcubic regions are identified using
the maps described in Table A.7. This “cubed-sphere” representation ofS 3 is a natural three-
dimensional generalization of the two-dimensional cubed-sphere representation ofS 2 described
in Appendix A.2. It is constructed by inserting a four-dimensional cube into a three-dimensional
sphereS 3 in R4, and then identifying points on the faces of the four-cube with the points on the
three-sphere that are connected by rays extending outward from the origin.

y

1 3 4

z

x
8

7 6

5

Figure A.11: The three-manifoldS 3 can be represented using the eight cubic regions illustrated here. Cubic regionB2,
centered at the origin~c2 = (0, 0, 0) is hidden betweenB7 andB8 in this figure. The outer faces of these cubes are
identified using the maps described in Table A.7.

Table A.6: Cube-Center Locations forS 3

~c1 = (0,−L, 0) ~c3 = (0, L, 0) ~c5 = (L, 0, 0) ~c7 = (0, 0, L)

~c2 = (0, 0, 0) ~c4 = (0, 2L, 0) ~c6 = (−L, 0, 0) ~c8 = (0, 0,−L)
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Table A.7: Cubic Region Face Identifications,∂αBA ↔ ∂βBB , and rotation matrices,CAα
Bβ , for the interface maps inS 3.

∂αBA ↔ ∂βBB CAα
Bβ CBβ

Aα ∂αBA ↔ ∂βBB CAα
Bβ CBβ

Aα

∂+yB1↔ ∂−yB2 I I ∂−yB1↔ ∂+yB4 I I

∂+xB1↔ ∂−yB5 R+z R−z ∂−xB1↔ ∂−yB6 R−z R+z

∂+zB1↔ ∂−yB7 R−x R+x ∂−zB1↔ ∂−yB8 R+x R−x

∂+yB2↔ ∂−yB3 I I ∂+xB2↔ ∂−xB5 I I

∂−xB2↔ ∂+xB6 I I ∂+zB2↔ ∂−zB7 I I

∂−zB2↔ ∂+zB8 I I ∂+yB3↔ ∂−yB4 I I

∂+xB3↔ ∂+yB5 R−z R+z ∂−xB3↔ ∂+yB6 R+z R−z

∂+zB3↔ ∂+yB7 R+x R−x ∂−zB3↔ ∂+yB8 R−x R+x

∂+xB4↔ ∂+xB5 R2
+z R2

+z ∂−xB4↔ ∂−xB6 R2
+z R2

+z

∂+zB4↔ ∂+zB7 R2
+x R2

+x ∂−zB4↔ ∂−zB8 R2
+x R2

+x

∂+zB5↔ ∂+xB7 R−y R+y ∂−zB5↔ ∂+xB8 R+y R−y

∂+zB6↔ ∂−xB7 R+y R−y ∂−zB6↔ ∂−xB8 R−y R+y

It is appropriate to discuss this “cubed-sphere” representation ofS 3 in some detail, since it
does not appear to have been used or described in the literature before. Let{x̄, ȳ, z̄, w̄} denote
Cartesian coordinates inR4, and let ¯x2 + ȳ2 + z̄2 + w̄2 = r2 denote a three-sphere,S 3, of radiusr.
It is often useful to identify points inS 3 using the angular coordinatesχ, θ andϕ:

x̄ = r sinχ sinθ cosϕ, (A.12)

ȳ = r sinχ sinθ sinϕ, (A.13)

z̄ = r sinχ cosθ, (A.14)

w̄ = r cosχ. (A.15)

Now consider a four-cube centered at the origin, of sizeL = r (which just fits inside the three-
sphere), whose orientation is aligned with the{x̄, ȳ, z̄, w̄} axes. Let∂ᾱB̄ denote the eight faces
of this four-cube (each of which is a three-cube) labeled by the indexᾱ = ±x̄, etc. Arrange
the images of these eight three-cubes inR3 at the locations given in Table A.6, as shown in
Fig. A.11. Table A.8 gives the relationship between the four-cube face identifiers ¯α = ±x̄, etc.
and the three-cube region identifiersA=1,2,...,8 shown in Fig. A.11.

Points on each of the four-cube faces,∂ᾱB̄, can be identified by their local Cartesian coor-
dinates. For example, points on the ¯α = +w̄ face, i.e. theA = 2 region in Fig. A.11, can be
identified by the coordinates{x̄, ȳ, z̄}. It is convenient to introduce scaled local Cartesian coordi-
nates,{XA, YA, ZA} to represent the points on these faces. For the ¯α = +w̄ face for example, set
{X2, Y2, Z2} = {x̄/w̄, ȳ/w̄, z̄/w̄}. Each coordinate has been divided by ¯w, which is constant on this
face, to ensure that the scaled coordinates{X2, Y2, Z2} are confined to the ranges,−1 ≤ X2 ≤ 1,
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−1 ≤ Y2 ≤ 1, and−1 ≤ Z2 ≤ 1. Similar definitions are made on the other faces, cf. Table A.8,
that ensure theXA, YA, andZA are all oriented the same way as in Fig. A.11, and all satisfy
−1 ≤ XA ≤ 1,−1 ≤ YA ≤ 1, and−1 ≤ ZA ≤ 1. Using Eqs. (A.12)–(A.15), this construction pro-
vides a natural identification between points on the original three-sphere, labeled by their angular
coordinates{χ, θ, ϕ}, and the local Cartesian coordinates{XA, YA, ZA} on each four-cube face via
the equations summarized in Tables A.8 and A.9.

Table A.8: Cubed-Sphere Representation ofS 3.

A ᾱ XA YA Za

1 −ȳ − x̄
ȳ = − cotϕ − w̄

ȳ = − cotχ cscθ cscϕ − z̄
ȳ = − cotθ cscϕ

2 +w̄ x̄
w̄ = tanχ sinθ cosϕ ȳ

w̄ = tanχ sinθ sinϕ z̄
w̄ = tanχ cosθ

3 +ȳ x̄
ȳ = cotϕ − w̄

ȳ = − cotχ cscθ cscϕ z̄
ȳ = cotθ cscϕ

4 −w̄ − x̄
w̄ = − tanχ sinθ cosϕ ȳ

w̄ = tanχ sinθ sinϕ − z̄
w̄ = − tanχ cosθ

5 +x̄ − w̄
x̄ = − cotχ cscθ secϕ ȳ

x̄ = tanϕ z̄
x̄ = cotθ secϕ

6 −x̄ − w̄
x̄ = − cotχ cscθ secϕ − ȳ

x̄ = − tanϕ − z̄
x̄ = − cotθ secϕ

7 +z̄ x̄
z̄ = tanθ cosϕ ȳ

z̄ = tanθ sinϕ − w̄
z̄ = − cotχ secθ

8 −z̄ − x̄
z̄ = − tanθ cosϕ − ȳ

z̄ = − tanθ sinϕ − w̄
z̄ = − cotχ secθ

The{XA, YA, ZA} defined using this cubed-sphere construction are local Cartesian coordinates
on each of the faces of the four-cube. They could be convertedto global coordinates by adding
the appropriate offset for each cube:xx

A = cx
A +

1
2LXA, xy

A = cy
A +

1
2LYA, andxz

A = cz
A +

1
2LZA.

Alternatively, the angles tan−1 XA, tan−1 YA, and tan−1 ZA also provide local Cartesian-like coor-
dinates for these cubes. These angle-based Cartesian coordinates give a more uniform mapping
of Euclidean space onto the image of the four-cube face on thethree-sphere. So as in the two-
dimensional cubed-sphere case, these angle-based Cartesian coordinates are the preferred choice
for numerical work on the multi-cube representation ofS 3. Global multi-cube Cartesian coordi-
nates constructed from these angle-based coordinates are defined by

xx
A = cx

A +
2L
π

tan−1 XA, (A.16)

xy
A = cy

A +
2L
π

tan−1 YA, (A.17)

xz
A = cz

A +
2L
π

tan−1 ZA, (A.18)

whereXA, YA, andZA are functions of the hyper-spherical angular coordinatesχ, θ andϕ given
by the expressions in Tables A.8 and A.9.

The standard constant-curvature “round” metric onS 3 is smooth, and it is therefore an ac-
ceptable choice for the reference metric to define the differential structure on this manifold. The
simplest representation of this round metric uses the angular coordinatesχ, θ, andϕ:

ds2 = R2
3

(

dχ2 + sin2χ dθ2 + sin2χ sin2 θ dϕ2
)

, (A.19)
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Table A.9: Cartesian to Angular Coordinate Map for the Cubed-Sphere Representation ofS 3. The range of the local
Cartesian coordinateXA is −1 ≤ XA ≤ 1, the range ofZA is −1 ≤ ZA ≤ 1, the range of the angular coordinateθ is
0 ≤ θ ≤ π, and the range ofχ is 0≤ χ ≤ π in these expressions. The ranges ofϕ corresponding to different ranges ofYA

are specified in the table. The quantitiesWA ≡
√

1+ X2
A + Y2

A + Z2
A are used to simplify the expressions for cosχ.

A YA-range cosϕ ϕ-range cosθ cosχ

1 −1 ≤ Y1 ≤ 1 X1/
√

1+ X2
1

7π
4 ≥ ϕ ≥ 5π

4 Z1/
√

1+ X2
1 + Z2

1 Y1/W1

2 1 ≥ Y2 ≥ 0 X2/
√

X2
2 + Y2

2 π ≥ ϕ ≥ 0 Z2/
√

X2
2 + Y2

2 + Z2
2 1/W2

2 −1 ≤ Y2 < 0 X2/
√

X2
2 + Y2

2 2π > ϕ ≥ π Z2/
√

X2
2 + Y2

2 + Z2
2 1/W2

3 −1 ≤ Y3 ≤ 1 X3/
√

1+ X2
3

3π
4 ≥ ϕ ≥ π

4 Z3/
√

1+ X2
3 + Z2

3 −Y3/W3

4 1 ≥ Y4 > 0 X4/
√

X2
4 + Y2

4 2π > ϕ ≥ π Z4/
√

X2
4 + Y2

4 + Z2
4 −1/W4

4 −1 ≤ Y4 ≤ 0 X4/
√

X2
4 + Y2

4 π ≥ ϕ ≥ 0 Z4/
√

X2
4 + Y2

4 + Z2
4 −1/W4

5 −1 ≤ Y5 < 0 1/
√

1+ Y2
5 2π > ϕ ≥ 7π

4 Z5/
√

1+ Y2
5 + Z2

5 −X5/W5

5 1 ≥ Y5 ≥ 0 1/
√

1+ Y2
5

π
4 ≥ ϕ ≥ 0 Z5/

√

1+ Y2
5 + Z2

5 −X5/W5

6 −1 ≤ Y6 < 0 −1/
√

1+ Y2
6

5π
4 ≥ ϕ > π Z6/

√

1+ Y2
6 + Z2

6 X6/W6

6 1 ≥ Y6 ≥ 0 −1/
√

1+ Y2
6 π ≥ ϕ ≥ 3π

4 Z6/
√

1+ Y2
6 + Z2

6 X6/W6

7 1 ≥ Y7 ≥ 0 X7/
√

X2
7 + Y2

7 π ≥ ϕ ≥ 0 1/
√

1+ X2
7 + Y2

7 −Z7/W7

7 −1 ≤ Y7 < 0 X7/
√

X2
7 + Y2

7 2π > ϕ ≥ π 1/
√

1+ X2
7 + Y2

7 −Z7/W7

8 1 ≥ Y8 ≥ 0 X8/
√

X2
8 + Y2

8 π ≥ ϕ ≥ 0 −1/
√

1+ X2
8 + Y2

8 Z8/W8

8 −1 ≤ Y8 < 0 X8/
√

X2
8 + Y2

8 2π > ϕ ≥ π −1/
√

1+ X2
8 + Y2

8 Z8/W8

whereR3 is a constant that specifies the radius of theS 3. Using the transformations given in
Eqs. (A.16)–(A.18) and in Tables A.8 and A.9, a straightforward (but lengthy) calculation gives
the global multi-cube Cartesian-coordinate representation of this metric onS 3:

ds2 =

(

πR3

2L

)2 (1+ X2
A)(1+ Y2

A)(1+ Z2
A)

(1+ X2
A + Y2

A + Z2
A)2

[

(1+ X2
A)(1+ Y2

A + Z2
A)

(1+ Y2
A)(1+ Z2

A)
(dxx

A)2 − 2XAYA

1+ Z2
A

dxx
Adxy

A

+
(1+ Y2

A)(1+ X2
A + Z2

A)

(1+ X2
A)(1+ Z2

A)
(dxy

A)2 − 2XAZA

1+ Y2
A

dxx
Adxz

A

+
(1+ Z2

A)(1+ X2
A + Y2

A)

(1+ X2
A)(1+ Y2

A)
(dxz

A)2 − 2YAZA

1+ X2
A

dxy
Adxz

A

]

. (A.20)

TheXA, YA, andZA that appear in Eq. (A.20) are thought of as the functions of the global multi-
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cube Cartesian coordinates obtained by inverting the expressions given in Eqs. (A.16)–(A.18):

XA = tan

[

π(xx
A − cx

A)

2L

]

, (A.21)

YA = tan

[

π(xy
A − cy

A)

2L

]

, (A.22)

ZA = tan

[

π(xz
A − cz

A)

2L

]

. (A.23)

The functionsXA, YA andZA depend on the location of a particular coordinate region through
the parameterscx

A, cy
A andcz

A. However, beyond this dependence the multi-cube coordinate rep-
resentation of theS 3 round-sphere metric given in Eq. (A.20) is the same in each ofthe eight
coordinate regionsBA.

These multi-cube Cartesian coordinates{xA, yA, zA} turn out to be harmonic with respect to
the round metric onS 3, i.e., each coordinate is a solution (locally within each cubic-region, not
globally across the interface boundaries) to the covariantLaplace equation, 0= ∇i

A∇Ai xA =

∇i
A∇Ai yA = ∇i

A∇Ai zA, where∇Ai is the covariant derivative associated with theS 3 metric in

regionA. These conditions are equivalent to 0= ∂Ai

(√
gA gi j

A

)

wheregA = detgAi j andgi j
A is the

inverse of the metricgAi j expressed in terms of the multi-cube Cartesian coordinatesin regionA.

Appendix B. Spherical Harmonics on S3

This appendix derives expressions for the eigenfunctions of the Laplace operator on the three-
sphereS 3. These eigenfunctions are referred to here as three-sphereharmonics. These functions
are defined as solutions of the equation

∇i∇iY = −λY, (B.1)

where∇i is the covariant derivative operator onS 3, andλ is an eigenvalue. These functions have
been studied previously by a number of authors [26, 27, 28, 29]. Here a slightly different repre-
sentation is introduced that allows these harmonics (of arbitrary order) to be evaluated accurately
in a straightforward way. Using the angular coordinate representation of the round metric onS 3

from Eq. (A.19), it is straightforward to write the co-variant Laplace operator explicitly as

∇i∇iY =
∂χ

[

sin2 χ∂χY
]

R2
3 sin2 χ

+
∂θ [sinθ∂θY]

R2
3 sinθ sin2 χ

+
∂ 2
ϕ Y

R2
3 sin2 θ sin2 χ

. (B.2)

The eigenvalue problem, Eq. (B.1), can be solved then by separation of variables. The non-
singular solutions to this equation have the form:

Ykℓm(χ, θ, ϕ) =
Nkℓm
√

sinχ
Q
ℓ+ 1

2

k+ 1
2

(cosχ)Pm
ℓ (cosθ)eimϕ, (B.3)

wherePµ
ν andQµ

ν are the associated Legendre functions of the first and secondkind respectively.
The eigenvalue associated with thisYkℓm is

λ =
k(k + 2)

R2
3

. (B.4)
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These functions are non-singular onS 3 only for integersk, ℓ andm satisfying

k ≥ 0, (B.5)

k ≥ ℓ ≥ 0, (B.6)

ℓ ≥ m ≥ −ℓ. (B.7)

The half-integer associated Legendre functionsQ
ℓ+ 1

2

k+ 1
2

(x) with x = cosχ are non-singular for

−1 ≤ x ≤ 1, and can be evaluated re-cursively. For fixedℓ, the functions withk < ℓ can be shown
to vanish,

Q
ℓ+ 1

2

k+ 1
2

(x) = 0, (B.8)

using§3.4 Eq. (13) in Ref. [30]. Fork = ℓ a similar argument using§3.6.1 Eq. (14) in Ref. [30]
gives

Q
ℓ+ 1

2

ℓ+ 1
2

(x) = (−1)ℓ+12ℓℓ!
√

π
2

(

1− x2
)
ℓ
2+

1
4
. (B.9)

The functions withk > ℓ can be determined from these using the recursion relation,

(k − ℓ + 2)Q
ℓ+ 1

2

k+ 5
2

(x) = 2(k + 2) x Q
ℓ+ 1

2

k+ 3
2

(x) − (k + ℓ + 2)Q
ℓ+ 1

2

k+ 1
2

(x), (B.10)

from §3.8 Eq. (12) in Ref. [30]. Evaluating Eq. (B.10) fork = ℓ − 1 gives

Q
ℓ+ 1

2

ℓ+ 3
2

(x) = 2(ℓ + 1) x Q
ℓ+ 1

2

ℓ+ 1
2

(x), (B.11)

using Eq. (B.8). TheQ
ℓ+ 1

2

k+ 1
2

(x) with k ≥ ℓ + 2 can then be generated recursively using Eq. (B.10).

This recursion relation is known to be a stable and accurate way to generate the Legendre func-
tions of the first kind,Pm

ℓ
(x), cf. Ref. [31]. Our numerical tests indicate that it is alsoan accurate

way to generate the half-integer Legendre functions of the second kind,Q
ℓ+ 1

2

k+ 1
2

(x).

The orthogonality properties of theYkℓm(χ, θ, ϕ) are determined by the orthogonality proper-

ties ofQ
ℓ+ 1

2

k+ 1
2

(cosχ), Pℓ
m(cosθ) andeimϕ. The needed condition forQ

ℓ+ 1
2

k+ 1
2

can be obtained from the

associated Legendre differential equation,

0 =
d

dx

[

(1− x2)
dQµ

ν

dx

]

+

[

ν(ν + 1)− µ2

1− x2

]

Qµ
ν , (B.12)

from which it follows that

d
dx

[

(1− x2)

(

Qµ
ν′

dQµ
ν

dx
− Qµ

ν

dQµ
ν′

dx

)]

= (ν′ − ν)(ν + ν′ + 1)Qµ
ν′Q

µ
ν . (B.13)

The half-integer associated Legendre functions are well behaved in the interval−1 ≤ x ≤ 1,
therefore integrating Eq. (B.13) over this interval gives

0 = (ν′ − ν)(ν + ν′ + 1)
∫ 1

−1
Qµ
ν′(x)Qµ

ν(x)dx. (B.14)

34



It follows that theQ
ℓ+ 1

2

k+ 1
2

(x) with k ≥ 0 andℓ ≥ 0 satisfy the orthogonality condition:

M2
kℓ δk′k =

∫ 1

−1
Q
ℓ+ 1

2

k′+ 1
2

(x)Q
ℓ+ 1

2

k+ 1
2

(x) dx, (B.15)

whereMkℓ is the numerical constant,

M2
kℓ =

π2(k + ℓ + 1)!
4(k + 1)(k − ℓ)! . (B.16)

The analogous orthogonality relations forPℓ
m(cosθ) andeimϕ are well known:

N2
ℓmδℓ′ℓ =

∫ 1

−1
Pm
ℓ′ (y)Pm

ℓ (y) dy, (B.17)

2πδm′m =

∫ 2π

0
eim′ϕe−imϕdϕ, (B.18)

where

N2
ℓm =

(ℓ + m)!

(ℓ − m)!
(

ℓ + 1
2

) . (B.19)

From these conditions then, it follows that by choosing the normalization constants

Nkℓm =
1√

2πMkℓNℓm

, (B.20)

theYkℓm satisfy the following orthogonality conditions onS 3,

∫

Yk′ℓ′m′Y
∗
kℓm
√

g d 3x = R3
3

∫ π

0
dχ

∫ π

0
dθ

∫ 2π

0
dϕ sin2 χ sinθ Yk′ℓ′m′Y

∗
kℓm,

=













1

M2
kℓ

∫ 1

−1
Q
ℓ′+ 1

2

k′+ 1
2

(x)Q
ℓ+ 1

2

k+ 1
2

(x) dx

























1

N2
ℓm

∫ 1

−1
Pm
ℓ′ (y)Pm

ℓ (y) dy













×
[

1
2π

∫ 2π

0
eim′ϕe−imϕdϕ

]

,

= R3
3 δk′kδℓ′ℓδm′m. (B.21)
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[30] A. Erdélyi (Ed.), Higher Transcendental Functions, volume 1, McGraw-Hill Book Company, 1953.
[31] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in FORTRAN, Cambridge

University Press, Cambridge, England, second edition, 1992.

36


	1 Introduction
	2 Building Multi-Cube Manifolds
	2.1 Existence of Multi-Cube Representations
	2.2 Infrastructure for Multi-Cube Manifolds

	3 Specifying Differential Structures on Multi-Cube Manifolds
	4 Interface Boundary Conditions for Multi-Cube Manifolds
	4.1 Interface Boundary Conditions for Elliptic Systems
	4.2 Interface Boundary Conditions for Hyperbolic Systems

	5 Numerical Tests of a Multi-Cube Elliptic Equation Solver
	5.1 Tests of a Multi-Cube Elliptic Equation Solver on T3
	5.2 Tests of a Multi-Cube Elliptic Equation Solver on S2S1
	5.3 Tests of a Multi-Cube Elliptic Equation Solver on S3

	6 Numerical Tests of a Multi-Cube Hyperbolic Equation Solver
	6.1 Tests of a Multi-Cube Hyperbolic Equation Solver on T3
	6.2 Tests of a Multi-Cube Hyperbolic Equation Solver on S2S1
	6.3 Tests of a Multi-Cube Hyperbolic Equation Solver on S3

	Appendix  A Examples of Multi-Cube Representations of Three-Manifolds
	Appendix  A.1 Multi-Cube Representation of T3
	Appendix  A.2 Multi-Cube Representation of S2 S1
	Appendix  A.3 Multi-Cube Representation of S3

	Appendix  B Spherical Harmonics on S3

