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Abstract

This is part I of our paper in which we propose and develop a dynamically bi-orthogonal method (DyBO)
to study a class of time-dependent stochastic partial differential equations (SPDEs) whose solutions enjoy
a low-dimensional structure. In part I of our paper [9], we derived the DyBO formulation and proposed
numerical algorithms based on this formulation. Some important theoretical results regarding consistency
and bi-orthogonality preservation were also established in the first part along with a range of numerical
examples to illustrate the effectiveness of the DyBO method. In this paper, we focus on the computational
complexity analysis and develop an effective adaptivity strategy to add or remove modes dynamically. Our
complexity analysis shows that the ratio of computational complexities between the DyBO method and
a generalized polynomial chaos method (gPC) is roughly of order O((m/N,)?) for a quadratic nonlinear
SPDE, where m is the number of mode pairs used in the DyBO method and N, is the number of elements
in the polynomial basis in gPC. The effective dimensions of the stochastic solutions have been found to
be small in many applications, so we can expect m is much smaller than /N, and computational savings of
our DyBO method against gPC are dramatic. The adaptive strategy plays an essential role for the DyBO
method to be effective in solving some challenging problems. Another important contribution of this paper
is the generalization of the DyBO formulation for a system of time-dependent SPDEs. Several numerical
examples are provided to demonstrate the effectiveness of our method, including the Navier-Stokes equations
and the Boussinesq approximation with Brownian forcing.

Keywords: Stochastic partial differential equations, Karhunen-Loeve expansion, Low-dimensional
structure, Adaptivity algorithm, Sparsity, Stochastic flow

1. Introduction

This is the second part of the paper in developing a dynamically bi-orthogonal (DyBO) method for
solving time-dependent stochastic partial differential equations (SPDEs). It is well known that solving
SPDEs is very challenging due to the introduction of random variables and/or stochastic processes. The
computational cost increases exponentially fast as the number of random variables increases, which is also
known as the curse of dimensionality. In the past two decades, there has been tremendous progress in
numerical simulations of the SPDEs. To our knowledge, these methods can be classified into two major
groups, Monte Carlo methods [25, 26, 12, 2] and polynomial chaos methods [31, 5, 11, 32, 33, 20, 14].
Monte Carlo methods are very robust and have the advantage of being independent of the dimensionality
of random variables, but they suffer from slow convergence due to their sampling nature. Polynomial chaos
methods provide more accurate approximations because of their spectral representation property. However,
they suffer from the curse of dimensionality when the number of independent random variables is high.
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Many of physical and engineering simulation problems that appear to be high-dimensional have some
hidden low-dimensional or sparse structures. In recent years, we have witnessed a surge of interests in
exploring sparse structures prevailing in many physical and engineering problems. These methods include
compressed sensing in signal reconstruction [6, 10], hierarchical matrix in discretization of integral operators
[13], adaptive data analysis in signal processing [17, 18], signal processing for speech and music via I*
minimization [23, 34], proper orthogonal decomposition (POD) methods [3, 30], reduced basis (RB) methods
[4, 24, 27] in solving parameterized PDEs, and the dynamically Orthogonal (DO) method in solving SPDEs
[28, 29]. Most of these methods emphasize the use of spatial basis, but ignore stochastic basis. Thus they
do not preserve the bi-orthogonality of the spatial and the stochastic basis in their expansions.

The dynamically bi-orthogonal method (DyBO) that we proposed and developed in [9] and this paper
(see also [8]) aims at preserving the dynamic bi-orthogonality, thus essentially tracking the Karhunen-Loeve
expansions [19, 21] of stochastic solutions. The Karhunen-Loeve expansion provides the optimal spatial
and stochastic basis in the sense that it minimizes the total mean squared error and gives the sparsest
representation of stochastic solutions. One important advantage of DyBO over other reduced basis methods
is that we construct our reduced basis on the fly without the need to compute the reduced basis offline by
sampling the stochastic solution. Another advantage of our method is that we do not need to compute the
covariance matrix, which could be very computationally expensive especially for high-dimensional problems.
By solving an equivalent system that governs the evolution of the spatial and stochastic basis, our method
explores the low-dimensional structure intrinsically hidden in a wide range of time-dependent SPDEs.

In part I of our paper [9], we introduced the derivation of dynamically bi-orthogonal formulation for
time-dependent SPDEs, and proved several theoretical properties, such as the dynamically bi-orthogonality
preservation and the consistency between the DyBO formulation and the original SPDE. We also gave some
details on the numerical implementation of the DyBO methods, including the representation of stochastic
basis and how to deal with eigenvalue crossing. One of the purposes of this paper is to study several impor-
tant issues concerning the numerical performance of the DyBO method. These include the computational
complexity analysis and an adaptive strategy for adding or removing spatial and stochastic basis on the fly.
We also generalize the dynamically bi-orthogonal formulation for a system of SPDEs and propose an effective
parallel algorithm for DyBO. The parallel implementation is important for industrial-scale applications.

Our complexity analysis gives a detailed comparison between the complexity of our DyBO method and
that of gPC. Our analysis shows that the ratio between the complexity of DyBO and that of gPC is of
order O(m/N2 + (m/N,)?) for a quadratic nonlinear SPDE. Here m is the number of modes used in DyBO,
N, is the number of polynomial basis functions used in gPC, and N, ff is the total number of spatial grid
points in a d-dimensional problem. Typically, we expect m < N, and m/Nj < (m/N,)3. Thus the ratio
of complexities between DyBO and gPC is roughly of order O((m/N,)?). This has been confirmed by our
numerical experiments. Our complexity analysis also indicates that DyBO consumes less memory compared
with gPC. The ratio of memory consumptions between DyBO and gPC is of order O(m/Np).

The ability to add or remove modes dynamically is crucial for the successful applications of our DyBO
method to more challenging SPDEs. The adaptive strategy that we develop in this paper is based on solving
both DyBO and gPC solutions with the same initial condition for a short time. We then extract the domi-
nating spatial and stochastic modes by performing KL expansion on the difference of the two solutions. By
adding these dominant modes back to the DyBO formulation, we recapture previously unresolved dynamics
and maintain the accuracy of our method as these unresolved components become important later in time.
We have applied this adaptive strategy to solve the 1D stochastic Burgers equation, the 2D incompressible
Navier-Stokes equation and the Boussinesq approximation with Brownian motion forcing. Our numerical
results indicate that the adaptive strategy indeed works quite effectively. The adaptive method gives the re-
sults that are almost indistinguishable from those obtained by using a large m from the beginning. Further,
we demonstrate the convergence of our method as the number of modes increases.

This paper is organized as follows. In Section 2, we provide a brief overview of the DyBO formulation.
We perform the computational complexity analysis of our DyBO method in gPC version in Section 3, and
compare the complexity of DyBO with that of gPC. A parallel strategy is also proposed. In Section 4 a
local error analysis between DyBO method and gPC method is conducted and an adaptivity strategy in
changing the number of the spatial and stochastic basis is proposed. We generalize the DyBO formulation
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for a system of time-dependent SPDEs in Section 5. Several numerical examples are provided in Section 6
to demonstrate these ideas. Finally, some conclusion remarks will be made in Section 7.

2. Overview of the DyBO formulation for SPDEs

In order to set up notations for discussion and ease readers for further reading, we give a brief overview
of the DyBO formulation in this section. Further details can be found in part I of this paper [9]. Consider
the following time-dependent SPDE:

ou

a(m,t,w) = Lu(x,t,w), reDCRLte[0,T], we, (1a)
u(z,0,w) = up(x,w), z €D, weq, (1b)
B(u(z,t,w)) = h(z,t,w), x€0dD, weQ, (1c)

where L is a differential operator that may contain random coefficients and/or stochastic forces and B is a
linear differential operator. The randomnesses may also enter the system through initial ug and/or boundary
conditions B.

We assume the stochastic solution u(z, t,w) of the system (1) is a second-order stochastic process at each
fixed time ¢ > 0, i.e., u(-,t,-) € L2 (D x Q). We consider the following truncated KL expansion,

u(z, t,w) = alx,t) + Z ui(z, )Y (w,t) = a(x,t) + Uz, ) YT (w, t) = u(z, t,w), (2)

=1

where U = (uy,u2, -+ ,Up) and Y = (Y1,Ys, -+ ,Y},). Define an anti-symmetrization operator Q : RFEXF
RF*E and a partial anti-symmetrization operator Q : RF** — RFXF a5 follows:

(A-AT), QA= % (A — AT) + diag(A),

N |

Q(A) =

where A € R¥** and diag(A) is a diagonal matrix whose diagonal entries are equal to those of matrix A.
By enforcing the bi-orthogonal condition via @ and Q and a compatibility condition, we obtain the
DyBO formulation for the SPDE (1)

ou

o = ElLdl, (3a)
oU

S = -UD"+E [auY} , (3b)
dy T A —1

where Ay = diag((U”, U)) = ((u;, u;) d;;) € R™*™ and Lu = Lu — E[L£4] and the m-by-m matrices C

and D can be solved uniquely from the following linear system,
C—Ay'Q(AuC) =0,

D-09 (D) =0, (

DT +C=G.(a,U,Y),

— e N
= B
SRR

- = =

where the matrix G, (7, U,Y) = Ag! <UT, E {&WD € Rm*m,

The first two equations in the DyBO formulation (3) are time-dependent deterministic PDEs for the mean
solution u and the spatial basis function U and they are coupled to the third equation, a system of stochastic
ODE:s for the stochastic basis function Y. Various spatial discretization schemes, such as finite difference
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schemes or spectral methods, along with ODE solvers, such as the fourth-order Runge-Kutta method can
be used to solve the first two deterministic PDEs. For the numerical simulations of the stochastic ODEs
(3c), three representations of the stochastic modes Y have been proposed in the first part of the paper [9],
leading to three variants of DyBO method, i.e., DyBO-MC, DyBO-gSC and DyBO-gPC. In this paper, we
primarily focus on DyBO-gPC methods, although similar arguments can also be applied to DyBO-MC and
DyBO-gSC.

The Cameron-Martin theorem [5] implies the stochastic modes Y;(w,t)’s in the KL expansion (2) can be
approximated by the linear combination of polynomial chaos, i.e.,

Vi(w t) =Y Ha(€w)Aai(t), i=12---,m, (5)

acy
or in a matrix form, if we write H (§) = (Hq (§)),c; as a row vector,
Y(w,t) = H(§(w)) A, (6)
where A € RV»*™ and N, is the number of polynomial basis functions. The expansion (2) now reads
u=u+UATH".

We can derive equations for 4, U and A, instead of 4, U and Y. In other words, the stochastic modes Y
are identified with a matrix A € RY»*™which leads to the DyBO-gPC formulation of SPDE (1),

ou

= =Elcul], (7a)
%J — _UDT +E [iaﬂ] A, (7b)
% —-AC” + (E[H" i, U) A, (7¢)

where C(t) and D(t) can be solved from the linear system (4) with
G.(a,U,Y) = AgG' <UT, E [ﬁﬂYD = AG <UT, E [ﬁaﬂ] > A. 8)
By solving the system (7), we have an approximate solution to SPDE (1)
uPYBOEPC — 7 4 UATHT.

The orthonormal property of Y implies that the columns of A are orthonormal, i.e., ATA =1 € R™*X™,
We would like to point out that AAT € RN»*Ne in general is not an identity matrix as m < N, if the
SPDE solution has a low-dimensional or sparse structure.

3. Computational Complexity Analysis

As we discussed in the previous sections, the DyBO method explores the low-dimensional structure of
the stochastic solutions of time-dependent SPDE and represents the solution in the most compact form
in the L2 sense. The DyBO method not only offers savings in memory consumption, but also reduces the
computational cost since we have much fewer entries to update in each step time compared to gPC methods.
In this section, the storage complexity and the computational cost between the DyBO-gPC method and the
gPC method will be analysed and compared. We provide the analysis for a typical scenario, i.e., the quadratic
nonlinear PDE driven by stochastic forces. Examples of this type of SPDEs include the stochastic Burgers
equation and the stochastic Naiver-Stokes equation. In Section 6, numerical examples will be provided to
confirm the complexity analysis.



To make the discussion concrete, we assume throughout this section that the randomness is given in
terms of r independent random variables &;(w) of the same distribution p(-), and the set of polynomial chaos
basis H has N, elements, i.e., the cardinality of multi-index set |J| = N,. Furthermore, N, grid nodes
are used along each direction of the hyper-cube D € R?, which results in a spatial grid of total N ,‘f nodes.
Such discretizations generally lead to large systems for both gSC and gPC. As a reminder, we have assumed
throughout this paper that the solutions of SPDEs under consideration enjoy low-dimensional structures,
ie.,, m < Np.

3.1. Storage Complexity
Consider the gPC expansion of the stochastic solution, i.e.,

us (2, 1,€) = 0(2,t) + ) valz, ) Ha(€) = 0(a, t) + V(w, ) HT (£), (9)
@€Y

where V(z,t) = (va(z,t)) 45 is @ row vector of length N,. It is easy to derive the gPC formulation of the
SPDE (1),

9o
i E[Lv], (10a)
88—\; —E [[EUH:| . (10b)

From the above gPC formulation (10), it is clear that ¥ and V have to be updated in each time iteration.
Thus, the storage cost of the gPC solution is proportional to O (N{) + O (N,NfI) = O (N,N7).

On the other hand, the mean @(x,t), the spatial modes U(x,t) = (u1(x,t), us(x,t), -+ ,um(z,t)) and the
stochastic modes A (t) € RN»*™ in the DyBO-gPC formulation (7) are updated every time iteration, which
implies the memory consumption is proportional to O (fo) +0 (mN,‘f) + O (mN,) =0 (mN,‘f + mNp).
Here we have ignored the storage cost of axillary matrices in the DyBO formulation, i.e., matrices C, D and
G, € R™*™ which are just O (mg).

The above discussion regarding the storage complexity is summarized in Table 1. Typically, the number
of spatial grid nodes is much larger than the number of polynomial basis, i.e., N ff > N,. Thus, the reduction

of DyBO-gPC compared to gPC in terms of memory consumption is O (J([—”)
P

] Method \ Variables to update \ Storage Complexity \ Reduction \
gPC (10) o, V (0] (NpN;f) NA
DyBO-gPC (7) 7, U, A O (mNfg+mN,) |0 (Nﬂ) 40 (Nﬂ) ~0 (Nﬂ)

Table 1: Storage complexity comparison between gPC and DyBO-gPC methods.

3.2. Computational costs for the quadratic nonlinear PDE driven by stochastic forces

We next consider the computational complexity in terms of computational time. Unlike the analysis
of the storage complexity in the previous section, the analysis of computational time requires knowing the
specific form of the stochastic differential operator £. Here, we consider a typical scenario, i.e., the quadratic
nonlinear PDE driven by stochastic forces, where quadratic nonlinear PDEs are defined as second-order
polynomials of the solution u and its partial derivatives of any orders.

As has been shown in the first part of our paper [9], the DyBO-gPC formulation is a good approximation
to the gPC formulation if m is chosen properly. This in turn implies the computational time step sizes used to
numerically integrate both systems should be comparable. Thus, to compare the total computational time,
we only need to compare the time required to evaluate the right-hand sides if the same explicit ODE solver
is adopted for both gPC and DyBO-gPC formulations. Before we consider each case, we make the following
two assumptions regarding the computational complexity of the spatial derivatives and the stochastic forces.
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Assumption 3.1. In our complexity analysis, we assume that the spatial derivative can be computed in
linear time and the gPC expansion of stochastic force F can be evaluated in linear time.

Under Assumption 3.1, any quadratic nonlinear PDE driven by stochastic forces is equivalent to the
following SPDE in regard to computational cost

ou o\ 2 s \2
o = Lu~= (cu) tf= (ﬁu) + FHT, (11)
where £ is a deterministic linear differential operator.

We first consider the computational complexity of the gPC formulation (10) . With the gPC expansion

of the solution v = ¥ + VHT, simple calculations give the gPC formulation for SPDE (11)

ov -

5 (Ev) +AVEVT, (12a)
v

S = 2LLV + (ﬁvacugsam)lm +F, (12b)

where the third-order tensor TH) = (R HoHgH,)) 5, -
on the right hand sides of (12) is listed in Table 2. Note that the third-order tensor T™) only depends

The computational cost of some typical terms

Term (&7) ’ LVLVT (Eva Evgia ﬁ),y) ) F Total
Xy
Time | O (V7] | O(N,Nf) | O(NING) | O (m) | O(N3N)

Table 2: The computational cost of the gPC formulation.

on the polynomial basis H and can be pre-computed, so its computational cost is ignored in this anal-

ysis. To evaluate a single entry of row vector (Cvaﬁvgia,@,y) , we have to compute the summation
Xy

Yoo Bed Evaﬁvgiaﬁ,y, which costs O (NgN,f), because a single evaluation of Lvg costs O (N,ff) and a total
of Ng terms are summed up. Therefore, the total cost of the whole row vector is O (NSN ;Li)

Next we consider the computational cost of DyBO-gPC. With the truncated KL expansion of the solution
u =u+ UATHT, simple calculations give the DyBO-gPC formulation for SPDE (11),

T o\ 2 o o
% - (L‘a) + fULUT, (13a)
v DT +2Lul LuiLuiAgiAgi AiT FA 13b
at =-U + 2Lu U"‘( Ui LU Ai AR5 Ak cx,@'y) k+ ) (3)
Term 2
0A T S ArTT -1 (U) (H) T -1
S = —ACT 424 (LaLUT, U Ag! + (T Aaida TG ) L HET U A (13¢)
Term B

where the third-order m-by-m-by-m tensor T(V) = (<£oui£°uj, uk>) o and matrices C and D can be solved
ij
from the linear system (4) with

MG, =2(UT, LalU) + (SS?AMAMAAYZQ%{I)M +(UT, FA). (14)

Term €

Please note that the Einstein summation convention is implicitly assumed and the matrix-tensor product
should be computed in a recursive way, i.e. AMAQJA.Y;{TQ&Y = Aq; (Agj (A%”Saﬂw)). It is not difficult

to find out such products can be computed in order of O (mNS’).
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The computational costs of some typical terms on the right hand side of the DyBO-gPC formulation
(13) are given in Table 3, where the estimate of term B goes as follows. The computation of T(U) in term

B costs O (m3N ff), while the computation of the matrix-tensor product AaiAgj‘Eg;L costs O (mNg’). The

last step of computing tensor-tensor product costs O (Npmg). Thus, the total computational cost of term
% in Eq. (13c) is O (m3N{) + O (mN2) +0 (Nym3) <O (m3Ng) + 0 (mNg) since m < N,,.

Term | LULUT <UT, £ﬂ£U> TU) | Term 2A, B or ¢ Total
Time mN,‘f m2N;f m?’N;f mNg’ + m?’N;f mNg’ + m3N,‘f

Table 3: The computational costs of the DyBO-gPC formulation.

In light of the above discussions, the ratio of the computational costs between DyBO-gPC and gPC for
the quadratic nonlinear PDE driven by stochastic force is

o) o (%)) =o((%)) -owmn,

where the exponents « = 3 and § = 3. In Section 6.2, we will numerically verify these two exponents for
the Navier Stokes equation driven by stochastic forces.

Remark 3.1. If the distribution of &;’s is Gaussian, the tensor ™) can be quite sparse, i.e., a few non-zero
entries out of total Ng entries. However, this may not be the case for general distributions, so we do not
explore this sparsity in the above analysis. Later in numerical results, we will show that even if such sparsity
is explored in numerical implementations of the gPC method, our DyBO-gPC method is still superior. We
should also emphasize that gPC is a forward-model independent procedure while DyBO is derived from the
forward model. In this sense, DyBO uses more information about the forward model than gPC.

3.3. Parallel computation strategy

Nowadays, parallelization almost becomes an indispensable tool for successful numerical simulations of
PDEs in industrial applications. Although the proposed DyBO methods have explored the inherent sparsity
within SPDEs themselves, further computational reductions by parallelization are still necessary, especially
for spatially three-dimensional SPDEs with multiple physical components. Based on the computational
complexity analysis in the previous section, we propose a parallelization strategy based on domain decom-
position for the quadratic nonlinear PDE driven by a stochastic force. Specifically, the computation costs
of the third-order tensor TV, term 2, B and €, dominate others and bear prohibitive costs of O (m3N ;f)
Without resorting to other fancy parallelization techniques, the definitions of these terms actually suggest
a simple strategy. We explain this in details for the computation of the third-order tensor T(Y) while the
same strategy applies to other three terms similarly.

Suppose the whole spatial domain D is partitioned to ) disjoint subdomains D;’s, i.e., U?leq =D and

D,, ND,, =0 for ¢ # g2. From the definition of TV), each entry

Q Q
Igﬁ) = / Eulﬁujuk dx = Z/ éuiﬁujuk dz = ZTEE@’Q)7
D q=1 Dy q=1

where T(U:9) ig the portion of T(Y) on the ¢’th subdomain.

Assume @) processors or computational nodes are available and the ¢’th processor is assigned to the
subdomain D, . On the ¢’th processor, only the solutions constrained to the subdomain Dy, i.e., a|Di
and U|Di, are stored in in-core memory. Thus, each process can compute its own portion of the third-
order tensor (U9 via Eq. (3.3). The result on each subdomain will be combined at the end to get T(V).
The partition of domain may be problem-dependent. Numerical examples that confirm the speedup of the
parallel computation strategy will be given in Section 6
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4. Adaptive DyBO Algorithms

So far, we assume that the number of the spatial and stochastic basis pairs, {u;, Y;}’s, in the DyBO
formulation is fixed to some integer m, which determines the number of functions U and the size of matrix
A. Fixing m for all times is not a good strategy for practical applications. For example, some spatial and
stochastic basis pairs may become negligibly small as the system evolves. Keeping such pairs in computation
not only wastes computational resource and increases computational time, but may also bring in unexpected
numerical instability since extremely small spatial modes may lead to ill-condition of the evolution system.
On the other hand, some previously neglected mode pairs may become important later on. Ignoring them
may introduce O(1) numerical errors. Therefore, developing an adaptive strategy to add or remove mode
pairs dynamically is important for the success of DyBO method. In this section, we propose an adaptive
strategy to remove and add basis pairs on the fly for the DyBO-gPC formulation (7).

4.1. Type-KL error analysis

Our adaptive strategy is based on the analysis of a special type of error, which we call Type-KL error
and is defined as follows

M

u— 7, (16a)
e=U-VA, (16b)

where v = v + VHT is the gPC solution defined in (10). Simple calculations give
0¢€

5 = ElLu - Lo], (17a)
% —E|(£i- Lv) H| A+ €D+ V (AAT — 1) (E [ZaH"], U) A, (17b)

where Eq. (7b) (7¢) and Eq. (4¢) are used.

4.2. The adaptive algorithm

The strategy to remove modes is simple. Since the stochastic basis Y is orthonormal, i.e., E [YZQ] =1,
we only need to check the norm of u;(z,t) to evaluate the importance of the mode pair (u;,Y;). At the end
of each time step, we compute A; = |Ju;||* and drop the ith pair {u, Y;} if A; < nAmax, where € (0,1) is a
pre-selected threshold and Apax = max;—1,2.... m As-

The situation to add mode pairs is more involved. Essentially, we want an algorithm to know when and
what to add without sacrificing too much computational efficiency. A naive approach would be adding some
spatial and stochastic mode pair if the smallest eigenvalue rises above some threshold, i.e., Apin > N Amax-
An immediate question is what spatial function and random variable should be used as the initial conditions
for the new spatial mode uy,,1(z,t) and the stochastic mode Hay,1(t) with a,,11(t) € RY»*! at some
time ¢ = s. What’s more, the newly added mode pair may remain small and be removed later, which may
happen repeatedly and should be avoided. In other words, we should estimate the growth rate of the largest

At dy/Am+t1

unresolved eigenvalue, i.e., =3+ or 17— and check if it may potentially grow above the threshold, i.e.,

div;m“AT > VN Amax after some finite time interval AT. It turns out that these two questions are related.

The basis idea for adding mode pairs is to start from the same initial condition, evolve the SPDE system
by gPC and DyBO-gPC methods for a short time As, respectively. We use the solution discrepancy at final
time to estimate the growth rate of unresolved eigenvalues. If the growth rate is above certain threshold,
we will use the dominant mode pair as the initial conditions for the new spatial and stochastic modes. This
heuristic conjecture can be made more rigorous by looking at the type-KL errors that we discussed in the
previous subsection.

Suppose at time t = s, the DyBO-gPC solution

u(z,s, &) =u(z,s) + Uz, s)A(s) TH(&)T (18)
8



remains a good approximation to the gPC solution, i.e.,

v(x, s, &) = u(z,s,§). (19)

However, as the system continues to evolve for a short time, discrepancy between these two solutions
arises and cannot be ignored any more. We should enrich the DyBO-gPC basis to capture this discrepancy,
otherwise the type-KL error will accumulate significantly and affect the accuracy of the DyBO-gPC solution.
Specifically, we can add one pair of spatial mode \/ Ay 41 (¢)@m+1(2,t) and stochastic modes H(&(w))am+1(¢)
to compensate such discrepancy, i.e., at time ¢t = s,

= a(w,5) + (U@, ), v As1 (91 (2:5) ) (A(s), s (5) T HE), (20)

where Apq1 &0, (U(2, 5), tmi1(2,5)) =0, [[a(@, 5)| 0 p) = 1, A(8)Tamy1(s) = 0. Both \/Apr1(t)itmr1(z,t)
and H(€(w))am+1(t) are unknown at this moment ¢ = s and will be derived later. After including the unre-
solved (m + 1)’th basis pair, the type-KL error is given by Eq. (17b). Now let’s estimate both sides at time

t = 5. From Eq. (19), we know that V(xz,s) = U(x,s)A(s)T, so

€(2,5) = (U@, ),V A1 (5)ims1(2,5)) = Ul 5)A()T (A(s), a1 (s))
07 m+1( um—i—l( =0 as A'm—i-l — 07

where we have used orthogonality of A(s) and a,,+1(s) in the first equality. This simply implies that the
second term €D on the right hand side of Eq. (17b) is zero at time ¢ = s. Similar calculations reveal the
third term on the right hand side is also zero as A\,,41 — 0, i.e.,

V(@,5) ((A(5), s 1(5)) (A(5), ams1())" = 1) = U, 5)A(5)” ((Als5), @t (5)) (A(5), ()" ~T) =0

Therefore, only the first term on the right hand side of Eq. (17b) really contributes, which can be approxi-
mated to the first-order accuracy O(As) as follows,

E [fu(:m s,ﬁ)H} _E |:U($, s+ Asfi —v(z, S’ﬁ)H} 7
E {Eﬂ(w, sf)H} _E {ﬂ(x, s+ Asfl —u(z,s,€) H] '
Because ul,_, = v|,_, as Apy1 — 0,
PR u(zx,s + As, &) —v(x,s + As,
E Kﬁu — EU) H} (A, am+1) . ~TF [ (2,5 + €)As (z,s+ §) H] (A(s), ams1(s)) -

The last component of the above equality is

E [(5'11 B Ev) H} amHL:S _r [ﬂ(:m s+ As,i)A—Sv(x7 s+ As, €) H] 1 (s) + O(As). (21)

Now we calculate the last component on the left hand side of Eq. (17b), i.e., 8Egt“ (z,5,&). As A1 — 0,
we have

6€m+1 - 0 (\/ )\m+1ﬂm+1) o d\/ )\m+1 i + 2\ 8am-{-l
at |, ot e o,
t=s t=s
dv/Am .
= Y (8) 1 (2, 5). (22)

dt



Addition of new mode pairs

uPYBO | Au ~ /0w, (2)bTH
e ‘

S=UTAT s+ As

Removal of i’th pair

4PYBO

|
|
l
t t+ AT t 4+ 2AT L+ 3AT

Time
Figure 1: Illustration of strategies of adding and removing basis pairs.

Combining the above discussion, we have the following equality from Eq. (17),

dv/Am . u(zx,s + As, &) —v(x, s + As,

SNV iy (2, 8) ~ B ( &) — vl n Ams1(s). (23)

dt As
Now consider the KL expansion of the solution discrepancy at time t = s + As, i.e.,
Az, s 4+ As, &) = u(x,s + As, &) —v(z, s + As, &) = /01w (x)b] HT +--- (24)

where 61, wi(z) and Hb; are the largest eigenvalue, normalized spatial and stochastic basis, respectively.
The above equality implies that the growth rate of the largest unresolved eigenvalue A, 11 can be estimated
from the largest eigenvalue of Au. What’s more, a sensible choice of initial conditions for the newly added
basis pair u,;,+1(x, s) and a,,+1(s) would be the largest spatial and stochastic mode of Au(x, s+ As, &), i.e.,
V01w (x) and Hby. This strategy involves computation of gPC solutions for a short time As, which can be
expensive. Instead of invoking such strategy every time step, we invoke such procedure every duration AT,
AT > As. See Fig. 1 for illustrations.

We remark that a similar strategy of removing and adding spatial and stochastic basis pairs may be
developed for DyBO-gSC and DyBO-MC. The adaptive algorithm can be generalized to add more than one
pair of spatial and stochastic basis at a time. The corresponding spatial and stochastic basis pairs can be
obtained from the KL expansion of Au(z,t,€) in (24). Moreover, we note that the new spatial basis w41
and new stochastic basis Ha,,11(t) may not be perfectly orthogonal to other basis U(z,t) and HA at time
t = s. Due to the bi-orthogonality-preserving property of the DyBO method (see Theorem 3.1 in [9]), such
deviation from the bi-orthogonality will not be amplified.

5. Generalization of the DyBO method to a SPDE System

In addition to computational complexity analysis and adaptivity in changing basis number, the gener-
alizations of the DyBO method will be another focus of this paper. In this section, we will discuss the
generalization of the DyBO formulation for SPDE systems.

Many applications involve multiple physical fields, or physical components, for instance, the standard
three-dimensional incompressible Naiver-Stokes equations involve four physical components, three velocity
components along z-, y-, z-axis and pressure. When compressibility cannot be ignored, e.g., in aerodynamic
[1], two additional components, typically density and temperature fields, get involved. Therefore, generaliz-
ing the DyBO method for a system of time-dependent SPDEs is important and necessary. More precisely,

10



we consider a system of time-dependent SPDEs as follows:

ou

a—tl(x,t,w) =L {ui,ug, - ,un}, 1=1,2,--- N, z€DCR% tel0,T], (25)
where each L£; is a stochastic differential operator acting on the physical components i, ug, -+ ,uy and N
is the total number of physical components. To simplify the notation, we omit the boundary condition and
initial condition for each component. When no ambiguity arises, we simply use shorthand notation

u:{ul,uz,...,uN} and Elu:£l{u17u27...,uN}_

Unlike a single SPDE, randomness in (25) introduced through initial conditions, boundary conditions,
stochastic forcing terms propagates not only in space and time, but also among different physical com-
ponents. Randomness introduced by one physical component may affect other components. In general,
different physical components may have different stochastic properties. Thus, using a common basis, such
as the orthonormal polynomial basis, may not be the most efficient way to represent the solution of a
stochastic system. The most compact representations in L2 sense are the KL expansions of each physical
component, which is our starting point to derive the DyBO formulation for the SPDE system (25).
Consider the m-term truncated KL expansion of the I’th physical component v, (z,t,w),

my
qjl =u + Z uli)/li = u; + UlYéT ~ U, (26)
=1

where Uj is a row vector of functions of spatial coordinate z and temporal coordinate t,
Ui(a,t) = (upn (2, t), w2, 1), -+ wym, (w,1)) € RV

and Y, is a row vector of random variables,
Yi(w,t) = (Ya(w,t), Yia(w, t), -, Vi, (w, 1)) € RV™

With these preparations, we are now ready to derive our DyBO method for a system of SPDEs. We
follow the steps in the derivation of DyBO method for a single SPDE (see Section 2 of [9]) by substituting
the expansion (26) into the system (25) and using anti-symmetrization operators Q and Q to enforce the
bi-orthogonality of the spatial and stochastic modes U; and Y; of each physical component u;. After
projecting the growth rate of the spatial and stochastic modes 29t and <Xt onto themselves, we arrive at

ot dt
the generalized DyBO formulation for SPDE system (25) (see Cheng’s thesis [8] for details).

ot ~
S =ElLi, (27a)
3U1 T 5~
& = -UDl +E {Llqu} , (27b)
dy; T s 1
F = _YlCl + <£1U7 Ul> AU[’ (27C)
where [ =1,2,--- | N and © = {1, ..., ux }. The matrices C;’s and D;’s can be solved from linear systems
Ci— Ay Q(Ay,Cr) =0, (28a)
D, — 9(D;) =0, (28b)
DlT +C; = G*l(ﬁl, Ul,Yl), (28C)

with G (a;, Uy, Y;) = AI_J} <UZT7 E {IzlﬂYl}> € R™>™  The boundary conditions and initial conditions
for each physical components can be obtained correspondingly. We assume the randomnesses of the SPDE
system follows the same distribution, then we can derive the DyBO-gPC formulation for the SPDE system.
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For DyBO-gPC, the stochastic modes Y; are presented in the form of gPC expansions, i.e., Y;(w,t) =
H (¢(w)) A, where A; € RM»*™ The DyBO-gPC formulation for each component is given by

oy

I _E 2
|, (202)
% — _UD!+E [ﬁlﬂH} A, (29b)
dA _ T Tf ~ -1
o= —Ac] + <E [H /:lu] : Ul> Ag (29¢)

where C;(t) and Dy(t) can be solved from
G.u(a, U, Y)) = AITI} <UlT, E [ﬁlﬂYlD = AITI} <UlT, E [ilﬂH] > A, (30)

Various theoretical results of the DyBO formulation for single SPDE, such as the preservation of bi-
orthogonality and error analysis can be generalized to the DyBO formulation for a SPDE system. The
strategies proposed for a single SPDE such as eigenvalues crossings and adding or removing basis pairs can
also be generalized to a system of SPDE. Similar results can be obtained for the DyBO-gSC version and
DyBO-MC version. More details about the numerical implementation will be given in the next section.

6. Numerical Examples

Previous sections highlight the analytical aspects of the DyBO formulation and algorithm, this section
demonstrates its success by several numerical examples, each of which emphasizes and verifies some of
analytical results in the previous sections. In the first example, a SPDE driven purely by stochastic forces
is considered, which shows the necessity of adaptivity in the DyBO method. More involved numerical
examples, such as spatially two-dimensional SPDE and/or a system of SPDEs, which require adaptivity,
parallelization strategy and other numerical techniques, will also be reported in this section.

6.1. SPDE Purely Driven by Stochastic Forces

In the first numerical example, we consider the SPDE driven purely by a stochastic force f, i.e.,

0
5 = Lu=f@téw), seD=[0.1 te[0.T], (31)
where £ = (£1,&2,- -+ , &) are independent standard Gaussian random variables, i.e., & ~ N (0,1). A similar

example has been used in the first part of the paper [9] for eigenvalue crossing. Here we consider a different
stochastic force f to test the adaptive strategy proposed in Section 4. To construct such force, we consider
an exact solution given in the following form,

u(x,t, &) = v(x,t) + V(x,t)ZT (€, 1), (32)

o

where V(z,t) = V)W (DAS(0), Z(6,1) = ZEWa(t), V() = (01(2), -+ i (@) with (i5(2), b5(2)) =
5ij and Z(€) = (Z1 &), - ,zm(g)) with E [Zizj} =g fori,j=1,2,-- ,m. Wy(t) and W(t) are m-by-

1
m orthonormal matrices, and A (¢) is a diagonal matrix. By differentiation, we can get the corresponding

stochastic force 5 5 4z
v A% Z
_— ARSI |y (33)

I=%*ar T
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By substituting the above equalities into DyBO-gPC system (7), we arrive at the DyBO-gPC formulation
for SPDE (31)

ou 0v

D 4
ot~ ot (342)
ou ov dWZ o
— =-UD" 4 (WL +V—/Z)E|ZTH| A 4b
ot - < ot e T ) [ ] ’ (34b)
dA o OVT AWy
— =—-ACT+EHTZ| (Wz——+ —2VT U)AS 4
at + [ ]< 2o TTa v >U’ (34c)
and 5 -
\% A%\% .
_ A1 ,Zv T Z T
G. (1, U,A) = Ag <U S Wh+ Ve >]E[z H}A.
We consider a small system m = 3 and use the following settings,
V(J:) = (ﬁsin(me), \@sin(57m;), \/isin(97rx)) , Z(a:) = (Hy(&1),Ha(&1),Hz(&1))
cosbyt —sinbyt 0 cosbzt —sinbzt 0
Wy (t) =Py [ sinbyt cosbyt 0 P{,, Wz (t) =Pgz | sinbzgt cosbzt 0 P%,
0 0 1 0 0 1

where by = 2.0, bz = 2.0, Py and Pz are two orthonormal matrices generated randomly at the beginning,
and H (€) = (H1(&1),Ha(&1), -+ ,H5(&1)). To simulate the scenario where adding and removing mode pairs
are necessary, we consider the following eigenvalues

A%, = diag (3.0001 + sin(27t), 2.0001 + sin(27t), 1.0001 + sin(27t)) ,

where A3 becomes very small ~ 1078 near ¢t = 0.25. See Fig. 2. We use this example to test the effectiveness
of our first adaptive method based on the type-KL error analysis. When the adaptive strategy for adding
mode pairs is invoked, it is crucial to know the growth rate of the largest unresolved eigenvalue and avoid
adding such mode pair if it continues to be small in the near future AT. This is accomplished by computing
solutions by DyBO and gPC for a short time As and estimating the growth rate divg\;“l from the difference
of the two solutions.

In Fig. 3, we verify the accuracy of such estimates, where the third mode pair is intentionally dropped

at t = 0.2 when it becomes small (~ 1073) and never put back in the remaining computation. The solid

line is the exact growth rate of the largest unresolved eigenvalue, i.e., d\({th’ while the dotted line is the
estimate. In computations, we actually use different short time duration As = 8dt,44dt, 2dt, 6t to verify the
convergence of such estimate. However, all of theses estimates cluster together and cannot be distinguished
from the figure. As we can see from Fig. 3, such estimates are very accurate when the largest unresolved
eigenvalue is indeed small and become less accurate when the largest unresolved eigenvalue is not so small
compared to the resolved ones.

In Fig. 4, we consider the effect of the invoking frequency for adding mode pairs, i.e., ﬁ. If no mode pair
is added, the relative error of STD at ¢t = 1.0 is about 26%. When the adaptive algorithm is incorporated,
the error can be brought down to < 1.5% depending on the invoking frequency. The threshold 7 in the
adaptive algorithm is taken to be 10~* and /7 = 1072, so we see such difference is relatively marginal. We
will continue to demonstrate the effectiveness of the adaptive algorithm in more involved numerical examples
in the following subsections.

6.2. 2D Stochastic Flow

As a model to test numerically the proposed DyBO formulation for a spatially two-dimensional nonlinear
SPDE, we consider the incompressible Navier-Stokes equations driven by stochastic forces. Specifically, we
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Figure 2: Eigenvalues are plotted as function of time. A3 becomes small near ¢ = 0.25.
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Figure 3: Change rate of the largest unresolved eigenvalue d‘ét)‘i"’. Solid line is the exact solution, while the

dotted line are computed the adaptive algorithm based on type-KL error analysis.
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Figure 4: L2 relative errors of STD given by DyBO with adding or removing basis pairs.
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Figure 5: Stochastic flows driven by stochastic force f in 2D unit square.

consider the stochastic flow in an unit square, i.e., D = [0,1] x [0, 1], with periodic boundary conditions on
both spatial directions x and y (see Fig. 5a). The governing equation of this stochastic flow is the Stochastic
Navier-Stokes equations (SNSEs). For spatially two-dimensional incompressible flow problems, it is more
convenient to use the vorticity-stream function formulation. The vorticity-stream function formulation gives

w = % — @ and o, with velocity u = a—y and v = . The vorticity-stream formulation is given by
ow 0 0 f2  Ofi
_— = = — — — A —_— e —
5 Lw (uax—i—vay)w—l—u w+ (Bx oy ) (35)
o _
87317 v = 8x (37)

We assume the randomness is given in terms of r independent standard Gaussian random variables, & =
(&1,&2,-++,&), and the initial vorticity is deterministic, i.e., w(z,y,0,€) = w(z,y). That is to say, the
randomness is injected into the system only through the stochastic force f = (fi, f2). In the following
numerical example, we choose v = 2.0 x 10~ and adopt the initial vorticity field used in [14, 22],

o | 1)y - 0.5
w(xz,y) = const %, exp ( 257 ,

where I(x) = 1+ 03 (cos(4mz) — 1) and the constant is taken such that [,wdzdy = 0. §; = 0.025 and
05 = 0.3, so the initial vorticity concentrates in a narrow band along y = 0.5 as shown in Fig. 5b, which
models a perturbed flat vortex sheet in the limit that §; — 0. For the driving stochastic force f, we consider
an approximated version of Brownian force f = (o1 (z,y)B1(t), 02(z,y)Ba(t)) (see [8, 9, 22, 14] for the details
of the construction)

(%) 55 (e Bh (e o

The functions o1 and oo are chosen such that

% = 0.37 cos (27x) cos (27y) , % = 0.37 sin (27z) sin (27y) .
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The derivations of gPC or DyBO-gPC formulations of SNSE is standard. By considering the gPC
expansion w = w + WHTY | we can derive the gPC formulation of SNSE (35),

.
a—:’ = VAD — D (.50 — Du vy W, (39a)

oW ) an

S = VAW = D) W =D vy - (Q(umva)wﬁam)m +F, (39D)

where (. (-) is a generalized material derivative defined as follows. For a scalar or row-vector field 6 under
scalar or row-vector velocity field v and v,

00 00

U— +v—, u, v, 0 are scalars,
Or 0
00 00 )
— + v, u, v are scalars and 6 is a row vector,
Or dy
Duwmt = (40)
' 00 00 .
—u+ —v, u, v are row vectors and @ is a scalar,
ox oy
00" 06T
U——— +v——, u, v, 0 are row vectors,
or oy

where u and v can be row vectors of the same length and the right hand side is understood in the usual
sense of vector-vector multiplications or scalar-vector multiplications.

The DyBO-gPC formulation of SNSE (35) can be obtained by considering the m-term truncated KL
expansion w = w + WATHT | see Appendix A for more details about its derivation.

% — VAW — D (0@ — Deun) W, (41a)
%V =-WD/ + [VAW — D ) W — D v

- {Q(ui,vi)wa‘Am‘AﬁjAwki%q e T FA, (41b)
% = A(-CL+ (vAWT — (9 W)" = (D), W)AY)

[ Aaie g A HET WAL

where matrices C,, and D,, can be solved from the linear system (4) from G,

AW G = (W', VAW =D (00 W = Diu,vyi0) — [S0) Aai A Ay Shg, | + (W' F) A,
For notation compactness, the spatial basis W in DyBO-gPC formulation should not be confused with the
notation in gPC formulation (39).

Both the gPC system and DyBO-gPC systems are numerically solved by the fourth-order RK method
with time step At = 1073 on a 128 x 128 spatial grid. The pseudo-spectral method with the 36-dealiasing
rule [15, 16] is used to compute spatial derivatives. Various numerical results are presented in the following.

Verification of Complexity Analysis. Clearly, SNSE (35) is a quadratic nonlinear PDE driven by
stochastic forces, so the computational complexity analysis in Section 3 is applicable. Before presenting
computational results, we first verify the complexity analysis, i.e., Eq. (15). To this end, we record the wall
time of a single time step when the gPC system (39) or the DyBO-gPC system (41) is numerically integrated
by the fourth-order Runge-Kutta method. For N, = 80,100,120 and m = 4,8,12,16, the computational
times are summarized in Table 4. To improve the accuracy of recorded wall times, we actually compute the
average wall time of 10 time iterations.

In Table 4, the exponents a and § in Eq. (15) are estimated by linear regression. The last column uses
wall times corresponding to m = 8,12,16 , while the second to last column uses all four values of m. As we
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Figure 6: Wall times of a single RK step of the DyBO-gPC system. The horizontal axis is the number of
mode pairs, m.

can see from the fourth column of the table, the computational time is relatively small when m = 4. In this
case, the dominant terms in our previous analysis may not truly dominate other terms and some inevitable
programming overheads, such as memory allocations and function calling overheads, may kick in. In Fig. 6
accompanying Table 4, the computational times corresponding to m = 8,12, 16 align nicely into a straight
line for each N, = 80,100, 120, respectively, but the computational times corresponding to m = 4 drift up.
If we remove these points from our fitting, the linear regression estimate of the exponent « in Eq. (15) would
be approximately equal to 2.73, close to the theoretically predicated value 3.

As we mentioned in Remark 3.1, T is very sparse when Hermite polynomials are used for Gaussian
random variables. In Table 4, we also report the wall times of gPC in the second and third columns,
respectively, depending on whether such sparsity is explored or not in the numerical implementation of gPC
methods. Clearly, the computational cost is significantly smaller if such sparsity is considered. However,
we may not have such luxury for arbitrary non-Gaussian random variables, i.e., general distributions. In
the last two rows of Table 4, the exponent S is estimated by linear regression, respectively, when sparsity is
explored or not. The last row gives ~ 2.9 for the exponent 8 confirming our analysis in Eq. (15).

gPC (sec) DyBO-gPC (sec) o
v | Sparse | Non-Sparse | m =4[ m =8 [ m =12 m =16 H
80 | 17.242 772.10 0.3946 | 1.6238 | 4.8850 | 10.5483
100 | 26.302 1482.7 0.4221 | 1.5666 | 4.9577 | 10.7119
120 | 36.440 2558.3 0.4246 | 1.6567 | 5.0451 | 10.8200

B B - Sparse 1.6621 | 1.8056 | 1.7683 | 1.7844
B - Non-Sparse 2.7683 | 2.9117 | 2.8744 | 2.8905

Table 4: Comparison of wall times of a single RK step of gPC and DyBO-gPC systems.

Numerical Errors of DyBO-gPC. The number of polynomial basis functions H, grows exponentially
fast as the number of random variables » and the total order p increase. The scheme of sparse truncation
proposed in Luo’s thesis [22] (see also [14]) proves to be a relatively effective method to alleviate the situation.
In the following computation, we follow this scheme and choose a multi-index set J obtained from a sparse
truncation of the multi-index set J3,

J= {aejgand if |a| =3,thenas < 2,03 < 1,04 < 1,05 < 2,07 < 1,a8§1}\{0},

which still results in total 130 multi-indices!
The mean and the STD of the vorticity field and the first four spatial modes in the KL expansion of the
vorticity field at time ¢ = 1.0 are given in Fig. 7 and Fig. 8, respectively. In both figures, the results by
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Figure 7: Mean and STD of the vorticity field at time ¢ = 1.0. The left column is computed by DyBO-gPC,
while the right column is computed by gPC.

our DyBO-gPC method with m = 8 are given in the left column and compared to the results by the gPC
method in the right column. The results are almost indistinguishable. We further confirm the convergence
of DyBO-gPC to gPC by plotting the relative errors of both mean and STD of the vorticity field as functions
of time in the top two subplots of Fig. 9.

In the same figure, we also report the relative errors as functions of time when the adaptive strategy of
adding and/or removing basis pairs is enacted. Two numerical examples are provided: one starts with four
basis pairs, i.e., my = 4 and the other starts with six basis pairs, i.e., mg = 6. In Fig. 9¢, the number of
basis pairs in the DyBO-gPC method is plotted against time ¢. Because of the special form of the stochastic
force f considered in this numerical example, the randomness is only introduced through low-order gPC
coefficients and then spread to the mean and other high-order gPC coefficients. At the beginning of the
evolution of the stochastic flow, the randomness is not strong and the adaptive algorithm finds no need
to add new basis pairs before time ¢ = 0.35. As the system evolves, the randomnesses get strong through
interactions among different basis pairs and the adaptive algorithm automatically adds more basis pairs
when necessary.

Avoiding Selection of Multi-index Set J. The gPC method suffers greatly from the curse of
dimensionality. In the above numerical example, we use low-order (< 3) polynomials and also the sparse
truncation technique to further reduce the size of multi-index set J, which still results in a set of 130
polynomials. It takes more than 8 hour of wall time to numerically integrate the gPC system from ¢ = 0.0
to t = 1.0. Adaptive gPC methods try to include only the most important gPC coefficients wg, in the
computation, i.e., a selection of multi-index set J.

In Fig. 10a, we plot the energy spectrum of the gPC solution at ¢ = 1.0, i.e., the L? norm of the gPC
coefficient wq,, which does not decay monotonically. Index J is a multi-index set, so we do not have sufficient
information and a good strategy, prior to the computation, to sort J and select the most important ones.

On the other hand, our DyBO method tracks the KL expansion of the true solution and automatically
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Figure 8: The first four spatial basis at time ¢ = 1.0. Top are computed by DyBO-gPC, while the bottom
are computed by gPC.
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Figure 9: The L? relative errors of mean and STD of vorticity field computed by DyBO. The errors are
plotted as functions of time in the top two figures, while the numbers of basis pairs used in the adaptive
strategy are given in the last figure.
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Figure 10: Comparison of energy spectrum of gPC and DyBO solutions at time ¢ = 1.0.

includes only the most important ones. Furthermore, the KL expansion is known to provide the most
compact representation of a second-order stochastic process, so the energy spectrum of the DyBO solution,
i.e., the L? norm of the DyBO-gPC coefficient w;, i = 1,2, ...,m, has a faster decay rate even compared to
the sorted energy spectrum of gPC solution (see Fig. 10b). This difference in the decay rate implies that
our method leads to a smaller system to solve, leading to less computational cost.

To further illustrate and understand the benefits of the DyBO method, we consider a little “stronger”

stochastic force . .
(9f2 (9f1 80’1 it 30’2 (’L — 4)t t
= )| = —— —& 4+ == — | & 42
(3x 8y> 8y;T€1+8m§ T T S (42)

With this stochastic force, the sorted energy spectrum of both gPC and DyBO solutions along with the
square roots of eigenvalues are plotted in Fig. 11a. Clearly, the energy spectrum of DyBO decays much
faster than that of gPC.

Once the gPC coefficients wy’s are sorted in the descending order in L? norm, we can use the first
several gPC coefficients, i.e., the most important ones, to compute a solution and compare with the exact
one. The relative errors of STD computed by this procedure are plotted in Fig. 11b against the number of
gPC coefficients.

At the first glance, this procedure may seem effective. But we would like to point out that the multi-
indices a’s corresponding to the most important gPC coefficients are in general not known prior to the
beginning of computations. What’s more, such set of multi-indices may change with respect to time t,
making the selection of an effective multi-index set J even harder. Moreover, the less important gPC
coefficients excluded from the gPC system may induce additional errors when we solve the system which
only includes the most important ones. In fact, we observe that the solution obtained by this procedure is
less accurate than that by our DyBO method with the same number of basis pairs, as shown in Fig. 11b.
With only 8 basis pairs, our DyBO method achieves the same accuracy (~ 0.5%) as that by gPC method
with 60 gPC coefficients. By using Table 4, we can estimate speedup in this case. When the sparsity of
tensor TH is not exploited in the numerical implementation of gPC, the speedup is ~ 200X (327.8sec v.s.
1.6567sec per time iteration). When the sparsity is exploited (see Remark 3.1 in Section 3.2), the speedup
is ~ 6X (10.628sec v.s. 1.6567sec per time iteration). Fig. 11la also confirms numerically that our DyBO
method can accurately recover the eigenvalues in the KL expansion.

Looking into the stochastic basis Y = HA reveals the origin of the fast error decay in our DyBO-
gPC method. In Fig. 12, we plot the stochastic basis computed by DyBO in the second figure and ones
recovered from the gPC solution in the third figure, respectively. Clearly, each stochastic basis Y; is a linear
combination of several, possibly many, gPC basis. Therefore, unlike gPC methods, where the stochastic
basis H is fixed and does not change with time, the DyBO method aggregates the polynomial basis and
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Figure 12: Stochastic basis computed by DyBO and gPC.
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forms a more efficient stochastic basis Y. Moreover, this set of stochastic basis is automatically adapted in
time.

6.3. 2D Stochastic Flow Driven by Buoyance Force

As a model to test numerically the generalized DyBO formulation for a system of time-dependent SPDEs,
we consider the Navier-Stokes equations whose velocity components are driven by both stochastic forces and
buoyancy forces due to small density difference induced by temperature variations. Specifically, we consider
the stochastic flow in an unite square, i.e., D = [0,1] x [0, 1], with periodic boundary conditions on both

spatial directions. See Fig. 13a.
0 0.2 0.4 0.6 0.8 D
(b)
(a)

Figure 13: Stochastic flow driven by stochastic force and buoyancy force due to Boussinesq approximation.
On the left: Diagram of the stochastic flow in an unit square. The gravity is downward parallel to y-axis and
periodic boundary conditions are assumed on both x and y directions. On the right, the initial temperature
field is plotted, while the initial vorticity is uniformly zero.
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The temperature field is not spatially uniform and causes variations of the density field. Such variations
are small because we assume the thermal expansion coefficient is very small. The induced buoyancy force may
drive the flow motion in addition to external stochastic forces. Here, we adopt the Boussinesq approximation
to model such buoyancy force. The governing SPDE of such stochastic flow in Fig. 13a is the Stochastic
Navier-Stokes equations (SNSE)

06 06 00

5t + Uss + va—y = kG, (43a)
w+u-Vu=vAu—-Vp+£f+F (43b)
V-u=0, (43c¢)

where the viscosity ¥ = 2.0 x 10™* and the thermal diffusivity x = 2.0 x 107* . 6§ is temperature field,
u = (u,v) is the velocity field, p is the pressure, f = (f1, f2) is the zero-mean stochastic force vector and
F = (0, ugh) is the buoyancy force, where p is the thermal expansion coefficient, g is the gravity of Earth
and scaled gravity pug = 11.31 (see [7] for more details).

At the first glance, this numerical example is similar to the one in Section 6.2 except introducing the
additional temperature field and gravity effect. However, the stochastic flow is very different from the one
considered previously for the following reason. We see that the buoyancy force depends on the gradient of
temperature field and is actually a stochastic force. In other words, the stochastic flow considered in this
section is driven by two kinds of stochastic forces: one “external” stochastic force injecting randomness from
the ambient environment into the unit square and one “internal” stochastic force feeding randomness back
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to the system, from temperature component to vertical velocity component. Such stochastic flow provides

a severe test model for our generalized DyBO methods.

Like the previous numerical example, it is convenient to consider the vorticity-stream function formulation

in the standard form defined in the system of SPDEs (25),

g — Lo {0,w) = — (u;o: + v;’y) 6+ KA, (44a)
%—l::ﬁw {0,w}z—<uaax+vaay>w+qu+ <88];?—85’”];1) +M9%~ (44b)
Consider the finite-term KL expansion of the solutions of SNSE (44),
0=0+0Y" =04+ 60ATHT, (45a)
w=1o+WZT =5+ WBTHT, (45b)
where row vectors 8 = (61,03, ,0,,,) and W = (w1, ws, -+ , Wy, ), and matrices A € RN»*™é and

B ¢ RY»*™w_ We write basis number vector m = (mg, mw). By substituting the above expansion into
Eq. (29), we obtain the DyBO-gPC formulation for SNSE (44) (see Appendix A for details). The system of

equations for the temperature component are

%f — kAT — D500 — Dy (OATB),
% = —0D§ + kA0 — D350 — Du,v)I B'A

~ e s BaiAp; Ak T | 1xk’
G oA (or (007 0) A (00)" 6)A2")

- B <(©(U,V)§)T’ 0> Agl — [Eg?’zBaiAﬂjT‘("?”ka A;l,

where matrices Cy and Dy can be solved from the linear system (4) from Gy,
MoGuy =1 (87, 28) — (87, D(2)8) — (87, D v)0 ) BTA

] H
— | T Baidpi AvThg, | -

afy

The system of equations for the vorticity component are

% - (qu — D5 + uggg;) ~DuwvW,
%V = ~WD,, + [VAW = D)W = D vyd] + MQ%ATB

B {/D(ui,vi)ijaiBﬁijk‘Ifx}fIB)v} 1 T
P B (0L + (rAWT — (9, W)~ (D vm)” W) AY)

00" - _ -
+ ugA <ax’ W> AW =[S0V BaiBa;Shg, | AW+ (ET W) Ay,

X
where matrices C,, and D,, can be solved from the linear system (4) from G,

AwG.w = (WT, VAW =D ;) W — Dy v)0)
06
+ <WT, ugax> ATB - [TS’Z)BmBmBﬂTg}L} L T(WIE)B.
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Both the gPC system and the DyBO-gPC system are numerically integrated by the fourth-order RK method
with a time step At = 1073. Unlike the stochastic flow only driven by the stochastic force in the previous
numerical example, we found by numerical experiments a higher-resolution spatial grid is necessary to resolve
some fine structures. Thus, we use 256 x 256 spatial grid in the numerical simulations. Computations on
higher resolution grid, 512 x 512, are also performed for the gPC method to make sure that the solution is
indeed well-resolved. The pseudo-spectral method with the 36-dealiasing rule [15, 16] is used to compute
spatial derivatives. For the DyBO method, the gPC solution at ATy = 0.2 are used as initial conditions.
Different values of ATy, such as 0.1 and 0.15, have also been used and no significant differences have been
found. Here, we use the sparse truncation technique and choose the multi-index set

J={aecandif [a| =3, thenas < 2,03 <1, a4 < 1,06 < 2,07 < 1,05 < 1} \ {0}.

Both initial vorticity and temperature field are assumed to be deterministic. In this example, we are
primarily interested in the combined effect of stochastic force f and the stochastic buoyancy force, so the
vorticity is assumed to be zero initially. We adopt the initial temperature field from [7],

9(x,y, 0;5) = e(x’ y) = %H& (ylb(x) - y) + %H& (yub(x) - y)7 (50)
where y;p(2) = % — 62 — 83y0(x), yup(x) = % + 2 + d3y0(x), yo(x) =1+ sin (27r (gc + %)), and the modified
Heaviside step function H(z) = gte + % sin (Lf) In Fig. 13D, the initial temperature field 0 is plotted.

In the first numerical example, we choose basis number vector m = (7,8). In Fig. 14, STD fields of
vorticity and temperature are plotted at time ¢ = 1.0 with the results by DyBO in the left column and ones
by gPC in the right column. We also compare the spatial basis of vorticity and temperature, W and 6,
given by DyBO and gPC at time t = 1.0, respectively (not shown here, see [8]). These results confirm that
the solutions given by DyBO are not only a good approximation to the solution given by gPC, but also
track directly the KL expansion of the SPDE solution.

To further study the numerical convergence of our DyBO method, we choose another two basis number
vectors, m = (3,4) and m = (9,10), and repeat the DyBO computation. The relative errors of vorticity
and temperature STD fields as functions of time are plotted in Fig. 15a and Fig. 15b, respectively. When
the basis number vector is increased from m = (3,4) to m = (9, 10), the relative error of STD is brought
down from 11.9% to 1.8% for vorticity and from 10.7% to 1.8% for temperature, respectively.

In the above numerical simulation, we have intentionally chosen mw = mg + 1 due to the fact that
the vorticity is more singular than the temperature in general and requires more modes to resolve the
stochastic solution accurately. However, in general, the specific number of modes required in numerical
simulations would be problem dependent. Furthermore, when the adaptive strategy developed in Sec. 4 is
incorporated, such guess of mode numbers is eliminated. The number of modes for both components will
adjust automatically on the fly as demonstrated in the next numerical example. Initially, the basis number
vector is chosen as my = (5,6). As we can see in the top two plots in Fig. 15, good accuracy is preserved as
basis pairs are automatically added when necessary (see Fig. 15¢ for the evolution of numbers of vorticity
and temperature basis pairs).

The parallelization strategy proposed in Section 3.3 for the quadratic nonlinear PDE driven by a stochas-
tic force is implemented via POSIX multi-threaded programming in C++ and hooked to the main matlab
code via matlab external APIs. Since we use FFT in the pseudo-spectral method, a simple domain partition
scheme (see Cheng’s thesis [8] for details) is adopted for the maximum performance of FFT. The simula-
tions are conducted on the Shared Heterogeneous Cluster (SHC) at Caltech Center for Advanced Computing
Research (CACR). Due to the limitations posted by available campus matlab licenses, our simulation is con-
strained onto a single computing node where total 8 computing cores are available from two AMD Opteron
2390 of 2.5 GHz.

For two spatial grids, 256 x 256 and 512 x 512, the wall times of a single RK iteration steps are recorded
and reported in Table 5 for serial computation and parallel computation with 2, 4, 6 and 8 cores, respectively.
Speedups of parallel strategies are also reported in the same table. Two mode number vectors m = (7, 8)
and m = (19,20) are used in the computation. Confirming our complexity analysis, the speedup is more
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Figure 14: STD of vorticity and temperature fields at time ¢ = 1.0. Left column by DyBO and right column
by gPC.
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Figure 15: L2 relative errors of vorticity and temperature STDs as functions of time. The evolutions of the
numbers of vorticity and temperature basis pairs are also given in the last figure.
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significant for larger spatial grid and more mode pairs. For example, the computational time on 8 cores is
reduced to 1/6 on 256 x 256 spatial grid compared to that on a single core.

256 x 256 512 x 512

m=[7.8] | m=][19,20] m=17,8] m = [19, 20]
Time | Speedup | Time | Speedup | Time | Speedup | Time [ Speedup

Serial 1.6930 NA 19.529 NA 10.658 NA 71.372 NA

2 1.2618 1.34 11.150 1.75 6.8218 1.56 34.471 2.07

4 1.0216 1.66 6.9873 2.79 4.4738 2.38 20.600 3.46

6 0.9787 1.73 4.4082 4.43 3.7902 2.81 16.940 4.21

8 0.9197 1.84 3.1262 6.25 3.5095 3.03 15.182 4.70

# proc

Table 5: Speedups by proposed parallelization strategy for different spatial grids and mode number vectors.
Wall times of a single RK time step for different parameters are given in seconds, fourth, sixth and eighth
columns. All times are in seconds.

7. Conclusions

The DyBO method proposed in the first part of our paper [9] exploits the intrinsic data-sparsity of
SPDEs, tracks the KL expansion of the stochastic solutions, and provides an efficient numerical method for
time-dependent SPDEs. In addition to providing applications for stochastic flow driven by stochastic forces,
we also make the following important contributions to this method in this paper:

Computational complexity analysis. Detailed computational complexity analysis has been con-

ducted, which shows a speedup factor of O ((m/Np)B) over the standard gPC method for a quadratic

nonlinear PDE driven by a stochastic force. We have observed considerable speedups in the 2D stochastic
flow problem. Furthermore, a simple, yet powerful, parallelization strategy based on domain decomposition
of the spatial domain was proposed and its parallel efficiency was numerically verified.

Adaptive strategy for adding and removing mode pairs. Based on the analysis of the type-KL
error, a sophisticated strategy has been proposed to adaptively and dynamically add or remove spatial and
stochastic mode pairs by using the short-time “burst” of the DyBO-gPC and gPC method. The effectiveness
of such strategies have been demonstrated in our numerical examples. We are currently exploring alternative
adaptive strategy based on [' optimization to avoid the need of computing gPC solution for a short time..

Generalizations to a system of SPDEs. We have generalized the DyBO method for a system of
SPDESs and applied it to solve a 2D Boussinesq approximation driven by both stochastic external forces and
buoyancy forces. Such generalization potentially provides a way to tackle problems involving both multiscale
phenomena and randomnesses. For example, the stochastic solution can be first decomposed into different
spatial scales and then the generalized DyBO method can be applied to the system of SPDEs of stochastic
solution components on different scales. The DyBO method can also be generalized to track KL expansion
of SPDE solution in other Sobolev space, which will be reported in the subsequence paper.
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Appendix A. Derivations of the DyBO Formulation of SNSE

The derivations of the DyBO formulation of (35) and (44) are very similar. In this appendix, we provide
the details of the derivations of the DyBO-gPC formulation of SNSE (44) as an example. Substituting the
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KL expansion into the Poisson equation for the steam function (36), we have
— Ay =w+WZT, (A1)
which implies an expansion ¢ = 9 +%ZT with

—A& =w,
—Ap = W.

From the above expansion of v, it is easy to get expansions of u and v,

o N, _ T o) 0 1 o o .
ay + — 3y =u+ UZ", ie,, u 3y By w, U 3y By W,

_ W M T R L N P L
v = 9 Ow =v+ VZ", ie,, U= o &UA w, V = 9 (%cA W.

Note that all these expansions of ¥, u and v are not necessarily KL. expansions.
First, we derive the equation for the temperature. Substituting the KL expansion into Eq. (44b), we get

a0 90 _ 90 90 a0 90
Lo{0 =_ — Af AOAT — (a—+7T AT — U+ =V |BT H"
o 10:v} (a +“ay)” *[“ (6 o ay) (ax oy ) }
T T
— UBT"HTHA aa - VBTHTHAai
X

Taking expectations on both sides yields

90 00 007 007
E = |a—+v— A BTA—— BTA——
[Lo {0, w}] (uax + vay) + kA —U pe -V oy
. 90 00 a0 a0
_ T _ (-YY T ov T T
Eg{@,w}—{ﬁABA <uax—|— 3y>A <8 U+6y )B ]H
T T T T
+ UBTA@ + VBTA% UBTHTHA@ - VBTHTHA@
or dy ox oy’
and
5 90 00 a0 a0
_ T _ il i _- ) T
E [1:9 {o,w}H] — KAOA ( o ay) AT <axU+ 8yv> B

90;  06; (H)
(52 05 ) Pestosi]

Further, we plug in the above equality into the inner product. We get

<0T, E [59 {H,w}HD —x <9T, A0> AT - <9T 222 43 39> AT - <0T, By, 89V> B

Yor oy Or dy
0 H
O Bast TR

where the third-order m,,-by-mg-by-mg tensor
0 ; 0 ;
(3:(9): (<0k,uiaj+via J>) .
or dy ik
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From Eq. (29), we have the DyBO-gPC formulation for the temperature component,

90 00 00 06" 06"
=rkA)— (i—+0— ) -UBTA— - VBTA——

a " (“ax + ”ay> oz Dy’

06

ot

00 00 o0 o0
o0 s (520 (P O

U+ =V |BTA
oz oy )
00; d0;
_ |:< 8 + v; 3y > BalAﬁjA’)’kTaﬁﬁy:| R

1xk
dA - - . 00" 90" .
dt_A<_C0 +/€<A6 ,0>A9 —<u$ +'U7,6 Ag

ijk afy

<89 o0
_|_ R

T -1 _ |«(0) (H) -1
- oY ,6>A9 (S0 Baidp; T } LA

where matrices Cy and Dy can be solved from the linear system (4) with Gy,

060 06 o0.. 00
_ T T T T
AGG*Q_K@ ,A0> <0 g+ ay> <0 50" 5 V>B A
{@")BMAWAWSE)LBL}

ijk kx|

Next, we derive the DyBO equations for the vorticity component. Substituting the KL expansion into
Eq. (44a), we have

0w ow o0
Ly, {0,w} = (VAw - ua—x - ,ugax)

dy
OW  OW Aw Ow o0
A i— | — [ = - BTHT ATHT
[V W ( Al +U6y) <3IU - v)} Ty
T T
— UBTH"HB a;v — VB"H"HB 8;‘7 + FH”.
x Y

Taking expectations on both sides, we have

ow ow 00 OWT OWT
E[L, {0, w}] = (VAw_uﬁa:_vﬁy Mg@a:>_U3x_V oy
OW | OWN (D 00 \] prpr 00
L, {0, w}[mw < o +U8y) (89[:U+(3 VHB H' + pg-— ATH
T T T T
Uaw +V8W fUBTHTHBaW fVBTHTHBaw +FHT,
or 0y Oox oy
and
. _ OW  OW Ow ow T 20 .
E[ﬁu,{o,w}H] = [VAW < ST 8y)_(5acU 5 V)}B + g5 A

ow; Ow > (H >}
(0, 2 4, BoiBg; T +F.
|:( a ay pI [3’7 1x~y

Substituting the above equality into the inner product gives

<WT,E[[ZW{9,w}H}>:<W VAW — ( ag;v Haa\;v) - (?;;)U Zwv)>

00
+ <WT, ,ugaz> AT — S0V BaiBa;Thg,| (W, F),

}kxw
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where the third-order m.,-by-m.,-by-m,, tensor

ow; 0
(W) — <<wk, U; awj +v au; >) . (A.2)

From Eq. (29), we have the DyBO-gPC formulation for the vorticity component,

Ow . Ow 0w 00 OWT OWT
i (”Aw‘“ax‘“ay”%m) Vo Vo
OW OW  OW 0w ow 00
= _-WDZ AW — [ G— + 0— U+ —V —A™B
ot “{” (“ e ”ay) <8x * oy )]+”gax
Ku Ow; |, 2 )B B g } +FB
U~ U; ai3j k2o )
oz Ay i By B Ixk
dB T T GWT OWT ow T Ow 1
T
— (W) (H) -1 T -1
+ugA (G W) Ay F- s Baing‘EamLXkAw +(FT, W) AR,

where matrices C,, and D,, can be solved from the linear system (4) with G,

JOW OW o, , O
00 w
+ <WT, pgax> ATB ~ |20 BaiBg; 7&&57] +(WT, F)B.

kxl

Combining the above discussion and using the generalized material derivative (40), we arrive at the DyBO-
gPC formulation for SNSE (44),
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