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Abstract

We develop an optimization–based approach to the problem of reconstructing
temperature–dependent material properties in complex thermo–fluid systems described
by the equations for the conservation of mass, momentum and energy. Our goal is to
estimate the temperature dependence of the viscosity coefficient in the momentum
equation based on some noisy temperature measurements, where the temperature is
governed by a separate energy equation. We show that an elegant and computation-
ally efficient solution of this inverse problem is obtained by formulating it as a PDE–
constrained optimization problem which can be solved with a gradient–based descent
method. A key element of the proposed approach, the cost functional gradients are
characterized by mathematical structure quite different than in typical problems of
PDE–constrained optimization and are expressed in terms of integrals defined over the
level sets of the temperature field. Advanced techniques of integration on manifolds
are required to evaluate numerically such gradients, and we systematically compare
three different methods. As a model system we consider a two–dimensional unsteady
flow in a lid–driven cavity with heat transfer, and present a number of computational
tests to validate our approach and illustrate its performance.

Keywords: parameter estimation, material properties, optimization, adjoint anal-
ysis, integration on level sets.

1 Introduction

In this work we propose and validate a computational approach to the reconstruction of
material properties in complex multiphysics phenomena based on incomplete and possibly
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noisy measurements. The material properties we are interested in here are the transport co-
efficients characterizing diffusion processes such as the viscosity or the thermal conductivity,
and we focus on problems in which these coefficients depend on the state variables in the
system. By the “multiphysics” aspect we mean situations in which the material property
used in one conservation equation is a function of a state variable governed by a different
conservation equation, e.g., reconstruction of the temperature dependence of the viscosity
coefficient used in the momentum equation, where the temperature is governed by a sepa-
rate energy equation, which is the specific model problem investigated in this study. This
research is motivated by questions arising in the computational analysis and optimization of
advanced welding processes which involves modelling complex alloys in the liquid phase at
high temperatures [1].

Inverse problems of parameter estimation for partial differential equations (PDEs) have
received significant attention in the literature, both regarding theoretical [2] and practical
aspects [3]. However, most of the attention focused on problems in which the material prop-
erties are functions of the space variable (i.e., the independent variable in the problem).
Such problems are, at least in principle, relatively well understood and represent the foun-
dation of, for example, numerous imaging techniques in medicine [4] and earth sciences [5].
The problem considered here is in fact different, in that the material properties are sought
as functions of the state (dependent) variables in the system which gives rise to a number
of computational challenges absent in the “classical” parameter estimation problem. Other
than the seminal work of Chavent and Lemonnier [6], our earlier study [7] concerning a
simplified model problem and a few investigations of fully discrete formulations surveyed
in [7], there does not seem to be much literature concerning computational methods for
this type of parameter estimation problems. One way to solve such inverse problems is to
formulate them as optimization problems and this is the approach we will follow focusing on
the “optimize–then–discretize” paradigm in which the optimality conditions are formulated
at the continuous (PDE) level and only then discretized. The goal of this investigation is to
extend the approach formulated in [7] for a simple model to a realistic multiphysics problem
involving time–dependent fluid flow in a two–dimensional (2D) domain. As will be shown
below, a number of computational difficulties will need to be overcome in order to achieve
this goal.

As a key contribution of this work, we address a number of computational challenges
related to accurate and efficient evaluation of cost functional gradients which are critical to
the implementation of the proposed approach. More specifically, these gradients are given in
terms of integrals of expressions involving state and adjoint variables defined on a grid over
contours given by the level sets of the temperature field. A number of techniques have been
proposed for the numerical evaluation of integrals defined over manifolds defined by level–set
functions. Some of them rely on regularized Dirac delta and Heaviside functions [8, 9], or
discretization of the Dirac delta function [10–12]. Similar approaches, based on approxima-
tions of the Dirac delta functions obtained using the level–set function and its gradient, were
developed by Towers [13,14]. The family of geometric approaches proposed by Min and Gi-
bou in [15, 16] relies on a decomposition of the entire domain into simplices. We emphasize
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that the problem discussed in this work is in fact more complicated, as the computation
of our cost functional gradients requires evaluation of the corresponding integrals for the
level–set values spanning the entire state space of interest, hence there are also additional
issues related to the discretization of the state space which were outside the scope of refer-
ences [8–16]. Thus, in order to address these questions and assess the different trade–offs in
the choice of the numerical parameters we will compare the computational performance of
three different methods for the evaluation of cost functional gradients.

The structure of this paper is as follows: in the next Section we formulate our model
problem, in the following Section we cast the problem of parameter estimation as an opti-
mization problem, an adjoint–based gradient–descent algorithm is formulated in Section 4,
in Section 5 we outline some regularization strategies needed in the presence of measurement
noise, whereas in Section 6 we analyze three different numerical approaches to the evaluation
of the cost functional gradients; extensive computational results are presented in Section 7
with discussion and conclusions deferred to Section 8.

2 Model Problem

Let Ω ⊂ Rd, d = 2, 3, be the spatial domain on which our model problem is formulated.
To fix attention, but without loss of generality, in the present investigation we focus on
the problem of a reconstruction of the temperature dependence µ = µ(T ) of the viscosity
coefficient µ : R → R+ in the momentum equation (Navier-Stokes equation), where the
temperature T is governed by a separate energy equation

∂tu + (u ·∇)u + ∇p−∇ ·
[
µ(T )[∇u + (∇u)T ]

]
=0 in Ω, (1a)

∇ · u =0 in Ω, (1b)

∂tT + (u ·∇)T −∇ · [k∇T ] =0 in Ω, (1c)

subject to appropriate Dirichlet (or Neumann) boundary and initial conditions

u = uB on ∂Ω, (2a)

T = TB on ∂Ω, (2b)

u(·, 0) = u0, T (·, 0) = T0 in Ω. (2c)

The specific inverse problem we address in this investigation is formulated as follows. Given
a set of time–dependent “measurements” {T̃i(t)}Mi=1 of the state variable (temperature) T
at a number of points {xi}Mi=1 in the domain Ω (or along the boundary ∂Ω) and obtained
within the time window t ∈ [0, tf ], we seek to reconstruct the constitutive relation µ = µ(T )
such that solutions of problem (1)-(2) obtained with this reconstructed function will fit best
the available measurements.

In regard to reconstruction of constitutive relations in general, it is important that such
relations be consistent with the second principle of thermodynamics [17]. There exist two
mathematical formalisms, one due to Coleman and Noll [18] and another one due to Liu [19],
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developed to ensure in a very general setting that a given form of the constitutive relation
does not violate the second principle of thermodynamics. In continuous thermodynamical
and mechanical systems this principle is expressed in terms of the Clausius–Duhem inequality
[20] which in the case of our present model problem (1)–(2) reduces to the statement that
µ(T ) > 0 for all possible values of T .

In our discussion below we will also need definitions of the following intervals, cf. Figure
1:

• [Tα, Tβ] , [minx∈Ω T (x),maxx∈Ω T (x)] which represents the temperature range spanned
by the solution of problem (1); thus, following [21], we will refer to the interval
I , [Tα, Tβ] as the identifiability interval,

•  L , [Ta, Tb], where Ta ≤ Tα and Tb ≥ Tβ; this will be the temperature interval on
which we will seek to obtain a reconstruction of the material property; we note that in
general the interval  L will be larger than the identifiability interval, i.e., I ⊆  L, and

• M , [min1≤i≤M min0<t≤tf T̃i(t),max1≤i≤M max0<t≤tf T̃i(t)] which defines the temper-

ature range spanned by the measurements {T̃i}Mi=1; this interval is always contained
the identifiability interval I, i.e., M ⊆ I; we will refer to the interval M as the
measurement span.

3 Parameter Estimation as an Optimization Problem

It is assumed that the constitutive relations µ(T ) are differentiable functions of the state
variable (temperature) and belong to the following set

Sµ = {µ(T ) piecewise C1 on  L; 0 < mµ ≤ µ(T ) ≤Mµ <∞, ∀T ∈  L}, (3)

where mµ,Mµ ∈ R+. We will also assume that the set Sµ consisting of constitutive relations
µ(T ) defined on  L is embedded in a Hilbert (function) space X to be specified below. Solving
our parameter estimation problem is therefore equivalent to finding a solution to the operator
equation

F(µ) = T, (4)

where F : Sµ → (L2([0, tf ]))
M is the map from the constitutive relations to the measure-

ments. An approach commonly used to solve such problems consists in reformulating them
as least–squares minimization problems which in the present case can be done by defining
the cost functional J : X → R as

J (µ) ,
1

2

∫ tf

0

M∑
i=1

[
T (τ,xi;µ)− T̃i(τ)

]2

dτ, (5)
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Figure 1: Schematic showing (left) the solution T (t0, x) at some fixed time t0 and (right)
the corresponding constitutive relation µ(T ) defined over their respective domains, i.e., Ω =
(−1, 1) and the identifiability region I. The thick dotted line represents an extension of the
constitutive relation µ(T ) from I to the interval  L. In the Figure on the right the horizontal
axis is to be interpreted as the ordinate.
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where the dependence of the temperature field T (·;µ) on the form of the constitutive relation
µ = µ(T ) is given by governing system (1)–(2). The optimal reconstruction µ̂ is obtained as
a minimizer of cost functional (5), i.e.,

µ̂ = argmin
µ∈Sµ

J (µ). (6)

We recall that the constitutive property is required to satisfy the positivity condition µ(T ) >
0 for all T ∈  L, cf. (3). Therefore, the optimal reconstruction µ̂ should in fact be obtained
as an inequality–constrained minimizer of cost functional (5), i.e.,

µ̂ = argmin
µ∈X ,

µ(T )>0, T∈ L

J (µ). (7)

We add that in problems involving constitutive relations depending on several state vari-
ables the inequality constraint µ(T ) > 0 will be replaced with a more general form of
the Clausius–Duhem inequality [20]. Different computational approaches for converting
inequality–constrained optimization problems to unconstrained formulations are surveyed
in [22, 23]. Here we follow a straightforward approach based on the so-called “slack” vari-
able [24]. We define a new function θ(T ) : R→ R such that

µ(T ) = θ2(T ) +mµ, (8)

where mµ is a lower bound for µ(T ), cf. (3). This change of variables allows us to transform
the inequality–constrained optimization problem (7) to a new unconstrained one

θ̂ = argmin
θ∈X

J (θ), (9)

where the constraint µ(T ) > 0 is satisfied automatically when minimization is performed
with respect to the new variable θ(T ). In view of (3), we note that the new optimization
variable θ belongs to the following set

Sθ = {θ(T ) piecewise C1 on  L; |θ(T )| <
√
Mµ −mµ, ∀T ∈  L}. (10)

The governing PDE system (1) can thus be rewritten in the form

∂tu + (u ·∇)u + ∇p−∇ ·
[
(θ2(T ) +mµ)[∇u + (∇u)T ]

]
=0 in Ω, (11a)

∇ · u =0 in Ω, (11b)

∂tT + (u ·∇)T −∇ · [k∇T ] =0 in Ω, (11c)

subject to Dirichlet boundary and initial conditions (2). The new problem (9) requires
redefining cost functional (5) in terms of the new variable

J (θ) =
1

2

∫ tf

0

M∑
i=1

[
T (τ,xi; θ)− T̃i(τ)

]2

dτ. (12)
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Problem (9) is characterized by the first–order optimality condition which requires the
Gâteaux differential of cost functional (12), defined as J ′(θ; θ′) , limε→0 ε

−1[J (θ + εθ′) −
J (θ)], to vanish for all perturbations θ′ ∈ X [25], i.e.,

∀θ′∈X J ′(θ̂; θ′) = 0. (13)

The (local) optimizer θ̂ can be computed with the following gradient descent algorithm as
θ̂ = limn→∞ θ

(n), where{
θ(n+1) = θ(n) − τ (n)∇θJ (θ(n)), n = 1, . . . ,

θ(1) = θ0,
(14)

in which ∇θJ (θ) represents the gradient of cost functional J (θ) with respect to the control
variable θ (we will adopt the convention that a subscript on the operator ∇ will be used when
differentiation is performed with respect to variables other than x), τ (n) is the length of the
step along the descent direction at the n–th iteration, whereas θ0 =

√
µ0 −mµ is the initial

guess taken, for instance, corresponding to a constant µ0, or some other appropriate initial
approximation. For the sake of clarity, formulation (14) represents the steepest–descent
algorithm, however, in practice one typically uses more advanced minimization techniques,
such as the conjugate gradient method, or one of the quasi–Newton techniques [26]. We note
that, since minimization problem (9) is in general nonconvex, condition (13) characterizes
only a local, rather than global, minimizer.

The key ingredient of minimization algorithm (14) is computation of the cost functional
gradient ∇θJ (θ). We emphasize that, since θ = θ(T ) is a continuous variable, the gradient
∇θJ (θ) represents in fact the infinite–dimensional sensitivity of J (θ) to perturbations of
θ(T ). This gradient can be determined based on suitably defined adjoint variables (Lagrange
multipliers) obtained from the solution of the corresponding adjoint system. Since this
derivation differs in a number of imported technical details from analogous derivations in
“standard” PDE–constrained optimization problems, it will be reviewed in Section 4. The
expression for the gradient is then validated for consistency in Section 7.4.

4 Cost Functional Gradients via Adjoint–based Anal-

ysis

Since the new variable θ(T ) belongs to set Sθ, cf. (10), we will seek to reconstruct θ(T ) as
elements of the Sobolev space H1( L), so that the gradient ∇θJ will need to be obtained
with respect to the corresponding inner product. However, in order to make the derivation
procedure easier to follow, we will first obtain an expression for the gradient in the space
L2( L), and only then will obtain the Sobolev gradients which will be eventually used in the
solution of optimization problem (9). In all these steps our transformations will be formal.
We begin by computing the directional (Gâteaux) differential of cost functional (12) which
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yields

J ′(θ; θ′) =

∫ tf

0

M∑
i=1

[T (τ,xi; θ)− T̃i(τ)]T ′(τ,xi; θ, θ
′) dτ, (15)

where the perturbation variable T ′(θ, θ′) satisfies the perturbation system obtained from
(1)–(2). Next, we invoke the Riesz representation theorem [27] for the directional differential
J ′(θ; ·) which yields

J ′(θ; θ′) =
〈
∇θJ , θ′

〉
X
, (16)

where 〈·, ·〉X represents an inner product in the Hilbert space X (we will first set X = L2( L)
and afterwards change this to X = H1( L)). We note that the expression on the right–hand
side (RHS) in (15) is not consistent with Riesz representation (16), since, as will be shown
below, the perturbation variable θ′ is hidden in the system defining T ′(θ, θ′). However, this
expression can be transformed to Riesz form (16) with the help of a suitably–defined adjoint
variable, a result which is stated in Theorem 4.1 below. The main aspect in which this
derivation differs from the standard adjoint analysis [28] is that the inner product in Riesz
identity (16) is defined using the state variable (temperature) as the integration variable,
whereas the variational formulation of (1)–(2) is defined using integration with respect to
the independent variables (x and t).

Theorem 4.1. Let Ω be a sufficiently regular open bounded domain and θ′ ∈ X = H1( L).
We assume that the solutions u and T of system (1)–(2) are sufficiently smooth. Then, the
Riesz representation of directional differential (15) has the form

J ′(θ; θ′) = −2

∫ ∞
−∞

∫
Ω

δ(T (x)− s) θ(s)
[∫ tf

0

[∇u + (∇u)T ] : ∇u∗ dτ

]
θ′(s) dx ds, (17)

where δ(·) denotes Dirac delta function and the adjoint state {u∗, T ∗} is defined as the
solution of the system

−∂tu∗ − (u ·∇)u∗ −∇ · σ∗ + u∗ · (∇u)T + T ∗∇T = 0 in Ω,

(18a)

∇ · u∗ = 0 in Ω,
(18b)

−∂tT ∗ − (u ·∇)T ∗ −∇ · [k∇T ∗] + 2θ(T )
dθ

dT
(T ) [∇u + (∇u)T ] : ∇∗u

=
M∑
i=1

[T (xi; θ)− T̃i]δ(x− xi) in Ω,

(18c)

where σ∗ , −p∗I+(θ2(T )+mµ)
[
∇u∗ + (∇u∗)T

]
, with the following boundary and terminal
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conditions
u∗ = 0 on ∂Ω,

T ∗ = 0 on ∂Ω,

u∗(·; tf ) = 0, T ∗(·; tf ) = 0 in Ω.

(19)

Proof. We will denote the stress tensor σ , −pI+(θ2(T )+mµ)
[
∇u + (∇u)T ]

]
and rewrite

the governing system (11) as

∂tu + (u ·∇)u−∇ · σ = 0 in Ω,

∇ · u = 0 in Ω,

∂tT + (u ·∇)T −∇ · [k∇T ] = 0 in Ω

(20)

with the boundary and initial conditions (2). Perturbing the state variables u, p and T ,
which are functions of time and space, we get

u = u0 + εu′ + Ø(ε2),

p = p0 + εp′ + Ø(ε2),

T = T0 + εT ′ + Ø(ε2),

(21)

so that the corresponding expansion of the constitutive relation θ(T ) will have the following
form

θ(T ) = θ0(T ) + εθ′(T ) + Ø(ε2) = θ0(T0) + ε
dθ

dT
(T0)T ′(θ0; θ′) + εθ′(T0) + Ø(ε2), (22)

where the subscript “0” is used to denote the unperturbed (reference) material property and
the state variable, whereas the prime denotes the corresponding perturbations. We also have

θ2(T ) = θ2
0(T0) + 2εθ0(T0)

dθ

dT
(T0)T ′(θ0; θ′) + 2εθ0(T0)θ′(T0) + Ø(ε2). (23)

Substituting (21) and (23) into (20), collecting terms corresponding to ε in different powers
and denoting

σ̂ , −p′I + (θ2(T ) +mµ)
[
∇u′ + (∇u′)T

]
,

σ̃ ,

(
2θ(T )

dθ

dT
(T )T ′(θ0; θ′) + 2θ(T ) θ′(T )

)[
∇u + (∇u)T

]
,

we obtain the perturbation (sensitivity) system corresponding to (11)

∂tu
′ + (u′ ·∇)u + (u ·∇)u′ −∇ · (σ̂ + σ̃) =0 in Ω, (24a)

∇ · u′ =0 in Ω, (24b)

∂tT
′ + (u′ ·∇)T + (u ·∇)T ′ −∇ · [k∇T ′] =0 in Ω (24c)

9



with the following boundary and initial conditions

u′ = 0 on ∂Ω, (25a)

T ′ = 0 on ∂Ω, (25b)

u′(·, 0) = 0, T ′(·, 0) = 0 in Ω. (25c)

Then, integrating equation (24a) against u∗, equation (24b) against p∗, and equation (24c)
against T ∗ over the space domain Ω and time [0, tf ], integrating by parts and factorizing u′,
T ′ and p′, we arrive at the following relation∫ tf

0

∫
Ω

[
−∂tu∗ + u∗ · (∇u)T − (u ·∇)u∗ −∇ · σ∗ + T ∗∇T

]
· u′ dx dτ

−
∫ tf

0

∫
Ω

(∇ · u∗)p′ dx dτ

+

∫ tf

0

∫
Ω

[
−∂tT ∗ − (u ·∇)T ∗ −∇ · (k∇T ∗) + 2θ(T )

dθ

dT
(T )[∇u + (∇u)T ] : ∇u∗

]
T ′ dx dτ

+

∫ tf

0

∫
Ω

2θ(T )θ′(T )[∇u + (∇u)T ] : ∇u∗ dx dτ = 0.

(26)
We now require that the adjoint variables u∗, p∗ and T ∗ satisfy system (18)–(19). We also
note that owing to the judicious choice of the RHS term in (18c), the last term in relation
(26) is in fact equal to the directional differential J ′(θ; θ′), so that we have

J ′(θ; θ′) = −2

∫ tf

0

∫
Ω

θ(T (x, τ))θ′(T (x, τ)) [∇u(x, τ) + (∇u(x, τ))T ] : ∇u∗(x, τ) dx dτ,

(27)
where, for emphasis, we indicated the integration variables as arguments of the state and
adjoint variables. We note that this expression is still not in Riesz form (16), where inte-
gration must be performed with respect to the state variable (temperature T ). Thus, we
proceed to express for any given function f(T ) its pointwise evaluation at T (x) through the
following integral transform. It is defined using a “change–of–variable” operator, denoted Π,
such that for given functions f : R→ R and T : Ω→ R, we have

f(T (x)) =

∫ +∞

−∞
δ(T (x)− s)f(s) ds , (Πf)(x). (28)

Using this transform to express f(T (x)) = θ(T (x, τ))θ′(T (x, τ)) in (27) and changing the
order of integration (Fubini’s Theorem), we obtain expression (17) which is the required
Riesz representation (16) of directional differential (15).

We remark that we were able to prove an analogous result using a simpler approach based
on the Kirchhoff transform in [7], where both the constitutive relation and the state variable
were governed by the same equation (i.e., the problem was not of the “multiphysics” type).
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With the Riesz representation established in (17), we now proceed to identify expressions
for the cost functional gradient ∇θJ according to (16) using different spaces X . While this
is not the gradient that we will use in actual computations, we analyze first the “simplest”
case when X = L2( L), i.e., the space of functions square integrable on [Ta, Tb], as it already
offers some interesting insights into the structure of the problem. The L2 gradient of the
cost functional hence takes the form

∇L2
θ J (s) = −2

∫ tf

0

∫
Ω

δ(T (x)− s) θ(s) [∇u + (∇u)T ] : ∇u∗ dx dτ. (29)

As was discussed at length in [7], the L2 gradients are not suitable for the reconstruction of
material properties in the present problem, because in addition to lacking necessary smooth-
ness, they are not defined outside the identifiability region (other than perhaps through
a trivial extension with zero). Given the regularity required of the constitutive relations,
cf. (10), the cost functional gradients should be elements of the Sobolev space H1( L) of
functions with square–integrable derivatives on  L. Using (16), now with X = H1( L), we
obtain

J ′(θ; θ′) =
〈
∇L2

θ J , θ′
〉
L2( L)

=
〈
∇H1

θ J , θ′
〉
H1( L)

=

∫ Tb

Ta

[
(∇H1

θ J ) θ′ + `2d(∇H1

θ J )

ds

dθ′

ds

]
ds

(30)

in which ` ∈ R is a parameter with the meaning of a “temperature–scale” [we note that the L2

inner product is recovered by setting ` = 0 in (30)]. Performing integration by parts with the

assumption that the Sobolev gradient ∇H1

θ J satisfies the homogeneous Neumann boundary
conditions at T = Ta, Tb, and noting that relation (30) must be satisfied for any arbitrary
θ′, we conclude that the Sobolev gradient can be determined as a solution of the following
inhomogeneous elliptic boundary–value problem where the state variable (temperature) acts
as the independent variable

∇H1

θ J − `2 d
2

ds2
∇H1

θ J = ∇L2
θ J on (Ta, Tb), (31a)

d

ds
∇H1

θ J = 0 for s = Ta, Tb. (31b)

We recall that by changing the value of the temperature–scale parameter ` we can control
the smoothness of the gradient ∇H1

θ J (θ), and therefore also the relative smoothness of the
resulting reconstruction of θ(T ), and hence also the regularity of µ(T ). More specifically, as
was shown in [29], extracting cost functional gradients in the Sobolev spaces Hp, p > 0, is
equivalent to applying a low–pass filter to the L2 gradient with the quantity ` representing
the “cut-off” scale. There are also other ways of defining the Sobolev gradients in the
present problem which result in gradients characterized by a different behavior outside the
identifiability region. These approaches were thoroughly investigated in [7], and since they
typically lead to inferior results, they will not be considered here. We finally conclude that
iterative reconstruction of the constitutive relation µ(T ) involves the following computations

11



1. solution of direct problem (11) with boundary and initial conditions (2),

2. solution of adjoint problem (18)–(19),

3. evaluation of expression (29) for the cost functional gradient,

4. computation of the smoothed Sobolev gradient by solving (31).

While steps (1), (2) and (4) are fairly straightforward, step (3) is not and will be thoroughly
investigated in Section 6.

As we discussed in detail in [7], while the Sobolev gradient ∇H1

θ J may be defined on
an arbitrary interval  L ⊃ I, the actual sensitivity information is essentially available only
on the identifiability interval I (see Figure 1). In other words, extension of the gradient
outside I via (31) does not generate new sensitivity information. Since, as demonstrated
by our computational results reported in [7], such techniques are not capable of accurately
reconstructing the relation µ(T ) on an interval  L much larger than the identifiability region
I, here we mention a different method to “extend” the identifiability region, so that the re-
lation µ(T ) can be reconstructed on a larger interval. This can be done in a straightforward
manner by choosing appropriate time–dependent boundary conditions for temperature TB
in (2b) which will result in a suitable identifiability region I and the measurement spanM.
Computational results illustrating the performance of our approach with different identifia-
bility regions obtained using this method will be presented in Section 7.5. We remark that
extending the identifiability region in this way is not possible in time–independent problems
where an iterative approach has to be used involving solution of a sequence of reconstruction
problems on shifted identifiability regions [7].

5 Reconstruction in the Presence of Measurement Noise

In this Section we discuss the important issue of reconstruction in the presence of noise in the
measurements. As can be expected based on the general properties of parameter estimation
problems [3], and as will be confirmed in Section 7.6, incorporation of random noise into the
measurements leads to an instability in the form of small–scale oscillations appearing in the
reconstructed constitutive relations. In the optimization framework a standard approach to
mitigate this problem is Tikhonov regularization [30] in which original cost functional (12)
is replaced with a regularized expression of the form

Jλ(θ) , J (θ) +
λ

2

∥∥θ − θ̄∥∥2

Y(I)
, (32)

where λ ∈ R+ is an adjustable regularization parameter, θ̄(T ) represents a constitutive
relation which our reconstruction θ(T ) should not differ too much from, whereas ‖·‖Y(I) is the
Hilbert space norm in which we measure the deviation (θ− θ̄). Thus, the regularization term
in (32), i.e., the second one on the RHS, involves some additional information which needs
to be specified a priori, namely, the choice of the reference relation θ̄(T ) and the space Y(I).
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As regards the reference function θ̄(T ), one natural possibility is to consider a constant value
corresponding to a constant material property, and this is the solution we will adopt below.
We recall here that θ(T ) is in fact a “slack” variable and is related to the actual constitutive
relation via (8). As regards the choice of the space Y(I), we will follow the discussion in [7]
and consider a regularization term involving derivatives, namely Y(I) = Ḣ1(I), where Ḣ1(I)

denotes the Sobolev space equipped with the semi–norm ‖z‖Ḣ1(I) ,
∫ Tβ
Tα

(
∂z
∂s

)2
ds, ∀z∈H1(I);

the regularization term in (32) then becomes

λ

2

∥∥θ − θ̄∥∥2

Ḣ1(I)
=
λ

2

∫ Tβ

Tα

(
dθ

ds
− dθ̄

ds

)2

ds (33)

yielding the following L2 gradient of the regularized cost functional

∇L2
θ Jλ(s) =− 2

∫ tf

0

∫
Ω

δ(T (x)− s) θ(s) [∇u + (∇u)T ] : ∇u∗ dx dτ

+ λ

{
dθ

ds
[δ(s− Tβ)− δ(s− Tα)]− d2θ

ds2

}
.

(34)

We remark that in obtaining (34) integration by parts was applied to the directional deriva-
tive of the regularization term. Expression (34) can now be used to compute the Sobolev
gradients as discussed in Section 4. We add that penalty term (33) is defined on the identi-
fiability interval I which is contained in the interval  L on which the Sobolev gradients are
computed. Computational tests illustrating the performance of the Tikhonov regularization
on a problem with noisy data will be presented in Section 7.6. In that Section we will also
briefly analyze the effect of the regularization parameter λ. We add that the stability and
convergence of Tikhonov regularization using the Sobolev norm H1 in the regularization
term and applied to an inverse problem with similar mathematical structure, but formulated
for a simpler PDE than (1), was established rigorously in [21].

6 Numerical Approaches to Gradient Evaluation

Without loss of generality, hereafter we will focus our discussion on the 2D case. For some
technical reasons we will also assume that

∀t∈[0,tf ] meas {x ∈ Ω, |∇T (t,x)| = 0} = 0, (35)

i.e., that the temperature gradient may not vanish on subregions with finite area. (This
assumption is naturally satisfied when the temperature evolution is governed by an equation
of the parabolic type such as (1c).)

A key element of reconstruction algorithm (14) is evaluation of the cost functional gra-
dients given, in the L2 case, by expression (29). The difficulty consists in the fact that at
every instant of time t ∈ [0, tf ] and for every value of s (i.e., the dependent variable), one
has to compute a line integral defined on the level set

Γs(t) , {x ∈ Ω, T (t,x) = s} (36)
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of the temperature field T (t,x). To focus attention on the main issue, the time dependence
will be omitted in the discussion below. The integrand expression in such integrals is given in
terms of solutions of the direct and adjoint problems (1)–(2) and (18)–(19) which are approx-
imated on a grid. As will be shown below, this problem is closely related to approximation
of one–dimensional Dirac measures in Rd, an issue which has received some attention in the
literature [8–16]. We will compare different computational approaches to this problem, and
in order to better assess their accuracy, we will first test them on the generic expression

f(s) =

∫
Ω

δ(φ(s,x))g(x) dx (37)

for which the actual formula for the cost functional gradient (29) is a special case (except
for the time integration). In (37) the function φ(s,x) : R × Ω → R represents the field
whose s-level sets define the contours of integration Γs, whereas the function g(x) : Ω → R
represents the actual integrand expression. We note that by setting φ(s,x) = T (x) − s,
g(x) = 2θ(T (x))[∇u(x) + (∇u(x))T ] : ∇u∗(x) and adding time integration in (37), we
recover the original expression (29) for the cost functional gradient. We emphasize, however,
that the advantage of using (37) with some simple, closed–form expressions for φ(s,x) and
g(x) as a testbed is that this will make our assessment of the accuracy of the proposed
methods independent of the accuracy involved in the numerical solution of the governing
and adjoint PDEs (needed to approximate u, T and u∗).

In anticipation of one of the proposed numerical approaches, it is useful to rewrite (37)
explicitly as a line integral

f(s) =

∫
Γs

g(x)

|∇φ| dσ (38)

which is valid provided |∇φ| 6= 0 for every x ∈ Γs, cf. assumption (35) (proof of the
equivalence of expressions (37) and (38) may be found, for example, in [31]). Formula
(38) makes it clear that for a fixed value of s expression (29) for the cost functional gradient
can be interpreted as a sum of line integrals defined on the instantaneous s–level sets of the
temperature field T (t,x).

The problem of accurate numerical evaluation of the expressions given by either (37) or
(38) has received much attention, especially since the invention of the level-set approach
by Osher and Sethian [32]. Traditionally, the problem of integration over codimension–1
manifolds defined by a level–set function φ(x) is studied in terms of the numerical evaluation
of either the left–hand side (LHS) or right–hand side (RHS) expression in the following
relation, analogous to (37)–(38),∫

Γ: φ(x)=0

h(x)dσ =

∫
Ω

δ(φ(x))|∇φ(x)|h(x) dx, (39)

where, by absorbing the factor |∇φ(x)|−1 into the definition of the function h : Ω→ R, one
bypasses the problem of the points x ∈ Γs where |∇φ(x)| = 0, cf. (35). These approaches
fall into two main groups:

14



(A) reduction to a line (contour) integral, cf. (38), or the LHS of (39), and

(B) evaluation of an area integral, cf. (37), or the RHS of (39).

In the context of this classification, the methods of geometric integration developed by Min
and Gibou [15, 16] fall into the first category. This approach is based on decomposing the
domain Ω into simplices, which in the simplest 2D case can be achieved via a standard tri-
angulation, and then approximating the level sets given by φ(x) = 0 with piecewise splines
inside each simplex. Expression (38) then breaks up into a number of definite integrals which
can be evaluated using standard quadratures.

In practice, however, area integration techniques (B) seem to have become more popular.
One family of such techniques relies on regularization δε of the Dirac delta function with a
suitable choice of the regularization parameter ε which characterizes the size of the support.
While in the simplest case in which the parameter ε is determined based on the mesh size the
error is Ø(1) [8], recently developed approaches [8,9] achieve better accuracy by adjusting ε
based on the local gradient |∇φ| of the level–set function. Another family of area integration
approaches is represented by the work of Mayo [10] further developed by Smereka [11] where
a discrete approximation δ̃ of the Dirac delta function was obtained. This approach can also
be regarded as yet another way to regularize delta function δ(φ(x)) using a fixed compact
support in the one–dimensional (1D) space of values φ(x). In the second group of approaches
we also mention consistent approximations to delta function obtained by Towers in [13, 14]
using the level–set function and its gradient computed via finite differences.

In our present reconstruction problem, we have to evaluate the gradient expression (29)
for the whole range of T ∈  L, hence the discretization of the interval  L will also affect the
overall accuracy of the reconstruction, in addition to the accuracy characterizing evaluation
of the gradient for a particular value of T . This is an aspect of the present problem which is
outside the scope of earlier investigations concerning evaluation of the contour integrals of
grid–based data [8–16]. Thus, we need to understand how the interplay of the discretizations
of the physical space Ω with the step size h and the state space  L with the step size hT
affects the accuracy of the reconstruction. In principle, one could also consider the effect
of discretizing the time interval [0, tf ], however, the corresponding step size is linked to h
via the CFL condition, hence this effect will not be separately analyzed here. There are
also questions concerning the computational complexity of the different approaches. We will
consider below the following three methods to evaluate expression (37), or equivalently (38),
which are representative of the different approaches mentioned above

#1 line integration over approximate level sets which is a method from group A based on a
simplified version of the geometric integration developed by Min and Gibou in [15,16],

#2 approximation of Dirac delta measures developed by Smereka in [11] which is an exam-
ple of a regularization technique and utilizes the area integration strategy from group
B, and

#3 approximation of contour integrals with area integrals, a method which also belongs
to group B and combines some properties of regularization and discretization of Dirac
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delta measures discussed above [8, 9, 11]; more details about this approach, including
an analysis for its accuracy, are provided in Section 6.3.

To fix attention, we now introduce two different finite–element (FEM) discretizations of
the domain Ω based on

• triangular elements ΩMi , i = 1, . . . , NM, such that

Ω =
NM⋃
i=1

ΩMi , and (40)

• quadrilateral elements Ω�i , i = 1, . . . , N�, such that

Ω =

N�⋃
i=1

Ω�i , (41)

where NM and N� are the total numbers of the elements for each type of discretization (in
case of uniform triangulation one has NM = 2N�). In our computational tests we will assume
that the functions φ(s,x) and g(x) are given either analytically, or in terms of the following
FEM representations

φ(s,x)|ΩMi = Σ3
k=1φ

i
kψ

i
k(x), g(x)|ΩMi = Σ3

k=1g
i
kψ

i
k(x), i = 1, . . . , NM, (42)

φ(s,x)|Ω�i = Σ4
k=1φ

i
kψ

i
k(x), g(x)|Ω�i = Σ4

k=1g
i
kψ

i
k(x), i = 1, . . . , N�, (43)

where φik and gik are the given nodal values of the functions φ(s,x) and g(x), whereas ψik(x)
are the basis functions (linear in (42) and bilinear in (43) [33]). We also discretize the
reconstruction interval (solution space)  L = [Ta, Tb] with the step size hT as follows

Ti = Ta + i hT , i = 0, . . . , NT , hT =
Tb − Ta
NT

. (44)

6.1 Line Integration Over Approximate Level Sets

This approach is a variation of the geometric integration technique developed by Min and
Gibou [15, 16]. The main idea behind both methods is decomposition of the domain Ω
into simplices, which in our simplest 2D case is represented by triangulation (40), and then
approximating the level sets given by φ(s,x) = 0 with piecewise linear splines inside each
simplex (triangle). While in the geometric integration approach of Min and Gibou one uses
linear interpolation to refine locally the finite elements which contain the level sets φ(s,x) = 0
and then the second–order midpoint rule for approximating line integrals over the selected
simplices, in the present method we employ analogous approximations of the level sets, but
without local refinement, to reduce line integral (38) to a 1D definite integral which is then
evaluated using standard quadratures.
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The starting point for this approach is formula (38). For a fixed value of s the corre-
sponding level set can be described as

Γs =

M(s)⋃
j=1

Γjs, (45)

where Γjs ⊂ ΩMj and M(s) is the total number of the finite elements containing segments of

the level set Γs. We thus need to approximate
∫

Γjs

g(x)

|∇φ(s,x)| dσ, i.e., the line integral over

the part of the level–set curve contained in the j-th finite element ΩMj . In view of (42), the

integrand expression %(s,x) ,
g(x)

|∇φ(s,x)| can be approximated as

%̃(s,x)|ΩMi ∼= Σ3
k=1%

i
kψ

i
k(x),

where %ik are the known nodal values of the function %(s,x). An approximation Γ̃js of the
part of the level set Γjs belonging to the j-th finite element can be obtained in an explicit
form y = y(x), x ∈ [x′, x′′], or a parametric form x = x(t), y = y(t) with t ∈ [t′, t′′], based on
representation (42) of the level–set function φ(s,x). This leads to the following two possible
reductions of the line integral to a definite integral∫

Γ̃js

%̃(s,x)dσ =

∫ x′′

x′
%̃(x, y(x))

√(
dy

dx

)2

+ 1 dx (46a)

∫
Γ̃js

%̃(s,x)dσ =

∫ t′′

t′
%̃(x(t), y(t))

√(
dx

dt

)2

+

(
dy

dt

)2

dt (46b)

which can be evaluated using standard quadratures for 1D definite integrals. We then have

f(s) ≈ Σ
M(s)
j=1

∫
Γ̃js

%̃(s,x) dσ. (47)

We note that the accuracy of this approach is mainly determined by the order of interpolation
used to represent the level set Γ̃js and the integrand expression %̃(s,x) which depend on the
type of the finite elements used [33]. (The error of the quadrature employed to evaluate (46)
does not have a dominating effect.) As was mentioned in [15], the use of triangulation (40)
together with linear interpolation of φ(s,x) and %(s,x) results in the overall second–order
accuracy of this method.

6.2 Approximation of Dirac Delta Measures

This approach has formula (37) for its starting point and relies on a discrete approximation
of the Dirac delta function obtained by Smereka in [11]. It is derived via truncation of
the discrete Laplacian of the corresponding Green’s function. Suppose the domain Ω is
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covered with a uniform Cartesian grid corresponding to (41), i.e., with nodes xi = x0 + ih,
yj = y0 + jh, where i, j are integer indices, x0, y0 ∈ R and h is the step size. The first–order
accurate approximation of the discrete Dirac delta function at the node (xi, yj) is

δ̃(φi,j) = δ̃
(+x)
i,j + δ̃

(−x)
i,j + δ̃

(+y)
i,j + δ̃

(−y)
i,j , (48)

where

δ̃
(+x)
i,j ,


|φi+1,jD

0
xφi,j|

h2|D+
x φi,j||∇ε

0φi,j|
if φi,jφi+1,j ≤ 0,

0, otherwise,

δ̃
(−x)
i,j ,


|φi−1,jD

0
xφi,j|

h2|D−x φi,j||∇ε
0φi,j|

if φi,jφi−1,j < 0,

0, otherwise,

δ̃
(+y)
i,j ,


|φi,j+1D

0
yφi,j|

h2|D+
y φi,j||∇ε

0φi,j|
if φi,jφi,j+1 ≤ 0,

0, otherwise,

δ̃
(−y)
i,j ,


|φi,j−1D

0
yφi,j|

h2|D−y φi,j||∇ε
0φi,j|

if φi,jφi,j−1 < 0,

0, otherwise,

where for the discretized level–set function φi,j , φ(s, xi, yj) we have the following definitions

D+
x φi,j ,

φi+1,j − φi,j
h

, D−x φi,j ,
φi,j − φi−1,j

h
, D0

xφi,j ,
φi+1,j − φi−1,j

2h

and

|∇ε
0φi,j| ,

√
(D0

xφi,j)
2 + (D0

yφi,j)
2 + ε,

in which ε � 1 is used for regularization [11]. The expressions D+
y φi,j, D

−
y φi,j, D

0
yφi,j are

defined analogously. Using the definition of the discrete delta function from (48), the value
f(s) in (37) can be thus approximated in the following way

f(s) ≈ h2
∑
i,j

δ̃i,j gi,j, (49)

where gi,j are the nodal values of the function g(x). We note that this method was validated
in [11] exhibiting the theoretically predicted first order of accuracy only in cases in which
the level sets Γs do not intersect the domain boundary ∂Ω, a situation which may occur in
the present reconstruction problem.

18



6.3 Approximation of Contour Integrals with Area Integrals

Our third method, in which the level–set integral (37) is approximated with an area integral
defined over a region containing the level set Γs, cf. (36), appears to be a new approach and
will be presented in some detail here. It consists of the following three steps

1. for a fixed value of the state variable s = Ti we define the interval [Ti− 1
2
, Ti+ 1

2
] =

[s− 1
2
hT , s+ 1

2
hT ] ⊂  L; then, we have

f(s) ≈ 1

hT

∫ s+ 1
2
hT

s− 1
2
hT

f(ζ) dζ, (50)

2. now we define a subdomain Ωs,hT ⊂ Ω which contains all the points of Ω that lie
between the two level–set curves Γs− 1

2
hT

and Γs+ 1
2
hT

Ωs,hT ,

{
x ∈ Ω, T (x) ∈

[
s− 1

2
hT , s+

1

2
hT

]}
, (51)

see Figure 2a; we then approximate Ωs,hT with the region

Ω̃s,hT ,

Ns,hT⋃
j=1

Ω�s,hT ;j, where Ω�s,hT ;j =

{
Ω�j : x0

j ∈ Ω�j and T (x0
j) ∈

[
s− 1

2
hT , s+

1

2
hT

]}
,

(52)
see Figure 2b, which consists of the quadrilateral finite elements Ω�s,hT ;j, j = 1, . . . , Ns,hT ,
with the center points x0

j satisfying the condition T (x0
j) ∈ [s− (1/2)hT , s+ (1/2)hT ],

3. in view of (50), expression (37) is approximated with an area integral over the region
contained between the level–set curves Γs− 1

2
hT

and Γs+ 1
2
hT

, which is in turn approxi-

mated by the FEM region Ω̃s,hT given by (52); finally, the integral over this region is
approximated using the standard 2D compound midpoint rule as

f(s) ≈ 1

hT

∫ s+ 1
2
hT

s− 1
2
hT

∫
Ω

δ(s(x)− ζ)g(x) dx dζ ≈ h2

hT

Ns,hT∑
j=1

g(x0
j). (53)

As regards the accuracy of this approach, we have the following

Theorem 6.1. Formula (53) is second order accurate with respect to the discretization of the
space domain and first order accurate with respect to the discretization of the state domain,
i.e.,

f(s) =

∫
Ω

δ(T (x)− s)g(x) dx =
h2

hT

Ns,hT∑
j=1

g(x0
j) + Ø(h2) + Ø(hT ). (54)
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Proof. We start by integrating both sides of (37) over the interval [Ti− 1
2
;Ti+ 1

2
] = [s− 1

2
hT ; s+

1
2
hT ] obtaining∫ s+ 1

2
hT

s− 1
2
hT

f(ζ) dζ =

∫
Ω

[∫ s+ 1
2
hT

s− 1
2
hT

δ(T (x)− ζ) dζ

]
g(x) dx =

∫
Ω

χ[s− 1
2
hT ,s+

1
2
hT ](T (x)) g(x) dx,

(55)
where the characteristic function

χ[T ′,T ′′](T (x)) =

{
1 for T (x) ∈ [T ′, T ′′],

0 for T (x) /∈ [T ′, T ′′]

describes the subdomain Ωs,hT introduced earlier in (51), cf. Figure 2a. Now, using a second–
order accurate midpoint rule for 1D integration, we can express the LHS of (55) as∫ s+ 1

2
hT

s− 1
2
hT

f(ζ) dζ = f

(
Ti− 1

2
+ Ti+ 1

2

2

)
· hT + Ø(h2

T ) = f(s)hT + Ø(h2
T ). (56)

Approximation of the RHS in (55) takes place in two steps. In the first step we approximate
the actual integration domain Ωs,hT with the union of the finite elements Ω̃s,hT , cf. (52). In
order to estimate the error

E1 ,

∣∣∣∣∣
∫

Ωs,hT

g(x) dx−
∫

Ω̃s,hT

g(x) dx

∣∣∣∣∣
of this step, we divide the set of cells Ω̃s,hT into two subsets, see Figure 2b,

Ω̃s,hT = Ω̃∗s,hT ∪ Ω̃′s,hT ,

where Ω̃∗s,hT consists of the cells with all 4 vertices {xk}4
k=1 satisfying the condition T (xk) ∈

[s− 1
2
hT , s+

1
2
hT ]. The subregion Ω̃′s,hT , defined as the compliment of Ω̃∗s,hT in Ω̃s,hT , represents

the union of “truncated” cells, i.e., cells which have at least one node outside Ωs,hT . This
subregion is in turn further subdivided into two subsets, i.e.,

Ω̃′s,hT = Ω̃′s,hT ;in ∪ Ω̃′s,hT ;out,

where

Ω̃′s,hT ;in ,

{
x ∈ Ω̃′s,hT , T (x) ∈

[
s− 1

2
hT , s+

1

2
hT

]}
,

Ω̃′s,hT ;out ,

{
x ∈ Ω̃′s,hT , T (x) /∈

[
s− 1

2
hT , s+

1

2
hT

]}
.

We have to define one more set Ω̃′′s,hT which consists of the cells with at least one vertex

{xk}4
k=1 satisfying the condition T (xk) ∈ [s − 1

2
hT , s + 1

2
hT ], but whose center points x0

j lie
outside Ωs,hT . We also further subdivide this set into two subsets

Ω̃′′s,hT = Ω̃′′s,hT ;in ∪ Ω̃′′s,hT ;out,
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where

Ω̃′′s,hT ;in ,

{
x ∈ Ω̃′′s,hT , T (x) ∈

[
s− 1

2
hT , s+

1

2
hT

]}
,

Ω̃′′s,hT ;out ,

{
x ∈ Ω̃′′s,hT , T (x) /∈

[
s− 1

2
hT , s+

1

2
hT

]}
.

We thus have∫
Ωs,hT

g(x) dx =

∫
Ω̃∗s,hT

g(x) dx +

∫
Ω̃′s,hT ;in

g(x) dx +

∫
Ω̃′′s,hT ;in

g(x) dx, (57)

∫
Ω̃s,hT

g(x) dx =

∫
Ω̃∗s,hT

g(x) dx +

∫
Ω̃′s,hT

g(x) dx

=

∫
Ω̃∗s,hT

g(x) dx +

∫
Ω̃′s,hT ;in

g(x) dx +

∫
Ω̃′s,hT ;out

g(x) dx,

(58)

so that the domain approximation error can be estimated as follows

E1 =

∣∣∣∣∣
∫

Ω̃′s,hT ;out

g(x) dx−
∫

Ω̃′′s,hT ;in

g(x) dx

∣∣∣∣∣ ≤
∣∣∣∣∣
∫

Ω̃′s,hT ;out

g(x) dx

∣∣∣∣∣+

∣∣∣∣∣
∫

Ω̃′′s,hT ;in

g(x) dx

∣∣∣∣∣
≤ max

x∈Ω
|g(x)|

(∣∣∣Ω̃′s,hT ∣∣∣+
∣∣∣Ω̃′′s,hT ∣∣∣) = Ø(h2),

(59)
where |Ω| , meas Ω. The second error in the approximation of the RHS of (55) is related to
the accuracy of the quadrature applied to

∫
Ω̃s,hT

g(x) dx and for the 2D compound midpoint

rule is E2 = Ø(h2), so that we obtain∣∣∣∣∣∣
∫

Ω̃s,hT

g(x) dx−
Ns,hT∑
j=1

g(x0
j)h

2

∣∣∣∣∣∣ = Ø(h2). (60)

Comparing (53) with (56) and dividing both sides into hT we finally obtain (54) which
completes the proof.

So far, we have considered the discretizations of the physical and state spaces, Ω and  L,
as independent. We remark that using the relationship

min
x∈Ω
|∇T (x)| · h ≤ hT ≤ max

x∈Ω
|∇T (x)| · h (61)

one could link the corresponding discretization parameters h and hT to each other.
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(a) (b)

Figure 2: Illustration of approach #3 where line integral (37) is approximated with an area
integral (see Section 6.3): (a) region Ωs,hT which lies between the two level–set curves Γs− 1

2
hT

and Γs+ 1
2
hT

and (b) its approximation with the region Ω̃s,hT = Ω̃∗s,hT ∪ Ω̃′s,hT , where checked

cells represent Ω̃′s,hT and shaded cells represent Ω̃∗s,hT . Figure (b) also shows a part of the

region Ω̃′′s,hT = Ω̃′′s,hT ;in ∪ Ω̃′′s,hT ;out represented by 2 elements in the top right corner.
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7 Computational Results

7.1 Comparison of Different Approaches to Gradient Evaluation

In this Section we discuss the accuracy and efficiency of the three methods for evaluation of
expression (37) presented in Sections 6.1, 6.2 and 6.3. In order to assess their utility for the
parameter reconstruction problem studied in this work, we will consider the following three
test cases

(i) single (fixed) value of s with φ(s,x) and g(x) given analytically,

(ii) parameter s varying over a finite range with φ(s,x) and g(x) given analytically,

(iii) parameter s varying over a finite range with φ(s,x) and g(x) given in terms of solutions
of the direct and adjoint problem.

Tests (ii) and (iii) with s spanning the entire interval  L are particularly relevant for the
present reconstruction problem, as they help us assess the accuracy of the cost functional
gradients over their entire domains of definition, including the values of s for which the level
sets Γs intersect the domain boundary ∂Ω. Results of tests (i)–(iii) are presented below.

7.1.1 Tests for a Single Value of s with φ(s,x) and g(x) Given Analytically

Here we employ our three methods to compute numerically the value of a line integral over
the circle x2 + y2 = 1

(a) in domain Ω1 = [−2, 2]2 which contains the entire curve

Iex,1 =

∫
x2+y2=1

(3x2 − y2) dσ = 2π (62)

(this test problem is actually borrowed from [11]),

(b) and in domain Ω2 = [0, 2]2 which contains only a part of the curve in the first quadrant

Iex,2 =

∫
x2+y2=1, x,y>0

(3x2 − y2) dσ =
π

2
. (63)

The main difference between test cases (a) and (b) is that while in (a) the contour is entirely
contained in the domain Ω1, it intersects the domain boundary ∂Ω2 in case (b). As shown
in Figure 3, methods #1 (line integration) and #3 (area integration) in both cases show
the expected accuracy of Ø(h2), where h = ∆x = ∆y = 2−(3+i), i = 1 . . . 6, while method
#2 (delta function approximation) is Ø(h3/2) accurate in case (a) and only Ø(h1) accurate
in case (b). We also add that the line integration method exhibits the smallest constant
prefactor characterizing the error.
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Figure 3: Relative error | Iex,i
Ih
− 1|, i = 1, 2, versus discretization step h = ∆x = ∆y in the

numerical approximation Ih of (a) line integral (62) and (b) line integral (63), see Section
7.1.1. Triangles represent the line integration approach (method #1), circles represent the
results obtained using the delta function approximation (method #2), whereas asterisks
show the data for the area integration approach (method #3).

7.1.2 Tests for s Varying Over a Finite Range with φ(s,x) and g(x) Given Ana-
lytically

In order to analyze this case we will introduce a new diagnostic quantity. We begin with the
integral transform formula (28) applied to some perturbation µ′(T (x))

µ′(T (x)) =

∫ +∞

−∞
δ(φ(s,x))µ′(s) ds, (64)

where φ(s,x) = T (x) − s. Multiplying both sides of (64) by g(x), integrating over the
domain Ω and changing the order of integration we obtain the following useful identity∫

Ω

µ′(T (x))g(x) dx =

∫ +∞

−∞
f(s)µ′(s) ds (65)

with f(s) defined in (37), where the RHS has the structure of the Riesz identity for the
Gâteaux differential of the cost functional, cf. (30), whereas the LHS is a simple area integral
which can be easily evaluated using high–accuracy quadratures. Given the formal similarity
of the RHS of (65) and the Riesz formula (30), this test is quite relevant for the optimization
problem we are interested in here. We will thus use our three methods to evaluate the RHS
of (65) and compared it to the LHS, which is evaluated with high precision on a refined grid
in Ω, so that it can be considered “exact”. Our tests are based on the following data
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• spatial domain Ω = [0, 1]2 discretized with h = ∆x = ∆y = 2−(4+i), i = 1 . . . 7,

• state domain  L = [Ta, Tb], where Ta = 100, Tb = 700, discretized using NT =
200, 1000, 10000 points for methods #2 and #3 and NT = 200, 2000, 20000 points

for method #1; hT =
Tb − Ta
NT

,

• T (x) = 100(x2 + y2) + 300, g(x) = cos(x) + 3 sin(2y − 1), x ∈ Ω,

• perturbations used µ′1(s) = exp(− s
1000

), µ′2(s) = 10
s2

and µ′3(s) = − s2

90000
+ 2s

225
+ 2

9
,

s ∈ [Ta, Tb].

As is evident from Figure 4, all three methods show similar qualitative behavior, namely,
the error decreases with decreasing h until it saturates which is due to the error terms de-
pending on hT becoming dominant. The saturation value of the error depends on the state
space resolution hT and is different for the different methods. Method #3 (area integration)
reveals accuracy Ø(h2), whereas method #2 (delta function approximation) is again only of
accuracy about Ø(h) for the same discretization of the interval  L. Method #1 (line integra-
tion) performs better and shows accuracy up to Ø(h5), but requires much finer resolution in
the state space, namely NT > 20000 (hT < 0.03) is needed for this behavior to be visible. On
the other hand, method #3 (area integration) leads to the smallest errors for all the cases
tested.

Analogous data is plotted in Figure 5 now as a function of the state space resolution hT
with h acting as a parameter. Similar trends are observed as in Figure 4, namely, the errors
decrease with hT until they eventually saturate when the error terms depending on h become
dominant. Methods #1 and #2 reveal accuracy Ø(hT ), whereas method #3 has accuracy
Ø(h1.5÷2

T ) which is actually better than stipulated by Theorem 6.1, cf. (54). Method #3 is
also characterized by the smallest value of the constant prefactor leading to the smallest
overall errors.

7.1.3 Tests for s Varying Over a Finite Range with φ(s,x) and g(x) Given by
Solutions of Direct and Adjoint Problem

We now repeat the test described in Section 7.1.2 using φ(s,x) = T (x) − s and g(x) =
[∇u(x) + (∇u(x))T ] : ∇u∗(x), where the fields u, T and u∗ come from the solutions of
the direct and adjoint problem (1)–(2) and (18)–(19) at some fixed time t, see Figure 6
(details of these computations will be given in Section 7.5). As before, we discretize the
domain Ω = [0, 1]2 with the step h = ∆x = ∆y = 2−(4+i), i = 1 . . . 7, and the state space
 L = [Ta, Tb], Ta = 100 and Tb = 700, with the step hT = 0.06 (NT = 10000).

The data shown in Figure 7 confirms our findings from Sections 7.1.1 and 7.1.2, namely,
that in this case as well the error of all three methods decreases with h until it eventually
saturates when the errors depending on hT become dominant. Method #3 is again char-
acterized by the smallest prefactor and hence leads to much smaller overall errors than in
methods #1 and #2. The computational complexity of our three approaches is addressed
in Figure 8, where Ne is defined as a number of computational elements, i.e., Ne = N4, or

25



10
−4

10
−3

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

h5

#1

h

|ξ
−

1
|

 

 
N

T
 = 200

N
T
 = 2,000

N
T
 = 20,000

(a)

10
−4

10
−3

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

h0.75

#2

h

|ξ
−

1
|

 

 

N
T
 = 200

N
T
 = 1,000

N
T
 = 10,000

(b)

10
−4

10
−3

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

h2

#3

h

|ξ
−

1
|

 

 

N
T
 = 200

N
T
 = 1,000

N
T
 = 10,000

(c)

10
−4

10
−3

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

h4.5

#1

h

|ξ
−

1
|

 

 
N

T
 = 200

N
T
 = 2,000

N
T
 = 20,000

(d)

10
−4

10
−3

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

h

#2

h

|ξ
−

1
|

 

 

N
T
 = 200

N
T
 = 1,000

N
T
 = 10,000

(e)

10
−4

10
−3

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

h2

#3

h

|ξ
−

1
|

 

 

N
T
 = 200

N
T
 = 1,000

N
T
 = 10,000

(f)

10
−4

10
−3

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

h5

#1

h

|ξ
−

1
|

 

 
N

T
 = 200

N
T
 = 2,000

N
T
 = 20,000

(g)

10
−4

10
−3

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

h

#2

h

|ξ
−

1
|

 

 

N
T
 = 200

N
T
 = 1,000

N
T
 = 10,000

(h)

10
−4

10
−3

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

h2

#3

h

|ξ
−

1
|

 

 

N
T
 = 200

N
T
 = 1,000

N
T
 = 10,000

(i)

Figure 4: Relative error |ξ−1|, where ξ = LHS of (65)
RHS of (65)

, versus discretization step h = ∆x = ∆y

in approximating the RHS in (65). The first, second and third row of figures show the results
for µ′1, µ′2 and µ′3, respectively, while the figures in the first, second and third column represent
line integration (#1), delta function approximation (#2) and area integration (#3) methods,
respectively.

26



10
−2

10
−1

10
0

10
1

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

hT

#1

hT

|ξ
−

1
|

 

 

N = 128
N = 512
N = 2048

(a)

10
−2

10
−1

10
0

10
1

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

hT

#2

hT

|ξ
−

1
|

 

 

N = 128
N = 512
N = 2048

(b)

10
−2

10
−1

10
0

10
1

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

h1.5
T

h2
T

#3

hT

|ξ
−

1
|

 

 

N = 128
N = 512
N = 2048

(c)

10
−2

10
−1

10
0

10
1

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

hT

#1

hT

|ξ
−

1
|

 

 

N = 128
N = 512
N = 2048

(d)

10
−2

10
−1

10
0

10
1

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

hT

#2

hT

|ξ
−

1
|

 

 

N = 128
N = 512
N = 2048

(e)

10
−2

10
−1

10
0

10
1

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

h1.5
T

h2
T

#3

hT

|ξ
−

1
|

 

 

N = 128
N = 512
N = 2048

(f)

10
−2

10
−1

10
0

10
1

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

hT

#1

hT

|ξ
−

1
|

 

 

N = 128
N = 512
N = 2048

(g)

10
−2

10
−1

10
0

10
1

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

hT

#2

hT

|ξ
−

1
|

 

 

N = 128
N = 512
N = 2048

(h)

10
−2

10
−1

10
0

10
1

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

h2
T

#3

hT

|ξ
−

1
|

 

 

N = 128
N = 512
N = 2048

(i)

Figure 5: Relative error |ξ − 1|, where ξ = LHS of (65)
RHS of (65)

, versus discretization step hT in the

state space  L in approximating the RHS in (65). The first, second and third row of figures
show the results for µ′1, µ′2 and µ′3, respectively, while the figures in the first, second and
third column represent line integration (#1), delta function approximation (#2) and area
integration (#3) methods, respectively.
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Figure 6: The fields (a) T (x) (level set contours) and (b) g(x) = [∇u(x) + (∇u(x))T ] :
∇u∗(x) obtained at some time t by solving (1)–(2) and (18)–(19).

Ne = N�, using (40) or (41), respectively. We see that, while the complexity of methods #1
and #2 scales as Ø(

√
Ne), method #3 exhibits the scaling of Ø(Ne). On the other hand,

however, method #3 has the smallest prefactor and, at least in the range of resolutions
considered here, results in the shortest execution time.

In conclusion, these observations make the area integration approach (method #3) the
method of choice for the present parameter reconstruction problem, and this is the approach
we will use in all subsequent computations.

7.2 Models for Constitutive Relations

For validation purposes one needs an algebraic expression to represent the dependence of
the viscosity coefficient on temperature which could serve as the “true” material property
we will seek to reconstruct. The dynamic viscosity in liquids is usually approximated by
exponential relations [34] and one of the most common expression for the coefficient of the
dynamic viscosity is the law of Andrade (also referred to as the Nahme law) which is given
in the dimensional form valid for T expressed in Kelvins in (66) below

µ̃(T ) = C1e
C2/T , (66)

where C1, C2 > 0 are constant parameters. As regards the thermal conductivity k, since it
typically reveals a rather weak dependence on the temperature, for the sake of simplicity we
will treat it as a constant setting k = 0.002 in all computations presented in this paper.
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Figure 7: Relative error |ξ−1|, where ξ = LHS of (65)
RHS of (65)

, versus discretization step h = ∆x = ∆y

in estimating the RHS in (65), where φ(s,x) = T (x)− s, and g(x) = [∇u + (∇u)T ] : ∇u∗

is obtained by solving (1)–(2) and (18)–(19). Figures (a), (b) and (c) show the results
for µ′1, µ′2 and µ′3, respectively, using the same discretization of the state space  L with
NT = 10000. Triangles represent the line integration approach (#1), circles show the results
for the method of the delta function approximation (#2), while asterisks show the data from
the area integration approach (#3).
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Figure 8: CPU time (in seconds) versus the number Ne of computational elements used in the
different approaches, namely, (triangles) finite elements ΩMi in the line integration approach
(method #1), (circles) grid nodes in the method of the delta function approximation (#2)
and (asterisks) finite elements Ω�i in the area integration approach (#3). The data shown
corresponds to the estimation of the RHS in (65) for µ′1 using the same discretization of the
state space with NT = 10000, φ(s,x) = T (x)− s and g(x) = [∇u + (∇u)T ] : ∇u∗ obtained
by solving (1)–(2) and (18)–(19).
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Figure 9: Geometry of the 2D lid-driven (shear-driven) cavity.

7.3 Model Geometry and PDE Solvers

To validate the accuracy and performance of the proposed approach to reconstruct µ(T ), we
use a simple 2D lid–driven (shear–driven) cavity flow, cf. Figure 9, as our model problem.
Due to the simplicity of its geometry and boundary conditions, the lid–driven cavity flow
problem has been used for a long time to validate novel solution approaches and codes [35,36].
Numerical results are available for different aspect ratios and the problem was solved in both
laminar and turbulent regimes using different numerical techniques. Thus, this problem is a
useful testbed as there is a great deal of numerical data that can be used for comparison. Our
code for solving direct problem (1)–(2) and adjoint problem (18)–(19) has been implemented
using FreeFem++ [37], an open–source, high–level integrated development environment for
the numerical solution of PDEs based on the the Finite Element Method. The direct solver
has been thoroughly validated against available benchmark data from [35,36], and all details
are reported in [31].

To solve numerically the direct problem we discretize system (1)–(2) in time using a
second–order accurate semi-implicit approach. Spatial discretization is carried out using
triangular finite elements (40) and the P2 piecewise quadratic (continuous) representations
for the velocity u and the temperature T fields, and the P1 piecewise linear (continuous)
representation for the pressure p field. The system of algebraic equations obtained after such
discretization is solved at every time step with UMFPACK, a solver for nonsymmetric sparse
linear systems [38]. We add that incompressibility is ensured by an implicit treatment of
equation (1b). Stability is enforced by choosing the time step ∆t so that it satisfies the
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following CFL condition ∣∣∣∣∆t(maxx∈Ω u(x)

hx
+

maxx∈Ω v(x)

hy

)∣∣∣∣ ≤ 1. (67)

The same technique is used for the numerical solution of adjoint problem (18)–(19).
All our computations are performed using a 2D square domain Ω = [0, 1]2 shown in Fig-

ure 9. Governing system (1)–(2) and adjoint system (18)–(19) are discretized on a uniform
mesh with N = Nx = Ny = 32 grid points in every direction using triangular finite elements
combined with the cubic spline interpolation of the function µ(T (x)). The rather modest
spatial resolution used is a consequence of the fact that in a single reconstruction problem
the governing and adjoint systems need to be solved Ø(103−104) times, hence there are lim-
itations of the computational time. Unless stated otherwise, the interval  L = [100.0, 700.0] is
discretized using an equispaced grid with NT = 600 points. The actual constitutive relation
µ̃(T ) we seek to reconstruct is given by Andrade law (66) with C1 = 0.001 and C2 = 103. In
the computational tests reported below we used M = 9 measurement points distributed uni-
formly inside the cavity (Figure 9). To mimic an actual experimental procedure, first relation
(66) is used in combination with governing system (1)–(2) to obtain pointwise temperature
measurements {T̃i}Mi=1. Relation (66) is then “forgotten” and is reconstructed using gradient–
based algorithm (14). In terms of the initial guess in (14), unless stated otherwise, we take a
constant approximation µ0 to (66), given by µ0 = 1

2
(µ̃(Tα) + µ̃(Tβ)) = C1

2

(
eC2/Tα + eC2/Tβ

)
which translates into the following expression for the new optimization variable θ, cf. (8),
θ0 =

√
µ0 −mµ, where mµ = 1

2
µ̃(Tβ) = C1

2
eC2/Tβ . Since in the present problem the viscosity

µ(T ) is a function of the temperature, the Reynolds number is defined locally (both in space
and in time) and varies in the range Re = 0.05÷ 240.

Unless stated otherwise, the boundary conditions for the temperature are TB|top = Tβ =
500 and TB|else = Tα = 300 which results in the identifiability region I = [300.0, 500.0].
The velocity boundary conditions uB = [uB, vB]T are given by uB|top = U0 cos(2πt), U0 = 1
and vB|top = 0 on the top boundary segment and uB|else = 0 on the remaining boundary
segments. Their time–dependent character ensures that the obtained flow is unsteady at the
values of the Reynolds number for which self–sustained oscillations do not spontaneously
occur (the study of higher Reynolds numbers was restricted by the numerical resolution used,
see comments above). The initial conditions {u0, T0} used in the reconstruction problem
correspond to a developed flow obtained at t = 10 from the following initial and boundary
conditions TB|top = 500, TB|else = 300 and uB|top = 1, vB|top = 0, uB|else = 0, T0 = 300,
u0 = 0. We emphasize that adjoint system (18)–(19) is in fact a terminal–value problem
which needs to be integrated backwards in time, and its coefficients depend on the solution
{u, T} of the direct problem around which linearization is performed at the given iteration.
Our reconstructions are performed using the following time windows [0, tf ], tf =

{
1
4
, 1

2
, 1
}

which correspond to a fraction of, or a full, forcing cycle in the boundary conditions described
above. These time windows are all discretized with the time step ∆t = 5 · 10−3 in both the
direct and adjoint problems. This choice of the time step ∆t ensures stability by satisfying
the CFL condition (67).
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7.4 Validation of Gradients

In this Section we present results demonstrating the consistency of the cost functional gra-
dients obtained with the approach described in Section 4. In Figure 10 we present the L2

and several Sobolev H1 gradients obtained at the first iteration. In the first place, we ob-
serve that, as was anticipated in Section 4, the L2 gradients indeed exhibit quite irregular
behaviour lacking necessary smoothness which makes them unsuitable for the reconstruction
of constitutive relations with required properties, cf. (10). On the other hand, the gradients
extracted in the Sobolev space H1 are characterized by the required smoothness and there-
fore hereafter we will solely use the Sobolev gradients. Next, in Figure 11 we present the
results of a diagnostic test commonly employed to verify the correctness of the cost func-
tional gradient [39]. It consists in computing the directional Gâteaux differential J ′(θ; θ′)
for some selected perturbations θ′ in two different ways, namely, using a finite–difference
approximation and using (29) which is based on the adjoint field, and then examining the
ratio of the two quantities, i.e.,

κ(ε) ,
ε−1 [J (θ + εθ′)− J (θ)]∫ +∞
−∞ ∇θJ (s) θ′(s) ds

(68)

for a range of values of ε. If the gradient ∇θJ (θ) is computed correctly, then for intermediate
values of ε, κ(ε) will be close to the unity. Remarkably, this behavior can be observed
in Figure 11 over a range of ε spanning about 6 orders of magnitude for three different
perturbations θ′(T ). Furthermore, we also emphasize that refining the time step ∆t used
in the time–discretization of (1)–(2) and (18)–(19) yields values of κ(ε) closer to the unity.
The reason is that in the “optimize–then–discretize” paradigm adopted here such refinement
of discretization leads to a better approximation of the continuous gradient (29). We add
that the quantity log10 |κ(ε)− 1| plotted in Figure 11b shows how many significant digits of
accuracy are captured in a given gradient evaluation. As can be expected, the quantity κ(ε)
deviates from the unity for very small values of ε, which is due to the subtractive cancellation
(round–off) errors, and also for large values of ε, which is due to the truncation errors, both
of which are well–known effects.

7.5 Reconstruction Results

We solve minimization problem (9) using the Steepest Descent (SD), Conjugate Gradient
(CG) and BFGS algorithms [26] and, unless indicated otherwise, using Sobolev gradients
computed with ` = 200.0 which was found by trial–and–error to result in the fastest rate of

convergence of iterations (14). The termination condition used was
∣∣∣J (θ(n))−J (θ(n−1))

J (θ(n−1))

∣∣∣ < 10−6.

The behavior of the cost functional J (θ(n)) as a function of the iteration count n is shown in
Figure 12a for all three minimization algorithms (SD, CG and BFGS). We note that in all
cases a decrease over several orders of magnitude is observed in just a few iterations. Since the
three descent methods tested reveal comparable performance, our subsequent computations
will be based on the steepest descent method as the simplest one of the three. The effect
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θ J defined in (31) for different values of the smoothing coefficient (thick dashed line)
` = 2.5, (thick dash–dotted line) ` = 10.0 and (thick solid line) ` = 200.0 at the first
iteration with the initial guess µ0 = const = 0.0177. The vertical dashed lines represent the
boundaries of the identifiability interval I and the vertical scale in the plot is arbitrary.
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Figure 11: The behavior of (a) κ(ε) and (b) log10 |κ(ε) − 1| as a function of ε for different

perturbations (triangles) θ′(T ) = 10
T

, (circles) θ′(T ) = e−
T

1000 and (asterisks) θ′(T ) = − T 2

90000
+

2T
225

+ 2
9
. The time steps used in the time integration of (1)–(2) and (18)–(19) are (dash–dotted

line) ∆t = 5.0 · 10−3 and (solid line) ∆t = 5.0 · 10−4.

of the different initial guesses µ0 on the decrease of the cost functional is illustrated in
Figure 12b. Again, a substantial decrease of the cost functional corresponding to about 5–6
orders of magnitude is observed for all the initial guesses tested. Reconstructions µ̂(T ) of
the constitutive relation obtained using the initial guess µ0 = C1

2

(
eC2/Tα + eC2/Tβ

)
= 0.0177

and the optimization time windows with tf = 1
4
, 1

2
, 1 are shown in Figure 13. Comparing the

accuracy of the reconstruction obtained for these different time windows, we can conclude
that better results are achieved on shorter time windows tf = 1

4
, 1

2
. Given considerations of

the computational time, hereafter we will therefore focus on the case with tf = 1
4
. In Figure

14 we show the reconstructions µ̂(T ) of the constitutive relation obtained from different
initial guesses already tested in Figure 12b such as constant values of µ0, µ0(T ) varying
linearly with the temperature T and µ0 given as a rescaling of the true relationship µ̃. As
expected, the best results are obtained in the cases where some prior information about the
true material property is already encoded in the initial guess µ0, such as the slope, cf. Figure
14c, or the exponent, cf. Figure 14d. We may also conclude that, since all the reconstructions
shown in Figures 13 and 14 are rather different, the iterations starting from different initial
guesses converge in fact to different local minimizers. However, it should be emphasized
that in all cases the reconstructions do capture the main qualitative features of the actual
material property with differences becoming apparent only outside the measurement span
interval M. In order to make our tests more challenging, in the subsequent computations
we will use the initial guess µ0 = 1

2
(µ̃(Tα) + µ̃(Tβ)) = 0.0177 (cf. Figure 13) which contains

little prior information about the true material property.
In Figure 15 we show the results of the reconstruction performed with a larger identifia-
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Figure 12: (a) Decrease of the cost functional J (θ(n)) with iterations n using the Sobolev

gradient ∇H1

θ J defined in (31) and obtained with (solid line) steepest descent, (dash dotted
line) conjugate gradient and (line with dots) BFGS methods with initial guess µ0 = 0.0177.
(b) Decrease of the cost functional J (θ(n)) with iterations n for different initial guesses:
(dots) µ0 = µ̃(Tα) = 0.0280, (dash–dotted line) µ0 = µ̃(Tb) = 0.0042, (dashed line) µ0(T )
varying linearly between µ̃(Tα) and µ̃(Tβ), (thin solid line) µ0 = 1

2
µ̃(T ) and (thick solid line)

µ0 = 0.0177.

bility region I = [250.0, 700.0] =  L which is done by adopting the corresponding values for
temperature boundary conditions (2b), i.e., TB|else = 250 and TB|top = 700. We note that in
this case the target interval for the reconstruction  L has been chosen to coincide with iden-
tifiability interval I. Fairly accurate reconstruction can be observed in this problem as well,
and we emphasize that this is also the case for values of the temperature outside the iden-
tifiability interval studied in the previous case. This example demonstrates that accurate
reconstruction on different intervals  L can in fact be achieved by adjusting the identifia-
bility region via a suitable choice of temperature boundary conditions (2b). This process
can be interpreted as adjusting the conditions of the actual experiment used to obtain the
measurements {T̃i}Mi=1.

7.6 Reconstruction in the Presence of Noise

In this Section we first assess the effect of noise on the reconstruction without the Tikhonov
regularization and then study the efficiency of the regularization techniques introduced in
Section 5. In Figure 16a,b we revisit the case already presented in Figure 13a (reconstruction
on the interval  L = [100.0, 700.0] with the identifiability region I = [300.0, 500.0]), now for
measurements contaminated with 0.05%, 0.1%, 0.3%, 0.5% and 1.0% uniformly distributed
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Figure 13: Reconstruction µ̂(T ) of the material property obtained using the Sobolev gra-
dients defined in (31) on (a,b,c) the interval  L and (d) close–up view showing the interval
outside the identifiability region I with the time window [0, tf ], where (a) tf = 1

4
(b) tf = 1

2

and (c) tf = 1. The dash–dotted line represents the true material property (66), the thick
solid, dashed and dash dotted lines are the reconstructions for (a,d) tf = 1

4
, (b,d) tf = 1

2
and

(c,d) tf = 1, respectively, whereas the dashed line represents the initial guess µ0 = 0.0177;
the vertical dash–dotted and dotted lines represent, respectively, the boundaries of the iden-
tifiability interval I and the measurement span M.
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Figure 14: Reconstruction µ̂(T ) of the material property obtained using different initial
guesses (a) µ0 = µ̃(Tα) = 0.0280, (b) µ0 = µ̃(Tb) = 0.0042, (c) µ0(T ) varying linearly
between µ̃(Tα) and µ̃(Tβ) and (d) µ0 = 1

2
µ̃(T ), and the Sobolev gradients defined in (31)

on the interval  L. The dash–dotted line represents the true material property (66), the
solid line is the reconstruction µ̂(T ), whereas the dashed line represents the initial guess
µ0; the vertical dash–dotted and dotted lines represent, respectively, the boundaries of the
identifiability interval I and the measurement span M.
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Figure 15: Reconstruction µ̂(T ) of the material property using an extended identifiability
region I = [250.0, 700.0] =  L shown on (a) the interval [100.0, 700.0] and (b) magnification
of this new identifiability region. The dash–dotted line represents the true material property
(66), the solid line is the reconstruction µ̂(T ), whereas the dashed line represents the initial
guess µ0; the vertical dash–dotted and dotted lines represent, respectively, the boundaries
of the identifiability interval I0 = [300.0, 500.0] used previously and the measurement span
M, while the dashed vertical lines show the boundaries of the new identifiability interval I.
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noise and without Tikhonov regularization. To incorporate noise, say of η%, into the mea-
surements {T̃i(t)}Mi=1, we replace these measurements at every discrete time step tj ∈ [0, tf ]
with a new set {T̃ ηi (tj)}Mi=1, where the independent random variables T̃ ηi (tj) have a uniform

distribution with the mean T̃i(tj) and the standard deviation ∆η = 1
M

∑M
i=1 T̃i(tj) · η

100%
.

Unless stated otherwise, in order to be able to directly compare reconstructions from noisy
measurements with different noise levels, the same noise realization is used after rescaling to
the standard deviation ∆η. As expected, in Figure 16a,b we see that increasing the level of
noise leads to oscillatory instabilities developing in the reconstructed constitutive relations
µ̂(T ). We note that the reconstructions become poor already for relatively low noise levels,
i.e., on the order of 1%. One reason for this seems to be the time-dependent nature of the
problem in which independent noise is added to the measurements at every (discrete) time
instant leading to accumulation of uncertainty. Indeed, such loss of information was not
observed in the case of the steady problem studied in [7] where reliable reconstructions could
be obtained with noise levels an order of magnitude larger than in the present investigation.
In regard to the results shown in Figure 16a,b, we add that the pattern introduced by the
noise in the reconstructions depends on the specific noise sample used (which was the same
for all the reconstructions shown in the Figure). Reconstructions performed using different
realizations of the noise produce distinct patterns in the reconstructed constitutive relations
µ̂(T ). In our computational experiments we also observe that inclusion of noise in the mea-
surements tends to replace the original minimizers with perturbed ones (this is evident from
the uniform, with respect to T , convergence of the perturbed minimizers to the noise-free
reconstructions as the noise level goes to zero in Figure 16a,b).

The effect of the Tikhonov regularization is studied in Figure 16c,d, where we illustrate
the performance of the technique described in Section 5, cf. (33), on the reconstruction
problem with 1.0% noise in the measurement data (i.e., the “extreme” case presented in
Figures 16a,b). In terms of the (constant) reference function we take θ =

√
µ0 −mµ, where

µ0 = 0.0177. We note that by increasing the values of the regularization parameter λ in
(33) from 0 (no regularization) to 2500 we manage to eliminate the instabilities caused by
the presence of noise in the measurements and obtain as a result smoother constitutive
relations, cf. Figure 16c,d. We add that, while after introducing the Tikhonov regularization
the reconstructed solutions converge in fact to different local minimizers (in comparison
with the reconstructions without noise), this does not prevent the reconstructions from
capturing the main qualitative features of the actual material property. Systematic methods
for determining the optimal values of regularization parameters are discussed for instance in
[30]. Finally, in Figure 17 we present the relative reconstruction errors ‖µ̂− µ̃‖L1(I) / ‖µ̃‖L1(I)

obtained using the approach described earlier in Section 5 for data with different noise levels
and averaged over 10 different noise samples. From Figure 17 we conclude that larger values
of the regularization parameter λ are required for more noisy measurements. We close this
Section by concluding, in agreement with our earlier results reported in [7], that Tikhonov
regularization performs as expected in problems with noise present in the measurement data.
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Figure 16: (a,b) Reconstruction µ̂(T ) of the material property obtained in the presence
of different noise levels in the measurement data: (thick solid line) no noise, (dotted line)
0.05%, (dashed line) 0.1%, (dash–dotted line) 0.3%, (thin solid line) 0.5%, and (thick dashed
line) 1.0% on (a) the interval  L and (b) close–up view showing the identifiability interval
I. (c,d) Effect of Tikhonov regularization on the reconstruction from the measurement
data with 1.0% noise using regularization term (33) on (c) the interval  L and (d) close–up
view showing the identifiability interval I. In both figures (c,d) the following values of the
regularization parameter were used: (thick dashed line) λ = 0, (circles) λ = 2.5, (dashed line)
λ = 6.25, (thin solid line) λ = 25.0, (dash–dotted line) λ = 250.0, and (dots) λ = 2500.0.
For all figures the horizontal dashed line represents the initial guess µ0 = 0.0177; the vertical
dash–dotted and dotted lines represent, respectively, the boundaries of the identifiability
interval I and the measurement span M.
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Figure 17: Relative L1 reconstruction errors ‖µ̂− µ̃‖L1(I) / ‖µ̃‖L1(I) obtained in the presence
of noise with the amplitude indicated and averaged over 10 samples: (dash–dotted line)
reconstruction with Sobolev gradients and without Tikhonov regularization, and (solid line)
reconstruction with Ḣ1 Tikhonov regularization term (33) [(circles) λ = 2.5, (triangles)
λ = 250.0]. The thick dashed line represents the “error” in the exact material property (66)
obtained by adding noise to T and averaging over time steps.

8 Conclusions and Summary

We developed an optimization–based approach to the problem of reconstructing temperature–
dependent material properties in complex thermo–fluid systems. As a model problem we
considered two–dimensional unsteady flows in a lid–driven cavity involving also heat trans-
fer. A key element of this approach is the gradient of the cost functional which is computed
based on a suitably–defined adjoint system, and is shown to have mathematical structure
different than in most problems involving adjoint–based PDE optimization. We discussed
three different numerical approaches to evaluation of these cost functional gradients which
are given in terms of integrals defined on the level sets of the temperature field. As compared
to earlier work on the numerical approximation of such expressions [8–16], we also addressed
at length the question of the discretization of the solution space which is specific to our
reconstruction problem. Evidence is shown for the superior performance with respect to the
discretizations of the physical and the solution space, as well as the computational time, of
a new approach to evaluation of gradients which is proposed in this study.

The reconstruction results obtained demonstrate good performance of the algorithm, in
particular, it is shown that by suitably adjusting the boundary conditions in the governing
system we can extend the identifiability region. There are two comments we wish to make
concerning these results. As regards the data shown in Figure 13, it might appear somewhat
surprising that reconstructions on longer time windows (which use more information from
the measurements) do not necessarily lead to better results. A probable reason is that
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such reconstruction problems defined on longer time windows tend to be harder to solve
numerically, hence the solutions found may not be global minimizers (or even “good” local
ones). Another comment we have concerns the relatively modest noise levels for which
stable reconstructions could be obtained in Section 7.6. We note that inclusion of even
a small amount of noise could alter the nature of the reconstructed constitutive relations.
On the other hand, we also remark that reconstructions performed based on a steady-state
problem and reported in [7] did allow for significantly higher noise levels. We therefore
conjecture that the sensitivity to noise in the present problem is related to its time-dependent
character, as here the effect of instantaneously small noise levels may be compounded by its
continuous accumulation over the entire time window. Since the flow problem studied here
was admittedly very simple, this issue may certainly limit the applicability of the proposed
method to problems characterized by higher Reynolds numbers and therefore merits a more
thorough study in the future (this is not the question of the numerical resolution alone,
but rather of the interplay between this resolution and the complexity of the underlying
optimization problem). Experience with other data assimilation problems may suggest that
acquiring the measurements less frequently in time may actually help mitigate this effect.

The approach developed in the present study was recently successfully applied to the
problem of system identification involving a dynamical system in the phase-space represen-
tation. More precisely, in [40] we used this method to reconstruct an invariant manifold
in a realistic reduced-order model of a hydrodynamic instability. Our future work will in-
volve extensions of the present approach to more complicated problems involving systems
of coupled PDEs depending on time and defined on domains in three dimensions. In the
context of such systems an interesting issue is the reconstruction of anisotropic constitutive
relations. A more challenging problem is related to reconstruction of constitutive relations
in systems involving phase changes. In addition to the governing PDE in the form of a
free–boundary problem, one would also have to deal with constitutive relations with distinct
functional forms in each of the phases. Interesting questions also arise in the reconstruc-
tion of material properties defined on the interfaces between different phases, such as for
example the temperature–dependent surface tension coefficient playing an important role in
Marangoni flows. In the study of such more complicated problems close attention will need
to be paid to the question of ensuring consistency of the reconstructed constitutive relation
with the second principle of thermodynamics, which can be done by including a form of
the Clausius–Duhem inequality [20] in the optimization formulation. In such more general
problems it is not obvious whether this additional constraint can be eliminated by introduc-
ing a slack–variable formulation similar to the one used in this study, and one may have to
perform numerical optimization in the presence of inequality constraints. These questions
are left for future research.
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