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Abstract

In this paper, we extend the unsplit staggered mesh scheme (USM) for 2D magnetohydrodynamics (MHD) [D.
Lee, A. Deane, An Unsplit Staggered Mesh Scheme for Multidimensional Magnetohydrodynamics, J. Comput. Phys.
228 (2009) 952–975] to a full 3D MHD scheme. The scheme is a finite-volume Godunov method consisting of a
constrained transport (CT) method and an efficient and accurate single-step, directionally unsplit multidimensional
data reconstruction-evolution algorithm, which extends Colella’s original 2D corner transport upwind (CTU) method
[P. Colella, Multidimensional Upwind Methods for Hyperbolic Conservation Laws, J. Comput. Phys. 87 (1990) 446–
466]. We present two types of data reconstruction-evolution algorithms for 3D: (1) a reduced CTU scheme and (2) a
full CTU scheme.The reduced 3D CTU scheme is a variant of a simple 3D extensionof Collela’s 2D CTU method
and is considered as a direct extension from the 2D USM scheme. The full 3D CTU scheme is our primary 3D solver
which includes all multidimensional cross-derivative terms for stability. The latter method is logically analogous to
the 3D unsplit CTU method by Saltzman [J. Saltzman, An unsplit 3D upwind method for hyperbolic conservation
laws, J. Comput. Phys. 115 (1994) 153–168]. The major novelties in our algorithms are twofold. First, we extend the
reduced CTU scheme to the full CTU scheme which is able to run with CFL numbers close to unity. Both methods
utilize the transverse update technique developed in the 2DUSM algorithm to account for transverse fluxeswithout
solving intermediate Riemann problems, which in turn givescost-effective 3D methods by reducing the total number
of Riemann solves.The proposed algorithms are simple and efficient especiallywhen including multidimensional
MHD terms that maintain in-plane magnetic field dynamics. Second, we introduce a new CT scheme that makes use
of proper upwind information in taking averages of electricfields. Our 3D USM schemes can be easily combined with
various reconstruction methods (e.g., first-order Godunov, second-order MUSCL-Hancock, third-order PPM and fifth-
order WENO), and a wide choice of1D basedRiemann solvers (e.g., local Lax-Friedrichs, HLLE, HLLC, HLLD,
and Roe). The 3D USM-MHD solver is available in the University of Chicago Flash Center’s official FLASH release.

Key words: MHD; Magnetohydrodynamics; Constrained Transport; Corner Transport Upwind; Unsplit Scheme; Staggered Mesh; High-Order
Godunov Method; Large CFL Number.

1. Introduction

Many astrophysical applications involve the study of magnetized flows generating shock waves. Model-
ing such flows requires numerical solution of the equations of magnetohydrodynamics (MHD) that couple
the magnetic field to the gas hydrodynamics using Maxwell’s equations. A valid computer model needs to
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capture accurately the nonlinear shock propagation in the magnetized flows without sacrificing computa-
tional efficiency and stability.

Obviously, with suitable assumptions about flow symmetries, a simple approach to obtain a computation-
ally efficient model is to solve a reduced system in 1D or 2D instead of 3D. However, a limitation of such
reduced systems is that they cannot be used to understand complicated nonlinear physics occurring only in
the full 3D situation. Although solving the reduced system can illustrate interesting characteristic features
(e.g., the inverse energy cascade in 2D turbulence [39]), itis essential to use 3D simulations term in order
to understand the full nonlinear nature of MHD phenomena (e.g., the energy cascade from large scales to
small scales in 3D turbulence) .

There are two approaches in modeling multidimensional (i.e., 2D and 3D) algorithms for gas hydrody-
namics and MHD in terms of spatial integration methods: split and unsplit. The directionally split method
has the advantage of extending a 1D algorithm to higher dimensions, simply by conducting directional
sweeps along additional dimensions, in which each sweep solves 1D sub-system. Thus, the Courant-Friedrichs-
Lewy (CFL) numerical stability constraint of the split schemes in multi-dimensions is the same as the 1D
constraint, which is to say CFL≤ 1.0. Despite their simplicity and robustness, however, a number of re-
cent studies have revealed numerical problems in the split formulations of multidimensional MHD and gas
hydrodynamics (e.g., loss of expected flow symmetries [2, 41], failure to preserve in-plane magnetic field
evolution [30,40], numerical artifacts due to a failure to compute proper strain rates on a grid scale [3]).

For MHD the use of an unsplit formulation is more critical than for hydrodynamics. This is because
the split formulations fail to evolve the normal (in the sweep direction) magnetic field [18, 30, 31, 59]. For
2D MHD, Gardiner and Stone [30] identified the importance of such multidimensional consideration in
their unsplit MHD scheme based on the corner transport upwind (CTU) [16] and the constrained transport
(CT) [26] methods. Later, the authors proposed a 3D unsplit version of an unsplit MHD scheme in [31], in
which the extension of the multidimensional MHD terms from their 2D algorithm to 3D is accomplished at
the cost of considerable algorithmic complexity and a reduced stability limit (CFL< 0.5) in their 6-solve
CTU+CT algorithm. It is known in aCTU-type3D unsplit formulation that the full CFL stability limit (i.e.,
CFL number≤ 1.0) can be recovered by accounting for intermediate Riemann problems fully, requiring 12
Riemann solves per zone per time step [55]. In general, the calculations associated with the Riemann solves
are computationally expensive. Gardiner and Stone [31] considered two alternative options, an expensive
12-Riemann solve yielding the full CFL limit and a reduced 6-Riemann solve with a more constraining CFL
condition (CFL number< 0.5). They found that the two approaches are similar in terms ofcomputational
cost and there is no significant difference in performance between them. The 6-solve scheme is chosen to be
their primary 3D integrator because of its relatively low complexity in incorporating the multidimensional
MHD terms.

The CTU formulation has an advantage in its compact design ofone-step temporal update which is
well-suited for multidimensional problems. However, it islimited to second-order. There has been much
progress in other types of temporal update strategies that are higher than second-order accurate, taking a
different path from CTU. Early attempts have utilized a Runge-Kutta (RK) based temporal update formu-
lation coupled with spatially high-order reconstruction schemes in the finite-difference framework [6, 13,
35, 38, 44, 57, 58, 60]. Such RK-based high-order schemes have been also developed in the finite-volume
framework [8, 22, 23, 37, 69] which has superior properties to that of finite-difference for resolving com-
pressible flows on both uniform and AMR grids. The high-orderRK temporal update strategies rely on
multi-stage updates which add to the computational cost. Therefore it is desirable to retain a CTU-like
one-step formulation, while retaining higher than second order accuracy. Recent work has been found
to provide such efficiency using a new formulation so-calledthe Arbitrary Derivative Riemann Problem
(ADER), see [9, 12, 24, 25, 61, 62, 64]. For solving multidimensional conservation laws, there has been an-
other line of progress that tries to build genuinely multidimensional Riemann solvers for hydrodynamics
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[1, 15, 27, 28, 32, 67]. Recently, a family of two-dimensional HLL-type Riemann solvers, HLLE [10] and
HLLC [11], have been introduced and generalized by Balsara for both hydrodynamics and MHD. As shown
in his work the multidimensional Riemann solvers are genuinely derived for 2D. A major improvement in
MHD flows is that they inherently provide proper amount of numerical dissipation that is necessary to prop-
agate magnetic fields in a stable manner. Alternatively, 1D Riemann solver formulations such as [30, 45]
need to add extra dissipation for a stable upwinding. The useof multidimensional Riemann solvers is also
shown to capture isotropic wave propagations better than the usual 1D approach. Furthermore, both types
of solvers have been extended to 3D using a one-step predictor-corrector formulation.

The above mentioned strategies using high-order schemes and genuinely multidimensional Riemann
solvers, provide improved solution accuracy and stabilityover CTU-CT formulations. In this paper, how-
ever, we are primarily interested in constructing a scheme that can be built on the 1D Riemann solver frame-
work in line with a CTU-type method. The latter is (arguably)most widely used in many Godunov-type
modern codes [16, 30, 31, 40, 43, 45–47, 55]. This design alsobenefits us in extending our 2D USM-MHD
algorithm [40] to 3D without any modifications of the Riemannsolvers.This paper describes an approach
that provides (i) an algorithmic extension from 2D to 3D of the USM scheme of Lee and Deane [40], and
(ii) the full CFL stability bound in 3Dwithoutthe expense of 12 Riemann solves per cell per time step, and
(iii) a new upwind biased electric fields construction scheme for CT. We show that the present USM scheme
achieves a numerically efficient and consistent MHD algorithm in 3D without introducing a greater amount
of additional complexity, while maintaining the full CFL stability range.

The paper is organized as follows: Section 2 describes our new 3D unsplit, single-stepdata reconstruction-
evolution USM algorithm which consists of two stages, i.e.,normal predictor and transverse corrector.Sec-
tion 2 is subdivided into several subsections. We begin in Section 2.1 our discussion of the 3D USM scheme
by considering the governing equations of MHD and their linearized form. The second-order MUSCL-
Hancock approach for calculating the normal predictor is described in Section 2.2. We introduce in Section
2.3 our two 3D CTU schemes to compute the transverse correctors, which are efficient and essential for
obtaining the full CFL stability range. In the subsections therein, we construct Riemann states at cell inter-
faces, focusing on our new transverse correctors that do notrequire the solution of any Riemann problem.
The Riemann state calculations are completed by evolving the normal magnetic fields by a half time step,
about which we describe in Section 2.4. The final update of thecell-centered conservative variables is
shown in Section 2.5, followed by a new 3D upwind-biased CT update of magnetic fields in Section 2.6.
We summarize our step-by-step, point-to-point 3D CTU schemes in Section 3. In Section 4 we present
numerical results of various test problems that demonstrate the qualitative and quantitative performance of
our schemes. We conclude the paper with a discussion in Section 5.

2. The three-dimensional USM scheme for MHD

2.1. MHD Equations

We consider solving the equations of MHD in conservation form

∂ρ
∂t

+∇ · (ρu) = 0, (1)

∂ρu
∂t

+∇ · (ρuu−BB)+∇ptot = 0, (2)

∂B
∂t

+∇ · (uB−Bu) = 0, (3)

∂E
∂t

+∇ · (uE+uptot −BB ·u) = 0. (4)
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The conservative variables include the plasma mass densityρ, momentaρu, magnetic fieldsB, and total
energy densityE. The rest are the thermal pressurep = (γ− 1)(E− 1

2ρU2 −Bp), the magnetic pressure
Bp = (B2

x+B2
y+B2

z)/2, and the sum of the two is the total pressureptot = p+Bp. The ratio of specific heats
is denoted withγ as usual. The solenoidal constraint∇ ·B = 0 is implied in the induction equation.

We write the above equations in a matrix form in 3D

∂U
∂t

+
∂F
∂x

+
∂G
∂y

+
∂H
∂z

= 0, (5)

whereU contains the eight MHD conservative variables, andF, G, andH represent the corresponding
conservative fluxes inx,y andz directions. It is often convenient to cast the conservativeform of Equation
(5) into a quasi-linearized representation in terms of primitive variables,V =(ρ,u,v,w,Bx,By,Bz, p)

T , in
order to discretize the coupled system of MHD equations (1)-(4),

∂V
∂t

+Ax
∂V
∂x

+Ay
∂V
∂y

+Az
∂V
∂z

= 0. (6)

The coefficient matricesAx, Ay, andAz are given by

Ax =



























u ρ 0 0 0 0 0 0
0 u 0 0 −Bx

ρ
By

ρ
Bz

ρ
1
ρ

0 0 u 0 −By

ρ −Bx
ρ 0 0

0 0 0 u −Bz

ρ 0 −Bx
ρ 0

0 0 0 0 0 0 0 0
0 By −Bx 0 −v u 0 0
0 Bz 0 −Bx −w 0 u 0
0 γp 0 0 −ku ·B 0 0 u



























, (7)

Ay =



























v 0 ρ 0 0 0 0 0
0 v 0 0 −By

ρ −Bx
ρ 0 0

0 0 v 0 Bx
ρ −By

ρ
Bz

ρ
1
ρ

0 0 0 v 0 −Bz

ρ −By

ρ 0
0 −By Bx 0 v −u 0 0
0 0 0 0 0 0 0 0
0 0 Bz −By 0 −w v 0
0 0 γp 0 0 −ku ·B 0 v



























, (8)

Az =



























w 0 0 ρ 0 0 0 0
0 w 0 0 −Bz

ρ 0 −Bx
ρ 0

0 0 w 0 0 −Bz

ρ −By

ρ 0

0 0 0 w Bx
ρ

By

ρ −Bz

ρ
1
ρ

0 −Bz 0 Bx w 0 −u 0
0 0 −Bz By 0 w −v 0
0 0 0 0 0 0 0 0
0 0 0 γp 0 0 −ku ·B w



























, (9)

with k= 1− γ.
For exposition purposes in this paper, we illustrate our calculations using a spatially second-order MUSCL-

Hancock (MH) piecewise-linear method (PLM) for the normal predictor. Other normal predictor algorithms
(e.g., piecewise parabolic method (PPM [17]), essentiallynon-oscillatory (ENO [34]), weighted essentially
non-oscillatory (WENO [38]), etc.) can be adopted as well togive different degrees of solution accuracy
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in our algorithm. In fact, we have implemented various reconstruction schemes of MH, PPM and 5th order
WENO in FLASH, and they are available in the official FLASH distribution [21,29,40,41].

This brings us to write the system (6) to obtain second-orderaccurate discretizations at cell faces,

Vn+1/2
i, j ,k,E,W = Vn

i, j ,k+
1
2
[±I − ∆t

∆x
Ax]∆tvd

x Vn
i, j ,k−

∆t
2∆y

Ay∆up
y Vn

i, j ,k−
∆t

2∆z
Az∆up

z Vn
i, j ,k, (10)

Vn+1/2
i, j ,k,N,S= Vn

i, j ,k−
∆t

2∆x
Ax∆up

x Vn
i, j ,k+

1
2
[±I − ∆t

∆y
Ay]∆tvd

y Vn
i, j ,k−

∆t
2∆z

Az∆up
z Vn

i, j ,k, (11)

Vn+1/2
i, j ,k,T,B = Vn

i, j ,k−
∆t

2∆x
Ax∆up

x Vn
i, j ,k−

∆t
2∆y

Ay∆up
y Vn

i, j ,k, +
1
2
[±I − ∆t

∆z
Az]∆tvd

z Vn
i, j ,k, (12)

where the plus and minus signs correspond to directions ofN,E,S,W,T andB respectively in a natural way,
see Figure 1. EachAd matrix represents the coefficient matrix in thed-direction evaluated atVn

i, j ,k. The
undivided difference operators in eachd-direction are denoted as∆tvd

d and∆up
d , and they are suitably chosen

slope vectors ofVn
i, j ,k in each cell(i, j,k) using TVD and upwind slope limiters, respectively.

∗(i, j)

Vn+1/2
i, j−1,N

Vn+1/2
i, j ,S

Vn+1/2
i, j ,N

Vn+1/2
i, j+1,S

Vn+1/2
i−1, j ,E Vn+1/2

i, j ,W Vn+1/2
i, j ,E Vn+1/2

i+1, j ,W

Fig. 1. The boundary extrapolated values on a 2D cell geometry. Our subscriptionsN,S,E,W,T,B represent respectively north, south, east, west,
top and bottom that are based on a reference point at the localcell center node(i, j,k).

2.2. Normal Predictor

The first stage is to calculate the normal predictor states, including all the required multidimensional
MHD terms (the MHD terms hearafter) [40] satisfying the solenoidal constraint∇ ·B = 0. We begin our
discussion with the evolution of the normal field,BN, which is treated separately from the other primitive
variables. For instance, whenN = x, we can define

V̄x =





V̂x

Bx



 andĀx =





Âx ABx

0 0



 . (13)

HereV̂x is a 7×1 vector excludingBx, Âx is a 7×7 matrix omitting both the fifth row and column in the
original matrixAx in Equation (7), andABx is a 7×1 vector,
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ABx =

[

0,−Bx

ρ
,−By

ρ
,−Bz

ρ
,−v,−w,−ku ·B

]T

. (14)

Note that the hat (ˆ ) notation denotes the reduced system (i.e., the one corresponding to the usual 1D MHD
equations) and the bar (- ) notation indicates the re-assembled full system. Similarly for the other directions,
we have

V̄y =





V̂y

By



 , Āy =





Ây ABy

0 0



 , ABy =

[

0,−Bx

ρ
,−By

ρ
,−Bz

ρ
,−u,−w,−ku ·B

]T

, (15)

V̄z =





V̂z

Bz



 , Āz =





Âz ABz

0 0



 , ABz =

[

0,−Bx

ρ
,−By

ρ
,−Bz

ρ
,−u,−v,−ku ·B

]T

. (16)

The termABN for eachN will be our representation of the corresponding MHD term in this paper.

The first step of MH extrapolatesVn
i, j ,k to construct the six multidimensional Riemann statesVn+1/2

i, j ,k,N,S,E,W,T,B

at cell interfaces to achieve second-order accuracy by using a total variation diminishing (TVD) slope lim-
iter ∗ . Although the slope limiter can be applied to either primitive or characteristic variables, we prefer
the latter since it is less prone to generating spurious oscillations as noted in the literature [63, 66]. We do
not apply any limiting toBN, allowing the continuity of the normal field at cell faces (e.g., see discussion
in [40]). To simplify our discussion, we focus on thex-direction in Equation (10). The others in Equations
(11)-(12) can be computed in the similar way. We consider thefirst two terms in (10) that are related to the
normal predictor





V̂x

Bx





n+1/2,‖

i, j ,k,E,W

=





V̂x

Bx





n

i, j ,k

+
1
2






±





Î 0

0 1



− ∆t
∆x





Âx ABx

0 0





n

i, j ,k






∆tvd

x V̄n
i, j ,k, (17)

where∆tvd
x V̄n

i, j ,k =
(

∆tvd
x V̂n

i, j ,k,∆Bn
x,i

)T
and∆Bn

x,i = bn
x,i+1/2, j ,k−bn

x,i−1/2, j ,k. The notationsBd andbd denote

cell-centered and cell face-centered magnetic fields respectively, with d = x,y,z. In CT,∆Bn
x,i is constructed

such that the numerical divergence is zero using the cell face-centered magnetic fields. In other words,∆Bn
x,i ,

∆Bn
y, j and∆Bn

z,k are chosen such that

∆Bn
x,i

∆x
+

∆Bn
y, j

∆y
+

∆Bn
z,k

∆z
= 0, (18)

where we analogously define∆Bn
y, j and∆Bn

z,k. Solving a system in relation (17) is equivalent to considering
two sub-systems







V̂n+1/2,‖
x,i, j ,k,E,W = V̂n

x,i, j ,k+
1
2

(

±Î − ∆t
∆xÂx

)n

i, j ,k
∆tvd

x V̂n
i, j ,k− ∆t

2∆x(ABx)
n
i, j ,k∆Bn

x,i ,

(Bx)
n+1/2,‖
i, j ,k,E,W = Bn

x,i, j ,k± 1
2∆Bn

x,i .
(19)

The second relation in (19) is nothing but

(Bx)
n+1/2,‖
i, j ,k,E,W = Bn

x,i, j ,k±
1
2

∆Bn
x,i = bn

x,i±1/2, j ,k, (20)

∗ For instance, limiters such as minmod, van Leer’s, monotonized central (MC), or a hybrid combination of them on different wave structures [7]
can be used.
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because we use a simple arithmetic averaging to obtain the cell-centered magnetic field using the divergence-
free fields at cell interface centers,

Bn
x,i, j ,k =

1
2

(

bn
x,i+1/2, j ,k+bn

x,i−1/2, j ,k

)

. (21)

Applying the characteristic tracing method inx-normal direction in (19) yields

V̂n+1/2,‖
x,i, j ,k,W = V̂n

x,i, j .k+
1
2 ∑

m;λm
x,i, j ,k<0

(

−1− ∆t
∆x

λm
x,i, j ,k

)

rm
x,i, j ,k∆

tvd
x α̂n

i, j ,k−
∆t

2∆x
(ABx)

n
i, j ,k∆Bn

x,i , (22)

V̂n+1/2,‖
x,i, j ,k,E = V̂n

x,i, j ,k+
1
2 ∑

m;λm
x,i, j ,k>0

(

1− ∆t
∆x

λm
x,i, j ,k

)

rm
x,i, j ,k∆

tvd
x α̂n

i, j ,k−
∆t

2∆x
(ABx)

n
i, j ,k∆Bn

x,i. (23)

A suitable TVD slope limiter along thex-normal direction is used in the undivided slope operator oneach
characteristic variablêα

∆tvd
x α̂n

i, j ,k = TVD_Limiter
[

lmx,i, j ,k · (V̂n
x,i+1, j ,k− V̂n

x,i, j ,k), l
m
x,i, j ,k · (V̂n

x,i, j ,k− V̂n
x,i−1, j ,k)

]

. (24)

Hereλm
x,i, j ,k, r

m
x,i, j ,k, l

m
x,i, j ,k represent respectively the eigenvalue, right and left eigenvectors ofÂx, calculated

at the corresponding cell center(i, j,k) in thex-direction at time stepn. This completes the first part of our
description on a single-step, data reconstruction-evolution algorithm in thex-normal direction.

2.3. Transverse Corrector in USM

2.3.1. Review of Computing Transverse Flux Gradients using Characteristic Tracing

The transverse corrector adds the gradients of transverse fluxes to the normal predictors. This transverse
corrector step plays a crucial role for stability in CTU. Generally speaking, the degree of accuracy is affected
by the normal predictor, whereas numerical stability is strongly determined by the transverse corrector [14].

In [40], Lee and Deane noted that the transverse flux gradients, responsible for the cross-derivative terms
in CTU, which assure stability for flows advecting along diagonal corner directions, can be replaced by a
simpler approach that is based on characteristic tracing alone. This removes the need to solve the intermedi-
ate Riemann problems. As a result, this approach requires only two Riemann solutions in 2D (not counting
the extra two Riemann solves to update the divergence-free magnetic fields by CT), while preserving the
full stability of the CTU scheme. We review a pointwise description of the transverse corrector in USM for
a moment. Consider they-transverse flux gradient (i.e., the third term in (10)) which supplies the corrector
term to thex-normal predictor states. For any left (V̂ i, j−,k) and right (̂V i, j+,k) states at cell(i, j,k) along
y-direction, the jump conditions across the individualm-th wave gives

Ây,i, j ,kV̂y,i, j−,k+
m0−1

∑
m=1

λm
y,i, j ,kr

m
y,i, j ,k∆

up
y α̂n

i, j ,k = Ây,i, j ,kV̂y,i, j+,k−
7

∑
m=m0

λm
y,i, j ,kr

m
y,i, j ,k∆

up
y α̂n

i, j ,k. (25)

Now recall that the property of conservation [42, 63] acrossdiscontinuities of the Roe matrixA. It states
that the Roe matrix ensures conservation across a discontinuity between the left (V l ) and right (Vr ) states,
given byFlux(Vr)−Flux(V l ) = A(Vr −V l ). Applying this relation toÂy,i, j ,k, V̂y,i, j−,k and V̂y,i, j+,k, and
from (25), we obtain

Gi, j+1/2−Gi, j−1/2 = Ây,i, j ,k(V̂y,i, j+,k− V̂y,i, j−,k) =
7

∑
m=1

λm
y,i, j ,kr

m
y,i, j ,k∆

up
y α̂n

i, j ,k. (26)

The upwind slope limiter∆up
y is applied to each characteristic variableα̂n

i, j ,k as
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∆up
y α̂n

i, j ,k

{

lmy,i, j ,k · (V̂n
i, j+1,k− V̂n

i, j ,k) if λm
y,i, j ,k < 0

lmy,i, j ,k · (V̂n
i, j ,k− V̂n

i, j−1,k) if λm
y,i, j ,k > 0

. (27)

In Equation (26) we see that the sum over all wave contributions gives an effective upwinding of trans-
verse flux gradients iny-direction. The advantage in this approach is that there is no need to solve the
intermediate Riemann problems to add the transverse flux gradient correction terms to the spatially re-
constructed, temporally evolved, normal predictor statesin order to gain the upwind stability in the CTU
formulation. Because we rely on using the eigensystem in Equation (26), one might suspect that this char-
acteristic tracing approach could be as expensive as directly solving the associated Riemann problems at
each interface, followed by taking the gradient of the computed transverse fluxes. However, this is not the
case because we reuse they- (or x-) directional eigensystems that were already calculated in the normal
predictor step in they- (or x-) direction. Thus there is no need to compute any additionaleigenstructure for
each transverse direction, which makes our scheme much morecomputationally efficient than the standard
CTU method. A Fortran-like pseudo code illustrating the algorithm is as follows:

do j=jmin,jmax
do i=imin,imax

! Compute normal predictor in x-direction, and
! store x-directional normal predictor states & eigensyste ms in arrays
call dataReconstructNormalDirection(x_dir, x_normalPr edictStates, sigmaSum_x)

! Compute normal predictor in y-direction, and
! store y-directional normal predictor states & eigensyste ms in arrays

call dataReconstructNormalDirection(y_dir, y_normalPr edictStates, sigmaSum_y)

! Transverse Correction to the x-normal predictor
x_normalPredictStates = x_normalPredictStates - 0.5*dt/ dy*sigmaSum_y

! Transverse Correction to the y-normal predictor
y_normalPredictStates = y_normalPredictStates - 0.5*dt/ dx*sigmaSum_x

end do
end do

In the above, the termssigmaSum_x andsigmaSum_y represent the summation of all wave contributions in
thex- andy-directions, respectively, given in Equation (26). The rest of the terms are self-explanatory.

Our approach to approximate the transverse flux gradients, solely using the characteristic tracing, greatly
simplifies the overall unsplit CTU algorithm by reducing thenumber of required Riemann solves. In gas
hydrodynamics, the proposed algorithm requires a total of three Riemann solves to update the solution from
n to n+1 without compromising solution stability and accuracy. Itwill be shown for MHD in Section 2.4
that three additional Riemann problems (yielding a total ofsix) are required to update the divergence-free,
cell face-centered magnetic fields using the CT method. Another advantage in our approach, especially for
MHD, is the relatively simple handling of multidimensionalMHD terms. This is because our method of
adding transverse flux gradients provides a single-step, directionally unsplit data reconstruction-evolution
algorithm to calculate Riemann states at cell interfaces. It is therefore much simpler to enforce the balance
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between flux gradients in all three directions associated with the MHD terms. As noted in [31], complica-
tions arise in the standard full 12-solve CTU scheme, in which the MHD term balance seems to be hard to
achieve in a series of partial transverse flux gradient updates based on dimensional splitting.

2.3.2. Reduced 3D CTU Scheme in USM: Interface State Update from n ton+1/2 Time Step

Our first simple algorithm using the transverse corrector technique in the previous section is analogous
to the 6-solve CTU in [31]. This approach can be viewed as a straightforward 3D extension of the 2D
CTU scheme [16], omitting all the third-order cross-derivative terms such as∂3/∂x∂y∂z, while including
the second-order cross-derivative terms that are providedin the 2D CTU method. The resulting Riemann
state calculations account for flow information along the edge directions, but do not fully account for flow
information along the diagonal corner directions, yielding a formal stability limit of CFL number less than
0.5 † . This simple approach, referred to as the reduced 3D CTU scheme, can be directly extended from the
2D CTU [40] by adding the third additional transverse flux correction inz. That is, thex-normal predictors in
Equations (22)-(23) are further corrected by including thetransverse flux contributions fromy,z-directions
using the characteristic tracing approach described in theprevious section, see also [40]. For instance, in
Equation (10) the transverse corrector step can be updated,first by accounting for they-transverse flux
correction,

Vn+1/2,y
i, j ,k,E,W = Vn+1/2,‖

i, j ,k,E,W− ∆t
2∆y

Ay(Vn
i, j ,k)∆

up
y Vn

i, j ,k, (28)

followed by thez-transverse flux correction,

Vn+1/2
i, j ,k,E,W = Vn+1/2,y

i, j ,k,E,W− ∆t
2∆z

Az(Vn
i, j ,k)∆

up
z Vn

i, j ,k. (29)

In these transverse corrector steps, it is important to use theupwindbiased slope limiter instead of any form
of TVD limiters as reviewed in Section 2.3.1. Note that in theoriginal 2D CTU scheme by Colella [16],
using the upwind flux gradients in the transverse directionsis the key mechanism that guarantees the full
CFL stability bound. We establish the same upwind couplingsby means of using the upwind slope limiter
for our transverse corrector. Using a TVD slope limiter instead would result in a reduced stability limit for
our algorithm (and we avoid using it). The two transverse correction terms in (28) and (29) are calculated
as in Section 2.3.1, completing our description of the reduced 3D CTU scheme.

2.3.3. Full 3D CTU Scheme in USM: Interface State Update from n to n+1/2 Time Step

To establish the full stability limit (CFL number less than 1in 3D) as featured in the 12-solve CTU
scheme of Saltzman [55], we need one more step to couple diagonally moving flow effects. This situation
occurs when the conservative quantities are advected across the corners diagonally with components of
the local velocity fields(u,v,w) being of comparable orders of magnitude. In USM, these couplings can
be added to the interface states by performing intermediatestate calculations atn+ 1

3. They involve extra
evaluations of the coefficient matrices and the undivided upwind differences in (28) and (29) at

Vn+1/3,z
i, j ,k = Vn

i, j ,k−
∆t

3∆z
(Az)

n
i, j ,k∆

up
z Vn

i, j ,k, (30)

and

Vn+1/3,y
i, j ,k = Vn

i, j ,k−
∆t

3∆y
(Ay)

n
i, j ,k∆

up
y Vn

i, j ,k. (31)

† One can easily prove this stability bound numerically for a 3D scalar advection equation using a standard von Neuman Fourier analysis, assuming
a single Fourier mode solutionqn

I ,J,K = ei(ξI∆x+ηJ∆y+ζK∆z) wherei =
√
−1; I ,J,K as the grid indices; andξ,η,ζ the wave numbers inx,y,z-directions

respectively.
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More specifically, the transverse correctors in Equations (28) and (29) are replaced by

Vn+1/2,y
i, j ,k,E,W = Vn+1/2,‖

i, j ,k,E,W− ∆t
2∆y

Ay(V
n+1/3,z
i, j ,k )∆up

y Vn+1/3,z
i, j ,k , (32)

and

Vn+1/2
i, j ,k,E,W = Vn+1/2,y

i, j ,k,E,W− ∆t
2∆z

Az(V
n+1/3,y
i, j ,k )∆up

z Vn+1/3,y
i, j ,k . (33)

Here we make one important observation. Note that the additional re-evaluations of the matricesAy and

Az at then+ 1
3 statesVn+1/3,z

i, j ,k andVn+1/3,y
i, j ,k simply mean that the corresponding eigensystems for the charac-

teristic tracing in the transverse directions need to be re-calculated, incurring the corresponding additional
cost. Considering the full 3D interface state calculationsin Equations (10)-(12), there are a total of six
additional eigensystem evaluations required for the transverse correctors, which becomes as expensive as
directly solving the corresponding Riemann problems, making our scheme expensive. Therefore an efficient
alternative approach is required. Noticing

∆t
3∆z

(Az)
n
i, j ,k∆

up
z Vn

i, j ,k =
∆t
3

∂H
∂z

∣

∣

∣

∣

∣

Vn
i, j ,k

, (34)

and using a Taylor expansion atVn
i, j ,k, we consider

Ay(V
n+1/3,z
i, j ,k ) =

∂G
∂V

∣

∣

∣

∣

∣

Vn+1/3,z
i, j ,k

=
∂G
∂V

∣

∣

∣

∣

∣

Vn
i, j ,k

−∆t
3

∂H
∂z

∣

∣

∣

∣

∣

Vn
i, j ,k

∂2G
∂V2

∣

∣

∣

∣

∣

Vn
i, j ,k

= Ay(Vn
i, j ,k)+O(∆t). (35)

Ignoring the∆t error term in the matrix evaluations in Equation (35), we canreplace respectivelyAy(V
n+1/3,z
i, j ,k )

andAz(V
n+1/3,y
i, j ,k ) with Ay(Vn

i, j ,k) andAz(Vn
i, j ,k) in Equations (32)-(33). However, it is essential to retain

∆up
y Vn+1/3,z

i, j ,k =

(

∂V
/

∂y
∣

∣

∣

Vn+1/3,z
i, j ,k

)

∆y and∆up
z Vn+1/3,y

i, j ,k =

(

∂V
/

∂z
∣

∣

∣

Vn+1/3,y
i, j ,k

)

∆z to couple the diagonal upwind

corner transport. We proceed this as follows. Ignoring theO(∆t) term and keeping the first-order approxi-
mation in Equation (35) for the matrix evaluation, the transverse corrector in Equation (32) becomes

Vn+1/2,y
i, j ,k,E,W = Vn+1/2,‖

i, j ,k,E,W− ∆t
2∆y

Ay(Vn
i, j ,k)∆

up
y Vn+1/3,z

i, j ,k (36)

Using our transverse corrector strategy, we get

V̂n+1/2,y
y,i, j ,k,E,W = V̂n+1/2,‖

y,i, j ,k,E,W− ∆t
2∆y

7

∑
m=1

λm
y,i, j ,kr

m
y,i, j ,k∆

up
y α̂n+1/3,z

i, j ,k − ∆t
2∆y

(ABy)
n
i, j ,k∆Bn+1/3,z

y, j , (37)

where the upwinding slope applied to each characteristic variableα̂ is given by

∆up
y α̂n+1/3,z

i, j ,k =

{

lmy,i, j ,k · (V̂
n+1/3,z
i, j+1,k − V̂n+1/3,z

i, j ,k ) if λm
y,i, j ,k < 0

lmy,i, j ,k · (V̂
n+1/3,z
i, j ,k − V̂n+1/3,z

i, j−1,k ) if λm
y,i, j ,k > 0

. (38)

Notice that the MHD term atn+ 1
3 can be written as

∆Bn+1/3,z
y, j = ∆y

(

Bn
y, j −

∆t
3∆z

[(Âz)
n
i, j ,k∆

up
z V̂n

i, j ,k+(ABz)
n
i, j ,k∆Bn

z,k] ·eBy

)

= ∆y

(

Bn
y, j +O(∆t)

)

, (39)

whereeBy is a unit vector inBy direction for contraction and the hat notation implies the omission of theBz

components. However, in order to choose∆Bn+1/3,z
y, j to enforce the numerical divergence to be zero always

(see Equation (18)), we further drop the∆t error term and only take
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∆Bn+1/3,z
y, j = ∆yB

n
y, j = bn

y, j+1/2−bn
y, j−1/2, (40)

wherebn
y, j±1/2 are the cell face-centered, divergence-free magnetic fields iny-direction.

The upwind differences in relation (38) are given by (assuming uniform spacing in each direction every-
where),

V̂n+1/3,z
i, j+1,k − V̂n+1/3,z

i, j ,k

= V̂n
i, j+1,k− V̂n

i, j ,k−
∆t

3∆z

[

(Âz)
n
i, j+1,k∆

up
z V̂n

i, j+1,k+(An
Bz

∆Bn
z)i, j+1,k− (Âz)

n
i, j ,k∆

up
z V̂n

i, j ,k− (An
Bz

∆Bn
z)i, j ,k

]

= V̂n
i, j+1,k− V̂n

i, j ,k−
∆t

3∆z

[ 7

∑
h=1

λh
z,i, j+1,kr

h
z,i, j+1,k∆

up
z α̂n

i, j+1,k−
7

∑
l=1

λl
z,i, j ,kr

l
z,i, j ,k∆

up
z α̂n

i, j ,k

+(An
Bz

∆Bn
z)i, j+1,k− (An

Bz
∆Bn

z)i, j ,k

]

, (41)

and

V̂n+1/3,z
i, j ,k − V̂n+1/3,z

i, j−1,k

= V̂n
i, j ,k− V̂n

i, j−1,k−
∆t

3∆z

[

(Âz)
n
i, j ,k∆

up
z V̂n

i, j ,k+(An
Bz

∆Bn
z)i, j ,k− (Âz)

n
i, j−1,k∆

up
z V̂n

i, j−1,k− (An
Bz

∆Bn
z)i, j−1,k

]

= V̂n
i, j ,k− V̂n

i, j−1,k−
∆t

3∆z

[ 7

∑
h=1

λh
z,i, j ,kr

h
z,i, j ,k∆

up
z α̂n

i, j ,k−
7

∑
l=1

λl
z,i, j−1,kr

l
z,i, j−1,k∆

up
z α̂n

i, j−1,k

+(An
Bz

∆Bn
z)i, j ,k− (An

Bz
∆Bn

z)i, j−1,k

]

, (42)

In the case ofλm
y,i, j ,k > 0 for all m, using (42), Equation (37) becomes

V̂n+1/2,y
y,i, j ,k,E,W = V̂n+1/2,‖

y,i, j ,k,E,W− ∆t
2∆y

7

∑
m=1

λm
y,i, j ,kr

m
y,i, j ,kl

m
y,i, j ,k · (V̂

n+1/3,z
i, j ,k − V̂n+1/3,z

i, j−1,k )−
∆t

2∆y
(ABy)

n
i, j ,k∆Bn

y, j (43)

= V̂n+1/2,‖
y,i, j ,k,E,W− ∆t

2∆y

7

∑
m=1

λm
y,i, j ,kr

m
y,i, j ,kl

m
y,i, j ,k · (V̂n

i, j ,k− V̂n
i, j−1,k)−

∆t
2∆y

(ABy)
n
i, j ,k∆Bn

y, j (44)

+
∆t2

6∆y∆z

(

7

∑
m=1

λm
y,i, j ,kr

m
y,i, j ,kl

m
y,i, j ,k ·

[ 7

∑
h=1

λh
z,i, j ,kr

h
z,i, j ,k∆

up
z α̂n

i, j ,k−
7

∑
l=1

λl
z,i, j−1,kr

l
z,i, j−1,k∆

up
z α̂n

i, j−1,k

+(An
Bz

∆Bn
z)i, j ,k− (An

Bz
∆Bn

z)i, j−1,k

]

)

. (45)

Note that the terms in relation (44) are what we already established in the reduced 3D CTU scheme. The
terms in relation (45) are new correction terms for the full 3D CTU scheme that need to be added to the
reduced 3D CTU interface states in relation (44).

Similarly, the final form ofx-interface statesVn+1/2
i, j ,k,E,W in Equation (33) is established by adding another

correction term appearing in∆up
z V̂n+1/3,y

i, j ,k , giving the result (assumingλm
z,i, j ,k > 0 for all m)

Vn+1/2
i, j ,k,E,W = V̂n+1/2,y

y,i, j ,k,E,W− ∆t
2∆z

7

∑
m=1

λm
z,i, j ,kr

m
z,i, j ,kl

m
z,i, j ,k · (V̂n

i, j ,k− V̂n
i, j ,k−1)−

∆t
2∆z

(ABz)
n
i, j ,k∆Bn

z,k (46)

+
∆t2

6∆z∆y

(

7

∑
m=1

λm
z,i, j ,kr

m
z,i, j ,kl

m
z,i, j ,k ·

[ 7

∑
h=1

λh
y,i, j ,kr

h
y,i, j ,k∆

up
y α̂n

i, j ,k−
7

∑
l=1

λl
y,i, j ,k−1r

l
y,i, j ,k−1∆up

y α̂n
i, j ,k−1

+(An
By

∆Bn
y)i, j ,k− (An

By
∆Bn

y)i, j ,k−1

]

)

. (47)
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Likewise, the terms in relation (47) are the extra correction terms required for the full 3D CTU scheme.
They must be added to the reduced CTU terms in relation (46).

It is worth pointing out at this stage that all of the eigensystems in the full 3D CTU correction terms
are readily available as they have been calculated and stored in the normal predictor step in eachx,y,z-
direction described in Section 2.2. In the normal predictorstep, one can store not only the eigensystems, but
also the two summations inside the square brackets in relations (45) and (47) (see also the simple pseudo
code in Section 2.3.1). The only extra calculations imposing additional computational costs are therefore
the upwind differencings inside the square brackets and thedot products in relations (45) and (47), which
are computationally much more efficient compared to the calculation requirements in the 12-solve CTU
scheme. This completes our description of the single-step,data reconstruction-evolution algorithm for all
variablesexceptthe divergence-free normal magnetic fields at each cell face. The reconstructed interface
states are second-order accurate in space and evolved ton+ 1

2 time step at each interface. The next step is
to advance the remaining normal fields at the cell faces, finalizing the Riemann state calculations.

2.4. Advancing the Normal Fields from n to n+1/2 Time Step using CT

In updating the normal fields ton+ 1
2, it is important to meet two conditions. The first is a continuity

restriction of the normal magnetic field across cell interfaces [7,18,30,40,51]. The second is the divergence-
free constraint of the normal fields on a computational grid.As a last step of our Riemann state calculations,
we must evolve the normal field components at each cell boundary by a half time step, while satisfying the
two conditions. We therefore follow the CT approach using the high-order Godunov fluxes that are solutions
to a Riemann problem using the Riemann statesVn+1/2

i, j ,N,S,E,W,T,B described in Sections 2.3.2 and 2.3.3. Our
approach here is the 3D extension of the 2D method in using thesame approach as in [40]. Here we briefly
describe the procedure only inx-direction, which can be similarly applied to the other directions. We first
solve Riemann problem atx interfaces as

F̃∗,n+1/2
i−1/2, j ,k = RP

(

Vn+1/2
i−1, j ,k,E,V

n+1/2
i, j ,k,W

)

, F̃∗,n+1/2
i+1/2, j ,k = RP

(

Vn+1/2
i, j ,k,E ,V

n+1/2
i+1, j ,k,W

)

, (48)

With these high-order Godunov fluxes at the half time step we evolve the normal fields by a half time step
using the CT update

bn+1/2
x,i+1/2, j ,k = bn

x,i+1/2, j ,k

− ∆t
2∆y

{

Ẽ∗,n+1/2
z,i+1/2, j+1/2,k− Ẽ∗,n+1/2

z,i+1/2, j−1/2,k

}

− ∆t
2∆z

{

− Ẽ∗,n+1/2
y,i+1/2, j ,k+1/2+ Ẽ∗,n+1/2

y,i+1/2, j ,k−1/2

}

, (49)

where the duality relationship between the electric fields and the high-order Godunov fluxes [5] is assumed
in the expression. The electric fieldsẼ∗,n+1/2

z
‡ in (49) can be constructed based on the MEC method [40]

that takes an arithmetic average of four Taylor series expansions of the fluxes given by (48) to obtain them
(e.g., see Equation (53) in Section 2.6.1). The normal fieldsin (49) satisfy the divergence-free constraint as
well as the continuity restriction across cell interfaces as they are direct solutions to numerical induction
equations via the CT approach.

Given these updated cell face-centered divergence-free fields, the Riemann states atx-interfaces are up-
dated as

Vn+1/2
i, j ,k,E ·eBx = bn+1/2

x,i+1/2, j ,k, Vn+1/2
i, j ,k,W ·eBx = bn+1/2

x,i−1/2, j ,k, (50)

whereeBx are unit vectors for the magnetic field components inx-direction.

‡ Note here that we use a consistent superscript (e.g.,F̃∗ and Ẽ∗) between the Godunov fluxes and the electric fields that are inthe duality
relationship. The superscript is used for the intermediateRiemann solutions in Section 2.4, whereas the superscript∗ (e.g.,F∗ andE∗) is used for
the final Riemann solutions in Section 2.5.
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Now that the second-order accurate Riemann statesVn+1/2
i, j ,k,N,S,E,W,T,B are available, the second-order Go-

dunov fluxes can be evaluated by solving the last set of Riemann problems atx-interfaces,

F∗,n+1/2
i−1/2, j ,k = RP

(

Vn+1/2
i−1, j ,k,E,V

n+1/2
i, j ,k,W

)

, F∗,n+1/2
i+1/2, j ,k = RP

(

Vn+1/2
i, j ,k,E ,V

n+1/2
i+1, j ,k,W

)

, (51)

Note that the superscript∗ is used to represent the second-order Godunov fluxes that arethe solutions of
the Riemann problems.

2.5. Cell-centered Solution Update from n to n+1 Time Step

The USM algorithm updates the cell-centered conservative variables to the next time stepn+1 using an
unsplit integrator,

Un+1
i, j ,k = Un

i, j ,k
∆t
∆x

{

F∗,n+1/2
i+1/2, j ,k−F∗,n+1/2

i−1/2, j ,k

}

− ∆t
∆y

{

G∗,n+1/2
i, j+1/2,k−G∗,n+1/2

i, j−1/2,k

}

− ∆t
∆z

{

H∗,n+1/2
i, j ,k+1/2−H∗,n+1/2

i, j ,k−1/2

}

.(52)

In general, after this update, non-zero divergence magnetic fields are still present at cell centers, and they
need to be corrected. In the next section we update the divergence-free cell face-centered magnetic fields
from n to n+1 time step using the modified electric field construction (MEC) scheme [40]. The cell face-
centered fields are averaged to correct the cell-centered magnetic fields at then+1 state. The choice of a
time step∆t for the full 3D CTU scheme is limited by the full CFL bound, with which we set our CFL
number to be 0.95 for all numerical results presented in this paper, unlessotherwise stated.

2.6. Face-centered, Divergence-Free Fields Update via CT from nto n+1 Time Step using MEC

2.6.1. The Standard Arithmetic Averaging Approach in MEC: standard-MEC

In [40], the 2D version of the modified electric field construction (MEC) scheme was introduced. The
method provides electric fields at cell corners using high-order Taylor expansions. Displaying the electric
field in z-direction only, this standard-MEC algorithm gives



































En+1/2
z,i+1/2, j+1/2,k = E∗,n+1/2

z,i+1/2, j ,k+
∆y
2

∂E∗,n+1/2
z,i+1/2, j ,k

∂y + ∆y2

8

∂2E∗,n+1/2
z,i+1/2, j ,k

∂y2 +O(∆y3),

En+1/2
z,i+1/2, j+1/2,k = E∗,n+1/2

z,i+1/2, j+1,k−
∆y
2

∂E∗,n+1/2
z,i+1/2, j+1,k

∂y + ∆y2

8

∂2E∗,n+1/2
z,i+1/2, j+1,k

∂y2 +O(∆y3),

En+1/2
z,i+1/2, j+1/2,k = E∗,n+1/2

z,i, j+1/2,k+
∆x
2

∂E∗,n+1/2
z,i, j+1/2,k

∂x + ∆x2

8

∂2E∗,n+1/2
z,i, j+1/2,k

∂x2 +O(∆x3),

En+1/2
z,i+1/2, j+1/2,k = E∗,n+1/2

z,i+1, j+1/2,k− ∆x
2

∂E∗,n+1/2
z,i+1, j+1/2,k

∂x + ∆x2

8

∂2E∗,n+1/2
z,i+1, j+1/2,k

∂x2 +O(∆x3).

(53)

The duality relationship [5] has been assumed for those electric fields at cell face centers about which the
Taylor series are expanded. The standard-MEC algorithm proceeds to take a simple arithmetic average of
these four Taylor expansions of each field in Equation (53) toget an averaged electric field̃En+1/2

z,i+1/2, j+1/2,k.

2.6.2. Upwind Biased Averaging in MEC: upwind-MEC

The standard CT approach of taking the arithmetic average ofthe four electric fields is simple enough
to work well in local smooth regions. The simplest form of this averaging approach was first suggested
by Balsara and Spicer [5]using 1D based Riemann solvers.This idea seems a very natural choice if one
considers the grid locations of the electric fields. However, the authors understood that in truly multidi-
mensional flows where there is a directional bias, the simplearithmetic averaging scheme may need to
be corrected and it would be better to incorporate upwind information.Recently, a general resolution on
such issue with multidimensional upwinding has become available by the subsequent efforts to build the
genuinely multidimensional HLL-type Riemann solvers by Balsara [10,11].
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On the other hand, within the 1D Riemann based CTU approach, Gardiner and Stone [30] identified the
shortcomings of the simple arithmetic averaging method anddeveloped a systematic construction of CT
algorithms that are consistent for a plane-parallel, grid-aligned flow. They recovered the necessary amount
of numerical viscosity that stabilizes their underlying CTintegration algorithm. The CT methods proposed
therein readily satisfy planar symmetry for∂/∂x = 0 or ∂/∂y = 0, showing that their algorithms recover
the associated one-dimensional solution for the underlying integration algorithm.A similar approach of
increasing dissipation is also found in [45].

Although the approach by Gardiner and Stone provides consistency for plane-parallel, grid-aligned flows,
the method does not take into account multidimensional effects where the flow has one specific directional
bias without assuming∂/∂x = 0 or ∂/∂y = 0. To illustrate this, we consider the weakly magnetized field
loop advection problem [30, 40] where the loop is advected bya dominant velocity inx and comparably
small velocity iny, sayingu> 0 with v= ε > 0. The simple arithmetic averaging CT algorithm gives

Ẽn+1/2
z,i+1/2, j+1/2,k =

1
4
(E∗,n+1/2

z,i+1/2, j ,k+E∗,n+1/2
z,i+1/2, j+1,k+E∗,n+1/2

z,i, j+1/2,k+E∗,n+1/2
z,i+1, j+1/2,k). (54)

In the limiting case ofu> 0 with v= ε → 0, it is obvious thatE∗,n+1/2
z,i, j+1/2,k is the only electric field that is in

the upwind direction, whereas the rest are not.One can easily see that the similar situation also occurs in the
CT scheme in [30].This suggests that the simple averaging,based on the 1D Riemann solver strategies used
with CTU, is potentially exposed to numerical oscillations and therefore its stability is questionable.There
are several other modern time-evolution strategies for MHDthat do not suffer from this lack of upwinding.
As noted, the modern MHD schemes by Balsara [10, 11] using thegenuinely multidimensional Riemann
solvers evolve the magnetic field structures in any direction without resorting to any added dissipation in
the electric fields. The use of multidimensional Riemann solvers for MHD have shown to possess superior
capability in evolving magnetic fields to the use of conventional 1D Riemann solvers, better reflecting the
true nature of the PDE that does not require any secondary dissipation mechanisms for the purpose of stable
upwinding. Although the essential role of the multidimensional technology is acknowledged, our primary
goal in this paper is to design an easy alternative that can beameliorated within the 1D Riemann solver
framework based on CTU.

We now describe our new upwind CT construction scheme that resolves this lack of upwind information
in the current strategy. As suggested, the idea is to construct the electric fields at(i+ 1

2, j + 1
2,k) including

the electric fields at cell interfaces that are in the upwind directions. For example, in the limiting case of
u> 0 with v= 0 the cell-cornered electric field is given by

Ẽn+1/2
z,i+1/2, j+1/2,k = E∗,n+1/2

z,i, j+1/2,k. (55)

Based on this simple idea of upwinding, we illustrate a systematic approach to constructing a new upwind-
MEC algorithm that also leads to a consistent CT scheme for plane-parallel, grid-aligned flows. To make
our discussion more concise, we display a 2D case; the extension in 3D is straightforward. The first step is
to check the upwind direction at each cell corner. This can bedone by defining four switches

uP =
1
2
(1+sign(ui+1/2, j+1/2))|sign(ui+1/2, j+1/2)|, (56)

uN =
1
2
(1−sign(ui+1/2, j+1/2))|sign(ui+1/2, j+1/2)|, (57)

vP =
1
2
(1+sign(vi+1/2, j+1/2))|sign(vi+1/2, j+1/2)|, (58)

vN =
1
2
(1−sign(vi+1/2, j+1/2))|sign(vi+1/2, j+1/2)|, (59)

where the sign function is defined by
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sign(x) =

{1 if x> 0,
0 if x= 0,
−1 if x< 0.

(60)

The cell-centeredn time step velocity fields are spatially averaged to get the velocities at the cell corner
(i + 1

2, j + 1
2) in (56)–(59). When deciding the proper upwind direction at(i + 1

2, j + 1
2) in Equations (56)-

(59), it is useful to measure relative magnitudes of velocity fields in order to avoid any numerical noise
effects. The small noise perturbations in the signs of velocity fields may lead to an unnecessary amount
of changes in upwind directions that are not very advantageous [54]. This motivates to set the velocities
at (i + 1

2, j + 1
2) in (56)-(59) to be zero whenever a given local velocity in onedirection is relatively small

compared to the total local velocity magnitude. That is to say,

ui+1/2, j+1/2 = 0 if
|ui+1/2, j+1/2|

max(
√

u2
i+1/2, j+1/2+v2

i+1/2, j+1/2,ε2)
≤ ε1. (61)

Notice that the total velocity only includes the two velocity field componentsu andv (butnot w) that define
the electric fieldEz under consideration. Our choice ofan empirically derived valueε1 forcesto ignore
any velocity fluctuations that are smaller than 10% of the total magnitude of velocity fields, and set those
velocities to be zero for determining the proper upwind direction.An arbitrary small value is chosen forε2

to prevent division by zero.
Finally we take an upwind biased averaging of the electric fields using the switches in (56)-(59),

Ẽn+1/2
z,i+1/2, j+1/2,k = α

[

vP

(

E∗,n+1/2
z,i+1/2, j ,k+

∆y
2

∂E∗,n+1/2
z,i+1/2, j ,k

∂y
+

∆y2

8

∂2E∗,n+1/2
z,i+1/2, j ,k

∂y2

)

+

vN

(

E∗,n+1/2
z,i+1/2, j+1,k−

∆y
2

∂E∗,n+1/2
z,i+1/2, j+1,k

∂y
+

∆y2

8

∂2E∗,n+1/2
z,i+1/2, j+1,k

∂y2

)

+

uP

(

E∗,n+1/2
z,i, j+1/2,k+

∆x
2

∂E∗,n+1/2
z,i, j+1/2,k

∂x
+

∆x2

8

∂2E∗,n+1/2
z,i, j+1/2,k

∂x2

)

+

uN

(

E∗,n+1/2
z,i+1, j+1/2,k−

∆x
2

∂E∗,n+1/2
z,i+1, j+1/2,k

∂x
+

∆x2

8

∂2E∗,n+1/2
z,i+1, j+1/2,k

∂x2

)]

. (62)

Here the averaging weight factorα is set to 1 ifui+1/2, j+1/2vi+1/2, j+1/2 = 0; α = 1
2 otherwise. This is our

upwind-MEC scheme. It is interesting to observe that the upwind-MEC scheme satisfies the consistency
relationship that reverts to the underlying integration CTscheme for plane-parallel, grid-aligned flows in an
upwind sense. To see this we consider for example∂/∂y= 0. Consider first whenvi+1/2, j+1/2 = 0. In this
case the electric fields at each cell corner will take only either the third (ifui+1/2, j+1/2 > 0) or the fourth (if

ui+1/2, j+1/2< 0) part of Equation (62). By planar symmetry,En+1/2
z,i, j+1/2,k =En+1/2

z,i, j ,k =En+1/2
z,i, j+1,k, the first leading

terms in both relationships in (62) become

Ẽn+1/2
z,i+1/2, j+1/2,k =

{

E∗,n+1/2
z,i, j+1/2,k = E∗,n+1/2

z,i, j ,k if ui+1/2, j+1/2 > 0,

E∗,n+1/2
z,i+1, j+1/2,k = E∗,n+1/2

z,i+1, j ,k if ui+1/2, j+1/2 < 0.
(63)

Therefore they can be considered as an upwind-biased CT variant ofẼn+1/2
z,i+1/2, j+1/2,k=E∗,n+1/2

z,i+1/2, j ,k which is the

result of the CT method by Gardiner and Stone [30] in this case. If ui+1/2, j+1/2 = 0 thenẼn+1/2
z,i+1/2, j+1/2,k = 0
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which is an exact solution for ideal MHD§ .
For nonzero values ofvi+1/2, j+1/2, consider for instance a case forvi+1/2, j+1/2 > 0 with ui+1/2, j+1/2 > 0.

Then the electric fields from the upwind-MEC scheme will takethe parts that haveuP andvP only, and
α = 1

2. Consider only the first leading terms in the two parts of Equation (62) for an exposition purpose, we
get

Ẽn+1/2
z,i+1/2, j+1/2,k =

1
2

(

E∗,n+1/2
z,i+1/2, j ,k+E∗,n+1/2

z,i, j+1/2,k

)

=
1
2

(

E∗,n+1/2
z,i+1/2, j+1/2,k+E∗,n+1/2

z,i, j+1/2,k

)

, (64)

where we assumed∂/∂y= 0 in the last equality. Compared to the electric fieldẼn+1/2
z,i+1/2, j+1/2,k = E∗,n+1/2

z,i+1/2, j ,k
from the Gardiner and Stone’s method, the upwind biased MEC electric field in Equation (64) makes use
of an additional upwind electric field at(i, j + 1

2,k) and includes that field in the average to get the field at
(i+ 1

2, j + 1
2,k).

There are several important features of the upwind-MEC method. First, the method appropriately uses an
upwinding direction rather than taking a simple arithmeticaverage which lacks proper upwinding. The lack
of upwinding is found in most of the well known CT schemes [5, 30, 31, 40, 47]. The upwinding strategy
becomes most crucial when advecting a magnetized object in one biased direction, for instance, the weakly
magnetized field loop advection problem [30] inx-direction only or with a very small advection angleθ
relative tox-axis. In this small angle advection case the standard CT update without any upwinding becomes
very vulnerable to numerical instabilities that appear as spurious oscillations in the magnetic field evolution.
Such oscillations are more likely in the small angle case than in a relatively large angle case because there
is only one dominating direction from which the CT electric averaging scheme should rely on to obtain
enough numerical dissipation to stabilize the field evolution. It will be shown later that the upwind-MEC
strategy advects the field loop without significant numerical oscillations and without distortions for small
angle advections.

Second, the upwind-MEC scheme not only accounts for an upwinding direction for stability, but also
includes high-order terms. The first derivative terms reflect correct spatial changes in expanding from the
center nodes to the corners, while the second terms effectively avoid spurious oscillations near disconti-
nuities by adding the proper amount of numerical dissipation to the corner extrapolated fields [40]. These
high-order terms are upwind averaged in such a way that the scheme is consistent for plane-parallel, grid-
aligned flows.

Third, as mentioned, the idea of using upwinding in taking the average is to recover aproperamount of
numerical dissipation required to ensure stability. We note that the greatest benefit occurs when there is a
dominating direction locally towards which the magnetic fields are advected. For this reason the upwind-
MEC scheme can be turned off when the local flow velocities areall ignorable. When the local velocities are
all negligibly small but finite the local flow should be smoothenough, and hence it is sufficiently accurate to
use the standard-MEC scheme that takes the arithmetic averaging as discussed in Section 2.6.1. In practice,
we switch back to the standard-MEC when the local flow velocities are relatively small compared to the
local sound speedCs. That is, we consider a local Mach numberMz for the local flow switch to choose the
standard-MEC for constructing the electric fieldẼz,i+1/2, j+1/2,k if

Mz =

√

u2
i+1/2, j+1/2+v2

i+1/2, j+1/2

Cs
≤ ε3. (65)

§ Note that for non-ideal MHD the upwinding approach in the upwind-MEC scheme should only be applied to the induction part (i.e.,−u×B) of
a generalized Ohm’s law including the terms such as the magnetic diffusion, the Hall effect and the Biermann battery effect.
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An empirical basedtunable parameterε3 = 10−4 suffices to detect a local smooth flow in order to convert
back to the standard-MEC method; otherwise the upwind-MEC scheme is enabled for all the numerical
tests presented in this paper.

2.6.3. CT Update from n to n+1 Time Step

Using the electric fields̃En+1/2
x,i, j+1/2,k+1/2, Ẽn+1/2

y,i+1/2, j ,k+1/2 andẼn+1/2
z,i+1/2, j+1/2,k constructed by our MEC strat-

egy, the final CT update evolves the cell face-centered magnetic fields satisfying the∇ ·B = 0 condition on
a staggered grid. Displaying only inx-direction, we have

bn+1
x,i+1/2, j ,k = bn

x,i+1/2, j ,k

−∆t
∆y

{

Ẽn+1/2
z,i+1/2, j+1/2,k− Ẽn+1/2

z,i+1/2, j−1/2,k

}

−∆t
∆z

{

− Ẽn+1/2
y,i+1/2, j ,k+1/2+ Ẽn+1/2

y,i+1/2, j ,k−1/2

}

. (66)

This completes our description of all procedures in the 3D USM algorithm for a single time step update.

3. Summary

We summarize the 3D USM algorithm as follows:
(i) Calculate the normal predictor states in allx,y,z-directions using the algorithm described in Section

2.2. When calculating the normal state in each direction, include the associated MHD term that is pro-
portional to the gradient of the normal field, see the first relation in (19). During each normal predictor
calculation, the eigensystems in the normal direction are to be computed. They are stored for later use
in the transverse correctors. At the same time, the summations of the jumps in all characteristic vari-
ables are also computed and stored, see Equations (26)-(27), the pseudo-code in Section 2.3.1, the
sigma summations in Equations (45) and (47).

(ii) The normal predictor states are updated via the transverse correctors described in Section 2.3.2. This
step uses two of the stored sigma summation terms that are calculated and stored in each normal
predictor step. The summations reflect the transverse flux gradients using the characteristic tracing
approach.
(a) The reduced 3D CTU scheme then proceeds to advance the normal fields by half a time step

using CT as illustrated in Section 2.4, finalizing all the interface state calculations. In the reduced
3D CTU scheme, the formal stability limit is given by a CFL number that is less than12.

(b) If the full 3D CTU scheme is chosen, the algorithm needs totake one more correction step,
presented in Section 2.3.3. This correction step is essential in order to provide the full stability
limit by including the diagonally moving upwind information along the corners in a 3D control
volume. Similar to the reduced CTU scheme, the full 3D CTU scheme is completed by evolving
the cell face-centered magnetic fields by half a time step as in Section 2.4.

So far, both of the two CTU algorithms have required the first set of three Riemann problems that are
used to advance the magnetic fields by CT.

(iii) Solve the final set of three Riemann problems at cell interfaces and update the cell-centered conser-
vative variables to the next time step as described in Section 2.5. The total number of Riemann solves
therefore becomes six¶ .

(iv) Calculate the electric fields at cell corners by using the upwind-MEC algorithm described in Section
2.6.2. With these electric fields, the magnetic fields at cellface centers are updated to the next time

¶ Our unsplit data reconstruction-evolution algorithm can be easily modified for use as a gas hydrodynamics solver by omitting those steps related
to the magnetic fields. In this case, there are only three Riemann solves required as there is no CT update needed. This unsplit hydrodynamics solver
has been also available in FLASH’s official releases.
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step by CT. The cell-centered magnetic fields are updated by taking arithmetic averages of these
divergence-free magnetic fields at cell face centers (e.g.,Equation (21) in Section 2.2).

4. Numerical Results

In this section we exhibit the accuracy, stability, convergence and computational performance of the USM
scheme on a suite of 3D MHD problems. These results show that the scheme is very robust with the full
CFL stability bound. The scheme is second-order accurate for smooth flows and maintains the solenoidal
constraint on the magnetic field up to machine round-off error. The full 3D CTU method is our primary
default method for which a CFL number of 0.95 is chosen in all of the simulations presented here. We
also show a set of comparison studies between the reduced andfull 3D CTU schemes. Insofar as choice of
Riemann solver is concerned, we use the Roe-type linearizedsolver [53,63] and the HLLD solver [48]. Our
choices for the normal predictor step are MUSCL-Hancock, PPM, and WENO5.

4.1. Field Loop Advection

This problem is notoriously difficult to solve, not because of any strong shock causing numerical instabil-
ity and leading to code to crash, but rather because it requires full accounting of multidimensional advection
in a stable matter, such as including the multidimensional MHD terms [30, 31, 40, 47]. Failure to do so re-
sults in an erroneous generation of in-plane magnetic field,which results in the distortion of the initially
circular (2D) or cylindrical (3D) field loop.

In addition to the standard field loop advection case studiedin [31], we also consider a small angle
advection case. This turns out to be a much more stringent test than the standard advection configuration
which assumes a (relatively) large angle between the advection flow and the Euclidean coordinate axes.
In the small angle configuration there is one dominating coordinate direction along which the field loop
is advected. This means that, in practice, there is only one direction from which a numerical scheme can
obtain the numerical dissipation required for stability. In multidimensional problems, inadequate numerical
dissipation from transverse directions can give rise to anomalous oscillatory behavior in physical variables.

We begin by describing the initial setup for the standard large angle advection case following the config-
uration of [31]. The weakly magnetized 3D cylindrical field loop is initialized with a very high plasma beta
β = p/Bp = 2×106 in the inner region, whereBp = (B2

1+B2
2+B2

3)/2. Inside the loop the magnetic field
strength is very weak and the flow dynamics are dominated by the gas pressure.

The initial field loop is tilted around thex2 (or y) axis by ω = tan−1 Ω radians in a 3D periodic box
[−0.5,0.5]× [−0.5,0.5]× [−1,1]. For the standard large angle setup, we chooseΩ = 2. The field loop is
frozen into the ambient plasma and is advected diagonally across the domain with the plasma advection
velocity (u,v,w) = (1,1,2). The density and pressure are equal to unity everywhere, andγ = 5

3.
The magnetic field components are initialized by taking numerical curl of the magnetic vector potential

A = (A1,A2,A3)
T in order to ensure∇ ·B = 0 initially. The relationship between magnetic field and vector

potential gives

B1 =
∂A3

∂x2
− ∂A2

∂x3
, B2 =−∂A3

∂x1
+

∂A1

∂x3
, B3 =

∂A2

∂x1
− ∂A1

∂x2
. (67)

For the components ofA we chooseA1 = A2 = 0 and

A3 =

{

A0(R− r) if r ≤ R,
0 otherwise.

(68)

By using this initialization process divergence-free magnetic fields are well constructed numerically on a
staggered grid. The parameters in Equation (68) areA0 = 10−3 andR= 0.3.
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The two coordinate systems(x1,x2,x3) and(x,y,z) are related by a rotation about they-axis, which is
given by











x1

x2

x3











=











cosω 0 sinω

0 1 0

−sinω 0 cosω





















x

y

z











. (69)

Before we present the standard large angle field loop advection, we first consider a small angle advection
case in 2D. The 2D initial conditions can be found in [30,40] and we will not repeat the details here. In the
2D setup, the velocity field is given by

U = (u0cosθ,u0sinθ,1)T , (70)

whereu0 =
√

5. We choseθ = tan−1(0.01)≈ 0.573◦ for a small angle advection test. With this setup, the
field loop is advected almost entirely in the positivex-direction. This situation makes it hard to stabilize
the solution during advection because there is not enough numerical dissipation from they-direction. The
solution behavior completely relies on the dissipation mechanism from thex-direction only, making the
problem very unstable if no special care is taken to stabilize it.

In Figure 2, we illustrate the evolution of the magnetic pressureBp at t = 0.1 and 2.0 using the upwind-
MEC scheme described in Section 2.6.2. In consequence of theupwinding dissipation mechanism, the
upwind-MEC scheme stabilizes the solutions extremely well, suppressing the anomalous behavior during
the advection.

(a) Bp at t = 0.1 (b) Bp at t = 2

Fig. 2. The 2D field loop advection using a small advection angle θ ≈ 0.573◦ relative to thex-axis. The images are magnetic pressures at times
t = 0.1 and 2 using PPM and the Roe Riemann solver. The minmod slope limiter is used for taking slope gradients of characteristicvariable in the
PPM reconstruction step. All results are resolved on 200×100 grid cells using the upwind-MEC scheme.

In Figure 3 (a), the small angle advection test is repeated in3D, whereas a large angle advection is
demonstrated in Figure 3 (b). The velocity fields are respectively given byU = (cosθ,sinθ,2)T andU =

(1,1,2)T for the small and large angle runs. In (a), the same small advection angleθ ≈ 0.573◦ was used
relative to thex-axis as in the 2D case. In the large angle case in (b), the fieldloop makes a domain diagonal
advection from the given initial velocity condition. We setthe tilt angleω in Equation (69) to be same as
θ for both (a) and (b). In both runs, we show that the upwind-MECscheme manifests an oscillation-free
advections, well-preserving the initial cylindrical shape in the magnetic pressure as shown. As noted above,
numerical dissipation in the large angle run is naturally added from all directions, rather than from one
specific direction along the advection in the small angle case. Such added dissipation makes the large angle
case easier to demonstrate than the small angle case.

19



(a) Bp at t = 2. (b) Bp at t = 2. (c) Bp at t = 1.

Fig. 3. (a) 3D field loop advection using a small advection angle θ≈ 0.573◦ relative to thex-axis. (b) 3D field loop advection using a large advection
angle usingU = (1,1,2)T . (c) The standard field loop advection problem at timet = 1. All results use PPM and the Roe Riemann solver, and the
minmod slope limiter on characteristic variables in the PPMreconstruction. The results in (a) and (b) are resolved on 64×64×128 grid cells, and
(c) on 128×128×256. The upwind-MEC is used in all cases.

As a final test in this section, we perform the standard field loop advection problem in Figure 3 (c),
following the configuration in [31]. We see that the upwind-MEC scheme performs very well in evolving
the field loop successfully to the final timet = 1. This result in (c) can be directly compared to the results
reported in [31]. We also report that the upwind-MEC scheme increases the maximum value of the magnetic
pressure by 48% to 7.41×10−7 from its initial value of 5×10−7. The larger growth of the maximum value
is found in the standard-MEC scheme, increasing the initialvalue by 69% (not shown here).

Furthermore, we present two quantitative results in Figure4. They include (a) the temporal evolution of
the volume-averaged magnetic energy density normalized tothe initial (analytic) value< Bp >=< B2 >=

B2
0

√
5πR2/2; and (b) the temporal evolution of the normalized error< |B3| > /B0. Both results in (a) and

(b) are similar to those reported in [31,47]. However in (b),the final values att = 1 are found out to be little
larger than those in [31, 47] at each grid resolution. This isprobably because our full 3D CTU method of
including the MHD multidimensional terms ignores theO(∆t) terms in evaluating the eigensystems of the
Ad matrices atn+ 1

3 (see for example Equation (35)), whered = x,y,z.

4.2. Circularly Polarized Alfv́en Wave

In the next test we solve the circularly polarized Alfvén wave and its propagation [30,31,65]. This prob-
lem provides an important quantitative test of the 3D USM scheme because the smooth initial conditions
are nonlinear solutions to the problem. The Alfvén wave propagates parallel to thex1-axis of a transformed
coordinate system(x1,x2,x3) in the periodic computational domain[0,3]× [0,1.5]× [0,1.5]. The computa-
tional domain is resolved on 2N×N×N grid cells, where we adoptN= 8,16,32 and 64 for the convergence
study.

The relationship between the rotated coordinated system(x,y,z) and the non-rotated system(x1,x2,x3) is
described by the following coordinate transformation











x1

x2

x3











=











xcosαcosβ+ycosαsinβ+zsinα

−xsinβ+ycosβ

−xsinαcosβ−ysinαsinβ+zcosα











, (71)
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(a) Normalized, volume averaged magnetic energy density intime (b) NormalizedB3 error in time

Fig. 4. Time evolution of (a) the normalized, volume averaged magnetic energy density<Bp >=<B2 > and (b) the normalized error< |B3|>/B0.
Three different results on the grid resolutions ofN = 32,64 and 128 are plotted. The full CTU scheme is adopted with CFL=0.95 using PPM and
the Roe Riemann solver.

where sinα = 2
3, sinβ = 2√

5
, cosα =

√
5

3 , and cosβ = 1√
5
.

The initial conditions we use are the same as the equivalent test problems described in [31]. The initial
magnetic field is given by

B = (Bx1,Bx2,Bx3)
T = (1,0.1sin(2πx1/λ),0.1cos(2πx1/λ))T

, (72)

and similarly the velocity field is

U = (Ux1,Ux2,Ux3)
T =

{

(0,0.1sin(2πx1/λ),0.1cos(2πx1/λ))T for traveling wave,
(1,0.1sin(2πx1/λ),0.1cos(2πx1/λ))T for standing wave.

(73)

We set the wavelengthλ = 1. The density and the gas pressure are initialized byρ = 1 andp = 0.1. We
choose PPM and the HLLD Riemann solver, with the monotonizedcentral (MC) limiter.

Figure 5 (a) and (b) show the numerical errors on a logarithmic scale obtained with four different grid
resolutions ofN = 8,16,32 and 64. We test the reduced 3D CTU scheme using CFL=0.475 and the full 3D
CTU scheme using CFL=0.475 and 0.95 for the convergence study. The errors of the standing and traveling
waves are plotted in (a) and (b) respectively. For all cases we follow the error calculation formula used by
Gardiner and Stone [31] in order to compare our results with theirs. The results in Figure 5 (a) and (b) show
a second-order convergence rate of both reduced and full 3D CTU schemes for the smooth Alfvén wave
problem.

We also measure the relative CPU cost of the full CTU scheme tothe reduced CTU scheme, CPUrel =
CPUf-ctu/CPUr-ctu. We find that CPUrel is about 0.8 on average, which indicates that our full CTU scheme
with a higher CFL number (e.g., 0.95) is 20% more computationally efficient than the reduced CTU with a
lower CFL number (e.g., 0.475). The equivalent performancecomparison is different in the 6-solve and the
12-solve algorithms in [31] in that their relative CTU performance turns out to be 1.
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As the error magnitudes are nearly identical for both standing and traveling wave modes in the reduced
CTU with CFL=0.475 and the full CTU with CFL=0.95, we conclude that our full 3D CTU scheme exhibits
better performance while providing numerical solutions that are second-order accurate.

The figures exhibit a dependence of the truncation error in the full CTU scheme on CFL, in both wave
modes. The error corresponding to CFL=0.475 is smaller in the standing wave, whereas it is larger in the
traveling wave simulation. This type of CFL dependence is also seen in [31].

(a) Convergence rate for the standing wave solutions att = 1.0 (b) Convergence rate for the traveling wave solutions att = 1.0

Fig. 5. The circularly polarized Alfvén wave convergence rate for both the standing and traveling wave problems. PPM isused along with the HLLD
Riemann solver.

4.3. Orszag-Tang Problem

The third test problem is the Orszag-Tang MHD vortex problem[49]. We follow the 3D extension [36]
of the 2D problem in which the initial velocity field is slightly perturbed byε in the vertical direction. That
is, the initial velocity field defined on a periodical computational domain[0,1]× [0,1]× [0,1] is written as

U = (−(1+ εsin2πz)sin2πy,(1+ εsin2πz)sin2πx,εsin2πz)T, (74)

where we useε = 0.2 as in [36]. The rest are initialized similar to the 2D case sothat

ρ = γ2, p= γ, B = (−sin2πy,sin4πx,0)T , (75)

whereγ = 5
3. As in the 2D case, the plots in Figure 6 exhibit nonlinear steepening that builds strong discon-

tinuities from the smooth initial conditions. We show the evolutions of density att = 0.5 and 1.0 on 1283

grid cells. The density images at the top of the domain are very similar to those in the standard 2D case at
each corresponding time (e.g., see [40]).The flow symmetries are also well preserved in (b) where density
has developed into more complicated discontinuous flows.The Roe Riemann solver is used with the PPM
scheme for data reconstruction-evolution in normal direction with MC limiter.
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(a) Density att = 0.5 (b) Density att = 1.0

Fig. 6. Density plots of the Orszag-Tang problem at a resolution of 1283.

4.4. Rotor Problem

We extend the 2D rotor problem [5, 40, 65] to a 3D case by applying a small velocity perturbation anal-
ogous to that introduced in the 3D Orszag-Tang problem in Section 4.3. A dense rotating cylinder is ini-
tialized on a unit cube domain[0,1]× [0,1]× [0,1] with non-reflecting boundary conditions. The initial
velocity field is defined by

U = (u2d(1+ εsin2πz),v2d(1+ εsin2πz),εsin2πz)T , (76)

whereε = 0.3 and

u2d =







− f (r)u0(y−0.5)/r0 for r ≤ r0

− f (r)u0(y−0.5)/r for r0 < r < r1

0 for r ≥ r1

, (77)

v2d =







f (r)u0(x−0.5)/r0 for r ≤ r0

f (r)u0(x−0.5)/r for r0 < r < r1

0 for r ≥ r1

. (78)

The density, pressure, magnetic field, and the parameters are initialized as in the standard 2D case given by

ρ =







10 for r ≤ r0

1+9 f (r) for r0 < r < r1

1 for r ≥ r1

, (79)

p= 1, B = (5/
√

4π,0,0)T , (80)

whereu0 = 2, r0 = 0.1, r1 = 0.115, r =
√

(x−0.5)2+(y−0.5)2, and the taper functionf (r) is defined by
f (r) = (r1− r)/(r1− r0). The valueγ = 1.4 is used.

Panels in Figure 7 exhibit contour plots inx-y plane of the density, magnetic pressure and Mach number at
the final timet = 0.15. Contour slices are taken atz= 0.5. The problem is solved on a 1283 grid resolution
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using the Roe solver with PPM. MC limiter is used for the PPM reconstruction. For all cases 40 equally
spaced contour lines are plotted. All of the contour plots show that our 3D results correspond very closely
to the underlying 2D solutions (e.g., see [40]). As reportedin [65] one important feature to observe in this
problem is to check the oval contours of Mach number near the center. As illustrated, the contour lines are
symmetrical and well preserved with our choice of CFL=0.95.

(a) Density contour atz= 0.5 ranging between 0.4540 and 14.82 (b) Magnetic pressure contour atz= 0.5 ranging between 0.009705 and 3.171

(c) Mach number contour atz= 0.5 ranging between 3.268×10−5 and 5.938

Fig. 7. The rotor problem with a resolution of 1283 at t = 0.15. In all cases, 40 equally spaced contour lines are plotted.
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4.5. Cloud & Shock Interaction

In the next test problem we consider the interaction of a highdensity cloud with a strong shock wave,
originally studied by Dai and Woodward [19] and often referred to as the cloud-shock interaction problem.
This problem aims to test the code robustness in solving flow conditions such as high supersonic Mach
numbers in the pre-shock and the post-shock regions, wide ranges of plasma beta values across the front/rear
of the cloud, and strong shear flows [36,40,47,65].

Our computational domain is a cube, spanning from -0.5 to 0.5in all three directions and is resolved on
1283 grid cells. Supersonic inflow boundary conditions are imposed at the lower boundaryx=−0.5, while
outflow conditions are used elsewhere. The initial condition has different left and right states, separated by
an initial discontinuity atx= 0.1, given by

(ρ,u,v,w,Bx,By,Bz, p) =

{

(3.86859,0,0,0,0,2.1826182,−2.1826182,167.345) if x≤ 0.1,
(1,−11.2536,0,0,0,0.56418958,0.56418958,1) if x> 0.1.

(81)

The high density cloud is located on the right side of the domain, and has a spherical envelope defined by
(x− 0.3)2+ y2+ z2 = 0.152. A uniform densityρ = 10 and pressurep = 1 are fixed in the inner region
of the cloud, andγ = 5/3 is used everywhere. The velocity and the magnetic fields arethe same as the
surrounding right state plasma values. The simulation is carried out to a final timet = 0.06 using the
WENO5 reconstruction scheme and the Roe Riemann solver. We used the van Leer’s slope limiter for
limiting characteristic variables in the WENO5 reconstruction.

Figure 8 shows density (plotted in the top half using a red color scheme) and magnetic pressure (plotted
in the bottom half using a blue color scheme) att = 0.06. The main features of the cloud-shock interaction
process are well captured, in that the temporal evolution ofthe high density cloud produces disrupted shapes
as the cloud moves into the plane shock on the left.

Simulations of this problem are often performed using a rather diffusive set of numerical options such as
the minmod slope limiter, HLL-type Riemann solvers, or lower values of CFL. For example, as noted by
Tóth, dimensionally-split MHD algorithm can easily fail due to unphysical states (e.g., negative pressure
or density) arising in consequence of the strong interaction between the shock and the cloud. By contrast,
the 3D USM scheme utilizing the full 3D CTU algorithm and the upwind-MEC scheme can run this simu-
lation successfully without relying on such numerically dissipative choices. Despite our choice of the van
Leer’s limiter for WENO5, and of the Roe Riemann solver usingCFL=0.95, the final time step is reached
successfully without giving rise to any numerical instabilities.

4.6. MHD Blast Wave

The last test case is the 2D MHD spherical blast wave problem of Zacharyet al. [68]. We presented our
2D results in [40] and extend the problem to 3D here. We test three different configurations, differing by
the initial strength of magnetic field inx-direction, each leading to strong shock formation and propagation.

The computational domain is a unit cube[−0.5,0.5]× [−0.5,0.5]× [−0.5,0.5] with a grid resolution of
1283. The ambient gas is initialized as

ρ = 1, p= 0.1, B = (Bx0,0,0)
T , (82)

where the three simulations have initial values ofBx0 given byBx0 = 0, Bx0 =
50√
4π andBx0 =

100√
4π . At the

center of the domain, a spherical region of radiusr = 0.1 is initialized with a very strong pressurep= 1000.
The non-zero values ofBx0 =

50√
4π and 100√

4π produce very low-β ambient plasma states,β = 1×10−3 and

2.513×10−4 respectively. Through these low-β ambient states, the explosion initially emits almost spherical
fast magneto-sonic shocks that propagate with the fastest wave speed. The flow hasγ = 1.4.
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(a) Density and magnetic pressure att = 0.06

Fig. 8. The 3D MHD interaction between the high density cloudand shock structures resolved on 1283 grid using the Roe Riemann solver and the
5th order WENO scheme. Plotted are density (denoted as ”dens” in the legend) in the top half and magnetic pressure (denoted as ”magp”) in the
bottom half.

Shown in Figures 9–11 are (a) density (plotted in the top half) and magnetic pressure (plotted in the
bottom half) and (b) contour plots of gas pressure (top half)and total velocityU =

√
u2+v2+w2 (bottom

half) at timet = 0.01. The contour slice plots are thex-y planes taken atz= 0.
This problem is susceptible to a type of shock wave instability known as the carbuncle phenomenon [52].

The carbuncle instability takes place in multidimensionalnumerical solutions when using a less dissipative,
1D based (rather than the multidimensional based [10]) Roe-type Riemann solver, in the regions where a
planar shock is aligned to the grid. The cause of this instability is the lack of numerical diffusivity added
to the Roe-type fluxes perpendicular to the grid-aligned shock, resulting in a growth of small amplitude
noise in the transverse direction. There are several approaches to fix the instability [33, 50, 56, 59] which
all basically provide a similar mechanism to add extra numerical diffusion in the transverse direction. Here
we use a hybrid Riemann solver that appropriately combines Roe and HLLE depending on the strength
of shocks. In this approach, the HLLE solver is adaptively used only in strong shock fronts detected by a
shock switch [5]; the Roe solver is used elsewhere. The second-order accurate MUSCL-Hancock scheme
is used for the normal predictor calculations. We also employ a hybrid-type of slope limiter that combines
MC limiter for linearly degenerate waves (i.e., Alfvén andentropy waves) and the minmod limiter for
genuinely nonlinear waves (i.e., magneto-sonic fast and slow waves). This hybrid limiter approach provides
an added robustness and accuracy by using a compressive limiter (such as MC and van Leer’s) for crisper
representation of the linear waves, whereas a diffusive limiter (such as minmod) for the self-steepening
nonlinear waves [7].

The caseBx0 = 0 is illustrated in Figure 9. The carbuncle phenomenon can appear to be stronger in this
hydrodynamic limit than whenBx0 6= 0. Using the hybrid Riemann solver, however, we do not see any
artifacts at the shock fronts that are aligned to the grid axes. In the absence of magnetic field the explosion
propagates the shock wave spherically in all radial directions, as exhibited in the contour plots in Figure 9
(b).

In Figure 10 the intermediate magnetic field strength case with Bx =
50√
4π is shown. The explosion becomes
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(a) Density and magnetic pressure att = 0.01 (b) Contours of gas pressure and total velocity att = 0.01 in thex-y plane at
z= 0

Fig. 9. Results of the blast problem simulation withBx = 0 using a hybrid Riemann solver. In (a), density (denoted as ”dens” in the legend) is
plotted at the top half. Magnetic pressure (denoted as ”magp” in the legend) is plotted at the bottom half and is represented as small values that are
numerical noise. In (b), 40 contour lines are plotted for gaspressure (top half) between 0.1 and 73.62 and total velocity(bottom half) between 0 and
8.810.

anisotropic because of the non-zero magnetic field strengthin x-direction. The intermediate value ofBx

still permits shock wave propagation in they-direction, so that the overall spherical shape is not radically
distorted. Nonetheless, the development of the elongated wave structures in the direction parallel to theBx

field is evident compared to the hydrodynamic limit case in Figure 9.
Finally, Figure 11 illustrates the strongest magnetic fieldcase,Bx =

100√
4π . The explosion now becomes

highly anisotropic. This strong anisotropic behavior is well shown in Figure 11(b) in that the displacement
of gas in the transversey-direction is increasingly inhibited and hydrodynamical shocks propagate almost
entirely in thex-direction parallel toBx. It is also evident that several weak magneto-sonic waves are radiated
transverse to thex-direction. This process continues until total pressure equilibrium is reached in the central
region.

Balsara [7] pointed out that maintaining positivity of pressure becomes challenging due to the strong
wave propagation oblique to the mesh. Such unphysical pressures can distort contours, especially near the
outer boundary where a large and unphysical drop in pressuretakes place immediately ahead of the shock.
In our calculations, the pressure remains always positive throughout the simulations, evidence that our 3D
MHD scheme is very robust and accurate with our choice of highCFL=0.95.

5. Conclusion

We summarize several key features described in this paper. First, the 3D USM scheme has been intro-
duced, developed and studied. The method is a 3D extension ofthe 2D USM algorithm [40] which employs
characteristic analysis to account for contributions of both normal and transverse MHD fluxes in a truly
unsplit fashion. Therefore they do not need intermediate Riemann solves to correct the normal predictor
states with the transverse flux updates as in the usual 12-solve CTU algorithm [47, 55]. Our approach of
using characteristic analysis provides computational efficiency by storing the eigensystem evaluations when

27



(a) Density and magnetic pressure att = 0.01 (b) Contours of gas pressure and total velocity att = 0.01 in thex-y plane at
z= 0

Fig. 10. Results of the blast problem simulation withBx =
50√
4π

using a hybrid Riemann solver. In (a), density (denoted as ”dens” in the legend) is

plotted at the top half. Magnetic pressure (denoted as ”magp” in the legend) is plotted at the bottom half. In (b), 40 contour lines are plotted for gas
pressure (top half) between 0.009981 and 106.6 and total velocity (bottom half) between 0 and 11.84.

(a) Density and magnetic pressure att = 0.01 (b) Contours of gas pressure and total velocity att = 0.01 in thex-y plane at
z= 0

Fig. 11. Results of the blast problem simulation withBx =
100√

4π
using a hybrid Riemann solver. In (a), density (denoted as ”dens” in the legend) is

plotted at the top half. Magnetic pressure (denoted as ”magp” in the legend) is plotted at the bottom half. In (b), 40 contour lines are plotted for gas
pressure (top half) between 0.009161 and 202.9 and total velocity (bottom half) between 0 and 15.97.
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computing each normal direction and re-using them in the transverse flux calculations.
We introduced two different methods, the reduced and full 3DCTU schemes. The reduced scheme can

be considered as a straightforward extension of the 2D CTU algorithm of Colella [16], and is analogous to
the 6-solve algorithm in 3D by Gardiner and Stone [31]. Although the reduced CTU scheme has a simple
implementation for 3D, its stability limit is bounded by a CFL number less than 0.5. The full CTU scheme
significantly improves this limited stability range and canutilize the maximum stability range of CFL num-
ber close to 1. This was achieved by taking into account the second- and third-order cross derivative terms in
computing intermediate states atn+ 1

3 andn+ 1
2. Our full CTU scheme thus includes the multidimensional

upwind information that is crucial to provide the full CFL limit. We also showed that the relative CPU cost
of the full scheme compared to the reduced scheme is less than1, indicating the cost efficiency of the full
CTU scheme. The multidimensional MHD terms are also properly included in both normal and transverse
directions.

Second, we extensively investigated the lack of numerical dissipation mechanisms in the existing CT
algorithms, especially when there is a biased direction in advecting magnetic fields. In the small angle
advection tests in 2D and 3D, we showed that the field loop simply can fail to be cleanly advected, and
become distorted into non-circular or non-cylindrical shapes in most CT schemes. By contrast, the upwind-
MEC scheme, by incorporating upwind information adds the needed numerical dissipation when taking the
arithmetic average in CT. The algorithm enhances the previous MEC scheme [40] in that upwind-MEC
maintains consistency of plane-parallel and grid-alignedflows [30].

The results of the test problems in Section 4 give considerable confidence in our scheme for use as a robust
and reliable second-order, finite-volume 3D MHD algorithm.The methods developed in this paper for the
3D USM scheme preserve the divergence-free constraint without any evidence of numerical instability or
accumulation of unphysical errors using a very high CFL number close to 1. The suite of test problems
presented in this study include several stringent setups can be particularly challenging for MHD algorithms.
The scheme has been thoroughly tested and has been shown to perform very well, providing confidence in
its ability to correctly simulate a wide range of MHD phenomena.

The 3D USM scheme presented here has been implemented on bothuniform and AMR grids. It has been
integrated and tested in the official FLASH4 release of the Flash Center for Computational Science at the
University of Chicago [29].
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