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Abstract

We present a numerical model for the dynamics of thin viscous threads based
on a discrete, Lagrangian formulation of the smooth equations. The model
makes use of a condensed set of coordinates, called the centerline/spin repre-
sentation: the kinematical constraints linking the centerline’s tangent to the
orientation of the material frame is used to eliminate two out of three degrees
of freedom associated with rotations. Based on a description of twist inspired
from discrete differential geometry and from variational principles, we build a
full-fledged discrete viscous thread model, which includes in particular a dis-
crete representation of the internal viscous stress. Consistency of the discrete
model with the classical, smooth equations is established formally in the limit
of a vanishing discretization length. The discrete models lends itself naturally
to numerical implementation. Our numerical method is validated against refer-
ence solutions for steady coiling. The method makes it possible to simulate the
unsteady behavior of thin viscous jets in a robust and efficient way, including
the combined effects of inertia, stretching, bending, twisting, large rotations and
surface tension.
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1. Introduction

1.1. Context

The flow of thin viscous filaments is relevant to a variety of industrial pro-
cesses such as the drawing and spinning of polymer and glass fibers [1], 2] 3], and
to natural phenomena such as formation of Pele’s hair by lava ejected at high
speed by volcanoes [4]. In art, Jackson Pollock took advantage of the coiling
instability of a thin viscous fluid, the paint, impinging a surface, the canvas,
to produce a variety of decorative patterns by a fluid-mechanical process [3].
A commonplace version of the same coiling instability is observed when a thin
thread of honey is poured on a morning’s toast. This steady coiling problem is
prototypical of the dynamics of thin threads. Its apparent simplicity has made
it appealing to fluid mechanicians for a long time [6] [7]; however the various
regimes of steady coiling and its non-linear features, such as multistability, have
been understood in full details only recently [8, @] 10, [IT]. To a large extent, the
analysis of steady coiling has been made possible by the availability of numerical
simulation: the shape of the thread in the co-rotating frame is stationary, and is
given by a non-linear boundary-value problem [9] which has been solved using
numerical continuation.

In this paper we are interested in the simulation of the unsteady behavior of
thin threads, which is far less advanced. As an illustration, consider a recently
proposed variant of the coiling problem, similar to Pollock’s painting technique,
whereby the target surface moves horizontally at a constant velocity. The rel-
ative motion suppresses steady coiling solutions and forces the flow to become
unsteady. More than ten different patterns can be produced by varying the
lateral velocity of the surface and the fall height [12] [13], a number of which
have convoluted and intriguing shapes. The patterns are reminiscent of stitch
patterns, and the experiment has been coined the ‘fluid-mechanical sewing ma-
chine’. This experiment nicely illustrates the complex behavior that can result
from the dynamics of a thin, perfectly viscous filament. Existing numerical
methods are unable to reproduce this behavior, even though the principle of the
experiment is simple. This highlights the need for a robust and efficient method
for simulating the dynamics of thin viscous threads.

The dynamics of thin viscous threads is governed by the interplay of three
local modes of deformation, namely stretching, bending and twisting modes [14]
15]. At the global scale, these modes are coupled by geometrically non-linear
terms accounting for finite rotations. This coupling makes the resulting dy-
namics remarkably rich. Another, unfortunate consequence of the nonlinearity
is the absence of analytical solutions to the dynamical equations. This makes
the development of robust simulation methods even more desirable. The main
difficulty in developing such a method is that the underlying equations are
numerically stiff, as the governing equations are non-linear partial differential
equations of fourth order in space. This paper tackles this difficulty by intro-
ducing a careful and well-controlled space discretization. In fact, we introduce a
full-fledged discrete viscous thread model by extending all the relevant physical
quantities, such as strain rates and internal stress, to the discrete setting.



Fluid mechanical problems involving free boundary conditions can be simu-
lated using refined variants of the marker and cells method, namely the method
of [I6] [I7] for 2d viscous flows, and the GENSMAC method [I8| I9] for 3d
viscous flows; more recently implicit schemes coupled with projection methods
have been proposed, see e. g. [20]. The present paper is concerned with thin fila-
ments, for which the above methods are not efficient: when the thickness is small
compared to the longitudinal length scale, it is beneficial to use dimensionally
reduced equations as a starting point for simulations. Thanks to dimensional
reduction, the structure of the flow at small scale is solved analytically, which
makes it possible to use a simulation grid much coarser than the thickness.

While our simulation method addresses the general non-steady dynamics of
a thin thread governed by the combined effects of twist, bending and stretch-
ing forces, inertia and large rotations, a number of particular cases have been
simulated in the literature. Steadily rotating viscous threads are described by
time-independent equations in the co-rotating frame, which have been solved
numerically using methods for two-point boundary value problems [9, [111 [21].
The dynamics of a viscous string, where both the bending and twisting modes
are neglected, has been considered [22]. The periodic folding of a viscous thread
or sheet has been considered in a 2d geometry [23], 24] where twist does not
play any role. By combining the simulation of steady solutions with analytical
expansions describing oscillatory perturbations of small amplitude, the stabil-
ity of both the steady coiling solution [I1] and of the catenary-like profile of a
dragged thread [25] have been calculated. Many other problems, such as the
existence of rotatory folding, the competition between folding and coiling [26],
the stitch patterns produced by the fluid-mechanical sewing machine [12] and
the destabilization of steady coiling by precession [27] remain inaccessible to
those simulation methods that are based on restrictive assumptions.

In comparison to viscous threads, elastic rods have received a lot of attention,
both from the perspective of analysis [28] 29, B0, BI] and simulation [32] [33]
34, 35, 86, B7]. By the Rayleigh-Taylor analogy [7], the stress in a viscous
fluid is identical the stress in an elastic solid having the same geometry, when
the strain rate relevant to the viscous case is replaced with the current strain
relevant to the elastic case. Stated differently, the main difference between the
elastic and viscous problems is the presence of an additional time derivative
in the right-hand side of the viscous constitutive laws. This analogy explains
the buckling of viscous sheets [38, B9], a phenomenon usually associated with
elastic structures. Omne can take advantage of this analogy to simulate the
dynamics of viscous threads using a simulation tool written for elastic rods [40];
we explored this approach in a conference paper [41]. The possibility to recycle
an existing elastic code for viscous simulations with minimal additional work is
very attractive. However, the initial effort associated with implementing and
validating an elastic code is high. In situations where no elastic code is available,
it is simpler to implement a viscous simulator directly. In the present paper we
follow this approach and propose a numerical method that does not rely on an
external library for solving the dynamics of elastic rods.

While thin elastic rods are usually considered inextensible, the stretching



mode has to be retained in viscous threads, in addition to the usual bending
and twisting modes. In both the elastic and viscous cases, dimensional analysis
shows that the strain, or strain rate, associated with the stretching mode is
small compared to that associated with the bending and twisting modes, as
the corresponding modulus is larger by a factor proportional to the inverse of
the small aspect-ratio squared, a very large number. A specificity of the viscous
case is that the stretching mode cannot be neglected, even though its strain rate
is small. This is well illustrated by the phenomenon of helical coiling: a thin
thread poured from a container onto a fixed obstacle gets stretched by gravity
and remains straight over almost the entire fall height, but it bends and twist
severely in a small boundary layer near the bottom. Even though the stretching
is very mild, its effect is cumulated over the entire time of descent, unlike the
bending and twisting modes that come into play only near the surface. For
this reason, the stretching mode has to be considered in simulations of viscous
threads. By the incompressibility condition, variations of the thread’s radius
along its centerline need be considered as well. Another difference with the
elastic case is that capillary forces can have a strong effect on the motion, and
must be taken into account.

1.2. Model

The derivation of dimensionally reduced models for thin viscous filaments has
a long history and is still a research topic. The equations for thin viscous threads
were derived by asymptotic expansion from the equations for a 3d viscous flu-
ids by Entov and Yarin [42]. Their work builds upon the previous analyses of
viscous stretching by Trouton [I4], and of viscous bending by Buckmaster and
co-workers [43, [44]. In the case of elliptical cross-sections, the dynamics of the
centerline and the evolution of the geometry of the cross-section are coupled; the
corresponding equations have been derived by dimensional reduction in 1d by
Dewynne and collaborators [45], and later extended to a capillary fluid by [46].
Recent derivations of the equations for thin threads benefit from a clear iden-
tification of the mechanical quantities in the 1d model model [47], and of the
systematic use of Lagrangian coordinates [2I]. Asymptotic models accounting
for more general constitutive laws have been proposed: the case of a visco-elastic
fluid is treated in [48], and a general framework is considered in [49] which can
produce a variety of asymptotic models when a specific set of physical effects is
considered.

Here we consider the dynamics of a thin filament of an incompressible, purely
viscous fluid having circular cross-section, under the action of external forces
such as gravity, and internal forces (viscous stretching, bending, twisting, and
capillary tension). We consider the 3d problem, and the curvature and kine-
matical twist of the thread can be comparable to, or smaller than the inverse of
the thread’s length. Even though the fluid is very viscous, the effect of inertia is
considered. The role of inertia is well illustrated by the classical analysis of the
pendulum modes of a viscous string, see e. g. [I0]: in this almost straight ge-
ometry, the flow in the axial direction is typically governed by a small Reynolds



number and dominated by viscosity, although the flow in the transverse direc-
tion, which is characterized by different length and time scales, is associated
with a much larger Reynolds number and dominated by inertia. In the general
case, the local axial and transverse modes get coupled by the curvature of the fil-
ament. For this reason, we retain the inertial term in the balance of momentum
even though the constitutive laws are dominated by viscosity (Stokes’ fluid).

We assume that the cross-section of the filament is a disk, and remains
so as the filament deforms. Even when a viscous filament is extruded from a
non-circular opening, surface tension tends to round off the shape of the cross-
sections; this happens over a time scale which we assume is short compared
that of the flow. This is not always the case, and the possibility to account for
non-axisymmetric cross-sections has been demonstrated in the elastic case using
our numerical method [35, 4I]. While the general case raises no fundamental
difficulty, our presentation is limited to the case of axisymmetric cross-sections,
which is simpler: all the directions in the cross-sections are then equivalent and
there is no need to keep track of their absolute orientations. The case of tubes,
i. e. of non simply-connected cross-sections [50], is not considered here but this
extension may be considered in future work as well.

1.3. Proposed approach

The main features of our numerical method are the following. It is based on
a 1d model obtained by dimensional reduction, which makes it much more effi-
cient than a general-purpose model for 3d viscous flows. We use a Lagrangian
grid, making simulation vertices flow along with the fluid; this simplifies the
computation of viscous forces which, by the constitutive law, are proportional
to the comoving time derivative of the kinematical twist and curvature. We
use a reduced set of coordinates and eliminate two out of three degrees of free-
dom associated with rotations, by making use of the fact that cross-sections
initially perpendicular to the centerline remain so during motion: rotations are
represented using a single degree of freedom. In addition, the absolute angle of
twist of the cross-sections is eliminated from the equations, using the fact that
the cross-sections are circular. This results in an effective description of rota-
tions which only makes use of the instantaneous angular twist velocity, denoted
v. Internal viscous forces include the three physically relevant contributions
of stretching, bending and twisting. The discrete expression of these forces is
derived based on a Rayleigh potential using variational methods. This leads
naturally to discrete viscous forces. The Rayleigh potential plays a similar role
in the viscous setting as the elastic energy in the elastic setting. The viscous
forces are computed in a linear implicit manner, which means that the expres-
sion for the viscous forces is extrapolated to their value at the end of the time
step, based on a linearization carried out at the beginning of the time step.
This provides a good compromise between stability and ease of implementa-
tion. A fully implicit evaluation of these forces is also possible, as discussed in
section [9.3

Our main contribution is to propose an elaborate space discretization of a
viscous thread by considering a fully discrete model. All the relevant physical



quantities, such as the strain rates and the viscous forces, are defined in the
discrete setting. In this discrete view, bending is represented by the turning
angles of the centerline at the vertices, and we do not need to assume that the
turning angles remain small at all times. As a consequence, the simulation of
the discrete model is stable even if the mesh size is comparable to the smallest
radius of curvature of the thread. By contrast, stability of a numerical scheme
based on an ad hoc discretization of the smooth equations usual requires that
the grid size is much smaller than the smallest radius of curvature; in practice,
this requirement is severe as thin threads tend to spontaneously form strongly
curved region near the endpoints (such as the tiny rotating coils at the bottom
of a thin thread stretched by gravity and hitting a hard surface). The ability
to run simulations with a relatively coarse mesh is an important advantage of
the discrete model, as the maximum time step allowed by Nyquist stability
criterion decreases rapidly with mesh size in the presence of fourth-order space
derivatives: the simulation of coarser meshes is much more efficient. Given the
numerical stiffness of the underlying problem, robustness is a central issue in
the simulation of viscous threads. We address this issue by keeping full control
of the space discretization.

The discretization of bending in elastic rods is routinely done using flexural
springs at hinges [51], and the extension to viscous bending is straightforward.
Enforcing the twist forces is much less common. Our discretization of twist is
based on a discrete notion of twist, which is directly borrowed from our previous
work on elastic rods [35]. This discrete notion of twist is based on concepts from
discrete differential geometry, namely the holonomy of a discrete curve. This
representation of twist builds upon previous work highlighting the geometrical
origin of twist [52] 53] [54], and on related numerical methods used in mechanical
engineering [55].

This paper is organized as follows. In section [2| we derive useful identities of
geometry and differential calculus. In section [3| the equations for thin viscous
threads are formulated in a way that prepares the extension to the discrete the
setting, by making use of a Lagrangian description of motion and by deriving
the internal viscous forces and moments from variational principles. Section
establishes the equivalence with the formulation of the equations for thin threads
classically used by fluid mechanicians. In section [5| the discrete model is pre-
sented in close analogy with the smooth case of section [3} this section is at the
core of the paper. Section [f] considers time discretization; formulae that are
required in the implementation are summarized, and we discuss the treatment
of boundary conditions and adaptive mesh refinement. In section[7, we consider
the coupling of the thread with external bodies, such as a fluid container or
hard surface. In section [8] the code is validated against reference solutions for
steady coiling. In section [9} we discuss limitations and perspectives.

In this paper, an effort is made to establish the equivalence of different
formulations. The formulation of the equation of motion due to Kirchhoff is
popular among fluid mechanicians as it has a clear intuitive meaning, while
that based on the Rayleigh potential is rarely if ever used in this community
but lends itself to a natural discretization. Working out the connection between



these equivalent formulations will hopefully help to make this paper accessible
to different communities. In addition, presenting the discrete model in parallel
with the smooth model provides mutual insights into them. The reader should
keep in mind that only a small fraction of the formulae presented in the paper
are required for the purpose of implementing the method. These formulae are
recapitulated in section |6.4]

2. Mathematical toolbox

In this section we introduce some notations and mathematical identities
relevant to the mechanics of thin viscous threads, such as infinitesimal rotations
and the covariant derivative.

2.1. Perpendicular projection

We use underlines for vectors, and double underlines for rank-two tensors
(matrices). For any unit vector ¢ and for any vector a, the projection P, in the
direction perpendicular to g is defined by

P (g.a)=(L-g®q)-a=a—(g-a)g, (1)

where the last term in the right-hand side is the longitudinal projection.

2.2. Infinitesimal rotations

Consider an orthonormal frame d;(0), ¢ = 1,2,3, which is function of a
continuous parameter o: for any pair of integer indices 1 < 7,5 < 3, and for
every o, we have

di(”)'dj(a)zéija (2)

where d;; is Kronecker’s symbol, equal to 1 if i = j and to 0 otherwise. We shall
assume that the frame is C' smooth with respect to the parameter o.

Infinitesimal rotations can be expressed by means of a skew-symmetric ma-
trix, or equivalently as the multiplication by a vector I'(o) using the cross prod-
uct. More accurately, for any value of the parameter o, the Darboux vector
T'(0) is defined as the unique vector such that for any ¢ = 1,2, 3:

dd; (o)
do

= L(0) x d;(0). 3)

This definition will be used both when ¢ is the time ¢, or the arc length S.
This leads to the notions of instantaneous angular velocity ['(t) = w, or twist-
curvature vector ['(S) = m, respectively.

An explicit expression for the Darboux vector can be found by singling out
any particular vector d; in the triad, say ds:

dd
[(o) =d, x — +T5d 4
,(0) as X do + 1'3ds, ( )



where I's = I - d is defined by

_ dd,(0)

Py(o) = “1 2 dy(o). (5)

This can be checked by inserting equation into equation and then into
equation (3.

2.8. Covariant derivative
Let us consider an orthonormal triad d,;(c) and the associated Darboux
vector ['(¢). For any vector field a(o), we define the covariant derivative as

da(o) _da(o)
?_?—E(a)xg(a). (6)

It can be interpreted as the derivative measured in the frame moving with the
triad d;. In agreement with this interpretation, we note that equation can
be rewritten as

dd,
— =0. 7
% (7)
The covariant derivative satisfies the following identities, the proof of which
is left to the reader. The general Leibniz rule for the product of a scalar function

f(o) by a vector a(o) reads

d(f(o)a(o)) _ df(o)
22D 2 4(o) + £(0) 2. ®
In the first term of the right-hand side above, the regular derivative of a scalar
function is used. In the case of the scalar product of two vectors we have
dab) _da ., &% (9)
do do do

In the context of thin viscous threads, an important property of the covariant
derivative is its compatibility with the tangent and the normal projections. For
any vector @ we define the tangent and normal projections, using the last triad

vector d4 as the tangent direction:

da(o)

Q:a3d3+gL, where a3 =a-d; and QLZBJ_(dz;,Q). (10)

Here P, is the perpendicular projection operator defined in equation . A
consequence of equations is that the covariant derivative lives in the plane
orthogonal to ds if a(o) does so for all values of o, and is aligned with the
tangent if a(o) is aligned with the tangent for all o. In other words, both the
tangential and normal projections commute with the covariant time derivative,

~ ~ L ~
da , _das <d“> _dla) (11)

do —° do’ do d
By contrast the regular derivative d/do does not commute with the projection

operators. Note that in the first equation above, we use a regular derivative for
the scalar quantity ag, hence the absence of a tilde.



3. Smooth setting: a Lagrangian description of viscous threads

The equations for the dynamics of thin viscous threads are usually expressed
in Eulerian variables, see for instance references [I1]. In the present section we
reformulate these equations in Lagrangian variables. This will make it possible
to extend the geometrical discretization of twist of Bergou et al. [35], and then
to derive a discrete model of viscous threads in a natural way. A Lagrangian
formulation of the equations can be found in reference [21] but we are not aware
of any numerical method that actually makes use of it; most numerical papers
consider steady problems, for which an Eulerian grid is sufficient.

Below, we introduce the smooth quantities that are relevant to the kine-
matics and dynamics of viscous threads. They are introduced in a way that
makes it straightforward to identify their discrete counterparts later on. Since
the viscous thread can stretch, we make a careful distinction between the arc
length measured in reference configuration, which is denoted S, and the arc
length measured in actual configuration, denoted s.

3.1. Reference configuration

Our Lagrangian description requires the definition of a reference configura-
tion. This reference configuration can be imaginary, and does not need to be
the configuration of the thread at any particular time. A convenient choice is to
define the reference configuration to be an infinite, circular cylinder of constant
radius ag, as illustrated in figure [Il Obviously the equations of motion will be
independent of the choice of the reference configuration, and of the value of the
reference radius ag in particular.

The fluid is considered incompressible. It therefore simpler, although it is
not required strictly speaking, to assume that the mapping between the refer-
ence and actual configurations preserves volume. This is what we do in equa-

tions .

3.2. Kinematics of centerline

Let S be the Lagrangian coordinate, and ¢ the time. For any function f(S,t),
we denote its spatial derivative using a prime,

/ _ 0f(S,1)
r(s.n =, (12
and its time derivative using a dot,
; _ af(Sa t)
fis. = L0, (13)

By definition, the Lagrangian coordinate S follows fixed fluid particles. The
time derivative introduced above is known as a convective derivative, and is
often written f = % = DD—{ in the Eulerian context.

At time t the centerline of the thread is given by the function z(S,t), see

figure |1} The material tangent of the thread is denoted T'(S,t) and defined by
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actual

Figure 1: Reference and actual configuration of the thread.

I(Sa t) :E/(Sa t)' (14)

Note that this is not a unit vector in general.
The norm of T'(S,t), denoted £(S,t), measures the amount of stretching of
the centerline with respect to the reference configuration:

-~ _ |0x(S,t)
t(s.1) = (sl = | 2550, (15)
The unit tangent to the centerline is then defined as
VA

In our Lagrangian description, the arc length s in actual configuration is
viewed as a secondary quantity. It can be reconstructed by integration of the
differential equation expressing the identity ds = |dz|, namely

0s(S,t)
oS

s'(S,t) = =((S,t).

The Lagrangian axial strain rate d is defined by

dU(S,t)
ot ’

d(s,t) = (17)
and measures the rate of stretching per unit time. Note that this quantity differs
from the Eulerian strain rate, noted d¥ and defined later in equation .
In the Lagrangian framework the velocity u is simply the time derivative of
position,
0z (S, 1)
o’

u(S,t) = (18)
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and the acceleration its second time derivative,

ou(S,t)  0%x(S,t)
ot o2

A kinematical relation between the strain rate d(S,t) and the velocity u(.S, t)
can be established as follows:
ot 1 0% 1 0T* 1, 0T du(S, )
o2l o 2 o 0L e US THg (0

In the last equality, we have used the following identity, coming from the per-
mutation of derivatives with respect of ¢ and S:

or 0 (odx\ 0 (oz\ Ou
ot ot (85) L (6‘15) - 08’

Another useful identity follows from inserting the definition of ¢ in equa-
tion , T = (t, into the left-hand side of the equation above. Expanding the
time derivative, we find (¢t + ¢t = o/ (S). Applying the perpendicular projection
operator P, (t,-) on both sides and using P, (¢,t) = 0 and P, (t,1) = £ (the

7(S,t) = (19)

d(s, t)

other term cancels since ¢ - & = %%2 =0), we have
oL(S,1) 1 Ou(S,t)
= P t(S,t . 21
ot g(S, t) =1 (( ) )a oS ( )

This equation yields the time derivative of unit tangent as a function of center-
line geometry and of the velocity u.

3.3. Incompressibility: radius and related quantities

The viscous fluid is considered incompressible, as explained in section (3.1}
and we assume that the mapping from the reference configuration to the actual
configuration preserves volume. The reference configuration is a cylinder with
a uniform radius ap and a cross sectional area Ay = ma3. The radius of the
thread in the actual configuration is denoted a(S,t), the area is A(S,t), and
I(S,t) stands for the moment of inertia. We assume that the thread has locally
a cylindrical geometry, in which case

48t
A(S, 1) = ma(S,0),  I(S,1) = % (22)
The fluid volume enclosed in an infinitesimal length of the thread is A(S,t)ds =
A(S,t) £(S,t) dS in the actual configuration, and A (S,t) dS in reference config-
uration, see figure [l As a result, the incompressibility of the fluid is expressed
by
ag Ay Iy
a(S,t) = ——, A(S;t)=——, I(5t)=—5—— 23
where the subscript naught refers to the reference configuration, for which we
have ¢y = 1 by convention. In particular, the moment of inertia in the reference
configuration reads Iy = 7 ag/4.

11
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Figure 2: Darboux vectors (infinitesimal rotations) associated with spatial or temporal deriva-
tive of the material frame: instantaneous rotation velocity w and twist-curvature vector w. A
compatibility condition for w and m is derived in section see equation (33]).

3.4. Material frame, angular velocity

To complete the description of the motion, we need to keep track of twist,
defined as the rotation of the cross sections about the tangent. Indeed twist
gives rise to viscous shear stress in the plane of a cross-section, which affects
the dynamics of the thread. With the aim to measure twist, we introduce a
triad, denoted (d; (S, t),ds(S,t),ds(S,t)), which is rigidly attached to the cross-
sections. This triad follows the motion of the surrounding fluid particles and is
called the material frame.

The flow inside the thread is shearless in the limit of very thin thread, as
explained for instance in the work of Ribe and collaborators [II]. A similar
argument holds in the case of elastic rods, see for instance reference [56]. As a
result, material cross sections cannot slide with respect to another and remain
perpendicular to the local tangent to the centerline. This is known as Kirchhoff
kinematical hypothesis, but it can be justified rigorously by asymptotic anal-
ysis. Therefore we impose the following conditions: (i) the triad satisfies the
orthonormality condition , and (44) it is compatible with the centerline in the
sense that

ds(S,t) =1(S,1). (24)

This kinematical condition is at the core of the mechanics of thin threads; it
couples the rotations of the material frame, measured using the triad d; in the
left-hand side of the equation, with the motion of the centerline whose tangent
appears in the right-hand side.
The definition of the Darboux vector in equation yields, after replacing
the general parameter ¢ with time, o = t,
50 oy (s.1) x d(5.0) (25)
ot
for any value of the index ¢ = 1,2,3. In the context of time derivation, the
Darboux vector ['(t) is denoted w(S,t) and is called the angular velocity vector;

12



its tangential component is called the axial spin velocity I's = v(S, t),
U(Sv t) :Q(Sv t) E(Sa t)' (26)

By equation , v is given by v = dl -dy. An explicit expression for the angular
velocity is obtained from equation :

w(S,t) = (S, 1) x £(S,t) +v(S,1)t(S,1). (27)

A second Darboux vector is obtained in the case of spatial derivatives, insert-
ing 0 = S in equation . This vector is associated with infinitesimal changes
of the Lagrangian coordinate S, and is called the twist-curvature vector. It is
denoted 7(S,¢) and satisfies the fundamental relation (3)):

oS :E(S’t) xdi(s?t)’ (28)

for any value of the index 1 < ¢ < 3. Its tangential component is called the
(Lagrangian) kinematical twist and noted 7(S,t) instead of the generic notation
Fg:

7(5,t) = m(S,t) - £(S,1). (29)

This scalar 7(S,t) measures the rate of rotation of the material frame about
the tangent: 7(s,t) = d} - dy. It is different from the Frénet-Serret notion of
torsion for a three-dimensional curve which does not make any reference to
the material frame d;. The Frénet-Serret torsion measures the non-planarity
of a curve, although the kinematical twist 7 can be non-zero even though the
centerline is planar, as happens for instance in the case of a straight but twisted
configuration.

The normal projection of 7 is given by the general expression of the Darboux
vector in equation (4)), combined with the condition of compatibility ,

x(5,t) = K(5,t) +7(5,1) LS, 1), (30)

where we have introduced the Lagrangian binormal curvature

o1(S.1)

K(SJ):i(Sﬂt) X 95

(31)

Note K (S,t) depends only on the centerline, not on the material frame. Con-
sistently with our Lagrangian approach, both the kinematical twist 7 and the
binormal curvature K refer to a unit increment of the arc length S in the ref-
erence configuration, not to the arc length s in the actual configuration. As a
result, these quantities differ from the usual twist and curvature used in the Eu-
lerian framework and some care is required when comparing our equations with
their Eulerian variants. Equation shows that the tangential component of
7 encodes the twist while its normal projection encodes for the curvature, hence
the name twist-curvature vector.

13



The measure of strain relevant to the stretching mode is provided by the
extension £(S,t) defined earlier in equation . This vector 7(S,t) just intro-
duced provides a measure of strain relevant to the two other modes, twisting
and bending. For viscous threads, we need to evaluate the rates of strain. This
is the goal of the next sections: in section we derive an identity for the
covariant time derivative of w(5,t), and in section we identify this quantity
as the rate of strain, which is needed in the constitutive relations.

3.5. Compatibility of rotations

The rotation velocity w and the twist-curvature vector m characterize in-
finitesimal changes of the material frame d;(S,t) corresponding to increments
of time t and of arc length S, respectively. A compatibility condition relating
the vectors w’ and 7 can be derived from the identity of the cross-derivatives in
Lagrangian coordinates (¢,5):

ot a8 0S8 ot ’
In this expression, we express the innermost derivatives with the help of equa-

tions and and write
Iz x d;) _ O(w x d;)

ot as
We use equations and again to expand the derivatives, and find

or  Ow _
<8t_@5> Xd; =1 x (Wxd;)+wx(zxd,).

The right-hand side can be simplified using Jacobi’s identity, a x (b x ¢) + b
(¢ xa)+cx(axb)=0, valid for any set of vectors a, b, c. Witha=m, b=
and ¢ = d;, this yields

& X

ow Om
95~ ot W X,
which is also known as the Maurer-Cartan identity. Here we have simplified by
d,, since the relations hold for any value of the index 7 = 1,2, 3.

In the right-hand side we can identify the covariant derivative defined in
section here with o = ¢ and ¢t = d5. It is defined for an arbitrary vector
field a(S,t) by

5Q(Sa t) _ 9a(S, 1)

ot ot

We can then rewrite the compatibility condition in a compact form,

Q(Sa t) X Q(Sa t)' (32)

6&(‘97 t) _ 5E(S’ t)
20 2ol (33)
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Note that the role of w and x is symmetric and it is possible to rewrite this
equation the other way around,

on(S,t)  Ow(S,t)

oS ot

However, we shall only make use of equation in the following, as it provides
the relevant measure of rate of strain.

3.6. Strain rate vector

The quantities appearing in equation are fundamental for the dynamics
of viscous rods, and are related to the strain rates of the different modes of
deformation. The left-hand side is denoted e:

6= aﬂ(sat) (34)
oS
The vector e, called the strain rate vector, provides the measure of the rates of
deformation relevant to the twist and curvature modes. As such it appears in
the right-hand sides of the constitutive laws obtained by dimensional reduction,
see equations (63b). In particular, when the thread undergoes a rigid-body
motion, w is independent of .S, the strain rate vector e vanishes and so does the
viscous stress, as expected.
Let us introduce the projections of ¢(S,t) in the tangential and normal di-

rections, denoted e and ¢, respectively:
Q(Sat) :et(Sat)I(Svt)“i’Qb(Sat)v Qb(Sat) E(Sat) = 0. (35)

The subscripts are motivated by the fact that the projections are associated
with the twisting and bending deformations, respectively, as we show below.
The projections are defined by the following explicit formulas,

et(S,t) = e(S,t) - t(S,t) (36a)
e,(5,t) = P (S, 1),e(5,1)) (36b)
The covariant derivative in the right-hand side of the compatibility con-

dition commutes with the projection by equation (11}). As a result, the
decomposition of the twist-curvature vector = in equation (30| implies

or(S,t)

el(s,t) = T (37a)
5y = PG o

Here ey and e, appear to be given by the time-derivative of the strain measures
— the kinematical twist 7 and the curvature binormal K. These derivatives are
evaluated in a frame following the material (notice the presence of the covariant
derivative in the second equation, and recall that the time derivative in the first
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equation is actually a convective derivative as we use Lagrangian variables).
Equations confirms that e; and e;, measure the rates of change of the twist
strain 7 and of the bending strain K, respectively. For the sake of completeness,
we recall the definition of the rate of strain associated with the stretching mode
of deformation, given earlier in equation :

d(s, 1) = ‘%(ast’ 28

(37¢)

The decomposition of e in equation , and the interpretations of its pro-
jections in equations raise some difficulties in the discrete setting. Indeed,
the definition of e as the gradient of rotation, given in equation , cannot be
extended to the discrete case, as we shall see. However it is possible to propose
discrete equivalents to its tangent and normal projections e; and e;, separately.

3.7. A geometrical identity for the twist’s rate of strain

We derive in this section a geometric identity which is central to the mechan-
ics of thin elastic rods and viscous threads. It explains the coupling between the
motion of the centerline z(S,t) and the the twist 7(5,¢). In a previous work [35]
focusing on the case of elastic rods, this equation was used to obtain a natural
discretization of the twist. A similar discretization strategy is followed here.

We start by projecting the compatibility condition along the tangent
direction, using the product rule:

or(S,1) ow 0t -w) Ot
e =—F =t 55 = — 50 W
ot oS oS oS
By equation , we can identify the quantity (¢-w) appearing in the right-hand
side as the angular twist velocity v. In the second term, the time derivative of
the tangent is given by combining equations and as

o — dv(S,t)
tT o8

In the right-hand side, we can replace w by its transverse projection K inside
the cross product 7 x t. We then permute the mixed product and use w xt =1t
by equation (25). Then we find

o ov(S,t)
tT o8

We shall now comment a little on this equation which is important both at a
practical and at a fundamental level.

On a practical side, equation makes it possible to use the centerline
position z(5,t) and the spin velocity v(S,t) as the primary variables for pa-
rameterizing the thread. When combined the definitions K =¢ x t' and t = 2/,
equation provides the value of the strain rate for the twisting mode, e; = 7,
a quantity that is required in the constitutive law . This centerline/spin
parameterization has important benefits, as we shall argue later on.

(rxt) w.

+K(S,1) - 81(5;’ 24 (38)
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More fundamentally, equation explains the coupling between the center-
line motion and the twisting motion of the material frame: the twisting moment
is proportional to the rate of strain e;, which not only depends on the rotational
degree of freedom v (through the first term in the right-hand side) but also on
the centerline motion (through the second term). The geometry underlying
equation has been discussed by several authors but has never been used as
a starting point for setting up simulations of viscous threads. This equation can
be seen as an incremental version of the Célugareanu-White-Fiiller (CWF) the-
orem [57, 58, 59, [60L [61] which defines the notion of writhing for a closed curve
— for a short review on this theorem, see references [62, [53]. The CWF theorem
has become very well known in the context of supercoiled DNA [63], 64}, 65}, 66]
or polymers [67], and has been used in other contexts such as the dynamics
of elastic filaments in a viscous fluid [54] [68] or the mechanics of proteins [69].
The binormal curvature K (S,¢) in the right-hand side of equation above is
directly responsible for the geometrically non-linear term T" x n of the equations
of motion, see equation . There is no obvious way to discretize this term
of the equations of motion, but a natural discretization will become apparent
when this term is connected to the geometric context of equation , a variant
of which will appear in the discrete setting, see equation below.

3.8. Centerline/spin representation

The initial parameterization of the thread introduced in sections and
is based on the centerline position z(S,t) and the orthonormal frame (d;(S,t))
with 1 < ¢ < 3. This parameterization is subjected to the kinematical constraint
of compatibility expressed by equation . From a numerical viewpoint it is
desirable to eliminate this constraint, and use a reduced set of variables instead.
To this end we introduce the centerline/spin representation (z,v): the center-
line is described using z(S, t) as earlier but the material frame is described in an
incremental way using the spin velocity v(S,t) introduced in equation . By
‘incremental’; we mean that we do not keep track of the absolute direction of the
transverse material vectors d; and d, but only of the spin velocity v = dl -dy. In-
deed, in the case of isotropic cross-sections which we consider here, the absolute
direction of the material frame can be eliminated from the equations of motion.
Our centerline/spin representation is inspired from the centerline/angle repre-
sentation introduced by Langer and Singer in the context of elastic rods [53];
while they define the orientation of the cross-section incrementally with respect
to arc length S using a twist angle 0, we define it incrementally with respect
to time ¢ using a spinning velocity v. The benefit of our representation is that
it makes the matrix governing the dynamics of the thread sparse, as explained
later. The initial (z,d;) representation uses 3 degrees of freedom, such as the
Euler angles, for the orientation of the material frame, which are subjected to
2 scalar constraints for the compatibility. By comparison, the centerline/spin
representation uses a single degree of freedom v(S,t) for the description of the
twisting degree of freedom, which is free of kinematical constraint. This has the
important benefit of decreasing the number of degrees of freedom and removing
constraints.
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In this section and in the next ones, we expose the principle of the time-
stepping algorithm in the centerline/spin representation. This algorithm is used
at a particular time t to derive positions and velocities at the next time step.
In the absence of any ambiguity, we shall often omit the time argument ¢ from
now on. The equations of motion being second-order in time, we assume that
the actual position, as well as the linear and angular velocities as prescribed,

z(S) =z(S,t), u(S)=2xz(St), u(S)=0v(S,1). (39)

We show how the linear and angular accelerations (S) = Z(S) and ©(S) can be
computed. This requires reconstructing a number of intermediate quantities.

To begin with, we can readily compute the axial strain £(5), the unit tangent
t and the binormal curvature K defined respectively by equations 7 ,
and in terms of the centerline, without even using the velocities:

0S) = 12/(9)] (40a)
1(S) = 92((55)) (40b)
K(S) =t(S) x t'(S) (40c)

3.9. Reconstruction of strain rates from velocities

We now proceed to the reconstruction of the strain rates d, e; and e, defined
in equations . We introduce a reconstruction scheme valid for arbitrary
velocities, denoted @ and v, that are not necessarily equal to the velocities u
and v of the actual motion. These velocities & and © will be called virtual.
Working out the dependence of the strain rates on arbitrary (virtual) velocities
will enable us to put the constitutive laws in a variational framework, using
dissipation potentials. This approach will allow for a natural discretization of
the constitutive laws.

We start by reconstructing the time derivative of the tangent, £. By equa-
tion this involves the operator ¥V

V(w2 8) = —— P (t(S),&(5)). (41a)
€(5)
Note that )V depends on the functions z and @, and not just on their values at
S. In the right-hand side, ¢(S) and t(S) are reconstructed from the centerline
xz(S) passed as the first argument of ¥V using equations (40]).

In the particular case of the real motion, when the operator is evaluated with
the actual velocity @(S) = u(9) = &(S,t) defined in equation (39), V yields by
construction

_ 048 1)

V(z;u;S) = 5 (41b)

Before considering the strain rates, we also need to reconstruct the material
rotation w. For this purpose, equation (27 suggests introducing the operator

W(z; i, 93 S) = 0(S) L(S) + t(S) x Y(z;4; S). (42a)
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Here again, the tangent ¢ is implicitly a function of the first argument x. This
operator W yields the material rotation in the case of a real motion @ = u:

W(z;u,v; S) = w(S,t). (42b)

The strain rates d, e, and e, are reconstructed by means of three operators,
noted L, £ and L respectively. The definition of the operator associated with
the stretching mode is motivated by equation :

Ls(a;a;8) = t(S) - &/(S). (43)
When evaluated with a real motion it yields the strain rate,
Ly(z;u;5) = d(S,t). (44)

The twisting and bending strains are introduced through a decomposition
equivalent to the one used in equation :

dW(z; @, 0; S)

15 = L%z; 0, 0; 9) £(S) + L1 (238, 9; 5), (45)

where the right-hand sides are defined by the following projections:
£ (aa,0:5) = 1(s) - PAELED) (462)
s - 2, (us), PELEE) (461)

Note that the total derivative of W in equation and produce terms pro-
portional to @' (S) and 9'(S) according to the definition of W in equation (42al).
As a result, the operators £ and £ also depend on the local values of @’ and
0.

For a real motion, W evaluates to w by equation , and so the left-
hand side of equation (45) evaluates to the strain rate vector e. Comparison
of the decompositions and shows that, by construction, the operators
operators £ and L yield in the case of a real motion

LY(z;u,v; 8) = ei(S, ) (47a)
Eb(l’;g,v; S) = e, (S, 1). (47Db)

A more explicit form of the operator £' defined in equation can be
found by inserting the definition of W into equation . After some algebra,
we find

LY(z;0,9; 9) = '(S) + K(5) - V(z;4;9), (48a)

where K is the curvature binormal computed from the centerline configuration x
using equation . This is an extension of equation to virtual velocities.

All the operators V, W, L, L, LP introduced above depend linearly on the
virtual velocities 4 and 0. Their discrete equivalents shall allow us to calculate
the viscous stress.
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3.10. Dissipation potentials

In the Lagrangian framework, internal viscous stress can be described by a
Rayleigh potential, see for instance reference [70]. This potential, which plays
a role similar to the potential energy for elastic rods, expresses the power dissi-
pated by viscosity during a virtual motion prescribed by the velocities @(.S) and
0(S). This potential has three contributions, corresponding to the stretching,
twisting and bending modes of deformation:

D(z;1,0) = Ds(x; ) + Dy(; 4, 0) + Dy (230, 0). (49)

The stretching contribution is proportional to the stretching modulus whose
expression is due to Trouton [14]:
Dy
D(l) =3 A(l) = 2 (50)
where p is the fluid’s dynamic viscosity. Here Dy = 3u Ag = 3u (mad) is the
value of the stretching modulus in reference configuration. The twist modulus
C and the bending modulus B read [71], [9)]

Co
= 6727

By

C) =2u1(0) =7z

B(¢) =3ulI(0) (51)
where Cy = 2u Iy and By = 3 u Iy are the moduli in reference configurations,
and the moment of inertia in reference configuration Iy is defined in section [3.3

We propose the following expressions for the stretching, twisting and bending

contributions to the Rayleigh potential:

S+
pimi = [ G (tlwis) as. (522)
st 2
Diwai) = [ G (Cwns) s, (520)
st 2
Do) = [ S (Lw i) as. (52¢)

Here S~ and S* denotes the Lagrangian coordinates of the endpoints of the
thread. Both S~ and S* may depend on time even though this time dependence
is implicit for the sake of readability. In all the expressions above, £ is a function
of the first argument x by equation . Note that the stretching contribution
D does not depend on the rotational degree of freedom © but solely on the cen-
terline velocity 4. Since L, £ and L are linear forms, all contributions Dy, Dy,
and Dy and the total Rayleigh potential D are quadratic forms of their velocity
arguments 4 and 0. This quadratic dependence reflects the linear character of
the viscous constitutive laws.

The expressions introduced in equations for Dy, Dy and Dy, will be
justified a posteriori in section [£.2] by checking that they lead to the correct
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constitutive laws. In particular, we will explain the reason for the factor 1/¢ in
the integrands above.

The Rayleigh potential D allows the equations of motion for a thin viscous
thread to be put in variational form. As noticed by Batty and Bridson [72] in
the context of 3D fluids with free boundaries, this variational setting provides a
natural discretization of these equations. We follow this general approach, and
start by exposing the variational structure of the smooth equations.

3.11. Equations of motion

The main property of the Rayleigh potential is that is gives the viscous force
by derivation with respect to the virtual velocity: the resultant of the internal
viscous stress on the centerline is given by

ID(z; 0, D)

EV(S,t) = 8@(5)

(53a)

(@,9)=(u,v)

The notation in the right-hand side must be understood as follows: we first take
the functional derivative of the potential with respect to its argument @, and
later substitute the velocity arguments with their real values, & = u and v = v.
This quantity P, is the resultant of the internal viscous forces, per unit length
dS in reference configuration. It includes the stretching, twisting and bending
forces, each contribution being listed in equation .

The stress conjugated to the spin velocity v is the twisting moment due to
the internal viscous stress in the thread. It is given by a similar formula,

OD(z; 4, 0)

(53b)

(@,2)=(u,v)

In equations the functional derivatives in the right-hand sides are calcu-
lated practically by computing the first variation dD of the Rayleigh potential
for small increments of the virtual velocities, denoted du and dv, and by identi-
fying the result with

S+
A (s, v: 5, 5v) = / (P, du+ 0, v) dS. (54)

This calculation will be carried out later in section[4.4] when we work out explicit
expressions for the net viscous force P, and moment ()., and check that they
are equivalent with the classical Kirchhoff equations.

In terms of the net viscous force P, and twisting moment @), the balance
of linear and angular momentum can be written

p Ao @(Sa t) :Bv(sa t) + P(S, t) (553*)
0TH(S,1) = Qu(S, ) + Q(S,1). (55b)

Here P(S,t) is the density of external force and Q(S,t) the density of exter-
nal twisting moment. These balance laws are for an infinitesimal segment, and
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per unit length d.S in reference configuration. The factors (p Ag) and (¢.J) are
its mass and moment of inertia about the tangent, measured per unit refer-
ence length dS. Here, J is the moment of inertia per unit length ds in actual
configuration, given by the usual formula

J(ﬂ)://IK r2rdrdd =2pI(0). (56)

The factor £ in the left-hand side of equation is because an element of
reference length d.S has a moment of inertia Jds =£¢JdS.

By multiplying both terms of the first equation by a vector-valued test
function 0u(S) and both terms of the second equation by a scalar-valued
test function dv(S), we can write the equations of motion in weak form.
The motion is such that, for any choice of the functions ou(S) and dv(S) and
at any time ¢,

st s+
/ (p Ao w-du+J 0 ov)dS = —dD(z; u, v; du, 5v)+/ (P-du+Qdv)dS (57)

where u(S,t) = £(S5,t) is the actual velocity. In continuum mechanics, the
left-hand side is called the virtual work of acceleration, the first term in the
right-hand side is the internal virtual work, and the last term is the external
virtual work. This weak form of the equations of motion will be useful for going
to the discrete case.

3.12. Eaxternal loading
In equations , P and @ denote the the force resultant and the twisting

moment due to external forces — as opposed to the internal, viscous forces in the
thread. Those forces are given per unit length dS in reference configuration. In
our validation examples, we consider a thread moving under the action of gravity
and surface tension. Contact with the ground is not handled by applying forces
but instead by freezing the motion of particles, as explained later in section
we do not need an explicit expression for these contact forces.

Gravity is represented by a force
P(S,t) =P, (S;t) =pAog,  Q(S,t) =Qg(S,t)=0. (58)

We now work out the expression of the effective forces acting on the centerline
as a result of surface tension on the lateral boundaries of the thread. Those forces
are derived by variation from an energy proportional to the lateral area of these
boundaries. In the case of a slender thread which we consider, the capillary
energy is written using the following approximation of the lateral area:

S+
£,(z) = / v 27 a(4(9)) £(S) dS, (59)

where «y is the surface tension, possibly depending on time and position along
centerline, and 2w a(¢) (£dS) is the lateral area of a cylinder of radius a and
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length ds = £dS. We neglect the small conical angle of the lateral surface,
which has a negligible influence on the capillary forces for a thin thread.

The effective capillary force acting on the centerline can be obtained by
variation, using the definition of a(¢) in equation and the definition of ¢ in
terms of z(S) in equation (T5). This yields

dé(z;0z) = {@7 54 *

S+
- / P.(S) - 6zds, (60a)

where the bracket denotes the boundary term coming from the integration by
parts, and

aﬂ'\/(s? t)
Po(S,t) = —5o— (60D)
Q(5,1) =0 (60¢)
n,(S,t) =yma(S,t)t(S,1). (60d)

3.13. Neglecting rotational inertia

For thin elastic rods or viscous threads, a classical approximation, proposed
by Kirchhoff himself, is to neglect the rotational inertia, that is to set J =
0 in the equation of motion . This approximation can be justified by
the fact that the kinetic energy associated with rotational inertia scales like
(0 J)v?® ~ £pa*(1/t*)? for a motion happening on a typical time-scale t*. By
contrast the kinetic energy associated with translation of the centerline scales
like £p Au? ~ £ pa® (L/t*)?, where L is the typical length-scale of the motion.
The energy of the rotational mode is therefore negligible for slender threads, for
which L > a. Rotational inertia is always dominated by translational inertia
— except for a straight viscous thread moving in pure twist, a particular case
where the kinetic energy in translation is exactly zero and the above argument
is inapplicable. Therefore, we set J = 0 in the following. The longitudinal
balance of angular momentum becomes a condition for the quasi-static
equilibrium of the twisting mode:

0= QV(S’ t) + Q(S’ t)' (61)

This equation expresses the fact that the typical time associated with the damp-
ing of twist waves, which is much shorter than that associated with the damping
of bending waves by the above scaling argument, is considered to be shorter than
the time step of the simulation.

4. Equivalence with Kirchhoff equations for a thin viscous thread

This section aims at demonstrating the equivalence of the Lagrangian de-
scription of threads based on the centerline/spin representation (z,v) exposed
in the previous section, and the classical Kirchhoff equations for thin viscous
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threads. The goal is to bridge the gap with classical formulations, and to iden-
tify important stress variables that underlie the dynamic equations derived in
the previous section. No new ingredient required in the numerical model will
be introduced, and the reader interested only in the implementation can skip
ahead to the derivation of the discrete model in section Bl

4.1. Constitutive laws underlying the dissipation potential

To establish the connection between our formalism and the Kirchhoff equa-
tions, we shall start by calculating the force P, and twisting moment (), arising
from viscous stress. By equation , this requires working out the first varia-
tion of the dissipation potential with respect to the velocities @ and 0, near the
real motion & = u and ¥ = v. Combining equations and , we can write
this first variation as

- dD(gy U, v; 5@7 6’0) =

l 4

st t b
_ / (D Es 410w + CE° art (5w, o0) + % L (5, 51})) as,

where we have temporarily omitted the arguments x, u, v and S in the integrand
for better readability. Since the latter are the real velocities, we can make use

of equations and , and write
- dD(&v U, v; 6@7 6’0) =

S+
_ / (Dzd dL.(5u) + % AL (Su, v) + % AL (5u, (51))) as, (62)

where the omitted arguments z, u and v again refer to the real motion.
Let us denote ng the first coefficient appearing in the integrand, and assemble
the two other coefficients into a vector denoted m:

ne(S,8) = = (D d) (63a)

(Cest+ Bey,). (63b)

SR s

m(S,t) =

Note that these coefficients do not depend on the virtual motion but only on the
actual one. The quantities introduced in equation will be identified as the
viscous stress in the thread. More accurately, ng is the scalar tension resisting
stretching and m the internal moment arising from twisting and bending.

The vector tension will also be useful later on,

n(S,t) = ns(S,t) (S, ). (64)
It can be interpreted as the internal force that arises in response to stretching

deformations.
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4.2. Equivalence with Fulerian constitutive laws

The constitutive laws can be rewritten in Eulerian form, which is how they
are classically presented in the literature. From equations , we have

ng(S,t) = Dd" (65a)
m(S,t)=[C(tet)+B(l—t®t)] -, (65b)

where we have introduced the Eulerian strain rate,

d 1 10w Ow

P=9 C=ge=i5= 5 (65¢)
In the square brackets of equation , we have introduced the tensor of
viscous moduli. The operators in parentheses inside these square brackets are
the tangential and perpendicular projection operators.

In[Appendix A] we show that the constitutive laws used in the classical work
of Ribe [9], and derived by him from the Stokes equations in 3D, are equivalent
to equations above.

We note that, according to the Rayleigh-Taylor analogy, the case of an elastic
rod is described by very similar equations, namely by replacing the strain rate e
in the constitutive law by the Eulerian twist-curvature vector 7, and the
constitutive law for the internal tension by the condition of inextensibility,
(=1.

4.8. Canonical form of the internal virtual work

The viscous introduced stress introduced in equations allows equa-
tion to be written as

S+
— dD(z;u, v; 0u, dv) = —/ (ns dLs(0u) + m - dM(du, 61))) ds, (66a)

where
dM(z; 6u, 6v; S) = t(S) ALY (z; du, 6v; S) + AL (z; 0w, dv; S). (66b)

In this definition of the operator dM, we recognize the first variation of the
right-hand side of equation — this can be shown by noting that its right-
hand side is linear with respect to the virtual motion du and dv. Inserting into
the above equation, we find a compact expression for the first variation of the
dissipation potential:

S+
(na(9)- D4y sy ALY g (g7)

— dD(u, 0v) = — /

S_

Here, the first term in the integrand has been rewritten using nsdLs = ng (¢ -

0w’ (S)) = n, - 61/ () by equations and (64).
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For any real motion, the quantity W evaluates to the angular velocity w
of a cross-section by equation . Therefore dW can be interpreted as the
virtual rotation associated with the virtual motion du and dv. In view of this,
equation (]@ is similar to the classical expression for the internal virtual work
in a 3D continuum, — [[[ ¢ : V(6z) d3z. In the context of thin viscous threads,
the 3D stress ¢ is replaced by the stretching force n, in the first term and by the
bending and twisting moment m in the second term, the gradient is replaced
by the spatial derivative d/d.S, and the virtual displacement (dz) is replaced by
the virtual velocity du and virtual spin velocity dv.

4.4. Identification of the net viscous force and twisting moment

We shall now derive explicit expressions for the effective force and moment
acting on the centerline as a result of the internal viscous stress. Inserting the
definition of V in equation (41a)) into the definition of W in equation (42a)) and
computing the first variation, we have

/
dW(0u, 0v) = tév + %

Inserting into the expression @ for the virtual internal work, the first variation
of the dissipation potential reads

st 1 ’
déu d(tdv + 7t x 5/ (S))
deéy,&) :—/ (ns.er. £ >dS
( ) o as as

We can integrate by parts to cast the right-hand side into a form similar to

equation :

st 1 ’
om d(ng + 7t x m/(9))
—dp =BT = 24 :
dD(du, 0v) +/S_ (t 55 dv + 35 6u> ds (68)

where BT stands for boundary terms. Those boundary terms are omitted in
the smooth case, and will be readily obtained from our variational formulation
in the discrete case.

Identifying equations and , we find an explicit expression for the
net force P, acting on the centerline and for the net twisting moment Q) :

_ 0On(S,t)
P (5,t) = 99 (69a)
Qu(5.1) = 1(s.1) - 225D (69b)
where
(5.0) = 1, + g (5.0 x 200, (690)
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This net force results from the combination of viscous stretching, twisting and
bending stresses inside the thread, and has been computed using the Rayleigh
dissipation potentials. In these expressions we have omitted pointwise forces
and moments at the endpoints S = S* coming from the boundary terms. They
will be restored in the discrete model.

4.5. Equivalence with Kirchhoff equations

We proceed to show that the expressions for the net force P, and
twisting moment (), acting on the centerline are equivalent to the equation of
motion for a thin thread due to Kirchhoff.

The Kirchhoff equations are usually written in Eulerian variables as

— 4+ PP =pAi (70a)

a—mJ@XQJrQE;:J@z (70b)
s
Here, P¥ and QF are density of applied force and twist per unit length ds in
actual configuration, respectively.
When these loads are multiplied by ¢ = g—g, we obtain our Lagrangian den-
sities of load P = ¢ P¥, Q = ¢ Q®. Multiplying both equations (70a)) and
by ¢, we have

on
n _ .. 1
785+P pAo i (71a)
om
55 TLxn+Qt="LJit (71b)

where Ay = ¢ A is the area of the cross-section in reference configuration, and
T = ¢t is the deformed (non-unit) material tangent defined in equation .

Projecting equation along the tangent and normal directions succes-
sively, we have

om s
1 om

The tangential component of the internal force n can be interpreted as that
resisting stretching of the centerline. It is called the tension and is denoted n,.
The full internal force n can then be reconstructed by combining this tangential
component n, = ngt with its normal component, given by equation :

n=n,+-tXxX = (72a)

Comparison of equations (71a) and (55a]) reveals that the viscous stress, de-
scribed by the quantities n and m, produces an net force

P, =— (72b)



Figure 3: Discrete setting: centerline is a polygonal curve. Note that we use subscripts for
vertex-based quantities, such as vertex positions, and superscripts for segment-based quanti-
ties, such as segment length £°.

on the centerline. Similarly, comparison of equations (55b|) and (71d]) reveals
that the net twisting moment due to viscous forces reads

0
Qu=t- 5= (720)

The expressions and for P, and @, derived from the Kirchhoff
equations are identical to those derived earlier in equations from our
dissipation potentials, based on the centerline/twist representation. We have
therefore established the equivalence of our formalism with the classical, Fule-
rian equations for thin viscous threads. The benefit of our formalism is that it

can be discretized in a natural way, and leads to an efficient implementation.

5. Space discretization: the discrete viscous thread model

In this section, the spatial discretization is carried out, by closely following
the smooth formalism of the previous sections. Our derivation of the discrete
model makes use of three key ideas that have been exposed in the smooth
setting. First, we extend the centerline/spin representation to the discrete case;
its benefit is to eliminate two out of three rotational degrees of freedom using the
condition of compatibility of the tangent. Second, we introduce a discrete twist
using the geometrical notion of parallel transport. Third, we derive equations
of motion in the discrete setting by variational principles, starting from discrete
dissipation potentials.

We start our analysis of spatial discretization by defining discrete quantities
such as centerline position, linear and angular velocities, rate of strain, etc.
Time discretization will not be discussed until section [6l

5.1. Kinematics of centerline

The centerline is discretized using (n + 2) vertices. Their positions in space
are noted (), z;(t), ..., z,,(t), see figure 3, Our numerical model involves
setting up a force, assigning a mass, and integrating the fundamental law of
dynamics at each vertex z;(t). The thin thread behavior is produced by means
of a discrete viscous force, which by design converges to the force P, (S, t) defined
in equations and in the smooth limit, n — co.
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The segment joining vertices x; and x;,, is noted

T(t) = 244 (1) — 2;(8), (73)

as shown in figure Following classical conventions, we use subscripts for
indices 0 < i < n + 1 associated with vertices, and superscripts for indices
0 < 7 < n associated with segments. Since the vertex index i plays the role
of the Lagrangian coordinate S, the segment vector T°(t) defined above is the
discrete equivalent of the material, non-unit tangent T'(S,¢) defined in equa-
tion . More accurately it is, like many other discrete quantities introduced
next, an integrated quantity: the discrete tangent is essentially the smooth tan-
gent multiplied by the discretization length.

The discrete segment length ¢¢(t) and unit tangent t*(¢) are defined by for-

mulas similar to equations (15H16)

0t = ' (t)] (74)
: T'(t)
t'(t) = =—+.
£0) = G (75)
We define the vertex velocities by
dz;, (t)
(1) = ———=. 76
wi(1) = 1 (76)
In terms of the velocities u;(t), we define the integrated axial strain rate for
segment T
i de't) _
a'(0) = S0 = 00 (i (1) — 1), (77)

in analogy with equations and . This is again an integrated form of
the smooth strain rate d(S,t).

The time derivative of the unit tangent is given in terms of the vertex ve-
locities by a geometrical formula analogous to equation ,

.,

£40) = gy P (0.1 (0) = 1) (73)

To define the bending strain, we shall later need vertex-based tangents.
There are several possible definitions that are equivalent in the smooth limit,
and we opt for one that preserves the unit character of the tangent, namely

ti*l + tz

= m (79)

ii@iqa%&z‘ﬂ)

The tilde notation is used here and in several other places when we introduce
vertex-based versions of quantities that are primarily defined at segments, and
vice-versa.
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Similarly, there are several possible definitions for the discrete binormal cur-
vature vector. One particular definition is:

£t
K,(t)=+—F————. 80
iz( ) %(1 +t171 tz) ( )

The motivation for choosing this particular definition comes from the forth-
coming equation : this particular expression K, will emerge from the
calculation of the discrete twist. The vector K, is an integrated measure of
the smooth binormal curvature vector K(S,t) defined in equation . In-
deed the denominator in equation converges to 1 in the smooth limit
where t'=! ~ t' ~ t(S,t), while the numerator is equivalent to t*~! x ¢ ~
Tl x (-t ~ K(S,1) ?; where ¢; is the length of the Voronoi cell around
vertex z;, defined below in equation .

5.2. Incompressibility: radius and related quantities

Each segment T carries a volume of fluid V* and a mass of fluid m*. Those
quantities are initialized based on the prescribed initial segment length, radius
and mass density of the fluid. They are conserved during the simulation, except
in the case of an adaptive mesh, discussed in section[6.5] which requires segment
subdivision. As in the smooth case we use incompressibility to reconstruct the
local radius a’(t) and cross-sectional area A’(t), assuming that each segment
has a cylindrical geometry:

A0 = e = (

We shall need later the length ?; of the Voronoi region near a given vertex.
For an interior vertex z; with 1 <4 < n, it is defined as the curvilinear distance
between the midpoints of the adjacent segments, measured along the polygonal
line traced out by the vertices:

(81)

™

Ai(t)>1/2.

) = L0 L)

4; (%) 5 for 1 <i<n. (82)

This is a vertex-based discretization length, as opposed to the original segment-
based discretization length ¢7. This length is not required for the end vertices,
t=0and n+1.

5.8. Material frame, angular velocity

~The unit tangent t' is defined at segments. We define the orthonormal triads
(di,ds,ds) at the segments too. This allows the condition of compatibility in
equation to be easily extended to the discrete case:

ds(t) = t'(1). (83)



Repeating the argument of section [3.4] one can show that the angular rotation
w" of the material frame can be decomposed as

Wi(t) = V' () £ () + (1) x 1 (1), (84)

In the first term of the right-hand side, the quantity v(t) is the spin velocity,
i. e. the angular velocity of the material frame about the tangent, as shown in
ﬁgure The second term warrants that the time evolution of the centerline, ¢ =
w® x t* remains consistent with the condition of compatibility in equation .

5.4. Reuvisiting the case of zero twist: parallel transport

The main difficulty in setting up a discrete model for thin viscous thread
resides in the definition of twist. In the smooth case, twist is defined by project-
ing the infinitesimal rotation vector = along the tangent. This operation is no
longer possible in the discrete case, as rotations are finite and are represented
by a matrix. To remedy this difficulty, we introduce the geometrical notion of
parallel transport. It enables us to revisit the notion of twist, in a way that
makes its extension to the discrete setting natural.

For a given configuration of the centerline, parallel transport defines a series
of rotations from one segment to the next. Those rotations define a minimalist
motion along the centerline, and will be used to define twist-less states of the
thread. Parallel transport has also been used in the smooth setting to define
the so-called natural or Bishop frame [52], 53].

Consider the unit tangents ¢*~! and ¢’ of the segments adjacent to a vertex
z,;. We shall assume that these tangents are not opposite to each other,

f_l 7& —f. (85)

This assumption is satisfied, except for a subset of configurations whose measure
is zero.
For a reason that will be clear in the next section, we define a rotation @ to

be compatible at vertex z, if it maps t=1 to t':

Q . ti71 _ Ei. (86)

Next, we define parallel transport across vertex x; as the minimal rotation that
1s compatible; here, the word ‘minimal’ refers to the rotation having the smallest
possible angle of rotation about its own axis E This defines a unique rotation
under the assumption of equation , as we show now.

Parallel transport, defined above in geometrical terms, has an explicit repre-
sentation: it is the rotation 7', whose axis is along the binormal K; and whose
angle is the turning angle ¢; across vertex z;. The turning angle is defined by

wi =cos Tt with 0 < ¢; < 7. (87)

In geometrical terms, this minimal rotation minimizes the distance to the identity over
the Lie group of direct rotations in Euclidean 3D space.
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Note that ¢; # 7 by equation . The rotation zz just defined satisfies

T, =1 (88a)

L K = K, (88D)
i—1 __ 41

T -t '=t (88¢)

These equations express the fact that T is a rotation, that its axis is aligned
with binormal K, and that is it compatlble — compare with equation
Compatibility follows from prescribing the rotation angle to be the turnlng
angle ;. In the particular case ¢; = 0, that is when the adjacent segments are
aligned, t*~! = ¢*, the three equations above no longer define a unique rotation;
in this case, parallel transport is defined to be the identity,

T =1 ifg; =0. (88d)

Since a compatible rotation maps t*~! and ¢!, its angle of rotation has to
be greater or equal to the angle ¢; between them. The angle of rotation of the
matrix T that we have just defined is precisely ;. Therefore, to show that
the geometrlc definition parallel transport uniquely defines the matrix T
remains to prove that any other compatible rotation has an angle of rotatlon
strictly larger than ;. This is what we do now.

First note that any compatible rotation ¢ can be decomposed as

Q=1T, Rt 7(Q)) (89)

for some angle 7(Q). Here R(t~!, 7) denotes the rotation about ¢~! with angle
7. This decomposition follows from the remark that gl_l -@ is a rotation leaving

t'~! invariant. Denoting q, the unit vector obtained by r(;ating t'~! about the
binormal by an angle o, one can compute the dot product of q, with its image

g; =Q- q, by the rotation @ in equation as

q .g; = cos p; + [sin(p; — o) sin(o)] (1 — cos T(g)) (90)

-0

This equality can be established in the direct orthonormal basis whose first and
last vectors are t'~! and K /| K|, respectively; in this frame, ¢ = {coso,sinc, 0}

and t' = {cos p;,sin ¢;,0}. Details of the calculation are left to the reader.

For any value of ¢; such that 0 < ¢; < 7, there exists at least a value of o
that makes the function inside the square bracket of equation negative and
non-zero. If cos 7(Q) # 1, this implies

g, 4 <cosp;. (91)

If the rotation @ of equation l@i is different from T, cos 7(Q) # 1. Then
equation shows that the angle of rotation of @) about its own axis is greater
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or equal than cos_l(gg . g’a ), and therefore strictly larger than ;. The proof
is complete: there is a unique compatible rotation whose angle of rotation is
minimal, and this is the rotation zl defined in equation ll It will be called
parallel transport.

Parallel transport establishes a natural mapping between cross-sections be-
longing to neighboring segments, and is similar to the notion of a Levi-Civita
connection in differential geometry, see e. g. the book by Wald [73]. This prop-
erty will now be used to define the discrete twist. More accurately, we shall
define twist-less configurations of the rod to be those obtained by parallel-
transporting the material frames from one segment to the next, and will define
discrete twist by difference with parallel transport.

The identification of parallel-transport with twist-less configurations of the
rod can be justified by examining compatible rotations in the smooth case. In-
finitesimal rotation  are compatible when they can be associated with material
frames satisfying the compatibility condition in equation . Such vectors
are of the form m = K + 7t by equation . For a given configuration of
the centerline, the binormal curvature K is prescribed but 7 is a free function.
Smooth parallel transport is defined, as in the discrete case, by minimizing the
magnitude || of the infinitesimal rotation, keeping the centerline fixed; this
minimization yields 7(S,¢) = 0. This result confirms that parallel transport is
associated with twist-less configurations of the rod in the smooth case. In view
of this, it makes sense to use parallel transport to extend the notion of twist to
the discrete setting.

5.5. Discrete twist
Since material frames are orthonormal, there exists a unique rotation map-

ping one material frame to the next. The rotation connecting the two material
frames adjacent to the vertex z; is denoted @ ,
=

i i—1 .
dj _gi 'dj for j =1,2,3. (92)
This finite rotation is the discrete equivalent of the infinitesimal rotation vector
(S, 1) defined in equation ; in the smooth case, the kinematical twist has
been extracted from 7 by projection along the local tangent direction. This
operation is no longer possible with the finite rotation matrix @ .
=i
Parallel transport provides an alternative route for defining twist in the
discrete case. To begin with, note that setting j = 3 in equation shows
that @) is compatible — compare with equation (86)), using d} = t/. Being a
==
compatible rotation, ) can be decomposed using parallel transport, as earlier
=i
in equation , ' 4
Q =T.-R(t',7)=R(t'7) T, (93)
= == =

Here, we use the notation 7; = 7(Q ). The alternative decomposition after the

second equal sign in equation (93) follows from the following argument: the
rotation [T, R, ) z;‘r} is a rotation of angle 7;, being conjugated with
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E(f‘l,n), and in addition leaves t* invariant — it is therefore the rotation
about ¢’ with angle 7;, which is noted B(ﬁ, 7;). Note that the angle 7; is uniquely
defined modulo 27r. o

In equation (93] , the angle 7; defines an axial rotation required to match one
material frame to the next, in complement with parallel transport T This 7;
is called the discrete angle of twist across vertex z;. It is an mtegratcd version
of the kinematical twist 7(S5,t) appearing in the smooth setting.

Let us check that the discrete twist 7; is consistent with the smooth twist
7(S,t) in the smooth limit. In equation (|9 , the rotations Q T. and R(t', 7;)

converge in the smooth limit towards infinitesimal rotations Wthh are repre-
sented by the vectors w, K and 7;t respectively; the proof of this is left to the
reader. In this limit, equation becomes m = K + 7;t, and we recover the
decomposition in equation . This confirms that our definition of the discrete
twist is consistent in the smooth limit.

5.6. Rate of change of twisting strain

To simulate the dynamics of viscous threads, we need an expression for the
rate of strain associated with the twist mode. By analogy with the smooth case,
it is defined as the material derivative of the angle of twist,

el = ;. (94)
Like the quantity 7;, this is a spatially integrated form of the smooth rate of
strain e;(S,t). The goal of the present section is compute e} in a form that can
be used in our centerline/spin representation, i. e. to express e} as a function of

the velocities u; and v7.

To this end, let us start by introducing the polar angles 7;” and T;r of the
binormal K, in the frames (d}"',d5 ') and (d}, d), respectively. These angles
are represented in figure [d They can be computed by taking the arctangent of
the coordinates of the vector ¢'~! x t’, which is aligned with K, by definition
of the latter. These coordinates are denoted (7;;,7,5) in the first frame and

(74, 75) in the second frame:

rE
75 = tan™! (ﬁ) , (95a)
Ti1
h
e + i1, i dz+(:t1 /2 b
;= <) d (95b)

In the second equation, j takes on the values 1 or 2, and the superscript in the
last factor evaluates to the index (i — 1) of the segment in the left-hand side
when + = —, and to the index (i) of the segment in the right-hand side when
=+

As shown graphically in figure ﬁ the rotation Q can be decomposed into
a rotation about t'~! with angle 7;” that brings d’ onto the binormal K,
composed by the parallel transport that maps ¢*~! to ¢* without affecting the
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Figure 4: Illustration of equation . The rotation mapping one material frame to the next
is decomposed using parallel transport and the polar angles 7,7 and Tj‘ .

binormal, and composed by a rotation about t* with angle (77_;_ ) that brings
back the binormal to d] without affecting the tangent:

Q =R(t',—7")-T,- Bt 7). (96)

As earlier in equation , we can use conjugation to group the axial rotations in
equation above. Identifying the result with the definition of 7; in equation ,
we have

T =T, — Ti+.
Inserting into the definition of the strain rate, we have

el =7 — 7. (97)

?

We proceed to compute the time derivatives ’f'ii by differentiating equations .
The calculation of 7, is done in the frame moving with the first material

frame (d;fl)lgjgg. There, all vectors in the right-hand side of equation 1)

are still, except ¢* which has angular velocity w® —w’~!. This yields, for j = 1, 2,
7_1; — (tifl % [(gz *Qiil) % f]) 'dé'_l — 7@1'71 % d;"_l) . [(gz 7gi71) % ﬁ},

after permutation of the mixed product. Inserting this expression into the
derivative of the arctangent in equation (95a)), we find

Til Tio — Tia Tix _ (' x 1) - [(W —w't) x ¢

(1) (1) £ x ]2

The time derivative of the second angle 7;" is given by the same formula, with
the indices 7 and 7 — 1 swapped:
LT ) (W — Wiy X Y

7= T t7|2 . (98Db)

(98a)
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Inserting this expression into equation and permuting the mixed product,
we have _ ) ) .
(LZ 71171) % (L’Lfl % LZ)

|ti71 x §z|2

62 — (gz _gifl) .

In the right-hand side, the second factor can be simplified using the fact that
both ¢*~! and #* are unit vectors. This yields

£+

t i i—1
e, =W —w .
(* - ) 1+tl—1 .zz

(99)

Inserting now the decomposition of the material velocity w’ and sim-
plifying, we have

' ' L
b =o'~ K
after using the definition of the discrete binormal curvature K.

This formula is fundamental as it yields the rate of strain for the twisting
mode in a form that is suitable for our centerline/twist representation. It closely
resembles the smooth equation . The second term in the right-hand side
has a geometrical origin. It captures the change of parallel transport resulting
from a change in the centerline, an effect that was dubbed holonomy in our
previous work. The holonomy term is responsible for the coupling of centerline
motion with the twisting mode, a phenomenon which appears to be geometrical
in essence.

The geometrical origin of this coupling has been recognized earlier but has
not been used as a starting point for dynamical simulations of threads, to the
best of our knowledge. The role of the binormal curvature K has been noted
in the related context of Fiiller’s theorem [61] for the increment of writhe of a
space curve. Expressions similar to those in equations have been derived
for the increment of discrete writhe, and have been used for the simulation of
the Brownian dynamics of DNA modelled as an elastic rod [74].

(100)

5.7. Rate of change of bending strain

In the smooth case, we have defined in equation the strain rate vector
e(S,t) to be the gradient of rotation. We introduce similarly a discrete strain
rate vector e’ by

¢ = wi — Wil (101)
In equation , we have shown that the tangent and perpendicular projec-
tions of e are the rates of strain relevant to the twisting and bending modes,
respectively. In the discrete case, we carry out a similar decomposition, using
the vertex-based tangent £;,

i =h(pi)ti e € =ho(p) Py ey). (102)

In these projections, have introduced two normalizing functions hi and hy, of
the turning angle ;. These functions reflect the fact that the definition of the
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vertex-based tangent f; in equation (79) is somewhat arbitrary. For instance,
we could use instead a different vertex-based tangent,

~ pi—1 i ~
I = per g = bl e (108)
Here h(yp;) = |£;| = 1/ cos(p;/2), as can be shown by using trigonometric re-
lations in the triangle whose sides are t*~! and t’. For consistency with the
smooth case, we require that the functions h; and hy, converge to one when
their argument vanishes.

Our definition of a discrete twist based on parallel transport imposes a par-
ticular choice of the function h;. Indeed, identifying equations and
we find e} = fl e and so hi(p;) = h(pi) = |ﬂ| =1/ cos(p;/2).

By contrast, any choice of the function hy(;) is acceptable as long as hy, — 1
for ¢; — 0. This leads to infinitely many different discrete thread models, which
are all equivalent in the smooth limit. In this paper, we choose hy,(v;) = 1 for
simplicity: the strain rate associated with the bending mode then reads

e =P (L e) (104)

5.8. Reconstruction of strain rates from velocities

As in the smooth case, we keep track of the dependence of all secondary
quantities on the velocities, and introduce virtual vertex velocities 4; and vir-
tual spin velocities v? at the segments. This shall enable us to compute the
discrete viscous forces as the gradient of the dissipation potential with respect
to velocities.

The vertex positions are collected into a generalized coordinate X (t), a vector
of dimension 3(n + 2):

X(#) = {zo(t), -+, 2y (D)} (105)

Note that there is no need to keep track of the orientation of the material frame
in the generalized coordinate X (t), as we consider isotropic cross-sections. The
twisting mode will only be included in the generalized velocity U(t), defined
later, through which it gets coupled with the centerline motion.

Given the centerline configuration X (¢), we first compute all quantities, such
as (X)), t'(X), £;(X) and K,(X), which do not depend on velocities. To make
the notations lighter, the argument X will often not appear explicitly in the
following. Next, we extend the operators V and W defined in equations
and (42) to the discrete setting. The operator V' is attached to segment T and

defined by
) o 1 . .
X%X;Qpﬁi.ﬂ) = EBL (f,ﬂi.ﬂ - Ql) . (106&)
This definition comes from equation : by design, this operator yields the
time derivative of the tangent when applied to a real motion, as in the smooth

case.
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The discrete operator W' associated with the segment T is defined by

Uiy — Yy

WHXG g, G40, 1) = 08+ £ X =5

(106b)
This definition is motivated by equation : when evaluated with a real mo-
tion, W' yields the angular velocity vector w’.

We now propose discrete versions of the three fundamental linear forms
defining the viscous dissipation potential, which have been introduced previously
in equations and .

The discrete axial strain rate d’ on segment T is given by equation 1| In
view of this, we introduce the linear form

LUX 0y, 04q) =1 (Qyyy — Dy)- (107a)

Then, we have £(X;u;, u;,,) = £ = d for any real motion.

The discrete strain rates for the twisting and bending modes are given by
equations and , respectively. Dependence of these strain rates on the
velocities is captured by the following operators

toy. o PN Aie1 i
‘Ci(gaﬂiflﬁﬂwﬂz#lav ,0%)

iy &

; ; Vi71 X;A-_ 7A» —|—Vl X;A4 (.
:{)1_@171_'_[(.'— (— U;_q Qz) —(—u ul-‘rl).

K, - (107D)

and

b
éi (X;yi—lvﬁivgi+l7vl 1’01)

=P (B, W (X5, 8) — W (X8, ,67)). - (1070)

For any real motion, £f and £? are equal to the strain rates ef = 7; and eP,

respectively. The definition £! makes use of the geometrical definition of discrete
twist based on parallel transport.

5.9. Dissipation potentials

In our centerline/spin representation, the generalized velocity is a vector of
dimension 4n + 7 defined by collecting the linear velocities at the vertices, and
the angular velocities of spin at the segments:

Q(t) = {@O(t)ﬂ Uo(t)ﬂﬂl (t), vl(t), T 7vn(t)7gn+1(t)}' (108)

This vector U(t) is the generalized velocity of the real motion. The dissipation
potentials are defined in terms of arbitrary velocities, which we collect under
the name of generalized virtual velocity U:

U(t) = {aig (), 0°(1), @y (¢), 0" (2), -+, 0" (8), &y 1 (1) (109)
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As in the smooth case, the viscous internal forces are introduced by means of
dissipation potentials. The discrete potentials extend the smooth ones defined

in equations :

A 1 ) ) 2
DS(K;Q):i Z Dt (AC;(XQQZ"QHO) (1103)
0<i<n
~ 1 ) N2
DX =5 Y (LK g ity 6 09) (110)
1<i<n
~ 1 ) N2
Dy(X:0) =5 D Bi(LV(Kitiy, iy iy, 07, 09) (110¢)
1<i<n

Note that the stretching contribution involves a sum over all segments, although
the twisting and bending contributions involve a sum over interior vertices. This
is because the discrete axial strain d* is defined on segments, while the strain
rate vector e; relevant to the twisting and bending modes is defined on interior
vertices.

In equations (110]), the discrete moduli are defined by

Di:;’f‘zgi (111a)
o, = 2l (111b)

where p? is the fluid’s dynamic viscosity which is stored at segments like other
fluid properties, A’ is the segment’s cross-sectional area reconstructed by equa-
tion , 4; the segment length given by equation and ' the length of
the Voronoi cell around an interior vertices given by equation . The factor
[[ﬁ |: appearing the twisting and bending moduli is defined at vertices by linear
interpolation over the adjacent segments:

1 L (A1) i (A2
2 47 '

()i =

(111d)

This definition is motivated by the fact that I = A2?/(47) in the smooth case, as
shown by equation . Note that the discrete moduli satisfy the same relation
B;/C; = 3/2 as in the smooth case; physically, this relation is a consequence
of the fluid’s incompressibility. All moduli depend on the actual configuration
X (t) but not on velocities.

The definitions of the discrete moduli are identical to the defini-
tions and in the smooth setting, up to factors proportional to the
discretization length ¢* or ¢;. These factors were introduced so as to warrant
convergence of the dissipation potentials in the smooth limit. For instance, for
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the stretching contribution we have D? ~ ﬁ, and L: ~ L, 0* by equation ij
Formal convergence of the corresponding dissipation potential follows:

St

fZDl (L1)? N*ZEZ (Lg 072 NfZD % D (£)?dS ~ D,

S_

The total dissipation potential is defined by summing up the stretching,
twisting and bending contributions:

D(X;U) = Dy(X;U) + Dy(X;U) + Dy (X; U). (112)

5.10. Discrete equations of motion

The Rayleigh dissipation potential D is used to derive the discrete viscous
forces and moments. By analogy with equations and -, we model
the internal viscous stress by a net force P} actlng on the vertex xz;, and by a
twisting moment @/ acting on the segment 77, both of which are given by a
derivative of the dissipation potential:

prx) = - P (1132)
QUX;U) =— 781)%2 2L (113b)

In these expressions, the partial derivative is with respect to the u; or 0' entry
inside the generalized coordinate vector U, see equation 1)
The discrete equations of motion read

iy (t) = PY(X(0:U(1)) + Pi() (114a)

U
CJT0N(t) = QUX(6); U (1)) + Q' (1), (114b)

where P;(t) and Q*(t) define the external loading, 7; is the vertex-based mass,
defined as the sum of half the mass of the segments adjacent to vertex z;,
J
i = % (115a)
JEJ;

where the set of adjacent segments is J; = {i —1,i} if 0 <i<n+1, Jy = {0}
and J,41 = {n}. Note that this vertex mass m; could change over time if
adaptation were used. In equation (114b)), J¢ is the density of moment of inertia
of the cylinder attached to segment T in actual configuration, per unit length:

m' (A%)?

Ji=2p Il—
Vi 2w

(115D)

and p? = m'/V? is the mass density of segment i.
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The equations of motion can be written in compact form by introducing
the generalized viscous force F', the generalized external force F' and the mass
matrix M. The latter are obtained by collecting vertex and segment-based
components with the same ordering convention as in the generalized velocity U:

Ev = (BEJ,’ 3)2\1/’ e 3722-1-1) (116&)
E: (£O7Q07£17"'Qn7£n+1) (116b>
%:diag(ﬁzoé,éo Joamléa"' 7[(1 Jnamn-‘rli)a (116C)

where 1 represents the unit matrix in 3 dimensions. The equations of mo-

tion (114)) and (113]) can be rewritten as follows,

M-U(t) = F (X(t),U(t)) + F(t) (117a)
9D(X,U)
F.(X,U)=-—"F— (117b)
ou U=u
X(t)y=1 -U(t). (117¢)

The third equation is the definition of vertex velocities, u;(t) = &;(¢). This
equation makes use of the projection operator gn mapping the degrees of free-
dom associated with vertices from the X representation, from which segments
are absent, to the U representation:

n+1 2

O o= > by @duiyye (118)

i=0 j=0

Here II is a matrix of size (3n+5) x (4n+7), defined with the convention that
vector indices start at 0. The index i runs over vertices, the index j over space
directions, and d, represents the vector whose entries are all 0, except for the
k-th entry whose value is 1. The values k = 3¢ + j and k = 4¢ + j appearing in
subscript are the indices of the degrees of freedom for vertex i in direction j in
either representation.

Since the discrete dissipation potential is consistent in the smooth limit
n — 00, the discrete viscous thread model converges to the smooth model in
this limit: formally, the dynamical system in equations becomes equivalent
to the smooth equations of motion combined with the expression for
the internal viscous forces. This convergence is checked numerically in section 8]

5.11. Surface tension and other forces

The weight of the thread is taken in account by setting P, = gm; and
Q' = 0 in the equation of motion . Here m; is the mass attached to a
vertex, defined in equation (I15a)), and g the acceleration of gravity. In our
validation experiments, the thread is formed by expelling fluid from a syringe,
and letting it fall onto the ground under its own weight. The contact forces
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Figure 5: Surface tension is based on a cylindrical representation of the fluid attached to
segments.

with the syringe or the ground need not be computed, as we treat contact
using kinematical constraint and not penalty forces. This is explained in the
forthcoming section [7.1

We shall now explain how surface tension is taken into account — this is the
last type of forces that we shall need in our examples. The present implemen-
tation of surface tension assumes that the segments are cylinders, as in figure
It is significantly simpler than that based on truncated cones presented in our
conference paper [41]. The lateral area of the cylinder joining vertices z; and
;.1 reads

Y =2ra' ' =2V Vil (119)

as can be shown using V' = 7 (a*)? ¢%. Its gradients with respect to the position
of its endpoints read

i 1/2 . . .
v, S = — (W; ) t=—ra't (120a)
S\ 1/2
, Vi . o
vV, Y=+ (” , ) t=+ralt. (120D)
Lit1 E’L
Here we have used ZLW =V, 2,4 — x| = —t" and leﬂﬁi = +t!. Discrete

surface tension forces are set up by means of the discrete capillary energy,

n

£(X) =) 7' E(X). (121)

=0

Here ~* is the fluid’s surface tension at segment i. In this equation, we assume
that the radius a’ of the cylinder varies over much longer length-scales that than
the radius itself, and neglect the longitudinal curvature of the lateral boundary
in front of its azimuthal curvature. This is consistent with the thin thread ap-
proximation used everywhere in this paper. Let us note this approximation is
not suited to the analysis of the Rayleigh-Taylor instability, whose critical wave-
length is comparable to the radius. This instability would have to be studied
using the full equations for 3D viscous fluids anyway, and not the dimensionally
reduced equations for thin threads.
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The expression for the discrete capillary forces at a vertex is given by minus
the gradient of the capillary energy (121)) with respect to vertex positions,

+n9, 1° if i =0

Pl = —nZt" ifi=n+1 (122a)
nd th i if1<i<n

Q. =0. (122b)

The second equation is a consequence of the fact that the capillary energy
depends only on vertex positions and not on the twist degree of freedom.

These vertex forces P] are caused by an longitudinal force nfyt, called the
line tension, acting along each segment. Its magnitude is given by identification
with equation ,

nt, =my"a’. (123)
This expression for the line tension nfyt can be interpreted as resulting from the
overpressure in the fluid caused by the interface curvature 1/a’, according to
the Young-Laplace law. As it derives from energy proportional to the lateral
area, the capillary force tends to make the thread shorter and more compact, by
bringing the endpoints closer to each other and by flattening out curved regions
of the centerline.

The net capillary force on a vertex given in equation has two contribu-
tions that almost cancel each other at each interior vertex (these contributions
are associated with each one of the two adjacent segments), but only one contri-
bution at the terminal vertices x, and z,, ;. This reflects the presence of Dirac
contributions at the endpoints in the smooth model, see equation . Note
that the area of the cap closing the cylindrical thread near its endpoints is neg-
ligible, and the Dirac contributions are accurately captured even though these
caps are not taken into account. Since the discrete model for surface tension has
been derived from the energy in equation which is a good approximation
of the capillary energy in equation , the discrete capillary forces converge
to the smooth ones in the limit n — co. Our discrete model for surface tension
is validated in section

6. Time discretization, numerical implementation

6.1. Representation of the dissipation potential by a band matrix

The strain rate operators L (X; Q), Li(X; Q) and £ (X; Q) defined in equa-
tions are linear with respect to their virtual velocity argument UU. The
two first operators are real-valued: each one can be represented as a vector,
denoted £!(X) or £Y(X), that acts on U by dot product. The last operator is
vector-valued, and can be represented as a matrix éf (X) acting on U:

LUX;0) = LX) -U (124a)
LHX;U0) = Li(X) U (124D)
L3(X:U0) = LX) -U. (124c)
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The tensors £'(X), £i(X) and Q;(l) just introduced can be distinguished
from the original functions as they bear one additional bar below, and have a
single argument. They can be calculated explicitly (i) by setting the virtual
velocity U=6§ j» 1. €. by canceling all entries of U except for the entry at index
j which is set to one, (i) by evaluating the left-hand sides above using the
definitions (107]), (¢%7) by filling the entry or column with index j in the target
vector or matrix, and (iv) by iterating over the index j. In other words, we
build the tensors using

) 4n+6 .
LX) = LUX;6;) @4,
7=0

and similar formulas for Lﬁ (X) and é? (X).

Since the linear forms £%(X; Q), LH(X; Q) and Q? (X; Q) attached to a seg-
ment or a vertex ¢ depend only on the virtual velocities of the neighboring
segments or vertices, the vectors and the matrix introduced in equations
are sparse. This sparse structure allows for efficient storage and manipulation.

Similarly, the dissipation potential is a quadratic function of the virtual
velocity U. It can therefore be represented by a symmetric matrix D(X), such

that for any virtual velocity U

D(X;U)=-U -D(X)-U. (125)

N | =

This matrix is built up by combining the stretching, twisting and bending con-
tributions,
D(X) = D,(X) + D,(X) + D, (X). (126)

L\
Explicit formulae for these contributions can be found by inserting the repre-
sentation of the linear operators in equations ([124)) into the definitions (110]) of
the discrete dissipation potentials:

D(X)= Y D'(X)LUX)® LX) (127a)
0<i<n

D(X)= Y Ci(X)LiX)® LX) (127b)

D,(X)= Y Bi(X) (L))" - (£2(X). (127c)

Because the linear forms in the right-hand sides are represented by sparse ten-
sors, these symmetric matrices in the left-hand sides are all band-diagonal. Their
band structure is shown in figure [6]

Note that new vertices are created during the simulation, while others collide
with obstacles and are discarded. As a result, the number of vertices — and
therefore the dimension of the dissipation matrix — may vary from one time
step to the next.
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Figure 6: Band structure of the dissipation matrices %(l), D, (X) and D, (X) for the stretch-
ing, twisting and bending modes.

6.2. Boundary conditions and kinematical constraints

We consider the possibility that some degrees of freedom are kinematically
constrained. Such constraints are typically used to enforce boundary conditions.
For instance, in the case of a clamped end, the velocities u, and u; of the first
two vertices and the angular spinning velocity of the first segment v° are imposed
by the motion of the clamp.

In the presence of kinematical constraints, the the generalized velocity U, , .
at the end of the time step is prescribed to be of the form

Uppe=B-W, o+ B (128)

where ¢ is the time at the beginning of the time step, € is the time step, and W, , .
is a reduced velocity vector collecting independent degrees of freedom. This
vector W,  is the unknown of the time-stepping algorithm. Its size, denoted
r, may vary from one time step to the next as constraints can be created or
destroyed — this happens for instance when the thread makes its first contact
with the ground.

The matrix B is a (4n+7) xr matrix that dispatches the independent degrees
of freedom into the generalized velocity vector U. Given a strictly increasing
numbering b of the unconstrained degrees of freedom, b(0) < b(1) < --- <
b(r — 1), this matrix reads

r—1
B = Zéb(i) ® J;, (129)
i=0
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where §; is the Dirac vector, (0,)i =1 for i = j, and 0 otherwise.

The last term in equation is the vector B’ collecting the velocities of the
constrained degrees of freedom in the final state U, .. This vector is typically
filled using the motion of the bodies in contact with the rod as explained in
sections [7l Entries of B’ corresponding to unconstrained degrees of freedom can
be set to zero by convention:

B"-B'=0. (130)
Indeed, allowing them to be non-zero would simply shift the value of the un-
known W, , .

As an illustration, consider the case when there is no kinematical constraints.
Then r = 4n+7, b(i) = i and B’ = 0, which implies that B is the identity matrix.
The more interesting case of a viscous thread, both ends of which are attached

to clamps having a motion of pure translation with velocities g}:lamp and yflamp
is handled by setting

r=4dn4+7-2x7=4n—-7 (131a)

b(i) =i—7 (131b)

El - (Qélamp7 ngilampv 0797 e 7Q7 07 leamp7 O7gglamp)' (131C)

In the presence of kinematical constraints, we discard the equations of motion
corresponding to the constrained degrees of freedom. This is achieved by left-
multiplying both sides of equation (117a) by B, and the equation of motion
becomes B

BT M-U(t) = B (F,(X(),U®) + E(t)). (132)

6.3. Time discretization and time-stepping

The time step € can be fixed or variable. At each time step, the updated
position X, and velocity U,  must be determined from the actual position
X, and velocity U,. We discretize equation (132) in time using a linear implicit
scheme. The viscous force F, is evaluated implicitly with respect velocity but
explicitly with respect to position:

T U — Uy T
BT M-S BT (F (XU ) ED). (133)
This choice combines good stability, as demonstrated by the validation exam-
ples, and ease of implementation: only a linear solver is required.

The viscous force F (X,,U,. ) is indeed linear with respect to the unknown

i29)

U, . by equations (117bf) and (125)),
oD
F(X;U)=—-—=-D(X)-U. 134
B (X1 = -5 = -DX) U (13

Inserting equations ((128]) and (134)) into the equation of motion (132), we find
that the update rule for the velocity takes the form of a linear equation to be
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solved for W, .:

BT (M +¢D(X,)) B| - W,,. = BT (¢(-D(X,)- B'+ F(t)) - M-(B' - U,)).

(135)
In this equation, B and B’ encode kinematical constraints, M is the mass ma-
trix, D the viscous dissipation matrix representing internal stress, F(t) is the
external loading and U. , the velocity at the start of the time step. The matrix
in square brackets in the left-hand side is symmetric, positive definite for any
value of the time increment € > 0. As a result, this linear equation can be solved
using efficient and robust solvers.

Note that the external force F(t), which includes in particular the effect of
capillary forces, is evaluated explicitly. We have tried a linear implicit imple-
mentation of surface tension, but have not observed any significant improvement
in stability: an explicit evaluation of surface tension force does not raise any
stability issue in all our tests.

Once the linear equation for W, . has been solved, the generalized velocity

U, .. is reconstructed by means of equation (128]). Positions are then incre-
mented using a discrete version of equation (117¢)),

Xppe =Xy + U Uy (136)

6.4. Time-stepping: summary

The main task of the time stepping loop is to set up and solve equation .
Algorithm [T] explains how the various quantities appearing in this equation are
constructed, and provide an overview of the implementation of the time step.

Require: e {time step}
Require: m‘, Vi, ;* {fluid properties}
Require: z; (t)7 w,(t), vi(t) {initial positions and Velocities}

Require: B, B’ {kinematical constramts at boundaries, '
Require: F; {external force, 1| and eq. m}

1: set £, A’ and ¢; {geometry 5 }and 35.

2: set D' C;, B; {viscous moduli, eq 1.'
3 set L1, L Lb {discrete strain rates, §5.8[and §6.1]}
4: set D {dlSSlpatlon matrix, eqs (126127 }
5: assemble X, and U, {egs. and (108)}
6: set m; and Jl {eqgs. (115 and/or (137)}

7: assemble M {eq. (116¢

8: solve for W, {eq. (I3

9: reconstruct U, . {eq. (128)}

10: update u, ( + e) '(t+€) {eq. ( .}

11: update (¢ + €) {eq. (I36)}

Algorithm 1: Overview of a time step.

Note that fluid properties such as the mass m?, volume V7 and viscosity s
are stored in segments. These properties are constant in most of the examples
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shown here. They may however depend on time, either when adaptation is used
(see section , or when the dynamics of the thread is coupled to another
physical process, as for instance in the case of heat transfer and temperature-
dependent viscosity — a separate update rule is then required. In addition
segments store their spinning velocity v7.

By the argument of section [3.13] rotational inertia can be neglected for a
thin thread. In all the examples shown here, the rotational inertia was set to
zZero,

J7 =0. (137)

We have compared simulations done using this approximation with simulations
based on the exact value of J7 given in equation (115bf), and checked that the
results are indeed very close when the thread’s radius is small.

6.5. Adaptive mesh refinement

In the the experiments of Morris [I3], which we reproduce in section
gravity stretches the thread by a factor which can be as large as 10 to 100.
In the absence of refinement, the segments in the bottom part of the thread
would be considerably longer than those at the top. A good spatial resolution
is needed at the bottom, where the impact with the hard surface forms a coils
of small radius. This makes simulations of severely stretched threads extremely
inefficient, unless spatial refinement is used.

We have implemented adaptive mesh refinement as follows. At the end of
every dynamic step detailed in algorithm [I] the segments needing refinement
are first marked according to some user-defined criterion; next, segments that
have been marked are actually split: a new vertex is inserted in each segment
undergoing subdivision, and quantities such as mass, radius, position, velocity
etc. are calculated in the new vertices and segments, as explained below. The
refined thread is then used as the initial state for the next dynamic step.

The refinement criterion can be based on comparing length of the segment
to a maximum prescribed length. Other criteria based on the turning angle
with respect to the neighboring segments have been considered too, but not
used in the examples. The maximum allowed length may be a function of the
position of the midpoint of the segment, to force refinement near a boundary for
instance. In each case, the refinement criterion was adjusted manually to offer
the best compromise between efficiency and accuracy — even if introduced in the
context of non-steady problems such as the viscous sewing machine, refinement
was always first validated in a steady coiling geometry, as explained in section 8]

Whenever a segment has been marked, its subdivision is carried out as fol-
lows. A new vertex is inserted, two new segments are allocated and the former
segment is removed. The position z; and velocity u, of the new vertex are cal-
culated by an interpolation of order 4 based on the positions and velocities of
its neighboring vertices. Vertices resulting from a subdivision concomitant with
that under consideration do not enter in this interpolation, and so the result is
independent of the order in which marked segments are processed. The mass m’
stored in the original segment is equally split among the two subsegments. The
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viscosity p7, surface tension 47, spinning velocity v/ of the new subsegments are
all computed by an interpolation of order 2 based on the values of the former
segment and of its neighbors. Finally, the volume V7 of the subsegments is
computed by first considering an interpolation of the cross-sectional area A* at
order 4, which is then multiplied by the length of the subsegment. This pro-
cedure and the interpolation orders have been chosen in such a way that the
viscous twisting and bending forces, which depend on the derivatives of order
up to four of the positions, remain smooth upon subdivision.

7. Interaction of the thread with other bodies

Interaction with two types of rigid bodies are considered in our validation
examples: a fluid container, such as a syringe, delivering fluid at a fixed volume
rate, and a rigid impenetrable surface onto which the thread impinges. The
interaction is taken care of using kinematical constraints. The vertices that have
not yet been pushed outside the container, as well as those that have collided
with the surface, are constrained. Their positions and velocities are prescribed
by the motion of the body. In this section, we explain how the matrix B and
the vector B’, which represent these constraints in algorithm [1} are calculated.
For the sake of simplicity, we assume that the motion of the external bodies is
unaffected by the motion of the thread; two-way coupling with external bodies
could be enforced as a kinematical constraint, and would typically be handled
by a post-integration step using a manifold projection method [75].

7.1. Fluid container

In the experiments, the viscous fluid is fed from a container at a constant
volume rate (). through a circular opening of diameter d. by a syringe controlled
by a step motor, see figure . Let Ac =7 djf be the area of the opening. The
imposed volume rate sets an ejection velocity U. = Q./A. of the thread relative
to the container. The velocity of the fluid exiting from the container is the sum
of the prescribed velocity of the container, and this relative velocity U..

At the exit from the container, the thread is clamped, 7. e. the centerline
position, tangent, and the rotation are all prescribed. This clamped boundary
condition is implemented by blocking the rotation of the segment joining the
first two vertices, and constraining the positions of these two vertices (this has
the effect of blocking the unit tangent vector parallel to the first segment). These
kinematical constraints are implemented as explained in section . Clamped
boundary conditions therefore require that two vertices lie inside the container
at all times.

7.1.1. Simple container model

A simple discrete model for the container is sketched in figure [Tp. The two
topmost vertices of the thread are located inside the container and move with
the velocity —U, e, relative to the container. Here e, is the unit vector, usually
vertical, which is opposite to the direction of ejection. At every time step,
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Figure 7: Discrete representation of the container delivering fluid through a circular opening of
diameter dc at a prescribed vertical velocity Uc, shown in (a). Clamped boundary conditions
are enforced by prescribing the position and velocities of the two topmost vertices, and blocking
the rotation of the first segment joining them. Filled disks represent constrained vertices
(top part of the thread attached to the container), open circles represents unconstrained
vertices (hanging part of the thread), dashed curves are the timelines of vertices. (b) Simple
implementation whereby the two first vertices move with prescribed vertical velocity Uc. (c)
In a refined implementation, the first two vertices are kept at a fixed position with respect to
the container, and mass is continuously added into the second segment. In both cases (b) and
(c) a new vertex is periodically created from top (vertex labelled ‘O’ appearing at time ¢ + 2¢),
and there are always two vertices inside the container.

whenever one of these two vertices goes past the opening of the container, it
is freed (its position constraint is discarded) and a new constrained vertex is
added on top of the thread, as happens in frame ¢ + 2¢ in figure [7p; the new
segment on top is assigned a length ¢, a volume (A./¢.), a mass (p A. {.), and
surface tension . Here, p and « are the mass density and surface tension of the
fluid in the container, and the length £, is a discretization parameter chosen by
the user.

This simple implementation has a drawback: it induces oscillations of the
thread with a small amplitude and a large frequency. Indeed the effective fall
height is determined by the position of the second topmost vertex. As a function
of time, this height varies abruptly every time a new vertex is added. The
amplitude of the discontinuity is set by the spacing between vertices in the
containers. We found that this small-amplitude, large-frequency forcing usually
allowed convergence of positions and velocities with finer and finer discretization
lengths /., but induces unbounded fluctuations of acceleration.

7.1.2. Refined container model

We found it necessary to suppress the oscillations to obtain convergent and
fully reproducible results, and to capture the subtle patterns produced by the
viscous sewing machine at large fall heights [76]. To do so, we used an improved
description of the container which is sketched in figure[7k. The first two vertices
do not follow fluid particles but instead stay at a fixed position with respect
to the container. As earlier, their velocity is constrained to the value —U.e,
relative to the container at the start of each dynamic step, but their position is
systematically reset after each dynamic step, so as to make the second vertex
coincide with the opening of the container and the first vertex lie at distance
L. above it. At each time step €, an incremental volume of fluid (e Q).) and the
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associated mass (pe@.) provided by the container are assigned to the second
segment. Whenever its volume exceeds the target value (A ¢.) fixed by the dis-
cretization parameter /., this segment is split, a new vertex is inserted between
the second and third vertices; the fluid material in excess is then assigned to
the new segment, as sketched in figure [7e. In this improved implementation of
the boundary conditions, the fall height varies smoothly as a function of time.
We found that this was sufficient to make the acceleration converge smoothly in
the limit of a fine discretization, and produce stitching patterns that are both
reproducible and consistent with the sewing machine experiments. All examples
shown in Sections [ and [l make use of this refined model.

7.2. Collisions on a hard surface

We now consider collisions with a rigid obstacle. When the thread hits the
obstacle, it sticks to it and gets carried away by the obstacle. The obstacle may
be at rest, as in the case of steady coiling of section[§] or in motion, as happens
with the moving belt in the sewing machine experiment of section In the
latter case, the motion of the obstacle is prescribed. Detection of collisions
involves comparing the distance of vertices to the obstacle, to the radius a® of
the adjacent segments defined in equation .

7.2.1. ‘Capture and continue’ mode

In a straightforward implementation, called the ‘capture and continue’ mode,
we detect collisions with the obstacle at the end of every dynamic step, and mark
the colliding vertices as being captured: in all subsequent dynamic steps, their
positions and velocities are constrained based on the motion of the obstacle
and on their relative position to the obstacle when they were captured. Slip-
free conditions are considered: the rotation of segments joining any pair of
captured vertices is blocked as well. We found that this simple description of
the collisions was another source of large, spurious fluctuations in acceleration.
The oscillations can be interpreted by the fact that the vertical momentum
resulting from a collision is not transferred to the thread until the following
time step, when the position constraints take effect. Another drawback of the
method, which is partly responsible for oscillations, is that the thread penetrates
into the obstacle by a small but very irregular depth, roughly proportional to
the time step duration.

7.2.2. ‘Time roll-back’ mode

The oscillations were removed by using a roll-back, which allows for a more
accurate handling of collisions. A roll-back discards any dynamic time step
ending up in unexpected collisions. The time step is recomputed with the motion
of the colliding vertices constrained in such a way that they come exactly in
contact with the obstacle at the end of the time step. Roll-back can be viewed
as an iterative predictor-corrector or iterative constraint refinement method [77):
a new unexpected collision may take place during the second tentative time step,
inducing a third attempt, etc. A list of expected collisions is kept and updated
after unsuccessful time step.
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Roll-back removes the two main limitations of the straightforward ‘capture
and continue’ implementation: it suppress the delay in transferring momentum
from the obstacle to the thread, and makes the thread land exactly at the sur-
face of the obstacle, removing the unwanted rugosity produced by the ‘capture
and continue’ mode. We found that roll-back does indeed suppress the spuri-
ous oscillations very effectively, bringing about benefits similar to those of the
improved nozzle implementation discussed in section All the validation
examples shown in the following sections make use of the time roll-back method.

If many collisions occur during a single time step, the roll-back method
does not work well and spurious fluctuations reemerge in the acceleration as a
function a time. The reason is that we work in the context of a linearized implicit
scheme, in which the equations of motion are always linearized using the solution
at the start of the time step. The successive iterations of a given time step all
start from the same configurations. As a result, they all make use of the same
set of linearized equations. If too many collisions occur before the end of the
time step, this linearization becomes a poor approximation of the actual motion.
To work around this limitation, we combined roll-back with time adaptation:
if a new collision is detected before the end of the tentative time step, the
next tentative time step is shortened and scheduled to end at the collision time
estimated from the previous iteration. This time adaptation reduces the time
step dynamically, in such a way that there is at most one collision per time step.
The drawback is the increased complexity in implementation, and the fact that
the simulation time increases with the rate of collisions.

8. Validation in a steady coiling geometry

‘We proceed to validate our discrete model and verify our implementation, by
checking convergence in the smooth limit. We consider the steady coiling motion
of a viscous thread stretched by gravity and impinging on a surface at rest, as
shown in figure Bp. Our simulation results are compared to reference solutions
kindly provided by N. Ribe, which are based on numerical continuation of the
time-independent problem expressed in the co-rotating frame [9], and solved
using the AUTO software [78].

8.1. Validation of bending, stretching, gravity, inertia and collisions

The following set of parameters are used for validation and verification: the
fluid’s dynamical viscosity ;1 = 0.2 and mass density p = 5104, the acceleration
of gravity g = 9.81, the area A, = 6.44 1073 of the circular outlet of the container
and the fluid’s volume rate Q. = 3.96 10~3. The surface tension v is set to zero
until we validate surface tension later in section

Three dimensionless groups characterize the properties of the fluid and the
container [11]:

5 \1/5 1/4 6.2
H1:< 7 3) ) H2:<VQZ> ) 113 c 7 (138)
9 Qe gde
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where v = p/p is the kinematical viscosity; the diameter of the container’s
circular opening d. and the extrusion velocity U, = Q./A. have been defined in
section The numerical values of the dimensionless groups are II; = 7000,
II; = 7 and I3 = O for the set of parameters listed above. This corresponds to
significant, but not extreme, stretching: the radius decreases by a factor of order
2 during the course of the descent for the range of heights considered below.

Based on the acceleration of gravity g and on the kinematical viscosity v,
one can define a natural length scale L* and a natural time scale T* by

V2>1/3 (V>1/3
L= — , T = —= . 139
(g g2 (139)

Numerically, L* = 25.36 and 7™ = 1.61 using the above set of parameters. These
scales are used to make the simulation results dimensionless when comparing to
the reference solution.

Two additional discretization parameters are needed in the simulation: the
initial segment length ¢., introduced in section and the time step €. Unless
otherwise specified, their values are set to £, = 0.025 and € = 0.02. Note that the
average number of particles emitted per time step is (e U./l.) = 0.49. A good
trade-off between accuracy and efficiency requires that this number is neither
very small nor very large.

The reference solution of N. Ribe [9] takes the form of data for the coiling
radius or the coiling frequency, as a function of the fall height. To produce
simulation data which can be compared to this reference solution, a range of
fall heights H(t) is swept in a single simulation run. To this end, the motion of
the container is prescribed in a sequence of up to three phases in our simulations.
At initial time ¢ = 0, it is placed at height Hy. It is left still until time t = ¢4,
when the steady coiling is established. Then, the container is moved upwards
at a prescribed velocity V. that is much smaller than the extrusion velocity U.,
until time ¢ = ¢5. In a last phase, from time ¢t = ¢5 to the end of the simulation,
t = t¢, the container is moved slowly downwards at the same velocity V.. Unless
otherwise specified, we set t; = 30, to = 1530, ¢ty = 3030 and V. = 0.02, which
is 30 times slower than the extrusion velocity.

Validation results are shown in figure[8] Most of the time, the simulation lays
down a thin curve (brown and blue) in the plane (H, R), where R = (2% +y?)'/?
is the distance of the point of contact of the thread with the floor, to the axis
passing through the nozzle. This indicates a steady coiling regime. When the
container is moved up (brown curve), the simulated radius R follows closely the
reference solution, until the latter folds back onto itself. The portion of the
reference curve immediately past the fold point is known to be unstable [1I].
The simulation then goes to a transient regime, labeled ‘C’ in figure [8p and
shown in figure It then settles to a different branch of solutions having a
smaller radius. A series of such bifurcations is observed in the simulation, a
behavior that has been observed in experiments too [II]. A similar sequence of
transitions is observed when the container is moved down. As multiple coiling
solutions are in competition, a hysteretic behavior is observed: transition from
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Figure 8: Validation in a steady coiling geometry, with II; = 7000, IIz = 7 and II3 = 0 (no
surface tension). (a) The coiling radius R = (x2 4 32)1/2 is recorded continuously as the fall
height H is varied, by slowly moving the container upwards (brown curve) and then downwards
(blue curve). It is compared against the reference solution of N. Ribe obtained by numerical
continuation (black), after rescaling by the length scale L*. Note the abrupt changes in the
coiling radius at places where the reference solution folds back onto itself, as expected. Filled
regions correspond to a rapidly varying radius, either because the thread goes to a steady
folding mode, as happens around H = .60, or because of a transient regime following a branch
jump. (b) Two typical configurations of the thread, for different fall heights. Note that the
fundamental mode of a hanging viscous string is excited in ‘A’, while its first harmonic is
excited in ‘B’: the red curve has a node near z/L* = .05.

the branch corresponding to the largest coiling radius to the second largest
occurs at a height ‘C’ when the container moves up, which is larger than the
transition height ‘D’ observed on the way back. We observe the occurrence of
a folding mode in the interval .72 > H/L* > .47 when the container moves
down, but will not comment further on it as little is known on the competition
between the coiling and folding modes. The small gap between the blue and
brown curves in the left part of figure can be attributed to the fact that
the velocity of the container V; is small but finite. Overall, the simulation is
in good agreement with the reference curve, and reproduces the details of its
meandering shape. This validates the various physical ingredients that affect
the reference curve, namely viscous bending and stretching, gravity, inertia and
contact with the floor.

A detailed run such as the one shown in figure [§], corresponding to a total
simulation time ¢ = 3030 and a total number of time steps t¢/e =~ 150 102, runs
in about 30 min on a 2.6 Ghz Intel Core i7 processor using 8 GB of memory.
The maximum number of vertices, when the fall height is maximum, is 460,
corresponding to approximately 1800 degrees of freedom.

8.2. Analysis of convergence

Convergence of the solution towards the reference solution of N. Ribe is
shown in figure [J] as a function of the discretization parameters. Convergence is
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Figure 9: Analysis of convergence towards the reference solution in steady coiling geometry,
showing the relative error on the coiling radius § R/ R as a function of mesh size and time step.
The same parameters are used as in figure @ but the time step and the discretization length
are varied in the intervals .02 < e < .2 and .025 < /. < .25, their ratio being kept constant.
Fall height is fixed to H = 1.01.

challenging in the presence of collisions on the floor, and we found it necessary
to use the refined models for the floor and container described in sections [7.1.2]
and [7.2.2] In our simulation the coiling radius R is measured after a time that
is long enough for the initial transient to disappear, and then averaged over
several periods. The simulation is repeated for different values of the time step
e and discretization length /., their ratio being kept constant. Convergence of
our numerical method is confirmed by the fact that the residual error goes to
zero. The convergence appears to be linear with the discretization parameters.

8.8. Validation of surface tension

With the aim to validate our discrete model for surface tension, we repeat
the validation shown in figure [§| using the same set of parameters, except for
the surface tension coefficient, now set to v = 1072, The corresponding dimen-
sionless parameter is II3 = 10.31073. Surface tension has a marked effect on
the coiling radius, as shown by comparison of the solid and dashed black curves
in figure We obtain a good agreement between the simulation and the new
reference curve. This validates our discrete surface tension model.

9. Discussion

9.1. Transient regimes

Even though the steady coiling geometry provides a convenient set-up for
validation and verification, our numerical method can solve the non-steady dy-
namics of viscous threads. As an illustration, transient regimes following jumps
from one branch of steady coiling solutions to the next are shown in figure
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Figure 10: Validation of surface tension using steady coiling (II; = 7000, II = 7, II3 =
10.31073). The same parameters are used as in figure [8) except for the non-zero surface
tension v = 1073. A good agreement is obtained with the reference curve that takes into
account surface tension (solid black curve). For reference, the reference solution with zero
surface tension is shown (dotted curve).
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Figure 11: Trace laid out by the thread in the simulation, in the transient regimes following
the jumps labelled ‘C’ and ‘D’ in figure [§} In ‘C’, the fall height is slowly increased and the
thread jumps to a solution having a smaller radius; in ‘D’, the fall height is slowly decreased,
and the thread jumps to a solution having a larger radius. Same simulation parameters as in

figure
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Figure 12: Simulation of the so-called numerical sewing machine. The thread is poured from
a constant height onto a moving belt. As the velocity of the belt is increased, the pattern laid
out by the thread undergoes a series of bifurcations, similar to those that have been reported
in the experiments: for this particular value of the fall height, translated coiling, alternated
loops and meanders are successively obtained. Arrows indicate the velocity of the belt as the
pattern was formed: the belt moves to the right and more ancient patterns, corresponding to
a slower belt, are located on the right hand side. Simulation parameters are the same as in
reference [I3] and are provided in main text.

9.2. The viscous sewing machine

The fluid-mechanical sewing machine is an extension of the steady coiling
problem to the case of a moving substrate. To the best of our knowledge, our nu-
merical method is the first one that can simulate this non-steady phenomenon.
In fact the possibility to set up numerical simulations of the experiments de-
scribed in references [12] [I3] acted as an incentive for us to develop the present
simulation method.

A numerical investigation of the fluid-mechanical sewing machine is the topic
of a separate detailed paper [76]. In figure a simple demonstration run is
presented. In this simulation, the velocity of the belt is steadily increased.
The patterns must be read from right to left: this corresponds to the order in
which they were produced, and so to an increasing belt velocities. On the right-
hand side, for a low belt velocity, the translated coiling pattern is obtained.
Increasing the belt velocity, two successive transitions are observed, leading to
the formation of alternated loops first, and to meanders next. For even larger
belt velocities, the oscillations disappear and the pattern becomes straight (not
shown) as the hanging part of the thread takes on a catenary-like shape. The
same sequence of patterns has been observed in the experiments, and is typical
of small fall heights. A variety of patterns, some of which are quite complex, are
obtained at larger fall heights both in the experiments and in the simulations,
see reference [76] for details.

The parameters used to produce the results of figure[12|are the same as in the
experiments of Morris [I3]. We use a convenient set of units in which the fluid’s
dynamical viscosity is u = 1, its mass density is p = 1, and the acceleration
of gravity is ¢ = 1. With this natural set of units, the quantities L* and T*
defined earlier read L* = 1 and T* = 1. The fall height is fixed to H = 0.865;
this corresponds to a physical fall height of 3.7 cm in the experiments [13]. The
area of the circular outlet at the bottom of the container is set to A. = 0.0275,
and the imposed volume flow rate is Q. = 2.29107°, and there is no surface
tension, v = 0. The corresponding values of the dimensionless groups read
II; = 608.5, II; = 0.369, IIs = 0. The spatial discretization parameter is set to
{. = 0.005, and the temporal one to € = 0.05. The stretching effect of gravity is
severe, and the mesh is refined adaptively to maintain a good resolution near the
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bottom of the thread while keeping a reasonable number of degrees of freedom,
as explained in section [6.5f a given segment is refined up to six times in the
simulation. The belt is held still until time ¢; = 919 to the initial transient
relax. From this time on, the belt velocity is steadily accelerated until the end
of the simulation, occurring at time ¢¢ = 1650, its final velocity being 0.02.

9.3. Limitations and perspective

For the simulation results to be reproducible, we found it critical to fine-tune
the discretization parameters in a steady coiling geometry, before attempting to
simulate non-steady behaviors. Checking the convergence of positions, typically
by comparing the coiling radius to the reference solution, appeared not to be
sufficient. We had to suppress any fast residual oscillation in the computed
acceleration, by using the refined description of obstacles described in section
and by carefully choosing the discretization parameters.

The present paper presents a linear implicit scheme: at each time step,
the velocity is updated using a linear expression for the viscous forces, which
is accurate in the vicinity of the previous configuration, see equations
and ([135)); the position is then updated separately using this velocity, see
equation . Compared to an explicit scheme, this method is more difficult to
implement but vastly superior in terms of stability. In a previous paper, we have
explored a fully implicit scheme [41], by retaining the non-linear dependence of
the viscous forces on positions: in that case, each time step requires a non-
linear root-finding. The benefit of the non-linear implicit approach is that it
preserves conservation laws associated with the symmetries of the problem, such
as the conservation of the angular momentum, when it applies. By contrast the
method presented here displays the usual dissipation of angular momentum.
This is a minor drawback as viscous thread are rarely free-standing in practical
applications. In all the demonstration examples shown earlier, neither the linear
nor the angular momentum of the thread are actually conserved, because of the
contact forces with the floor.

Simulations of viscous threads and elastic rods can be unified [4I]: in that
treatment all the code is shared by both rods and threads, except that in the
viscous case the undeformed configuration is updated at each time step. This
makes the combined approach very appealing. Nevertheless, a benefit of the
specialized implementation presented here is that it saves the burden of imple-
menting the Hessian matrix for naturally curved elastic rods.

In future work, it would be interesting to extend the present numerical model
to thin threads governed by more general constitutive laws, such as visco-elastic
filaments [49, [79] which can exhibit a complex and poorly understood behav-
ior [80]. To this end, the discrete geometrical model exposed in the present
paper can be reused and combined with different constitutive laws. It would
also be interesting to couple our thin thread model with existing simulation
methods for 3D flows with free boundaries [81], 82, 20, [72], in order to capture
the interaction of the thread with the slowly collapsing pile that forms where it
merges with the bath.
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9.4. Conclusion

We have presented a numerical method for simulating the dynamics of thin
viscous threads. In contrast with existing numerical methods, it captures the
combined effects of stretching, bending and twisting forces, inertia and large
rotations. It is not restricted to steady flows. The method has been derived by
writing the smooth equations of motion for thin threads into a Lagrangian form,
and using a careful spatial discretization. In particular, a discrete notion of twist
has been used, which is based on the geometry of parallel transport. The internal
stress representing the internal viscous stress has been derived from variational
principles, using a Rayleigh potential. All the relevant physical quantities, such
as strain rates and internal stress, have been identified in the discrete setting.
Using a formal convergence argument, we have shown equivalence of the discrete
equations with the classical smooth formulation. The method has been validated
against reference solutions available for steady coiling. Demonstration examples
in the non-steady case have been shown.

We would like to thank Neil Ribe for getting us interested into the fascinating
dynamics of thin threads, and for sharing his continuation data which enabled
us to validate our code.

Appendix A. Equivalence with the constitutive equations of Ribe

In a classical paper, Ribe analyzed the helical coiling of viscous jets falling
on a plane [9]. In the frame rotating with the jet, the shape of the centerline is
stationary. The equations for the shape of the jet are expressed as a set of non-
linear ordinary differential equations with boundary conditions at both ends.
This non-linear boundary value problem was solved by numerical continuation
techniques, using the AUTO [78] software. These solutions, which corresponds
to steady configurations, have been used to validate our dynamical code.

We show below that the constitutive laws derived by Ribe from the Stokes
equations in 3D, are equivalent to our equations . However, the formalism
used by Ribe is different from ours, and we then need to reword his analysis.

Ribe introduces an Eulerian twist-curvature vector 7 which satisfies an
equation similar to our equation for its Lagrangian variant 7, where the
derivative is taken with respect to s instead of S, that is:

od.
=t — X d.. A.].
5s ~ L *di (A1)
The components of 7 are denoted
K1
= ko |, (A.2)
K3

where the square brackets indicate a decomposition in the material frame (d;, d,, ds),
which is a ‘moving’ frame, i. e. this frame varies with the arc length parameter.
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As in equation 7 the Eulerian kinematical twist 7% and binormal curva-
ture vector K= are obtained by a decomposition of the twist-curvature vector

7P into transverse and tangential components,

K1
P =hs, K= s |. (A.3)
0

In the frame rotating with the coils, the material rotation wg is written in a
form similar to equation ,

&RZEXtR‘FUJde

where {5, is the time derivative evaluated in the rotating frame. Since the shape
of the thread is steady in this frame, we have

. Ow
fn=U—==Uz"xt,
where U = up -t is the axial velocity of the fluid in the rotating frame. The
expression for the material angular velocity can be obtained by combining the
above equations,
U;‘il
wrp=| Uks |. (A.4)
w3

The material angular velocity in the laboratory frame follows from the compo-
sition of velocities, that is w = wy + Qe, where (2 is the frequency of coiling,
as well as the relative angular velocity of the rotating frame with respect to the
laboratory.

As a result, the gradient of rotation reads

Ulil (U I‘Ll)/ Ulil
Ow 0 , E
% = % Ulig = (U :‘72) + 7 X Uﬁ?z s
w3 W3 w3

where the last term comes from the fact that the material frame is a moving
frame, see equation ((A.1)).
With the help of equations (A.2)) and (A.4)), this vector reads

Ow (U I'il>/ + Ko (OJ3 — Uli3)
377 = | (Uks) — k3 (w3 — U K3)
S wé
When this vector is inserted into the constitutive law (65b), we obtain for the

bending moment m the same expressions as those derived by Ribe, who used a
lubrication-type of approximation in the Stokes equations in 3D.
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