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Abstract7

In a recent paper we presented a new ultra efficient numerical method for solving8

kinetic equations of the Boltzmann type [18]. The key idea, on which the method9

relies, is to solve the collision part on a grid and then to solve exactly the transport10

part by following the characteristics backward in time. On the contrary to classical11

semi-Lagrangian methods one does not need to reconstruct the distribution function12

at each time step. This allows to tremendously reduce the computational cost and to13

perform efficient numerical simulations of kinetic equations up to the six dimensional14

case without parallelization. However, the main drawback of the method developed15

was the loss of spatial accuracy close to the fluid limit. In the present work, we16

modify the scheme in such a way that it is able to preserve the high order spatial17

accuracy for extremely rarefied and fluid regimes. In particular, in the fluid limit,18

the method automatically degenerates into a high order method for the compressible19

Euler equations. Numerical examples are presented which validate the method, show20

the higher accuracy with respect to the previous approach and measure its efficiency21

with respect to well known schemes (Direct Simulation Monte Carlo, Finite Volume,22

MUSCL, WENO).23

Keywords: Kinetic equations, discrete velocity models, semi Lagrangian schemes, Boltzmann-24

BGK equation, Euler solver, high-order scheme.25

1 Introduction26

The kinetic equations provide a description of non equilibrium gases and more generally27

of particle systems [2, 9]. The distribution function, which describes the evolution of the28

system, depends, in the most general case, on seven independent variables: the time, the29
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physical and the velocity space. It turns out that the numerical simulation of these kind30

of equations with deterministic techniques presents several drawbacks due to the large31

dimension of the problem. On the other side of the spectrum of the numerical techniques32

used to approximate kinetic equations, there are the probabilistic methods [2, 7, 8, 32].33

These methods and in particular Monte Carlo methods (DSMC) are extensively used due34

to their very low computational cost especially in the multidimensional cases, compared35

to finite volume, finite difference or spectral methods [21, 22, 30, 31, 33, 38, 36, 37].36

However, DSMC furnishes only poorly accurate and fluctuating solutions which cannot37

be easily ameliorated. This is especially true in non stationary situations in which time38

averages techniques turn to be useless.39

Many different works have been dedicated to reduce some of the disadvantages of40

Monte Carlo methods. We quote [7] for an overview on efficient and low variance Monte41

Carlo methods. Let us remind to the works of Homolle and Hadjiconstantinou [26] and42

[27] and of Dimarco, Pareschi and Degond [19, 20, 16, 17] for some applications of variance43

reduction techniques to kinetic equations in transitional and general regimes. We recall44

also the works of Boyd and Burt [6] and of Pullin [39] who developed a low diffusion45

particle methods for simulating compressible inviscid flows.46

In this work, we continue the development of a new deterministic ultra fast method47

which permits to solve kinetic equations of the Boltzmann type [18]. The scheme is48

based on the classical discrete velocity models (DVM) approach [4, 33, 36, 37]. The49

DVM models are obtained by discretizing the velocity space into a set of fixed discrete50

velocities [4, 30, 33, 34]. As a result of this discretization, the original kinetic equation51

is then represented as a set of linear transport equations plus a source term. The source52

term describes the collisions or the interactions between the particles and couples all the53

equations of the resulting system. In order to solve the transport part of the DVM model,54

many different techniques can be employed like finite difference, finite volume or fast55

methods [5, 22, 21, 31, 30, 25]. One of the most common strategies for solving this kind of56

problems is the semi Lagrangian approach [10, 11, 22, 40] which will be also the basis of57

the method here developed. Unfortunately, for each of the method cited, we recall that,58

the computational effort needed for solving the full six dimensional equation, prevents still59

nowadays realistic simulations even with parallel machines.60

To overcome the problem of the excessive computational cost, we recently proposed61

in [18] to use a splitting method to separate the transport from the collision step [13, 42].62

Then, we used a Lagrangian technique which exactly solves the transport step on the entire63

domain and we projected the solution on a grid to compute the contribution of the collision64

operator. The resulting scheme (Fast Kinetic Scheme, FKS) shares many analogies with65

semi-Lagrangian methods [10, 11, 12, 22, 40] and with Monte Carlo schemes [29], but66

on the contrary to them, the method is as fast as a particle method while the numerical67

solution remains fully deterministic, which means that there is no source of statistical68

error. When used to solve the limiting fluid model, the FKS method shares also some69

analogies with the so-called Lattice Boltzmann methods [1], but on the contrary to them70

its application is not limited to dense flows, all the regimes from rarefied to dense can be71

studied with such approach. Thanks to this new scheme, we were able to compute the72

solution of the full six dimensional kinetic equation on a laptop for acceptable mesh sizes73
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and in a reasonable amount of time (about ten hours for 1003 space × 123 velocity space74

mesh points for 110 time steps up to t = 0.1 on the spherical Sod-like problem).75

However, the method developed, exhibited some limitations in term of spatial accuracy.76

In fact, it was only poorly accurate when used to compute solutions close to the fluid limit.77

We showed in [18] that, in these cases, the computed solutions laid between a first order78

and a second order MUSCL scheme. In the present work, we developed a strategy which79

permits to preserve a desired high-order of accuracy in space for all the different regimes80

from the extremely rarefied to the high dense cases. In particular, it permits to recover81

the solution of the compressible Euler equations, when the number of collisions tends to82

infinity, with an high order shock capturing scheme. The modification introduced consists83

in coupling the fast kinetic scheme (FKS) to a solver for the compressible Euler equations,84

then to match the moments obtained from the solution of the macroscopic equations with85

those obtained from the solution of the equilibrium part of the kinetic equation. Finally,86

the solution, in term of the moments, is recovered as a convex combination of the two87

contributions: the macroscopic and the microscopic parts. We will show that the in-88

troduction of a macroscopic solver will not increase dramatically the computational cost,89

instead this modification will represent only a fraction of the time employed for computing90

the solution. In this work, the interaction term between the particles is the BGK collision91

operator [24]. However, the high order version of the Fast Kinetic Scheme can in principle92

be extended to other collisional operators as the Boltzmann one.93

94

The article is organized as follows. In section 2, we introduce the Boltzmann-BGK95

equation and its properties. In section 3, we present the discrete velocity model (DVM).96

Then, in section 4, we present the fast kinetic scheme (FKS) and the High Order Fast97

Kinetic Scheme (HOFKS). Several test problems which demonstrate the accuracy and the98

strong efficiency of the new method are presented and discussed in section 5. Some final99

considerations and future developments are finally drawn in the last section.100

2 Boltzmann-BGK Equation101

The equation to be solved is the following:102

∂tf + v · ∇xf =
1

τ
(Mf − f), (1)

with the initial condition f(x, v, t = 0) = f0(x, v). The non negative function f = f(x, v, t)103

describes the time evolution of the distribution of particles which move with velocity104

v ∈ Rd in the space x ∈ Ω ⊂ Rd at time t > 0. For simplicity, in the description of the105

method we will do the hypothesis that the dimension of the physical space is the same of106

the dimension of the velocity space d. However, the method is not restricted to this par-107

ticular choice and it is possible to consider different dimensions between the space and the108

velocity in order to obtain different simplified models. The type of interactions term which109

characterizes the kinetic equation in (1) is the so-called BGK relaxation operator. With110

this choice the collisions are modeled by a relaxation towards the local thermodynamical111
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equilibrium defined by the Maxwellian distribution function Mf112

Mf =Mf [ρ, u, T ](v) =
ρ

(2πθ)d/2
exp

(
−|u− v|2

2θ

)
, (2)

where ρ ∈ R, ρ > 0 and u ∈ Rd are respectively the density and mean velocity while113

θ = RT with T the temperature of the gas and R the gas constant. The macroscopic114

values ρ,u and T are related to f by:115

ρ =

∫

Rd

fdv, u =
1

ρ

∫

Rd

vfdv, θ =
1

ρd

∫

Rd

|v − u|2fdv, (3)

while the energy E is defined by116

E =
1

2

∫

Rd

|v|2fdv =
1

2
ρ|u|2 +

d

2
ρθ, (4)

The parameter τ > 0 in (1) is the relaxation time. We refer to section 5 for the numerical117

values chosen.118

Formally, when the number of collision goes to infinity, which means τ → 0, the119

function f converges towards the Maxwellian distribution. In this limit, if we consider the120

BGK equation (1) and we multiply it by 1, v, 1
2 |v

2|, and then we integrate with respect121

to v, we get the so-called Euler system of compressible gas dynamics equations122

∂ρ

∂t
+∇x · (ρu) = 0,

∂ρu

∂t
+∇x · (ρu⊗ u+ pI) = 0,

∂E

∂t
+∇x · ((E + p)u) = 0,

p = ρθ, E =
d

2
ρθ +

1

2
ρ|u|2.

(5)

In the following, we will combine the BGK equation (1) with the compressible Euler123

equation (5) to get our High Order Fast Kinetic scheme.124

3 The Discrete Velocity Models (DVM)125

The principle of Discrete Velocity Model (DVM) is to set a grid in the velocity space and126

thus to transform the kinetic equation (1) in a set of linear hyperbolic equations with127

source terms. We refer to the works of Platkowski [36] and of Mieussens [30] for the128

description of this approach and we remind to them for the details. In the following, we129

will briefly describe the idea and we will introduce the notations which will be used.130

Let K be a set of M multi-indices of Nd, defined by K =
{
k = (k(i))di=1, k

(i) ≤ K(i)
}
,131

where {K(i)} are some given bounds. We introduce a Cartesian grid V of Rd by132

V = {vk = k∆v + a, k ∈ K} , (6)
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where a is an arbitrary vector of Rd and ∆v is a scalar which represents the grid step in133

the velocity space. We denote the discrete collision invariants on V by mk = (1, vk,
1
2 |vk|

2).134

Now, in this setting, the continuous distribution function f is replaced by a N−vector135

fK(x, t), where each component is assumed to be an approximation of the distribution136

function f at location vk:137

fK(x, t) = (fk(x, t))k, fk(x, t) ≈ f(x, vk, t). (7)

The fluid quantities are then obtained from fk thanks to discrete summations on V:138

U(x, t) =
∑

k

mkfk(x, t)∆v = 〈mkfk(x, t)〉K. (8)

The discrete velocity BGK model consists of a set of N evolution equations for fk of the139

form140

∂tfk + vk · ∇xfk =
1

τ
(Ek[U ]− fk), k = 1, .., N (9)

where Ek[U ] is a suitable approximation of Mf defined next. The DVM approach deserves141

some remarks.142

Remark 1143

• When dealing with discrete velocity methods, one needs to truncate the velocity space144

and to fix some bounds. This gives the number N of evolution equations (9). Of145

course, the number N is chosen as a compromise between the desired precision in146

the discretization of the velocity space and the computational cost, while the bounds147

are chosen to give a correct representation of the flow. This implies that the dis-148

crete velocity set must be large enough to take into account large variations of the149

macroscopic quantities which may appear during the evolution of the problem. On150

the other hand, the number of mesh points should be sufficiently large to guarantee151

that the small variations of the macroscopic quantities are well described.152

• The exact conservation of macroscopic quantities is impossible, because in general153

the support of the distribution function is non compact. This is the case for instance154

of the Maxwellian equilibrium distribution. Thus, in order to conserve macroscopic155

variables, different strategies can be adopted, two possibilities are described in [23,156

30]. Moreover, the approximation of the equilibrium distribution Mf by Ek[U ] must157

be carefully chosen in order to satisfy conservations of physical quantities. In the158

following section we will discuss our choices in details.159

4 Fast Kinetic Schemes (FKS) and High Order Fast Kinetic160

Schemes (HOFKS)161

In this section we recall the FKS method and then we will introduce a new class of schemes162

which enables to get high order spatial accuracy (HOFKS). Before, we will discuss and163

propose a solution for the problem of lack of conservation of the macroscopic quantities164
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which characterizes the class of discrete velocity models we are dealing with. We first165

of all introduce a Cartesian uniform grid in the physical space, FKS schemes are in fact166

based on uniform meshes. The extension of this class of methods to general meshes is not167

trivial but nevertheless under study. The mesh is defined by the set J of N multi-indices168

of Nd, which is J = {j = (j(i))di=1, j
(i) ≤ J (i)}, where {J (i)} are some given bounds which169

represent the boundary points in the physical space. The grid X of Rd is then given by170

X = {xj = j∆x+ b, j ∈ J }, (10)

where d represents at the same time the dimension of the physical space and the dimension171

of the velocity space. The form of the physical space is determined by the vector b of Rd
172

and ∆x is a scalar which represents the grid step in the physical space. We consider a173

third discretization which is the time discretization tn = n∆t with n ∈ N. We will at the174

end of the section discuss the time step limitations and the CFL condition.175

4.1 Conservative Discrete Velocity Models (DVM)176

Suppose a continuous in phase space distribution function is given, i.e. f(xj, v, t
n), with177

moments U(xj, t
n) for every j ∈ J and n ≥ 0. We proceed into two steps. First we define178

f̃nj,k = f(xj, vk, tn), (11)

which is the pointwise distribution value in phase space. Observe that, due to the trunca-179

tion of the velocity space and to the finite number of points with which f is discretized, the180

moments of f̃nj,k differ from the original moments U(xj , t
n). In fact the discrete moments181

of this distribution are182

Ũn
j = 〈mkf̃

n
j,k∆v〉K 6= Un

j , ρ̃nj ≤ ρnj , θ̃nj ≤ θnj . (12)

Different strategies can be adopted to restore the correct moments. Our choice, which is183

the second step of the conservative DVM model, consists in defining the approximated184

distribution function fnj,k as the distribution closer in the discrete L2 norm to f̃nj,k =185

f(xj, vk, tn) for which the moments are exactly the macroscopic quantities we want to186

preserve , i.e187

Un
j = 〈mkf

n
j,k∆v〉K. (13)

In order to find this distribution we make use of a simple constrained Lagrange multi-188

plier method [23], where the constraints are mass, momentum and energy of the solution.189

Let us recall the technique from [23]. For each spatial cell, let define the pointwise distri-190

bution vector191

f̃nj =
(
f̃nj,1, f̃

n
j,2, . . . , f̃

n
j,N

)T
, (14)

let also define the vector containing the corrected distribution which fulfills the conserva-192

tion of moments we are searching for193

fnj =
(
fnj,1, f

n
j,2, . . . , f

n
j,N

)T
, (15)
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and the matrix which contains the discretization parameters C ∈ R
(d+2)×N . At this point,194

conservation can be imposed in each cell and at any time index n solving the following195

constrained optimization problem:196

Given f̃nj ∈ R
N , C ∈ R

(d+2)×N , and Un
j ∈ R

(d+2)×1,

find fnj ∈ R
N such that (16)

‖f̃nj − fnj ‖
2
2 is minimized subject to the constraint Cfnj = Un

j .

Thus, let λ ∈ R
d+2 be the Lagrange multiplier vector, the objective function to be197

minimized, in each cell, is given by198

L(fnj , λ) =
N∑

k=1

|f̃nj,k − fnj,k|
2 + λT (Cfnj − Un

j ). (17)

The above equation can be solved explicitly. The searched distribution function is then199

fnj is200

fnj = f̃nj + CT (CCT )−1(Un
j − Cf̃nj ), ∀j ∈ J . (18)

We end this part defining the approximated equilibrium distribution Ek[U
n
j ], or equiva-201

lently En
j,k[U ]. The discretization of the Maxwellian distribution Mf (x, v, t), should satisfy202

the same properties of conservation of the distribution f , i.e.203

Un
j = 〈mkf

n
j,k ∆v〉K = 〈mkEk[U

n
j ]∆v〉K. (19)

To this aim, observe that the natural approximation Ek[U
n
j ] = Mf (xj , vk, tn) = Mf [U

n
j ]204

cannot satisfy these requirements. Thus, the calculation carried out above for the defi-205

nition of the approximated distribution f , should also be performed for the equilibrium206

distribution Mf . This should be done each time we invoke the equilibrium distribution207

during the computation as explained in the next subsection. The function E [U ] is therefore208

given by the solution of the same minimization problem defined in (16), and its explicit209

value is given mimicking (18) by210

E [Un
j ] =Mf [U

n
j ] + CT (CCT )−1(Un

j − CMf [U
n
j ]), ∀j ∈ J . (20)

Notice that the computation of the new distributions f and E only involves a matrix-vector211

multiplication. In fact, matrix C only depends on the parameter of the discretization and212

thus it is constant in time. In other words matrices C and CT (CCT )−1 can be precomputed213

and stored in memory while initializing the problem.214

Remark 2215

• For FKS schemes, we need to solve the above minimization problem for the initial216

data f(xj, vk, t
0 = 0) and for the distribution E [Un

j ] at each time index n. In fact,217

once the conservation is guaranteed for f for t = 0, this is also guaranteed for the218

entire computation because the exact solution is used for solving the transport step.219
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• The only possible source of loss of conservation for this type of schemes is due to220

the solution of collision term and to the way in which the equilibrium distribution is221

discretized. This aspects will be detailed in the next subsection.222

• The conservation technique described in (16) does not assure the positivity of the223

distribution function fnj,k. It may happen in fact that during the constrained min-224

imization procedure fnj becomes negative for some values of k. In practice, we did225

not observe this phenomenon to create instability in the solution. However, in the226

cases in which positivity is strictly demanded, as for instance for the full Boltzmann227

operator discretized with spectral methods, alternative techniques should be designed.228

4.2 FKS schemes229

The main features of the method developed in [18] can be summarized as follows:230

• The BGK equation is discretized in velocity space by using the DVM model. The231

distribution f as well as the Maxwellian Mf are initialized by the conservative DVM232

method detailed in Section 4.1.233

• A time splitting procedure is employed between the transport and the relaxation op-234

erators for each of the resulting N evolution equations (9). First order time splitting235

is considered. In principle, others more sophisticated splitting can be employed [42].236

• The transport part is solved exactly and continuously in space, this means that no237

spatial mesh is involved. The initial data of this step is given by the solution of the238

relaxation operator.239

• The relaxation part is solved on the spacial grid. The initial data for this step is given240

by the value of the distribution function in the center of the cells after the previous241

transport step. Each time the equilibrium distribution is invoked, conservation is242

retrieved through equation (20). We need to impose conservation of the macroscopic243

quantities for the equilibrium distribution only.244

Let us give the details of the method. We recall that the FKS methods are constructed245

on uniform grids. Let f0j,k be the pointwise initial data, solution of equation (18) with246

f̃0j,k = f(xj , vk, t = 0). Let also E0
j,k[U ] be the initial equilibrium distribution solution247

of equation (20) with M0
j,k = Mf (xj , vk, t = 0) defined at points xj at t = 0 as the248

distribution f . We start describing the first step of the method [t0; t1] starting at t0 = 0.249

The scheme is then generalizable to the generic time step [tn; tn+1] starting from tn.250

First time step [t0; t1]. Let us describe the transport and relaxation stages.251

Transport stage. We solve N linear transport equations of the form:252

∂tfk + vk · ∇xfk = 0, k = 1, . . . , N. (21)
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The idea of FKS schemes is to solve the transport part continuously in space instead253

of solving it only on the mesh points. To this aim, we define for each of the N254

equations a piecewise constant function in space as255

fk(x, t
0 = 0) = f0j,k ∀x ∈ [xj−1/2, xj+1/2], k = 1, . . . , N. (22)

Now, the exact solution of the N equations at time t1 = t0 +∆t = ∆t is given by256

f
∗

k(x) = f(x− vk∆t), k = 1, . . . , N. (23)

Observe that, with this choice, we do not need to reconstruct the distribution func-257

tion f as for instance in the semi-Lagrangian schemes [21, 22]; the shape of the func-258

tion in space is in fact known at the beginning of the computation and it remains259

so through the duration of the computation. To be more precise the distribution260

function is transported in time with constant velocity so the discontinuities remain261

at the same relative locations. It remains also a piecewise constant function. The262

relaxation step, as finite difference methods, is solved only on the grid points. This263

means that only the value of the distribution function f and the macroscopic quan-264

tities in the centers of the cells are needed for this step. From the exact solution of265

the function fk we can immediately recover these values at the cost of one simple266

vector multiplication.267

Relaxation stage. This step is local to the grid, this means that we solve the following268

ordinary differential equation:269

∂tfj,k =
1

τ
(Ej,k[U ]− fj,k), k = 1, . . . , N, j = 1, . . . ,M, (24)

where the initial datum is the result of the transport step at points xj at time270

t1 = t0 +∆t271

f
∗

k(xj) = f̄(xj − vk∆t), k = 1, . . . , N, j = 1, . . . ,M. (25)

To solve equation (25) we need the value of the equilibrium distribution E at the272

center of the cell after the transport stage. In order to compute the Maxwellian,273

the macroscopic quantities in the center of the cells, i.e. the density, the mean274

velocity and the temperature, are given by summing the local value of the discrete275

distribution f over the velocity set: 〈mkf
∗
j,k∆v〉K = U∗

j , for all j = 1, . . . ,M , where276

f∗j,k = f
∗

k(xj). The discrete equilibrium distribution at time t1 = t0+∆t, E∗
j,k = E1

j,k,277

is the solution of equation (20) with moments U∗
j = U1

j , for all j = 1, . . . ,M . Observe278

in fact that, the Maxwellian distribution does not change during the relaxation step.279

In other words during this step the macroscopic quantities remain constants. We280

can now compute the solution of the relaxation stage as281

f1j,k = exp(−∆t/τ)f∗j,k + (1− exp(−∆t/τ))E1
j,k[U ]. (26)

The above equation furnishes only the new value of the distribution f at time t1 =282

t0 +∆t = ∆t in the center of each spatial cell for each velocity vk. However in order283

9



to continue the computation, we need the value of the distribution f in all points of284

the space. Let us assume that the equilibrium distribution Mf has the same shape285

than the distribution f in space. Thus, starting from the pointwise value of E we286

define a piecewise constant function in space Ek for each velocity vk. The values of287

this piecewise constant function are the values computed in the center of the spatial288

cells. In other words, one defines289

E
∗

k(x) = Ek(x, t
1) = E1

j,k, ∀x such that f
∗

k(x) = f
∗

k(xj), j = 1, . . . ,M. (27)

We can now rewrite the relaxation term directly in term of spatial continuous func-290

tion as291

f
1
k(x) = fk(x,∆t) = exp(−∆t/τ)f

∗

k(x) + (1− exp(−∆t/τ))E
∗

k(x)[U ]. (28)

For each velocity vk the original shape in space for the distribution fk is preserved292

throughout the computation, and, as a consequence it drastically reduces the com-293

putational cost because no reconstruction is needed.294

The time marching procedure can be now be described.295

Generic time step [tn; tn+1]. Given the value of the distribution function f
n
k(x), for296

all k = 1, . . . , N , and all x ∈ R
d at time tn, the value of the distribution at time tn+1,297

f
n+1
k (x), is given by298

f
∗

k(x) = f
n
k(x− vk∆t), k = 1, . . . , N (29)

299

f
n+1
k (x) = exp(−∆t/τ)f

∗

k(x) + (1− exp(−∆t/τ))E
n+1
k (x)[U ], k = 1, . . . , N, (30)

where E
n+1
k (x)[U ] is a piecewise constant function with the discontinuities located in the300

same positions as the distribution f∗k . It is computed considering the solution of the301

minimization problem (20) relative to the moments value in the center of each spatial cell302

after the transport stage: Un+1
j , j = 1, . . . ,M . These moments are given by computing303

〈mkf
∗
j,k∆v〉K where f∗j,k is the value that the distribution function takes after the transport304

stage in the center of each spatial cell.305

Remark 3306

• Due to the fact that the relaxation stage preserves the macroscopic quantities, the307

scheme is globally conservative by construction. In fact, at each time step, the change308

of density, momentum and energy is only due to the transport step. This latter being309

exact, does preserve the macroscopic quantities as well as the distribution function.310

• For the same reason, except for the constrained optimization procedure1, the scheme311

is also unconditionally positive. More precisely, if fnk (x) ≥ 0, and k = 1, . . . ,M and312

1Observe that the positivity of the constrained optimization step can be forced introducing an inequality

constraint of the type fn
j,k ≥ 0 or En

j,k ≥ 0. However, the introduction of such a step will cause the

minimization step to be solved numerically instead of analytically. This will means that the computational

cost of the method will increase. In the present work, we did not attack this problem and we remind to

the future for the development of strictly positivity preserving fast kinetic schemes.
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the optimization procedure preserves positivity, then fn+1
k (x) ≥ 0 if the initial datum313

is positive f0k (x) ≥ 0 for all k = 1, . . . ,M . In fact, the transport maintains the shape314

of f unchanged in space while the relaxation towards the Maxwellian distribution is315

a convex combination of Mf and f(x− vk∆t) both being positive.316

• The time step ∆t is constrained by the CFL condition317

∆tmax
k

(
|vk|

∆x

)
≤ 1 = CFL. (31)

Observe that this choice is not mandatory, in fact the scheme is stable for every318

choice of the time step. However, being based on a time splitting technique the error319

is of the order of ∆t. This suggests to take the usual CFL condition in order to320

maintain the time splitting error small enough.321

• Some experiments have been done on the influence of the CFL condition on the322

schemes. The results showed that, for the cases tested, up to CFL = 5 in (31), the323

FKS scheme provides a solution very close to the case CFL = 1 for all the values324

of the Knudsen number. Moreover, when the Knudsen number is large, i.e the BGK325

equations are very close to a free transport equation, using larger values of the CFL326

number does not cause any more degradation to the global accuracy because de facto327

the FKS scheme solves the transport term exactly.328

4.3 HOFKS schemes329

As observed in [18] the FKS scheme performs very well in collisionless or almost collisionless330

regimes. In these cases, in fact, the relaxation stage is neglectable and only the exact331

transport does play a role. However, when moving from rarefied to dense regimes the332

projection over the equilibrium distribution becomes more important. Thus, the accuracy333

of the scheme was expected to diminish in fluid regimes, because the projection method334

is only first order accurate. These behaviors were, in fact, observed in the numerical335

simulations performed [18]. In the present paper, we developed a method which preserves336

the high spatial accuracy observed with the FKS schemes for rarefied regimes and which337

becomes a high order shock capturing scheme applied to the kinetic equation (1) in the fluid338

limit. This means that throughout all possible regimes, from fluid to extremely rarefied339

flows, the new scheme maintains high accuracy in space. Moreover, the new method does340

not cause the computational efficiency to drop down. As shown in the numerical test341

section the high order fast kinetic schemes (HOFKS) still works with computational costs342

close to the original FKS method and, for unsteady problems, in which time averaging are343

unusable, it is still much faster than DSMC methods. We recall that we only focus on the344

spatial accuracy in this paper, we postpone to the future the development of high order345

schemes both in time and space.346

4.3.1 The general methodology347

The idea, onto which the method is based, is to solve the equilibrium part of the distribu-348

tion function with a macroscopic scheme instead of a kinetic scheme. In fact, observe that349
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at each time step, the relaxation stage consists in computing the distribution function fn350

as a convex combination of the transported distribution f∗ and a Maxwellian distribution351

En. The Maxwellian distribution En is computed through the moments of f∗. Then, in352

order to complete one step in time, the scheme solves the transport part which leads to353

the new intermediate distribution f∗ at time n+1. So now, in HOFKS scheme, we replace354

the moments at time index n+1, obtained from the solution of the transport stage at time355

n with another set of moments. This new set of moments are computed through the same356

convex combination of the relaxation stage (30). However now, to the contrary of (30),357

the convex combination is performed between the moments which come from the solution358

of the transport part of the kinetic equation and the moments which are solutions of the359

compressible Euler equations. At this point, if the compressible Euler equations are solved360

with a high order shock capturing scheme in the limit τ → 0 the HOFKS corresponds to361

the same method for the macroscopic equations. We detail this new scheme in the sequel.362

In order to keep notations simple and compact we introduce three operators: the363

projection operator P, the relaxation operator R∆t and the transport operator T∆t which364

act on a time step ∆t.365

From the kinetic variable f (or Mf ) the projection operator computes the macroscopic366

averages U(xj , t
n) = Un

j , thus367

Pn
j (f) = 〈mkf

n
j,k ∆v〉K = 〈mkEk[U

n
j ]∆v〉K = Pn

j (E) = U(xj , t
n), (32)

since the local Maxwellian Mf has the same moments of the distribution function f .368

The relaxation and transport operators solve the relaxation and transport steps for piece-369

wise constant functions fk and Ek or equivalently for pointwise functions fj,k and370

Ej,k[U ] for all velocities vk, k = 1, .., N . The relaxation operator has the form371

R∆t

(
f
)
= λf + (1− λ)E , (33)

where λ = exp(−∆t/τ), whereas the transport operator reads372

T∆t

(
f
)
= f(x− v∆t). (34)

In order to describe the HOFKS scheme, let us start, to the contrary of FKS scheme, from373

the relaxation step. Recall that starting either from the relaxation or from the transport374

step gives consistent splitting discretizations. Suppose that the distribution function f
n
k(x)375

is known as well as the function E
n
k(x) for all k = 1, . . . , N , then, as first step of the splitting376

we have377

f
∗
= R∆t

(
f
n
)
= λf

n
+ (1− λ)E

n
. (35)

The distribution function f
∗
is given by a convex combination of the transported distri-378

bution and the Maxwellian distribution. Then, the transport step, applied to the solution379

of the relaxation step, produces the so called kinetic solution (K) at time index n+ 1380

f
n+1
K = T∆t

(
f
∗
)
= T∆t

(
λf

n
)
+ T∆t

(
(1− λ)E

n)
.

12



On the other hand, the kinetic solution in terms of the macroscopic moments furnishes381

the following values382

UK(xj , t
n+1) = Pn+1

j

(
T∆t(f

∗
)
)

(36)

= Pn+1
j (T∆t(λf

n
)) + Pn+1

j (T∆t((1 − λ)E
n
)) (37)

= U∗(xj , t
n+1) + UM (xj , t

n+1). (38)

In order to construct the HOFKS scheme we replace the moments UM (xj , t
n+1) by the383

moments obtained solving the compressible Euler equations that we call UE(xj, t
n+1).384

(The details of the numerical scheme used will be given next.)385

Thus the final moments used in the solution are given by386

UH(xj , t
n+1) = U∗(xj, t

n+1) + UE(xj , t
n+1) (39)

where UH stands for hybrid. Before describing the last step which ensures consistency387

between the kinetic solver for the Maxwellian distribution and the macroscopic solver for388

the compressible Euler equations, we state the following result (see [19, 35] for a proof):389

Theorem 1 If we denote by UE(x, t + ∆t) the solution of the Euler equations (5) and390

with UM (x, t +∆t) the solution of the kinetic equation in which we consider initial ther-391

modynamical equilibrium, i.e. f = E [U ]. If in addition we consider as initial data392

UE(x, t) = UM (x, t) then393

UE(x, t+∆t) = UM (x, t+∆t) +O(∆t2). (40)

394

By virtue of the above result, we can replace the moments after the transport UM (xj , t
n)395

with UE(xj , t
n) at each time step without affecting the overall first order accuracy in time396

of the splitting method. However, to have consistency between the macroscopic solution397

and the kinetic discretized solution, it is necessary that the advected equilibrium satisfies398

Pn+1
j

(
T∆t((1 − λ)E

n
)
)
= UE(xj , t

n+1), (41)

namely the kinetic solution to the fluid equations in one time step should match the direct399

solution to the limiting fluid equations. This is not true in general. To solve this problem,400

we apply again the minimization method (20) to find the new distribution T∆t

(
(1− λ)En

j

)
401

which shares the same moments than the macroscopic solution UE(xj, t
n+1). Thus, we402

search for a distribution T ′
∆t

(
(1− λ)En

j

)
which satisfies the following minimization prob-403

lem:404

Given T∆t((1 − λ)En
j ) ∈ R

N , C ∈ R
(d+2)×N , and UE(xj , t

n+1) ∈ R
(d+2)×1,

find T ′
∆t((1− λ)En

j ) ∈ R
N such that (42)

‖T∆t((1 − λ)En
j )− T ′

∆t((1 − λ)En
j )‖

2
2 is minimized subject to the constraint

C
(
T ′
∆t((1 − λ)En

j )
)
= UE(xj , t

n+1).
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Then again, starting from the pointwise solution, we define as in the FKS schemes a new405

piecewise constant equilibrium function T ′
∆t((1− λ)E)(x) sharing its shape with f̄ as406

T ′
∆t

(
(1− λ)E

n
k

)
(x) = T ′

∆t

(
(1− λ)En

j,k

)
, ∀x s.t. f

n
k(x) = f

n
k(xj), j = 1, . . . ,M. (43)

Finally, the new distribution f , at time index n+ 1, is defined as407

f
n+1

= T∆t(λf
n
) + T ′

∆t((1 − λ)E
n
k), (44)

while the new moments are given by (39). This somehow ends the methodology to design408

HOFKS schemes. What remains to be detailed is how the solution of the compressible409

Euler equations UE(xj , t
n+1) = Un+1

E,j is computed. Remark that at this point any solver for410

the compressible Euler equations can be used. One example is proposed in the following.411

4.3.2 One example: MUSCL Finite Volume (FV) scheme412

As a first example we propose the MUSCL Finite Volume (FV) scheme. This is also the413

scheme used in the numerical test section. It reads, starting from Un
E,j,414

Un+1
E,j − Un

E,j

∆t
+
ψj+1/2(U

n
E)− ψj−1/2(U

n
E)

∆x
= 0, (45)

where discrete fluxes are defined as in [28] by415

ψj+1/2(U
n
E) =

1

2
(F (Un

E,j) + F (Un
E,j+1))−

1

2
α(Un

E,j+1 − Un
E,j) +

1

4
(σn,+j − σn,−j+1) (46)

with F (U) the flux of the compressible Euler equations and416

σn,±j =
(
F (Un

E,j+1)± αUn
E,j+1 − F (Un

E,j)∓ αUn
E,j

)
ϕ(χn,±

j ) (47)

with ϕ being the slope limiter, as instance we use the Van Leer slope limiter417

ϕ(χ) =
|χ|+ χ

1 + χ
, (48)

where the variable χ± is defined as following418

χn,±
j =

F (Un
E,j)± αUn

E,j − F (Un
E,j−1)∓ αUn

E,j−1

F (Un
E,j+1)± αUn

E,j+1 − F (Un
E,j)∓ αUn

E,j

. (49)

The above ratio of vectors is defined componentwise and α represent the eigenvalues of419

the Euler system.420
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4.3.3 Extensions and stability constraints421

We have proposed second order schemes to solve the compressible Euler equations. How-422

ever, any other solver can in principle be used, which could additionally increase the spatial423

accuracy of the HOFKS method, for instance WENO methods [41] or a genuine MOOD424

scheme [15, 14].425

Finally, the time step ∆t is chosen such that it satisfies the stability condition of the Euler426

solver, in fact we recall that the FKS is stable for all choices of the time step. This means427

that the time step is driven for the MUSCL scheme by428

∆t =
1

2

(
∆x

αmax

)
. (50)

with αmax the largest eigenvalue of the Euler system. If a more CFL restrictive Euler429

solver has to be used, as instance with a WENO scheme, then the time step will be ac-430

cordingly reduced.431

432

5 Numerical tests433

In this section, we present several numerical tests to illustrate the main features of the434

method and the improvements with respect to the FKS scheme. The following methodol-435

ogy is adopted436

First, we test the HOFKS method on the one dimensional Sod shock tube. In this case, we437

compare two kinetic schemes (the FKS, a first order upwind scheme and the HOFKS438

a second order scheme) versus a finite volume (FV) upwind scheme, a second order439

finite volume MUSCL method (MUSCL) and a third order WENO finite difference440

scheme (WENO). For any fluid regime the goal is threefold: (i) the two kinetic441

schemes produce valide results, (ii) the HOFKS is more accurate than FKS and, (iii)442

the accuracy of FKS lays in between FV and MUSCL and the accuracy of HOFKS443

lays in between MUSCL and WENO.444

In a second test case we use the exact smooth solution of the advected isentropic vortex445

of the 2D Euler equations to assess the effective numerical accuracy and rate of446

convergence of FKS, HOFKS and also the unlimited version of HOFKS. The solution447

being smooth an unlimited scheme can be used to measure the maximal accuracy448

that can be obtained with our choice of Euler solver.449

Then, in a third series of tests we solve a two dimensional-two dimensional BGK equation450

and we compare our method with a Monte Carlo scheme (DSMC) for τ = 10−3, and,451

in the fluid limit, τ = 10−4, with FV and MUSCL schemes. The goal is to show452

that a genuine multi-dimensional solutions with shocks and interaction of waves453

can be accurately captured with HOFKS in any fluid regime. We also report the454

computational times for the two dimensional simulations for the HOFKS, the FKS455

and the DSMC methods. All simulations are performed on a mono-processor laptop456

machine.457
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Figure 1: Sod test: solution at tfinal = 0.05 for the density, with τ = 10−2 (top left),
τ = 10−3 (top right), τ = 5× 10−4 (bottom left) and τ = 10−4 (bottom right).

5.1 1D Sod shock tube problem458

We consider the 1D/1D Sod test with 300 mesh points in physical and 100 points in459

velocity spaces. The boundaries in velocity space are set to −15 and 15. The left and460

right states are given by a density ρL = 1, mean velocity uL = 0 and temperature TL = 5461

if 0 ≤ x ≤ 0.5, while ρR = 0.125, uR = 0, TR = 4 if 0.5 ≤ x ≤ 1. The gas is, at the462

initial state, in thermodynamical equilibrium. We repeat the same test with four different463

values of the Knudsen number, i.e. τ = 10−2, τ = 10−3, τ = 5 × 10−4 and τ = 10−4.464

We plot the results for the final time tfinal = 0.05 for the density (Figure 1), the mean465

velocity (Figure 2) and the temperature (figure 3). In each figure we compare the HOFKS466

method with the FKS method. We reported also the solutions computed with a third order467

WENO method, a second-order MUSCL method and a first-order upwind method [28].468

These numerical methods, used as reference, employ the same discretization parameters,469
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Figure 2: 1D Sod test: solution at tfinal = 0.05 for the mean velocity, with τ = 10−2 (top
left), τ = 10−3 (top right), τ = 5× 10−4 (bottom left) and τ = 10−4 (bottom right).

except for the time steps which for each scheme is chosen in order to satisfy the stability470

conditions.471

From Figures (1) to (3) we observe that the HOFKS, the FKS and the WENO methods472

give identical or almost identical results for τ = 10−2, this result was expected. We build473

up the method in such a way that for larger τ it behaves like the original fast kinetic474

scheme, because we knew that in these regimes the FKS already gave very good results.475

For larger values of τ we found the same behaviors as for the case τ = 10−2, thus we476

did not report simulations results. Starting from τ = 10−3, some small differences arise477

between the HOFKS and the FKS methods, however both schemes are still very close to478

the WENO solution. For τ = 5× 10−4, we clearly see differences between the high order479

fast kinetic scheme and the fast kinetic scheme. In particular, we see that the HOFKS480

remains stick to the third order WENO scheme while the FKS not. This aspect is made481

very clear for τ = 10−4. In this latter case, the HOFKS gives very good results while482
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Figure 3: 1D Sod test: solution at tfinal = 0.05 for the temperature, with τ = 10−2 (top
left), τ = 10−3 (top right), τ = 5 10−4 (bottom left) and τ = 10−4 (bottom right).

the FKS scheme lays between a first and a second order space accurate method. The key483

point of the schemes developed is their very low CPU time consumption in comparison to484

other existing methods. This gain as expected is not so relevant for the one dimensional485

case, while it becomes very important for the two and the three dimensional cases. Thus,486

in the next subsection we report some two dimensional simulations together with their487

computational costs.488

5.2 2D isentropic vortex489

This vortex test case is a classical test to assess the accuracy of numerical schemes because490

this problem produces a genuine 2D smooth solution of Euler equations. The overall error491

produced by our kinetic schemes associates spacial discretization error, time discretization492

error and velocity discretization error. In our case the first order time discretization dooms493
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the overall scheme to remain first order accurate only. Nevertheless using a time step ∆t of494

the order ∆x2 or even smaller allows to reduce the time discretization error to a negligible495

quantity by respect to space discretization error. Doing so we can effectively measure the496

spacial accuracy of the overall scheme when the velocity error is kept small enough.497

To do so an isentropic vortex is introduced to a uniform mean flow, by small perturbations498

of velocity, density and temperature variables and is detailed in [41], [43] as instance. The499

simulation domain Ω is the square [0, 10]× [0, 10] and we consider an initial gas flow given500

by the following background condition ρ∞ = 1.0, u∞ = 1.0, v∞ = 1.0, p∞ = 1.0, with501

a normalized ambient temperature T ∗
∞ = 1.0 computed with the perfect gas equation of502

state and γ = 5/3.

 0

 2

 4

 6

 8

 10

 0  2  4  6  8  10

Vortex velocity

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  1  2  3  4  5  6

r=sqrt((x-x0)**2+(y-y0)**2)

Exact density
Exact temperature

Exact pressure
Exact velocity magnitude

Figure 4: 2D isentropic vortex. Initial data. Vortex velocity vectors (background velocity
is substracted) and exact density, temperature, pressure and velocity magnitude as a

function of r =
√
x′2 + y′2, (x′ = x−x0, y

′ = y−y0) with (x0, y0) the center of the vortex.

503

A vortex centered at X0 = (x0, y0) = (0, 0) is added to the ambient gas at the initial504

time t = 0 with the following conditions u = u∞ + δu, v = v∞ + δv, and T ∗ = T ∗
∞ + δT ∗

505

δu = −y′
β

2π
exp

(
1− r2

2

)
, δv = x′

β

2π
exp

(
1− r2

2

)
, δT ∗ = −

(γ − 1)β

8γπ2
exp

(
1− r2

)
.

with r =
√
x′2 + y′2, (x′ = x − x0, y

′ = y − y0) and vortex strength is given by β = 5.0.506

Consequently, the initial density is given by507

ρ = ρ∞

(
T ∗

T ∗
∞

) 1

γ−1

=

(
1−

(γ − 1)β

8γπ2
exp

(
1− r2

)) 1

γ−1

, (51)

and the pressure ig given by p = ργ . We assume periodic conditions and the exact solution508

at any time T > 0 is the same vortex but translated in the direction V∞ = (u∞, v∞). Note509

that V∞ = (0, 0) generates a static vortex which is usually simpler to solve and can also510

be misleading. The exact density function for any point at time T is denoted by ρex(x, T ),511
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moreover in figure 4 are plotted the exact solution for density, temperature, pressure and512

velocity as a function of r. A series of refined meshes (from 25× 25 up to 400× 400 cells)513

are successively used to compute the numerical solution where τ = 10−4 is used. The514

meshes are made of 202 points in velocity space with bounds [−15, 15]2. The errors at515

time T = tn for M spatial cells in one direction are given by516

ε1M =

∑

j∈J

|ρex(xj , t
n)− ρnj |

∑

j∈J

|ρex(xj, t
n)|

, ε∞M =
maxj∈J |ρex(xj , t

n)− ρnj |

maxj∈J |ρex(xj , tn)|
, (52)

The rates of convergence are computed as log(εM ′/εM )/ log(M ′/M) for two meshes with517

M ′ and M cells. In Table 1 are gathered the L1 and L∞ errors on the density variables518

and rates of convergence for FKS, the unlimited HOFKS and HOFKS at final time T = 1.519

As expected the FKS produces only first order accurate results in L1 and L∞ norms.520

Contrarily the unlimited HOFKS can reach a genuine higher order of accuracy in both521

norms; the high accuracy in L∞ norm is due to the fact that the solution is smooth and no522

limiter is applied therefore extrema are only little diffused compared to limited schemes.523

Finally the (limited) HOFKS behaves, as expected, like a high order accurate scheme in L1
524

norm and like a first order scheme in L∞ norm. We also display in figure 5 the convergence

Advected isentropic vortex
FKS Unlim. HOFKS HOFKS

∆x M L1
err L∞

err L1
err L∞

err L1
err L∞

err

1/25 25

2
1.26E-02 | 2.78E-01 | 6.36E-03 | 1.16E-01 | 4.64E-03 | 9.21E-02

1/50 50

2
8.36E-03 0.59 2.07E-01 0.43 2.12E-03 1.59 3.77E-02 1.62 2.08E-03 1.16 5.60E-02 0.72

1/100 100

2
5.09E-03 0.72 1.22E-01 0.76 5.68E-04 1.90 1.10E-02 1.78 6.40E-04 1.70 2.85E-02 0.97

1/200 200

2
2.86E-03 0.82 6.34E-02 0.95 1.49E-04 1.93 3.07E-03 1.84 1.64E-04 1.97 1.00E-02 1.51

1/300 300

2
2.03E-03 0.88 4.27E-02 1.01 7.08E-05 1.83 1.55E-03 1.69 7.55E-05 1.91 6.56E-03 1.04

1/400 400

2
1.56E-04 0.91 3.17E-02 1.03 4.36E-05 1.69 9.85E-04 1.57 4.52E-05 1.79 4.93E-03 0.99

Expe
ted order 1 1 2 2 2 1

Table 1: L1 and L∞ errors and convergence rates for the isentropic vortex problem with
FKS, unlimited HOFKS and HOFKS schemes.

525

curves corresponding to the errors of Table 1.526

Finally in figure 6 we present the density results obtained by the three schemes: FKS,527

unlimited HOFKS and HOFKS. The top panel presents the density on the 50×50 mesh for528

all schemes versus the exact solution. The bottom panels present the 50×50 and 100×100529

cell mesh results: the density as a function of r =
√
x′2 + y′2, (x′ = x − x0(T ), y

′ =530

y − y0(T )), where x0(T ) = x0 + u T and y0(T ) = y0 + v T are the exact coordinates of531

the vortex center at final time T , is plotted for all cells in the domain. Doing so we can532

measure the “convergence” of the results when a finer mesh is used, the excessive diffusion533

of the first order scheme and the tendency of undershooting of the unlimited scheme.534
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Figure 5: L1 and L∞ errors in logscale for the vortex problem. FKS, unlimited HOFKS
and HOFKS are presented.

5.3 2D Sod shock tube problem535

We consider now the 2D/2D Sod test on a square [0, 2]× [0, 2]. The velocity space is also536

a square with bounds −15 and 15, i.e. [−15, 15]2, discretized with Nv = 20 points in each537

direction which gives 202 points. The domain is divided into two parts, a disk centered538

at point (1, 1) of radius Rd = 0.2 is filled with a gas with density ρL = 1, mean velocity539

uL = 0 and temperature TL = 5, whereas the gas in the rest of the domain is initiated540

with ρR = 0.125, uR = 0, TR = 4. The final time is tfinal = 0.07.541

We report results for two different values of the Knudsen number τ = 10−3 and542

τ = 10−4. For these regimes, we can appreciate the differences between the high order543

fast kinetic scheme and the fast kinetic scheme. For larger τ , as expected, the solutions544

furnished by the two methods are very close and thus we do not show the figures. In the545

case of τ = 10−4 we compare the results between the HOFKS and the FKS method with546

a first order and a second order MUSCL scheme for the compressible Euler equations. In547

the case of τ = 10−3 we compare the results between the HOFKS and the FKS method548

with a DSMC method for the Boltzmann-BGK equation. For this latter, we employed on549

average 100 particles per cell and we averaged the solution over 100 realizations.550

In Figure 7, we report the profiles fixing x = 1 for respectively the density, the mean551

velocity in the x-direction and in the y-direction and the temperature using a 200 × 200552

mesh for τ = 10−4. In Figure 8, we report the same profiles for the same spatial position,553

i.e. x = 1, for the same macroscopic quantities but for a larger value of the Knudsen554

number: τ = 10−3. In this latter case, for the velocity in the x-direction, we did not555

report the solution for the DSMC method because the number of particles employed does556

not permit to compute the solution with sufficient precision. Observe, in fact, that in this557

test case, the final value of the x-velocity is of the order of 10−3, which is a value that due558

to the statistical fluctuations is very difficult to capture with DSMC methods.559

Moreover in Figure 7 bottom panels, we report some magnifications of the same profiles560

which permits to better appreciate the differences between the methods. We observe that,561

as in the 1D case, the accuracy of the FKS method lies between the first and the second562
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Figure 6: 2D Vortex problem at t = 1. Density results obtained by the three schemes:
FKS, unlimited HOFKS and HOFKS. Top: 3D view of the density on the 50 × 50 mesh
versus the exact solution. Bottom: 50 × 50 (left panel) and 100 × 100 (right panel) cells

meshes, density as a function of r =
√
x′2 + y′2, (x′ = x− x0(T ), y

′ = y − y0(T )), where
x0(T ) = x0 + u T and y0(T ) = y0 + v T are the exact coordinates of the vortex center, is
plotted for all cells.

order spatial accuracy for small τ . On the other hand, we cannot see the differences563

between the HOFKS scheme and the second order MUSCL scheme for τ = 10−4 even564

with the magnifications. This is because the same MUSCL scheme is used for solving565

the compressible Euler equations and for constructing the HOFKS scheme. In the case566

τ = 10−3, the HOFKS method, as in the 1D case, gives sharper solutions with respect567

the FKS method. This is also the case for the DSMC method which exhibits a larger568

numerical diffusion with respect to our kinetic scheme. For larger τ , the HOFKS, the569
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FKS and the DSMC almost collapse on the same line, if the number of particles is chosen570

sufficiently large, and thus we did not report any result.571

To conclude this test case study, we report, in table 2, the CPU time T , as well as the572

CPU time per time cycle Tcycle, the CPU time per cycle per cell Tcell and the number of573

cycles needed to perform the computation for different meshes in space for respectively the574

FKS, the HOFKS and the DSMC method when the Knudsen number is τ = 10−3. For the575

HOFKS and the FKS schemes the meshes are fixed in velocity and made of 202 points. For576

the DSMC method we choose the same number of particles which has been used to produce577

the results shown in the previous Figures, i.e. 100 particles in average per cell and 100578

realizations. We computed the computational effort for these three schemes repeating the579

same test using different meshes in space ranging from Nx = Ny = 25 to Nx = Ny = 200.580

The results of this analysis can be summarized as follows. The HOFKS method is around581

1.5 times more expensive than the FKS method for all the cases studied. This new scheme582

is however still very efficient: around 11.5 minutes to compute the solution on a 200× 200583

spacial mesh for a kinetic equation on a mono-processor laptop. For comparison the DSMC584

method, which is also known to be a fast method, requires around 505 minutes. The ratio585

between the two methods is about 44. Moreover DSMC gives less accurate solutions as586

seen on the y-component of velocity which can not be accurately captured.587

5.4 2D Implosion problem588

Finally we consider a 2D/2D implosion problem on the square [0, 2] × [0, 2] discretized589

with 1002 points. As in the previous test, the velocity space is a square but with larger590

bounds, i.e. −20 and 20, which means [−20, 20]2, discretized with Nv = 30 points in each591

direction which gives 402 points. The domain is divided into two parts, a disk centered at592

point (1, 1) of radius Rd = 0.2 is filled with a gas with density ρL = 0.125, mean velocity593

uL = 0 and temperature TL = 4, whereas the gas in the rest of the domain is initiated594

with ρR = 1, TR = 4, velocity in the x-direction ux = 1 for x ∈ [0, 1] and ux = −1 for595

x ∈ [1, 2] while the velocity in the y-direction is initiated with uy = 1 for y ∈ [0, 1] and596

uy = −1 for y ∈ [1, 2]. The final time is tfinal = 0.07.597

We report the results for the Knudsen number equal to τ = 10−3 comparing our scheme598

to the DSMC method for the Boltzmann-BGK equation. For this latter, we employed on599

average 200 particles per cell and the solution is averaged over 50 realizations.600

In Figure 9 we report the isolines of density, x-velocity, y-velocity and temperature, for the601

HOFKS method on the left and the DSMC method on the right. We observe that the two602

methods furnish the same results except for the statistical noise of the DSMC method. On603

the other hand, the computational costs of the two approaches are still very different. We604

report, as for the 2D Sod test, in table 3, the CPU time T , as well as the CPU time per605

time cycle Tcycle, the CPU time per cycle per cell Tcell and the number of cycles needed606

to perform the computation for different meshes in space. For the DSMC method we607

choose the same number of particles which has been used to produce the results shown in608

the figures, i.e. 200 particles in average per cell and 50 realizations. The results of this609

last test can be summarized as follows: The HOFKS method takes around 22 minutes for610

computing the solution on a 200 × 200 mesh for a kinetic equation on a mono-processor611
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Cell x # Nc # Deg. freedom Ntot Cycle Time Time/cycle Time/cell
Nx ×Ny Nx ×Ny ×N2

vx Ncycle T (s) Tcycle (s) Tcell (s)

FKS scheme

25× 25 25 × 25× 202 13 ∼ 1.5s 0.12 1.9 × 10−4

= 625 = 250000
50× 50 50 × 50× 202 25 6s 0.24 1.04 × 10−4

= 2500 = 106

100 × 100 100 × 100× 202 50 50s 1 1.0 × 10−4

= 10000 = 4× 106

200 × 200 200 × 200× 202 100 440s 4.4 1.1 × 10−4

= 40000 = 16 × 106

HOFKS scheme

25× 25 25 × 25× 202 13 ∼ 2s 0.15 ∼ 2.0 × 10−4

= 625 = 250000
50× 50 50 × 50× 202 25 9s 0.36 1.44 × 10−4

= 2500 = 106

100 × 100 100 × 100× 202 50 77s 1.54 1.54 × 10−4

= 10000 = 4× 106

200 × 200 200 × 200× 202 100 690s 6.9 1.72 × 10−4

= 40000 = 16 × 106

DSMC scheme

Nc ×Naverage×cell

25× 25 25× 25× 1002 11 73s 6.63 0.0106
= 625 = 6.25 × 106

50× 50 50× 50× 1002 × 50× 50 22 540s 24.54 0.0098
= 2500 = 2.5× 107

100 × 100 100 × 100× 1002 45 3700s 82.22 0.0082
= 10000 = 108 ∼ 61mn
200 × 200 200 × 200× 1002 90 30300s 336.66 0.0084
= 40000 = 4× 108 ∼ 505mn

Table 2: 2D Sod shock tube. Computational effort for the FKS, HOFKS and DSMC
schemes for τ = 10−3. The time per cycle is obtained by Tcycle = T/Ncycle and the time
per cycle per cell by Tcell = T/Ncycle/Nc.

laptop. The augmentation of the computational cost with respect to the 2D Sod test is612

essentially due to: first the augmentation of the mesh points in which the velocity space613

is discretized and second the reduction of the time step. The reduction of the time step is614

caused by the macroscopic solver of the compressible Euler equations which needs smaller615

time steps to ensure stability. For comparison the DSMC method, which still furnishes616

fluctuating and somewhat less accurate solutions, requires around 510 minutes. The ratio617

of CPU time is around 22 in favor of the HOFKS for a better overall accuracy.618
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Cell x # Nc # Deg. freedom Cycle Time Time/cycle Time/cell
Nx ×Ny Ncycle T (s) Tcycle (s) Tcell (s)

HOFKS scheme

Nx ×Ny ×N2
vx

25× 25 25× 25 × 302 21 ∼ 3s 0.14 ∼ 2.22 × 10−4

= 625 = 562500
50× 50 50× 50 × 302 43 22s 0.51 2.04 × 10−4

= 2500 = 2.25 × 106

100 × 100 100× 100 × 302 85 180s 2.12 2.08 × 10−4

= 10000 = 9× 106

200 × 200 200× 200 × 302 170 1350s 7.94 1.98 × 10−4

= 40000 = 36× 106 ∼ 22.5mn

DSMC scheme

Nx ×Ny ×Naverage×cell

25× 25 25× 25× 50 × 200 9 74s 8.22 0.0132
= 625 = 6.25 × 106

50× 50 50× 50× 50 × 200 20 620s 31 0.0124
= 2500 = 2.5× 107

100 × 100 100× 100 × 50× 200 40 3842s 96.05 0.0096
= 10000 = 108 ∼ 64mn
200 × 200 200× 200 × 50× 200 81 30600s 377.77 0.0094
= 40000 = 4× 108 ∼ 8.5h

Table 3: 2D Implosion test. Computational effort for the HOFKS and the DSMC scheme.
The time per cycle is obtained by Tcycle = T/Ncycle and the time per cycle per cell by
Tcell = T/Ncycle/Nc.
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Figure 7: 2D Sod test: solution at tfinal = 0.07 and x = 1 for τ = 10−4. Top-Middle: Den-
sity (top left), velocity in the x-direction (top right), velocity in the y-direction (middle left)
and temperature (middle right). Bottom: magnification of the solution. HOFKS method
continuous line, FKS method dash dotted line, first order and second order MUSCL meth-
ods dotted lines.
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Figure 8: 2D Sod test: solution at tfinal = 0.07 and x = 1 for τ = 10−3. Top-Middle:
Density (top left), velocity in the x-direction (top right), velocity in the y-direction (middle
left) and temperature (middle right). Bottom: magnification of the solution. HOFKS
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are not plotted for the y-component of velocity because the noise induced by the method
produces oscillations the amplitude of which are far greater than the scale of the figure.)
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Figure 9: 2D Implosion test at tfinal = 0.07 with τ = 10−3. HOFKS scheme (left), DSMC
scheme (right). From top to bottom: density, temperature, x-velocity, y-velocity.
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6 Conclusions619

In this work we have presented an high order in space extension of a new super efficient620

numerical method for solving kinetic equations. The method is based on a splitting be-621

tween the collision and the transport terms. The collision part is solved on a grid while622

the transport linear part is solved exactly by following the characteristics backward in623

time. The key point is that, conversely to semi-Lagrangian methods, we do not need to624

reconstruct the distribution function at each time step. This permits to tremendously625

reduce the computational cost with respect other existing methods for kinetic equations.626

In this paper, in order to solve the limitations in term of spatial accuracy close to the ther-627

modynamical equilibrium of the original Fast Kinetic Scheme, we coupled the solution of628

the FKS method with the solution of the compressible Euler equations. Then, we matched629

the moments obtained from the solution of the macroscopic equations with the moments630

obtained from the solution of the equilibrium part of the kinetic equation. Finally, we631

recovered the solution as a convex combination of the two contributions: the macroscopic632

and the microscopic parts. This improvement permits to preserve the desired accuracy in633

space for all the different regimes studied.634

The numerical results show that the HOFKS method performs as the FKS method635

for large values of the Knudsen number and as a high order shock capturing scheme for636

small Knudsen numbers. Moreover, the method requires a small computational effort.637

Numerical experiments have shown that the computational cost of the new method is638

around 1.5 times larger than the previous FKS method for a clear gain in accuracy when639

reached fluid regimes. Most importantly, we showed that this new class of fast kinetic640

schemes is more accurate and around 25− 65 times faster than DSMC methods which are641

known to be efficient schemes. This important result opens the gate to extensive realistic642

numerical simulations of far from equilibrium physical models.643

In this work, we only focused on the spatial accuracy of the method and not on the644

time accuracy, we remind to future works for the development of schemes which are both645

accurate in time and in space. We also would like to extend the method to non uniform646

meshes and different discretizations of the velocity space. Finally, we want to apply this647

method to other kinetic equations as the Boltzmann or the Vlasov equation.648
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