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Abstract

The iterative diagonalization of a sequence of large ill-conditioned generalized eigenvalue prob-
lems is a computational bottleneck in quantum mechanical methods employing a nonorthogonal
basis for ab initio electronic structure calculations. We propose a hybrid preconditioning scheme
to effectively combine global and locally accelerated preconditioners for rapid iterative diagonal-
ization of such eigenvalue problems. In partition-of-unity finite-element (PUFE) pseudopotential
density-functional calculations, employing a nonorthogonal basis, we show that the hybrid pre-
conditioned block steepest descent method is a cost-effective eigensolver, outperforming current
state-of-the-art global preconditioning schemes, and comparably efficient for the ill-conditioned
generalized eigenvalue problems produced by PUFE as the locally optimal block preconditioned
conjugate-gradient method for the well-conditioned standard eigenvalue problems produced by
planewave methods.

1 Introduction

First principles (ab initio) quantum mechanical simulations based on density functional theory
(DFT) [22, 25] are a vital component of research in condensed matter physics and molecular quantum
chemistry. Using DFT, the many-body Schrödinger equation for the ground state properties of an
interacting system of electrons and nuclei is reduced to the self-consistent solution of an effective
single-particle Schrödinger equation, known as the Kohn-Sham equation:

Hψi(r) =

[
−
1

2
∇2 + Veff(r, ρ(r))

]
ψi(r) = εiψi(r), (1)

where εi are particle energies (eigenvalues) and ψi are the associated wavefunctions (eigenfunc-
tions). The Hamiltonian H consists of kinetic energy operator −1

2∇
2 and effective potential operator

Veff(r, ρ(r)). The effective potential Veff depends on the electronic charge density

ρ(r) =
∑

i

fi|ψi(r)|
2, (2)
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where 0 ≤ fi ≤ 2 is the electronic occupation of state i and the sum is over all occupied states. Since
ψi depends on Veff which depends on ρ(r) which depends again on ψi, the Kohn-Sham equation (1)
is a nonlinear eigenvalue problem.

The importance of ab initio calculations stems from their underlying quantum-mechanical na-
ture, yielding insights inaccessible to experiment and robust, predictive power unattainable by more
approximate empirical approaches. However, because ab initio calculations are computationally
intensive, a vast range of real materials problems remain inaccessible by such accurate, quantum me-
chanical means. To address this limitation, there has been substantial effort in recent years to develop
ab initio methods that use efficient, local bases in order to both reduce degrees of freedom and facili-
tate large-scale parallel implementation: augmented planewave plus local orbital (APW+lo) [49, 50],
atomic-orbital (AO), e.g., [3, 8], and real-space methods [6, 55, 41] such as finite-difference [12, 13, 10],
wavelet [14, 2, 18], finite-element (FE) [56, 36], partition-of-unity finite element (PUFE) [54, 38, 37],
and discontinuous Galerkin (DG) [27] methods, among many others, see for example [30].

In the vast majority of ab initio methods, the dominant computational cost is the iterative
diagonalization of the sequence of large linear eigenvalue problems produced by the discretization
of equation (1) in the chosen basis [43, 26, 60, 42, 41, 61, 58, 40]. The linear eigenvalue problems
produced by highly efficient physics based APW+lo, AO, and PUFE bases, while smaller than those
of other bases, present a particular challenge as they are generalized eigenvalue problems with ill-
conditioned coefficient matrices, and are much more difficult to precondition than those produced
by conventional planewave based methods, due to the lack of diagonal dominance and absence of an
efficient representation for the inverse Laplacian.

Here, building on prior work [59, 48, 34, 1, 40, 7], we propose a hybrid preconditioning scheme
for rapid iterative diagonalization of the sequence of ill-conditioned generalized Hermitian eigenvalue
problems produced by modern orbital based electronic structure methods, such as APW+lo, AO, and
PUFE. The hybrid preconditioning scheme effectively combines a global shifted-inverse preconditioner
as in [34, 1, 7] and locally accelerated shifted-inverse preconditioners as in [59, 48, 34, 1, 40] that
target eigenpairs of interest individually. The global preconditioner serves as sole preconditioner in
early self-consistent iterations and as convergence accelerator for local preconditioners in subsequent
iterations. We have conducted extensive tests of the proposed hybrid preconditioning scheme with
the block steepest descent method in PUFE pseudopotential density functional calculations on a
variety of systems, including the difficult case of triclinic metallic CeAl. This system has deep
atomic potentials and 15 electrons per unit cell in valence, thus requiring the computation of many,
strongly localized eigenfunctions, which in turn requires the addition of correspondingly many orbital
enrichments in the PUFE electronic structure method. Our results reveal that in terms of average
numbers of inner and outer iterations, the hybrid preconditioner performs markedly better than
global or local preconditioners alone, and the resulting solver performs as well on the ill-conditioned
generalized eigenvalue problems produced by the PUFE ab initio method as does the locally optimal
block preconditioned conjugate-gradient (LOBPCG) method on well-conditioned standard eigenvalue
problems produced by the planewave method.

The remainder of the paper is organized as follows. In Section 2, we outline the self-consistent
field (SCF) procedure and iterative diagonalization process in an algebraic setting, and discuss the
ill-conditioned generalized eigenvalue problems produced by the PUFE electronic structure method.
In Section 3, we describe the hybrid preconditioning scheme and its use in the block steepest descent
method. Implementation details are presented in Section 4. Numerical results are presented in
Section 5 and we close with final remarks in Section 6.

2 SCF, iterative diagonalization, and ill-conditioned GHEPs

Electronic structure methods such as APW+lo, AO, and PUFE methods incorporate information
from local atomic solutions to construct efficient bases for molecular or condensed matter calcula-
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Figure 2.1: Self-consistent field (SCF) procedure.

tions. This information is typically incorporated in the form of localized, atomic-like basis functions
(orbitals), which generally leads to a nonorthogonal basis. Discretization of the Kohn-Sham equation
(1) in such a basis then leads to a nonlinear algebraic eigenvalue problem

H(Veff)Ψ = SΨE, (3)

where H(Veff) is the discrete KS-Hamiltonian matrix and consists of a local part H(loc)(Veff) and,
when pseudopotentials [30] are employed, nonlocal part H(nl):

H(Veff) = H(loc)(Veff) +H(nl).

H(loc)(Veff) is a Hermitian matrix which depends on the effective potential Veff, which in turn depends
on the electronic density ρ(r) computed from the eigenvectors Ψ. H(nl) is a low-rank Hermitian matrix
associated with the non-local part of the pseudopotential. S is the overlap (Gram) matrix of the basis
and is Hermitian positive-definite. The nonlocal matrix H(nl) and overlap matrix S are independent
of Veff, and hence do not depend on ρ(r) or Ψ. In condensed matter calculations, it is required to
sample the Brillouin zone [30] at a sufficient number of k-points, making the above matrices complex
Hermitian rather than real symmetric. In addition, for methods whose basis functions are localized,
such as wavelet, FE, PUFE, DG, and (to a lesser extent) AO-type methods, the above matrices are
sparse: for example, in the case of PUFE, having a few hundred nonzero entries per row, independent
of problem size.

The nonlinear eigenvalue problem (3) is solved by fixed-point iteration (see [30]): starting with an
initial guess for the input charge density ρin and associated effective potential V in

eff and iterating until
the difference between the input and output effective potentials, V in

eff and V out
eff , is within a specified

tolerance τscf ; i.e., the process is terminated at the is-th iteration if

v
(is)
dif =

‖V out
eff − V in

eff‖

‖V in
eff‖

≤ τscf . (4)

This process is known as a self-consistent field (SCF) procedure. A schematic of the SCF procedure
is shown in Figure 2.1.

At the is-th SCF iteration, with an approximate effective potential Ṽeff extrapolated from previous
SCF iterations [39], the nonlinear eigenvalue problem (3) becomes the following linear generalized
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Hermitian eigenvalue problem (GHEP):

H(is)Ψ(is) = SΨ(is)E(is), (5)

where

H(is) = H(loc)(Ṽeff) +H(nl),

H(loc)(Ṽeff) is a Hermitian matrix, H(nl) is a low-rank Hermitian matrix, S is Hermitian positive
definite, and all matrices are sparse when arising from discretization in a localized basis such as
PUFE. As the SCF iteration proceeds, changes in Ṽeff, and thus H(loc)(Ṽeff), Ψ

(is), and E(is) become
smaller and smaller until convergence to the specified tolerance is achieved.

Since in the first few SCF iterations Ṽeff is not yet well converged, the GHEP (5) need not be
solved to high accuracy. All that is necessary is that the accuracy be sufficient to allow the outer
SCF iteration to converge without incurring significant additional iterations relative to exact solution.
As the SCF iterations proceed and Ṽeff converges, the accuracy requirement for the solution of the
GHEP (5) increases. Specifically, from the previous SCF iteration, we have an estimate {Ê0, Ψ̂0} of
the lowest m eigenpairs with the maximum residual norm

τ
(is)
eig,0 = Resmax[Ê0, Ψ̂0], (6)

where if Ê = diag(ε̂1, ε̂2, . . . , ε̂m) and Ψ̂ = [ψ̂1, ψ̂2, . . . , ψ̂m] are approximate eigenpairs, then

Resmax[Ê, Ψ̂] = max
1≤i≤m

Res[ε̂i, ψ̂i],

and Res[ε̂i, ψ̂i] is the relative residual norm for the approximate eigenpair (ε̂i, ψ̂i) of GHEP (5):

Res[ε̂i, ψ̂i] ≡
‖ri‖

‖H(is)ψ̂i‖
, (7)

and ri = H(is)ψ̂i − ε̂iSψ̂i.
Our objective at the is-th SCF iteration is to compute the improved estimate {Êl, Ψ̂l} satisfying

Resmax[Êl, Ψ̂l] ≤ τ
(is)
eig,l (8)

where the tolerance τ
(is)
eig,l is chosen to achieve a desired reduction relative to τ

(is)
eig,0 and/or v

(is)
dif . In

practice, one or two orders of magnitude reduction is typically sufficient for the SCF procedure to
converge in a comparable number of iterations to exact solutions (i.e., reduction to zero).1

Since during the course of the SCF iteration to convergence, a wide range of accuracies are required
for the solution of the GHEP (5) and excellent approximations are available for all eigenpairs at each
SCF iteration after the first few, iterative diagonalization methods such as Davidson [15] and steepest
descent [28, 48] can be much more efficient than direct methods, especially as problem sizes increase
and memory constraints become a significant concern. However, while iterative solution methods
make much larger computations possible, diagonalization remains the key bottleneck in large-scale
ab initio calculations. Due to the nonorthogonal basis sets employed in electronic structure methods

1 By backward error analysis [5, Chap.5], there exists a matrix ∆H with ‖∆H‖ = ‖ri‖/‖ψ̂i‖ such that (ε̂i, ψ̂i) is an
exact eigenpair of the matrix pair (H(is) +∆H,S). Consequently, we have

‖∆H‖

‖H(is)‖
=

‖ri‖

‖H(is)‖‖ψ̂i‖
≤

‖ri‖

‖H(is)ψ̂i‖
.

Therefore, Res[ε̂i, ψ̂i] ≤ tol implies relative backward error of (ε̂i, ψ̂i) less than tol.
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Table 2.1: Condition numbers of H(1) and S matrices in PUFE calculations of CuAl as a function of
enrichment support radius.

n0 re ndof κ(H(1)) κ(S)

6 0.0 1512 7.4e02 3.0e03

6 1.0 1532 6.5e07 3.5e08

6 2.0 1685 3.3e08 3.3e09

6 3.0 2112 5.6e09 6.2e10

6 4.0 2518 3.0e10 4.5e11

such as APW+lo, AO, and PUFE, the resulting numerical eigenvalue problems can be ill-conditioned.
In particular, H(is) and S coefficient matrices can be ill-conditioned and share a large common
near-null subspace. Furthermore, there is in general no clear gap between the eigenvalues that are
sought (i.e., occupied states) and the rest. Moreover, the ill-conditioning and difficulty of iterative
diagonalization become especially pronounced as bases become saturated with orbital functions with
long tails in order to attain high accuracy.

Table 2.1 shows the condition numbers κ(H(1)) and κ(S) of coefficient matrices H(1) and S,
respectively, at the first SCF iteration of PUFE calculations of metallic CuAl, using HGH pseu-
dopotentials [21]. There are two atoms in the triclinic unit cell, which is subject to Bloch-periodic
boundary conditions [54]. The Brillouin zone is sampled at the Γ-point and at k = (0.12,−0.24, 0.37).
The lattice vectors for the unit cell are:

a1 = a(1.00, 0.02, −0.04),

a2 = a(0.06, 1.05, −0.08),

a3 = a(0.10, −0.12, 1.10),

with lattice parameter a = 5.7 Bohr. The Cu and Al atoms are located at lattice coordinates
τ 1 = (0.01, 0.02, 0.03) and τ 2 = (0.51, 0.47, 0.55), respectively. Total energy calculations with PUFE
are carried out on a uniform n0 × n0 × n0 cubic-order finite element mesh, re is the enrichment
support radius, and ndof is the resulting dimension of the GHEP (5).

In Table 2.1, the classical FE method corresponds to the case of no orbital enrichment, i.e.,
re = 0 [36]. In this case, both matrices H(1) and S are well-conditioned. However, once re > 0 and
orbital enrichments are added, the condition numbers of H(1) and S increase sharply. In addition,
we observe that H(1) and S share a large common near-null subspace. For example, when n0 = 6
and re = 1.0, there is a subspace of dimension ne = 20 spanned by the columns of an orthogonal
matrix V with ‖V ‖ = 1 such that ‖H(1)V ‖ = ‖SV ‖ = O(10−4). Furthermore, some eigenvalues are
clustered and there is no obvious gap between the eigenvalues of interest and the rest. Figure 2.2
shows the lowest 8 (3% of the eigenvalues of H(1) and S) of interest and higher states in the vicinity.

Ill-conditioned generalized eigenvalue problems in quantum mechanical calculations with large
nonorthogonal basis sets have been studied for decades, since the introduction of such bases, see for
example [29, 23]. The challenges of solving ill-conditioned problems arising from the partition-of-
unity FE method is an active research area, see for example [53, 19]. In the next section, we propose
a hybrid preconditioning technique for the rapid iterative diagonalization of ill-conditioned GHEPs
(5), as occur in orbital based ab initio methods such as APW+lo, AO, and PUFE.
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lowest 8

Figure 2.2: Partial distribution of energy eigenvalues for CuAl, showing the clustering and proximity
of the lowest 8 computed values to the remainder of the spectrum.

3 Hybrid preconditioning and LABPSD

In this section, we consider the rapid iterative diagonalization of the GHEP (5). Specifically, we start
with the approximates {Ê0, Ψ̂0} of the lowest m eigenpairs of (5) from the previous SCF iteration.
The objective at the is-th iteration is to compute improved approximate eigenpairs {Êl, Ψ̂l} satisfying
(8).

The block preconditioned steepest descent (BPSD) method [24], also known as a simultaneous
Rayleigh quotient minimization method [28], proceeds as follows. Assume {Êℓ−1, Ψ̂ℓ−1} are obtained
from (ℓ− 1)-st BPSD iteration with the residuals

R = HΨ̂ℓ−1 − SΨ̂ℓ−1Êℓ−1,

where for simplicity, the superscript is of H(is) is dropped here and in the remainder of this section.
For the ℓ-th approximate eigenpairs, we first compute search space vectors:

pi = −Kiri for i = 1, 2, . . . ,m,

where ri is the ith column of R, and Ki is the corresponding preconditioner. pi is also called
a preconditioned residual. Let Z = [Ψ̂ℓ−1 P ] with P = [p1, p2, . . . , pm], then the ℓ-th approximate
eigenpairs {Êℓ, Ψ̂ℓ} are obtained via the Rayleigh-Ritz procedure with the projection subspace matrix
Z, i.e., Êℓ = Γ, Ψ̂ℓ = ZW , and {Γ,W} are the lowest m eigenpairs of the reduced matrix pair
(HR, SR) = (ZHHZ,ZHSZ).

The convergence of the BPSD method depends critically on the preconditioners Ki. As we have
discussed in Section 2, due to the nonorthogonal basis sets employed in electronic structure methods
such as APW+lo, AO, and PUFE, the GHEP (5) can be ill-conditioned. It is well known that the
presence of large off-diagonal entries in H and S from local orbital components of such bases render
standard preconditioning techniques based on the diagonal of H − σS no longer effective [40, 7].

In the recent work of Blaha et al [7] on iterative diagonalization in the context of the APW+lo
method, the following preconditioner is proposed:

Ki = (H − ε̄S)−1 ≡ Kε̄ for all i, (9)

where ε̄ is a parameter chosen close to the eigenvalues of interest, and the matrices H and S are
chosen from a fixed (usually the first) SCF iteration and do not change in the entire SCF procedure.
We call Kε̄ a global preconditioner. Such a global preconditioner has been proposed in the context
of FE [1] and planewave [45] based methods as well.

To apply the global preconditioner (9), in [7], a dense LDLT factorization of Kε̄ is first computed
and stored on disk. During the entire SCF procedure, the factorization is read in to perform the
required matrix-vector multiplications. In [1], in the context of an FE basis, the search space vectors
{pi} are computed approximately by an iterative linear solver. Unfortunately, as we show in Section 5,
such a preconditioner leads to stagnation in the context of less well-conditioned PUFE matrices.
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In [59, 48, 34, 1, 40], the following preconditioners are proposed to individually target eigenpairs
of interest:

Ki = (H − ε̂iS)
−1 ≡ Kε̂i for i = 1, 2, . . . ,m, (10)

where ε̂i are Ritz values from the previous BPSD iteration, i.e., diagonal elements of Êℓ−1. The basic
motivation can be understood as follows (e.g., [59, 48, 16]). Given current approximation {ψ̂i, ε̂i} to
eigenpair {ψi, εi}, we seek correction pi such that ψ̂i + pi is exact, i.e.,

(H − εiS)(ψ̂i + pi) = 0. (11)

While the exact eigenvalue εi is unknown, the Rayleigh quotient

ε̂i =
ψ̂H
i Hψ̂i

ψ̂H
i Sψ̂i

(12)

provides an excellent approximation, with an error that is second order in the error of ψ̂i. Replacing
εi with ε̂i in (11) then gives

(H − ε̂iS)(ψ̂i + pi) = ri + (H − ε̂iS)pi = 0 (13)

or
pi = −(H − ε̂iS)

−1ri, (14)

as in (10). Note, however, that as ε̂i approaches εi, the matrix H − ε̂iS becomes singular and hence
the inverse exists only in the subspace orthogonal to ψi and any vectors degenerate with it [48, 16,
52]. Furthermore, for ε̂i 6= εi, the inverse exists and returns the correction pi = −ψ̂i, providing
no correction to the direction of ψ̂i whatsoever. In practice, since the inverse is computed only
approximately, neither of these issues is a particular concern; however, they can affect convergence
at higher accuracies [52]. In the present case, we solve the equation

(H − ε̂iS)pi = −ri, (15)

inexactly, i.e., find p̂i satisfying
‖(H − ε̂iS)p̂i + ri‖ ≤ η‖ri‖, (16)

where η is a prescribed tolerance.
An asymptotic analysis of superlinear convergence of the preconditioner Kε̂1 for computing the

smallest eigenpair has been studied in [44, 31]. This convergence analysis is extended for the case
of multiple eigenpairs in our recent work [11]. Since the preconditioners {Kε̂i}

m
i=1 accelerate the

convergence of individual eigenpairs {ψ̂i, ε̂i}, we refer to them as locally accelerated preconditioners.
It is a computational challenge to apply the locally accelerated preconditioners at each BPSD

iteration in a cost-effective way. In [40], it is suggested to first compute the full spectral decomposition
of the matrix pair (H,S) at some SCF iteration. However, the spectral decomposition is prohibitively
expensive for large-scale systems. In [34, 1], the conjugate-gradient method is used for solving (15).
This allows for very larger-scale calculations. However, the CG method (or MINRES for indefinite
systems) suffers slow convergence and stagnation due to the ill-conditioning of the coefficient matrices,
in the PUFE context in particular.

To overcome the slow convergence of higher eigenpairs using the global preconditioner and high
computational cost and stagnation of the locally accelerated preconditioners, we propose the following
hybrid preconditioning scheme:

1. In the initial few SCF iterations, apply only the global preconditioner Kε̄ to compute all search
space vectors P = [p1, p2, . . . , pm], i.e.,

P = −Kε̄R = −(H − ε̄S)−1R.

7



2. If the i-th approximate eigenvalue ε̂i is localized, apply the locally accelerated preconditioner
Kε̂i in two stages:

(a) Compute an initial search space vector p̂
(0)
i by applying the global preconditioner Kε̄:

p̂
(0)
i = −Kε̄ri = −(H − ε̄S)−1ri.

(b) Iteratively refine p̂
(0)
i to find the search space vector p̂i satisfying (16).

This two-stage application of locally accelerated preconditioners Kε̂i addresses the issue of slow con-

vergence of iterative methods for computing p̂i. Using a good initial approximation p̂
(0)
i , the iterative

refinement is expected to converge in just a few iterations, typically 2 to 5. The pre-application of
the global preconditioner is efficient since the factorization of the global preconditioner is already
available from the initial SCF iteration. As shown in Section 5, the proposed hybrid preconditioning
scheme amortizes the cost of the global preconditioner and significantly reduces the cost of the more
aggressive locally accelerated preconditioners, yielding a cost-effective preconditioning scheme for the
iterative diagonalization of ill-conditioned GHEPs.

We shall refer to the combined algorithm, BPSD with above hybrid preconditioning, as the Locally
Accelerated Block Preconditioned Steepest Descent (LABPSD) method. An outline of the method is
as follows:

1. Input initial approximate eigenpairs {E,Ψ}, where Ψ ∈ C
n×(m+m0)

2. Compute tol0 = Resmax[E,Ψ]

3. Compute matrix-vector products ΨH = HΨ and ΨS = SΨ

4. Compute residual vectors R = ΨH (:,1:m) −ΨS(:,1:m)E(1:m,1:m)

5. Test for convergence to tolerance τ
(is)
eig . If converged, exit

6. Set up search subspace Z = [Ψ P ] with preconditioned residual vectors P computed
as follows:

(a) Apply global preconditioner: P = −K
(i0)
ε̄ R

(b) If εi = E(i,i) is localized for some i and 1 ≤ i ≤ m, refine pi = P(:,i) with locally
accelerated preconditioner, i.e., compute correction vector δpi by solving refinement
equation

(H − εiS)δpi = −δri

inexactly, where δri = (H − ε̄S)pi + ri. Set P(:,i) := pi + δpi

7. Perform matrix-vector products PH = HP and PS = SP

8. Set up coefficient matrices of reduced GHEP

HR = [Ψ P ]H [ΨH PH ] and SR = [Ψ P ]H [ΨS PS ]

9. Compute lowest m+m0 eigenpairs {W,E} of (HR, SR):

HRW = SRWE

10. Compute new approximate eigenvectors Ψ := [ΨP ]W

11. Update ΨH := [ΨH PH ]W and ΨS := [ΨS PS ]W

12. Go to step 4.

A few remarks are in order.
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1. The initial approximations Ψ are eigenvectors Ψ(is−1) from the previous SCF iteration, i.e., Ψ =
Ψ(is−1). Having the extra m0 vectors is important. It can accelerate convergence substantially
when there are multiple (degenerate) or clustered eigenvalues at or near the m-th. In practical
calculations (with multiplicities limited by symmetries in the underlying physical problem), a
small m0 is generally sufficient, for example m0 = m/10. The larger the m0, the faster the
convergence, but also the more matrix-vector products required. Similar findings pertain for
other solvers in the electronic structure context as well, see for example [26, 40, 7].

2. The LABPSD iteration is considered to be converged if Resmax[E(1:m,1:m),Ψ(:,1:m)] ≤ τ
(is)
eig .

3. Line 6 is only executed for residual vectors corresponding to unconverged eigenpairs. The
implementation details are presented in Section 4.

4. The i-th approximate eigenpair {εi, ψi} = {E(i,i),Ψ(:,i)} is deemed “localized” if the following
conditions are satisfied:

Res[εi, ψi] ≤ τ1 and |εi − εℓ−1
i | ≤ τ2|ε

ℓ−1
i |,

where εℓ−1
i is the i-th approximate eigenvalue from the previous (ℓ− 1) BPSD iteration. Both

τ1 and τ2 are parameters. In our numerical tests, we set τ1 = τ2 = 0.1. The above localization
condition thus provides an indication that the i-th approximate eigenvalue εi has settled down
sufficiently with respect to BPSD iterations ℓ to be used as a shift for preconditioning.

5. By storing the block vectors ΨH , ΨS , PH and PS , the matrices H and S are accessed only once
per BPSD iteration, other than in preconditioning step 6.

6. The reduced dense GHEP (HR, SR) can be solved by standard routines such as LAPACK
ZHEGVX.

4 Implementation details

In this section, we discuss implementation details of the hybrid preconditioning scheme in step 6 of
the LABPSD method.

First, we consider the global preconditioning step 6(a). As discussed in Section 3, the global
preconditioner Kε̄ is fixed throughout the SCF iterations. Typically, the coefficient matrices H(1)

and S in the first SCF iteration are sufficient to construct an effective Kε̄, i.e., i0 = 1 in line 6(a) of
LABPSD. Therefore, let us consider how to exploit the structure of H(1) and S to efficiently compute

P = −K
(1)
ε̄ R = −

(
H(1) − ε̄S

)−1
R. (17)

From the definition (5) of H(1), the global preconditioner K
(1)
ε̄ is the inverse of a Hermitian matrix

plus low-rank update:

K
(1)
ε̄ =

(
H(loc,1) − ε̄S +H(nl)

)−1
, (18)

where H(loc,1) − ε̄S is Hermitian and H(nl) has the rank-revealing decomposition

H(nl) = FGFH , (19)

where F is n-by-k and G is k-by-k Hermitian. The rank k is the number of projectors in the
pseudopotential formulation, typically k ≪ n. For localized bases such as PUFE, H(loc,1) and S are
sparse.2

2In PUFE, H(loc,1) and S share the same sparsity pattern.
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To compute P , we first compute the following factorization of the matrix H(loc, 1) − ε̄S:

Π⊤(H(loc, 1) − ε̄S)Π = LDLH , (20)

where Π is a permutation matrix, L is a unit lower triangular matrix, and D is a block diagonal
matrix with only 1-by-1 and 2-by-2 blocks on the diagonal. Algorithms for the factorization (20) are
well-established, see for example [46, 47, 17]. Since the global preconditioner is unchanged during the
SCF iterations, the factorization (20) is computed just once and used throughout the SCF process.
This is along the lines of the global preconditioning scheme suggested in [7]. However, in the context
of a localized basis and sparse matrices, such as PUFE, we use a sparse factorization rather than
dense one as in [7].

With the low-rank representation (19) and factorization (20), we can compute the global-preconditioned
search space vectors P using the Sherman-Morrison-Woodbury (SMW) formula [20] as follows:

1. Compute F̂ = (H(loc, 1) − ε̄S)−1F using the factorization (20)

2. F := FG

3. T = I + FH F̂

4. F := FT−H

5. Compute P = −(H(loc, 1) − ε̄S)−1R using the factorization (20)

6. P := P − F̂FHP

Here we have arranged the order of computations such that the first four steps are executed just
once. By storing F and F̂ , P can be computed using only the last two steps.

Turning now to the locally accelerated preconditioning step 6(b), the iterative refinement of initial

approximate p̂
(0)
i = P(:,i) computed in step 6(a) can be recast as solving the following linear system:

(H(is) − εiS)pi = −ri, (21)

with starting vector p̂
(0)
i . Since H(is)− εiS is Hermitian and indefinite, MINRES [33, 57] is a natural

choice. Although the coefficient matrix H(is) − εiS of (21) can become highly ill-conditioned, as we
show below, we observe that it takes just 2 to 5 iterations for MINRES to converge to the desired

tolerance starting from the pre-processed vectors p̂
(0)
i from the global preconditioner.

5 Results

In this section, we provide numerical results to demonstrate the efficiency of the LABPSD algorithm
for the rapid iterative diagonalization of ill-conditioned generalized eigenvalue problems produced
by the PUFE electronic structure method [54, 38, 37], which employs a strictly local nonorthogo-
nal basis combining atomic orbitals for efficiency and finite elements for generality and systematic
improvability.

We have conducted extensive tests of the LABPSD method in PUFE calculations of a variety
of materials systems. Here we show results for two systems representative of opposite extremes:
CuAl with a soft, shallow pseudopotential and clustered or degenerate eigenvalues, and CeAl with a
notably hard and deep pseudopotential and nondegenerate spectrum.

CuAl Our first test case is a high-symmetry, cubic CuAl metallic system, with Γ-point Brillouin
zone sampling to maximize degeneracies in the spectrum. The unit cell is body-centered cubic with
lattice parameter a = 5.8 Bohr and atomic positions τ 1 = (0.0, 0.0, 0.0) (Cu) and τ 2 = (0.5, 0.5, 0.5)
(Al), in lattice coordinates. The Brillouin zone is sampled at the Γ-point to maximize degenera-
cies in the spectrum, including degeneracy at the Fermi level, thus providing a stringent test of
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Figure 5.3: PUFE orbital enrichment functions for CeAl. Radial parts for (a) Ce and (b) Al.

the eigensolver’s ability to extract clustered/degenerate eigenpairs. The resulting spectrum has a
triple-degeneracy (eigenvalues of 0.36047 Hartree) and a double-degeneracy (eigenvalues of 0.37553
Hartree), which is also the highest occupied state with Fermi-Dirac occupation and kBT = 0.01 a.u.

CeAl As a test of the solver’s ability to handle general, nondegenerate spectra, with low-lying
eigenvalues and thus broader overall spectrum, we consider next the case of metallic, triclinic CeAl.
This is a particularly challenging system due to the following properties: (a) The potentials of
the atoms are deep, producing strongly localized solutions, with low-lying eigenvalues, that require
larger basis sets to resolve. (b) The atoms are heavy, with many electrons in valence, requiring
many eigenfunctions to be computed. (c) Because the system contains Ce, it requires 17 orbital
enrichment functions per atom (in contrast to Cu for example, which requires only 1), which increases
basis size substantially for PUFE. The radial parts of the orbital enrichment functions (pseudoatomic
wavefunctions) for Ce and Al are shown in Figure 5.3. (d) The lattice is triclinic with atoms displaced
from ideal positions. This provides a completely general problem, with no special symmetries to
exploit and general, nondegenerate spectrum. (e) We do not assume a band gap, but rather solve
the general metallic problem with Fermi-Dirac occupation and kBT = 0.01 a.u.

The triclinic unit cell for CeAl has lattice vectors

a1 = a(1.00, 0.02, −0.04),

a2 = a(0.01, 0.98, 0.03),

a3 = a(0.03, −0.06, 1.09),

with lattice parameter a = 5.75 Bohr. Atomic lattice coordinates are τ 1 = (0.01, 0.02, 0.03) (Ce) and
τ 2 = (0.51, 0.47, 0.55) (Al). The Brillouin zone is sampled at the Γ-point and at k = (0.12,−0.24, 0.37).
Therefore, there are two independent sequences of GHEPs in the SCF procedure.

For all simulations, the SCF procedure is terminated at the is-th iteration if the relative change
of input and output effective potentials satisfies

v
(is)
dif =

‖V out
eff − V in

eff‖

‖V in
eff‖

≤ τscf (22)

for a prescribed tolerance τscf . As reference, total energies are also calculated by the abinit planewave
code [9] with well-converged planewave cutoff. By virtue of the orbital functions in the PUFE basis,
the dimension of the PUFE GHEP is about a factor of 5 smaller than that of a planewave calculation
of the same accuracy.
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The dimension of the GHEP (5) is ndof = 7n30 + ne, where n0 is the number of elements the
x-, y- and z-directions (uniform FE mesh) and ne is determined by the enrichment support radius
re and number of atoms. The factor of 7 is due to the use of cubic serendipity brick elements [54].
By introducing a shift σ0, H

(is) := H(is) − σ0S is made Hermitian positive definite.3 The PUFE
code provides the routines to perform the matrix-vector multiplications H(loc)v, H(nl)v and Sv for an
arbitrary vector v. Subsequently, the matrix-vector multiplication (H(is)−σS)v is readily computable
for any shift σ to facilitate preconditioning.

In addition, termination criteria for the SCF, BPSD, and MINRES iterations are τscf = 10−5,

τ
(is)
eig = 1

10v
(is)
dif , and η

(is) = η = 0.25, respectively. The maximum number of outer BPSD and inner
MINRES iterations are set to 20, unless otherwise specified. The outermost SCF iterations are
repeated until convergence of the potential as defined in (22) is achieved. The global shift ε̄ is chosen
to be close to the desired eigenvalues of (H(is), S). In particular, ε̄ = −0.3 for CuAl, ε̄ = −1.0 for
CeAl, which are smaller than the estimated smallest eigenvalues of (H(is), S) for the cases considered
here. As observed in [7], our numerical experiments also show ε̄ has little influence on the convergence
of the BPSD iteration.

Computations reported in this paper were carried out on a two-socket six-core Intel Xeon 2.93
GHz processor with 94 GB memory. Intel MKL was used for BLAS and LAPACK operations in
the LABPSD method. In addition, the DSS package of MKL was used for computing the sparse
factorization (20) of the global preconditioner. DSS is an interface to PARDISO [46, 47] and pro-
vides subroutines to compute (H(loc,1) − ε̄S)−1v for a given vector v after the sparse factorization is
computed.

5.1 SCF convergence

We first examine the convergence of the SCF procedure using LABPSD for the iterative diagonal-
ization of the associated sequence of GHEPs.

CuAl A uniform 12 × 12 × 12 finite-element mesh and enrichment support radius re = 4 are
employed to provide high accuracy and a strong test of ill-conditioning. The dimension of the GHEP
(5) is ndof = 7× 123 + 8130 = 20226. The rank of H(nl) is k = 19. m = 10 eigenpairs are computed
in order to accommodate all electrons in valence and achieve convergence of the effective potential
to the desired accuracy.

The left plot of Figure 5.4 shows the maximum relative residual errors Resmax[Ê, Ψ̂] of the se-
quence of the GHEPs at the beginning and end of each SCF iteration, where m0 = 10 for the BPSD

iterations. The right plot of Figure 5.4 shows the corresponding difference v
(is)
dif of input and output

effective potentials (Eq. (4)). As can be seen, with LAPBSD as the eigensolver, the maximum relative

residual error of the GHEP steadily drops at the rate τ
(is)
eig = 1

10v
(is)
dif , along with the input-output

potential difference. If the accuracy of the eigensolves at each SCF iteration is further increased, the
convergence of the effective potential is not substantially affected.

We note that in the final SCF iteration, the lowest 10 computed eigenvalues are

-0.1987515094, 0.3604669213, 0.3604669241, 0.3604669358, 0.3755287169,
0.3755287473, 0.5721570004, 0.8464957683, 0.8464958151, 0.8464958184,

with triply degenerate value at ∼ 0.3604669 and doubly degenerate value at ∼ 0.3755287, as in the
reference planewave calculations (deviations from exact degeneracy in the final digits are due to the
lower symmetry of the basis than the crystal [35]). As can be seen, the degenerate values pose no
particular difficulty for the LABPSD solver.

3 Usually, σ0 is selected close to the eigenvalues of interest. In electronic structure calculations, a good estimate of
the lowest eigenvalue is generally available so that a shift σ0 to make H(is) positive definite is readily determined.
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Figure 5.4: CuAl simulation. The maximum relative backward error of the sequence of GHEPs in
the solution of NLEP (3) (left), and the relative difference of effective potentials Veff (right).
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Figure 5.5: CeAl simulation. The maximum relative backward error of two sequences (ik = 1 and
ik = 2) of GHEPs in the solution of NLEP (3) (left), and the relative difference of effective potentials
Veff (right).

CeAl For the CeAl system, we consider a 12 × 12 × 12 finite-element mesh with re = 2.5. The
dimension of the GHEP (5) is ndof = 23795. The rank of H(nl) is k = 26. In this case, m = 22
eigenpairs are computed to accommodate all valence electrons with specified Fermi-Dirac occupation.
The left plot of Figure 5.5 shows the reduction of the maximum relative residual errors Resmax[Ê, Ψ̂]
of the sequence of the GHEPs, where m0 = 3. The right plot of Figure 5.5 shows the corresponding

difference v
(is)
dif . Again, the maximum relative residual error of the GHEP steadily drops at the rate

τ
(is)
eig = 1

10v
(is)
dif , along with the input-output potential difference.

If the accuracy of the eigensolves at each SCF iteration is further increased, the convergence of
the effective potential is not substantially affected.

5.2 Inner and outer iterations

Now, let us examine the efficiency of the LABPSD in terms of the following two quantities:

Hp =
Bs

Ss ×Nk

and La =
Ms

Bs ×m
,
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Figure 5.6: CuAl simulation: Hp- and La- numbers (see text) for the LABPSD solver for a series of
n0 × n0 × n0 FE meshes (left) and enrichment support radii re (right).

where Ss is the total number of SCF iterations, Bs is the total number of BPSD iterations, and
Ms is the total number of MINRES iterations. Nk is the number of k-points (Nk = 1 in the CuAl
case, Nk = 2 in the CeAl case). By the above definition, Hp is the average number of outer BPSD
iterations per SCF iteration for each k-point. A small Hp-number indicates the efficiency of the
hybrid preconditioning technique. Similarly, La is the average number of inner MINRES iterations
per outer BPSD iteration for each eigenpair. A small La-number indicates the efficiency of applying
the locally accelerated preconditioners in the proposed two stages.

CuAl The left plot of Figure 5.6 shows the Hp- and La-numbers for LABPSD for a sequence of
refined FE meshes with re = 4 fixed. The right plot is for different enrichment support radii re and
fixed 8× 8× 8 FE mesh. This constitutes a severe test of robustness with respect to ill-conditioning
since as either the mesh or support radius are increased, the conditioning of the GHEP worsens
dramatically, as shown in Table 2.1. In all cases, the rank of H(nl) is k = 19 and the number of
eigenpairs computed per SCF iteration is m = 10.

CeAl Similarly, for the CeAl system, the left plot of Figure 5.7 shows the Hp- and La-numbers
with re = 2.5. The right plot is for different enrichment support radii re with the fixed 8× 8× 8 FE
mesh. This constitutes a severe test of robustness with respect to ill-conditioning. In this case, the
rank of H(nl) is k = 26 and the number of eigenpairs computed per SCF iteration is m = 22.

For both CuAl and CeAl simulations, as the mesh is refined or re is increased, the error of
the computed PUFE total energy decreases to 10−6 Hartree/atom relative to the well-converged
planewave reference. Significantly, we observe that all Hp-numbers are between 2 and 6, with only
mild dependence on conditioning as it worsens considerably with increasing mesh and support radius.
Meanwhile, all La-numbers are between 0 and 4, with no apparent dependence on conditioning. As we
show below (Section 5.4), this is in stark contrast to typical global-only or local-only preconditioning
schemes, which are highly sensitive to the conditioning of the problem. Furthermore, these Hp- and
La-numbers are comparable to the typical numbers of inner and outer iterations required by the
LOBPCG method on the well-conditioned standard eigenvalue problems produced by the planewave
ab initio method [9]. This indicates that LABPSD is an efficient method for the rapid iterative
diagonalization of ill-conditioned GHEPs produced by nonorthogonal atomic-orbital based methods
such as PUFE.
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Figure 5.7: CeAl simulation, Hp- and La- numbers (see text) for the LABPSD solver for a series of
n0 × n0 × n0 FE meshes (left) and enrichment support radii re (right).

5.3 Timing

We now consider the timing of key steps of LABPSD for increasing numbersm of eigenpairs. For these
purposes, we now focus on the more computationally intensive CeAl system, where the dimension of
the GHEPs (5) is ndof = 7× 123 + 11699 = 23795. The enrichment support radius is re = 2.5. The
rank of H(nl) is k = 26.

Figure 5.8 shows the CPU time normalized with respect to the CPU time for computing m = 50
eigenvalues, and the most time consuming parts for LABPSD are shown for a series of PUFE calcu-
lations with increasing numbers of eigenpairs m = 50, 100, 200 with m0 = 10. Each calculation takes
23 SCF iterations to converge to the required tolerance. As expected, the CPU time is dominated
by the preconditioning step 6 at about 60% of the total time in all cases. The cost of the global
preconditioner in step 6(a) increases as m increases, as expected. However, as a percentage of the
total, the cost actually decreases, which is a consequence of the fact that the cost of the sparse
factorization (20) and application of the global preconditioner is amortized when more eigenpairs
are computed. On the other hand, the cost of the locally accelerated preconditioners in step 6(b)
increases as a percentage of the total as more eigenpairs are computed. The cost of matrix-vector
products in step 7 is proportionally increased with the number of computed eigenpairs; however,
the overall cost is reduced from 20% to about 15% of the total when more eigenpairs are computed.
The costs of all other steps, such as setting up the reduced GHEP (step 8), updating (step 11), and
solving the reduced eigenvalue problem (step 9) are relatively small at 20% of the total. As m is
increased further, the solution of the reduced problem must dominate at some point due to its m3

scaling. However, at the present system sizes, it remains a small fraction of the total. Overall, when
LABPSD is used for computing 4 times more eigenpairs, namely from m = 50 to m = 200, the total
CPU time is also increased by about a factor of 4 (3.73).

We note that the LDLH factorization (20) is computed only once at the beginning of the SCF
cycle. The CPU time of the factorization (20) is a small percentage of the total. Specifically, the
LDLH factorizations for the two k-points take just 3% of the total time when m = 50, and 0.7%
when m = 200.

5.4 Global, local, and hybrid preconditioning

Here we compare the hybrid preconditioning scheme to current state-of-the-art global preconditioning
as in [7] and local preconditioning as in [34, 1, 40]. Having demonstrated in Sections 5.1 and 5.2
the robustness of the hybrid preconditioner with respect to both the distribution (clustered and
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Figure 5.8: Normalized CPU time and percentages with increasing m in the CeAl simulation.

nonclustered) and width (hard and soft potentials) of the spectrum, we shall restrict focus here
to the more computationally intensive CeAl system, where the dimension of the GHEPs is n =
7 × 83 + 3532 = 7116. The enrichment support radius re = 2.5, the rank of H(nl) is k = 26, and
m = 22 eigenpairs are computed at each SCF iteration with m0 = 3.

Figure 5.9 shows the maximum relative residual norms of the eigenpairs in successive SCF itera-
tions when solving the sequence of GHEPs by BPSD with global, local, and hybrid preconditioners.

If we use the global preconditioner step 6(a) only (i.e., without step 6(b)), the SCF convergence
stagnates after about 9 SCF iterations due to the inability of the eigensolver to reduce residuals
sufficiently within the maximum 200 BPSD iterations. The total CPU time was 11.4 hours, due to
the relative ineffectiveness of the global preconditioner and consequent large number of outer (BPSD)
iterations.

On the other hand, if we apply the local preconditioner step 6(b) only, without the global pre-
conditioner 6(a), the SCF convergence stagnates after about 17 SCF iterations, again due to the
inability of the eigensolver to reduce the residuals sufficiently even with the maximum 100 BPSD
and 500 MINRES iterations.4 Due to the large number of both inner (MINRES) and outer (BPSD)
iterations, the total CPU time was 138.6 hours.

In stark contrast, the SCF iteration converges steadily to the specified tolerance with the hybrid
preconditioning scheme. The Hp- and La-numbers are 3.0 and 2.3, respectively, while achieving
smooth SCF convergence at a rate comparable to exact diagonalization at each SCF step. Due to
the small number of both inner and outer iterations, the total CPU time was reduced to just 1.3
hours.

6 Conclusions

We proposed a block hybrid-preconditioned steepest descent method, LABPSD, for the iterative diag-
onalization of the sequence of ill-conditioned generalized Hermitian eigenvalue problems which arise

4 We use the locally accelerated preconditioners after the approximate eigenpairs are localized at the 9th SCF
iteration. For the first 8 SCF iterations, we apply the global preconditioner.
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Figure 5.9: Maximum relative residual norms of GHEPs at the beginning and end of each SCF
iteration, using global, local, and hybrid preconditioners in the CeAl simulation.

in electronic structure calculations using orbital-based nonorthogonal basis sets. For such problems,
the hybrid scheme overcomes the drawbacks of stagnation of global preconditioners and excessive
cost of locally accelerated iterative preconditioners. PUFE pseudopotential density-functional cal-
culations of CuAl, with soft potentials and degenerate eigenvalues, and CeAl, with hard potentials
and nondegenerate spectrum, showed Hp- and La-numbers comparable to the typical numbers of
inner and outer iterations required by the LOBPCG method on well-conditioned standard eigenvalue
problems produced by the planewave ab initio method. Given the generality of the method and
robustness with respect to spectral structure, it is expected that the LABPSD method will provide
similar benefits to other orbital-based, nonorthogonal electronic structure methods as well. Indeed,
it is reasonable to expect benefits not only for pseudopotential based methods, as demonstrated here,
but for all-electron methods such as APW+lo [49] and LMTO [51] also, since these require diago-
nalization for just valence states as well (the core states having been solved separately in a spherical
approximation).

The LABPSD algorithm and implementation present many opportunities for future work. First,
similar to [7], we expect that the sparse LDLH factorization (20) in single precision or even an
incomplete factorization might be sufficient. This will substantially reduce memory and I/O costs
for very large systems. Secondly, instead of using MINRES for the iterative refinement in applying
locally accelerated preconditioners, one can use a simple first-order one-step iterative method [4]:

p̂
(ℓ+1)
i = p̂

(ℓ)
i − α

[
(H(is) − ε̂iS)p̂

(ℓ)
i − ri

]

with initial p̂
(0)
i from the global preconditioner, where α is chosen to minimize the residual norm of

the linear system (15). Our preliminary results are very encouraging, which is particularly promis-
ing for parallel distributed computing. In addition, although we have not encountered the rank
deficiency of the subspace matrix Z produced in step 6 of the LABPSD method, a rank-revealing
re-orthogonalization process would be necessary for a general-purpose implementation, such as in the
block steepest descent method implemented in EA19 of HSL [32].
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