Preprint version. Final version is Published in
Journal of Computational Physics 256, 1-16 (2014)
http://dx.doi.org/10.1016/j.jcp.2013.08.044

Sequential Quadratic Programming (SQP) for optimal control in direct numerical
simulation of turbulent flow

Hassan Badreddine®!, Stefan Vandewalle®, Johan Meyers**

“Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300A, B3001 Leuven, Belgium
bDepartment of Computer Science, KU Leuven, Celestijnenlaan 200A, B3001 Leuven, Belgium

Abstract

The current work focuses on the development and application of an efficient algorithm for optimization of three-
dimensional turbulent flows, simulated using Direct Numerical Simulation (DNS) or large-eddy simulations, and
further characterized by large-dimensional optimization-parameter spaces. The optimization algorithm is based on
Sequential Quadratic Programming (SQP) in combination with a damped formulation of the limited-memory BFGS
method. The latter is suitable for solving large-scale constrained optimization problems whose Hessian matrices
cannot be computed and stored at a reasonable cost. We combine the algorithm with a line search merit function
based an an L;-norm to enforce the convergence from any remote point. It is first shown that the proposed form of the
damped L-BFGS algorithm is suitable for solving equality constrained Rosenbrock type functions. Then, we apply
the algorithm to an optimal-control test problem that consists of finding the optimal initial perturbations to a turbulent
temporal mixing layer such that mixing is improved at the end of a simulation time horizon 7. The controls are
further subject to a non-linear equality constraint on the total control energy. DNSs are used to resolve all turbulent
scales of motion, and a continuous adjoint formulation is employed to calculate the gradient of the cost functionals.
We compare the convergence speed of the SQP L-BFGS algorithm to a conventional non-linear conjugate gradient
method (i.e. the current standard in DNS-based optimal control), and find that the SQP algorithm is more than an
order of magnitude faster than the conjugate-gradient method.

Keywords: Sequential Quadratic Programming, damped limited-memory BFGS, Turbulent mixing layer, optimal
control, Direct numerical Simulations, Adjoint equations

1. Introduction

The combination of Direct Numerical Simulations (DNS) or Large-Eddy Simulations (LES) and adjoint-based
optimization approaches is becoming more common [1-5]. The numerical simulation of Navier—Stokes equations for
turbulent flow, either using DNS or LES, yields three-dimensional time-varying turbulent flow fields, which represent
in great detail the complex phenomena occurring in these type of flows. Since DNS (or LES) is computationally
expensive, its combination with optimization, which requires a multitude of these simulations for function evaluations,
is challenging. Nowadays, the optimization method of choice for DNS (or LES) and adjoint-based optimization
is based on nonlinear conjugate-gradient algorithms [1-5]. These algorithms are robust and simple to handle in
combination with the computational complexity introduced by solving Navier—Stokes and adjoint linearized Navier—
Stokes equations in combination with large optimization parameter spaces. In the current work, we focus on the
elaboration of a robust and fast Sequential Quadratic Programming (SQP) algorithm for optimization of turbulent
flows with an equality constraint. We apply this to a turbulent test problem, i.e., optimal control of a turbulent mixing
layer with DNS [3, 4].

*Corresponding author
Email address: johan.meyers@mech.kuleuven.be (Johan Meyers)
IPresent address: Paul Scherrer Institut, 5232 Villigen PSI, Switzerland

Preprint submitted to Journal of Computational Physics July 12, 2013

In optimization of fluid mechanics applications, various optimization techniques are used. In particular when op-
timization parameter spaces are relatively small, a range of methods is used, including, e.g. artificial neural networks,
evolutionary algorithms, etc. (cf., e.g., [6-8]). However, for (optimal) control cases in fluid mechanics for which op-
timization parameter spaces (also referred to as the control space) may easily span thousands of degrees of freedom,
efficient algorithms such as one-shot methods, or gradient-based optimization approaches are required [9]. For very
large problems (such as DNS-based optimization), for which the coupled optimality system is too large for a one-shot
method, the only viable option is the use of a gradient-based approach. Moreover, as function evaluations using DNS
are expensive, the gradients of the optimization cost functionals are obtained by solving a normal (forward) Navier—
Stokes problem followed by an adjoint (backward) linearized Navier—Stokes problem [1, 10, 11], leading to a cost per
cost-function gradient of roughly two regular DNSs (adjoint Navier—Stokes equations are, e.g., discussed in [10-15]
among others).

Bewley et al. [1] were the first to perform optimal control in direct numerical simulation of turbulent flow. They
employed a Polak—Ribiere method, which is a non-linear Conjugate-Gradient (CG) variant [16—18], in combination
with a Brent line-search method [19] to minimize the drag in optimal control of turbulent channel flow. In various
later studies, the same algorithm was used . However, the number of function evaluations required for convergence
can become very high. For instance, in [2] every CG step required approximately 20 function evaluations (forward
or adjoint), totalling to 600 DNS equivalents for 35 CG steps performed in their optimization. In [3] and [4], every
CG step required one adjoint and 8 forward simulations, and optimization up to 200 conjugate gradient iterations
were performed. Hence, CG optimization is several orders of magnitude more expensive than a baseline DNS; a
factor which is not easily recovered by further parallelization and partitioning of the computational DNS grid. Thus,
even though conjugate-gradient methods may be very robust and easy to implement, the large number of function
evaluations required based on expensive DNSs calls for more efficient and faster converging optimization algorithms.

Optimal control problems are often subject to equality and inequality constraints, e.g., the energy of the controls
may be limited, etc. In previous DNS-based optimal control, this was usually circumvented by adding constraints on
the control as a penalty in the cost functional [1, 2, 20, 21], though the result of the optimization then depends on the
chosen penalty factor [2]. Delport ef al. [3, 4] used a gradient-projection method to impose an equality constraint on
the control energy. A theoretical drawback of the conjugate gradient projection method is that it is difficult to show
that the projected direction is a descent direction, in contrast, e.g., to steepest descent methods where this is more
straightforward [22].

In the current work, we investigate the use of SQP methods to solve equality constrained optimization problems
with respect to turbulent flow simulations (with an equality constraint that imposes the total energy of the control
variables, i.e., based on a L, norm). SQP methods apply Newton’s method to the Karush—-Kuhn-Tucker (KKT)
conditions (i.e. the first-order optimality conditions for constrained optimization problems) to get the search directions
when iteratively solving the equality constrained problem. This is equivalent to minimizing a quadratic programming
sub-problem to get the new search direction.

In the past, SQP has been successfully applied to optimization in a number of ‘non-turbulent’ flow problems.
For instance, Ghattas and Bark [23] applied SQP for steady flow problems around a cylinder and a sphere, while
Heinkenschloss [24] applied SQP for optimal Dirichlet boundary control of steady Navier-Stokes problems. Hinze
and Kunisch [25], Hintermiiller and Hinze [26], and Ravindran [27] applied SQP for unsteady two-dimensional flows.
However, in these studies, the main focus was on applying SQP on an optimization problem in both control and state
space that is constrained by the Navier—Stokes equations, i.e., corresponding to a non-linear PDE-constraint on the
state space. This is an alternative to an approach where the problem is reduced by implicitly expressing the state
as a function of the controls (i.e. by solving the PDE), and using, e.g., a Newton-like method to solve the resulting
unconstrained optimization problem (cf., e.g., [28]; a comparison of the merits of both approaches is, e.g., presented
in Ref. [25]).

We choose to cast the optimization problem in its reduced form, using the Navier—Stokes equations to implicitly
express the state as function of the controls in the cost functional, instead of explicitly keeping the PDE as a constraint
in the optimization algorithm. To our knowledge, all earlier DNS-based optimal control studies (all using CG methods)
follow this approach. The reason is that the state space in a DNS becomes very large. For instance, in the DNS test
problem in the current work, the state space, i.e. the space—time turbulent flow solution, has order of 10° degrees
of freedom (versus order of 10* for the control space); for many DNSs the dimensionality of the state space may be
even a lot higher. Thus, the full solution space cannot be kept in memory, and has to be stored onto disk instead (cf.

2

Section 2.2 and 2.3 for details). By using the reduced cost function approach in the current mixing-layer optimal
control problem, we mostly avoid vector operations on the full state space, as would be required when the PDE is kept
explicitly as a constraint in the optimization algorithm. Thus, compared to earlier work on SQP for optimal control in
fluid mechanics, the SQP algorithm in the current work is required for the additional non-linear energy constraint on
the controls only. In absence of such a constraint, the remaining reduced cost-function approach would correspond to
an unconstrained quasi-Newton method (i.e. L-BFGS, cf. below).

A remaining challenge for the SQP formulation of our optimal control problem is that the quadratic sub-problem
contains the Hessian of the Lagrange function which is expensive to compute, and cannot be stored in memory
when the number of control variables is high. The first issue (high computational cost) can be solved by employing
the damped Broyden—Fletcher—Goldfarb—Shanno (BFGS) algorithm, which allows for a low cost approximation of
the Hessian (cf. Ref. [18]). The damping is necessary for constrained optimization to provide a positive definite
approximation of the Hessian at each iteration [40]. In order to circumvent the issue of storage, we formulate a
limited-memory version of the damped BFGS method.

The resulting SQP damped L-BFGS optimization algorithm is first tested on a set of Rosenbrock type functions
which are known to provide a challenging optimization benchmark. Subsequently, we test the method for the optimal
control of a turbulent mixing layer studied earlier by Delport ef al. [3, 4]. A further difficulty encountered is the
robustness of the method in combination with direct numerical simulations. We find that initial step sizes obtained
from initial guesses of the inverse Hessian in the damped L-BFGS method can lead to control variables that ‘crash’
the forward Navier—Stokes simulations. We solve this by introducing a region of feasibility for the controls based
on the constraint surface, which is then used to properly scale the initial steps in the L-BFGS algorithm. Finally, a
comparison of the SQP method with the prior CG algorithm in [3, 4] shows that the current SQP method is at least
an order of magnitude faster than the CG method. An exact quantification is difficult as we lack the computational
resources to converge our CG results up to the levels attained with the new SQP method.

The paper is organized as follows. First, in Section 2, the turbulent test problem related to optimal control of
a turbulent mixing layer is briefly introduced. Subsequently, in Section 3, the SQP algorithm in combination with
damped L-BFGS is discussed. In Section 4 we present results for the Rosenbrock test problem, and for the turbulent
mixing layer. Conclusions are presented in Section 5.

2. Optimal control of turbulent flow: temporal mixing layer case

In the current section, we present the optimal control test problem that we use to evaluate the SQP algorithm.
It consists of a temporal mixing layer, which evolves from a laminar shear layer with small spatially distributed
perturbations into a fully turbulent mixing layer. The temporal mixing layer is a much studied theoretical test case
that highlights a number of transition mechanisms of free shear layers (cf., e.g., [29-32]). In [3] this flow type was
selected for its relative low cost when compared to direct numerical simulations of other turbulent flow types. In §2.1,
the optimization problem formulation is briefly introduced. Adjoint-based determination of gradients is discussed in
§2.2. Finally, discretization is discussed in §2.3.

2.1. Formulation of the optimal-control problem

The temporal mixing layer consists of a shear flow in a box with periodic boundary conditions in directions parallel
to the shear (x; and x,), and free-stream boundary conditions in the third direction x3. The shear layer grows in time
starting from an initial velocity profile

u(x,0) = tanh(x3) e1 + ¢(x) €))

with u = [u;, up, u3] the velocity field, e; the unity vector in x;-direction, and ¢ small three-dimensional perturbations
(with zero spatial mean) of the hyperbolic-tangent u; velocity field (sometimes, an “error function” is used as starting
profile instead of a hyperbolic-tangent function [29-31]). Following common conventions for temporal mixing layers,
all properties and equations in the current paper (including the initial profile in Eq. 1), are normalized using half of
the velocity difference over the mixing layer AU/2 as reference velocity, and half the initial mean vorticity thickness
0., /2 as reference length scale (with 8, = AU/ max[d{u;)/0x3]).

Figure 1: Typical evolution of a temporal mixing layer. Vertical planes x = 0, and y = Ly colored by stream-wise velocity 1, and iso-surface of
vorticity (at w = 0.9 max(0U/dy), with w = ||V X u]|, and U the plane-average stream-wise velocity) colored by stream-wise velocity. From top left
to bottom right: ¢ = 0, 20, 40, 60, 80, 100. (In z-direction, solution is only displayed in the range —40 < z < 40.)

Temporal mixing layers are unconditionally linear unstable, and evolve fast into a three-dimensional turbulent
flow. The dominant instability is the Kelvin—Helmholtz instability. In conventional temporal-mixing-layer simula-
tions, perturbations ¢ are often constructed by superimposing the most unstable (Kelvin—Helmholtz) eigenmode with
a number of higher and lower harmonics, and some additional three-dimensional white noise [29, 30, 32]. The evo-
lution of this initial condition into turbulence is then further governed by the Navier—Stokes equations, which for
incompressible flows are given by

V-u=0, (2)
(;—l:+u-Vu+£Vp—IéV2u=0, 3)
with ¢ the time, p the pressure, and Re the Reynolds number, and where the density p is constant. Following [3, 4], we
employ Re = 100 in the current study. Further, the size of the computational domain € is chosen to be L; = 84; in
the x; direction, with 4; = 15.4 the most unstable wavelength following from linear stability theory at Re = 100. The
size of Q in the x, direction corresponds to L, = 84,, with 4, = 0.6, and where A, corresponds to the wavelength of
the most unstable span-wise disturbance on the rollers generated from the Kelvin—Helmholtz instability [33]. In the
normal direction (x3), we select a large domain size L3 = 60 in order to prevent interactions between the boundary
and the mixing region in the center of the domain around x3 = 0. A typical evolution of a temporal mixing layer,
using initial perturbations ¢ based on the most unstable eigenmodes and some additional noise (cf. Ref. [4]), is shown
in Figure 1. This figure illustrates the roll-up of and subsequent pairing of Kelvin-Helmholtz instabilities into large
two-dimensional vortices. We refer to §2.3 for details on discretization, etc.

In [3, 4] an optimal-control problem was formulated in which various cost functionals of the form

I, T)] = — f Ju(x, 7] dx, @)
1Q Ja

were optimized with respect to the perturbations ¢. In this, J is an operator that is further specified below, and T is the

4

optimization time horizon at which the DNS solution # on the computational domain Q is evaluated, starting from an
initial condition at time ¢ = O with perturbations ¢. In addition, ¢ was subject to two constraints, namely it should be
divergence-free, such that the initial condition u(x, 0) satisfies continuity, and its energy level is fixed to a given value
Ey. Hence, this leads to the optimal control problem [3, 4]

ngn ﬁ fg Ju(x,T,$)] dx
s.t. V-¢=0 %)

1
mL¢'¢dx=Eo

Note that we explicitly add ¢ as an argument to u(x, T) to indicate its dependence on the initial perturbations. In fact,
our optimization problem is here formulated without explicitly adding the Navier—Stokes equations as a constraint (cf.
discussion in introduction). Instead, it is implicitly understood that u(¢) is obtained as a solution of the Navier—Stokes
equations (2,3). Further, in the current work, we employ Ey = 107#, corresponding to the higher value used in Delport
etal. [4].

In the current work, we consider two cost functionals from [3, 4] for the testing of the SQP method, with

Jelul = %u -u, and (6)
1
Iulu]l = §<u> (u), 7

and where (u) represents the volume average of u over the domain Q. The corresponding cost functionals _#¢ and
Zv minimize the total energy (subscript £) and the mean-flow kinetic energy (subscript M) respectively, at time
horizon T'. In [3] it was shown that optimization of these cost functionals leads to distinct mixing-layer behavior. In
particular, _Zp enhances mixing and fine-scale three-dimensional vortical structures at the time horizon, while _#y
promotes large two-dimensional vortex structures.

2.2. Computation of the gradient

For the methods considered in this paper, gradient information is required. In order to describe how the gradients
are computed, first the Gateau differential is introduced as (see, e.g., [22])

d 1 oJu(x, T,
0 7 ux,T,$); 6¢] = aj[u(x, T,¢+add)] = @ L W - du dx, ®)

with du the sensitivity of the flow solution to changes d¢ on ¢. The evaluation of the sensitivities §_# by determining
ou is very expensive when control with a large number of degrees of freedom is considered. Indeed, any possible
change 0¢ requires a DNS to determine du.

Instead, an adjoint formulation can be followed. Details of the underlying principles are, e.g., found in [10-
13, 22, 34]. For the current optimization problem of a turbulent mixing layer the cost functional can be expressed as
(cf. [3] for a detailed derivation)

1
O S (. T.9:061 = 75 fﬂ u*(x,0,4) - 64 dx, ©)

with u* the solution of the adjoint linearized Navier—Stokes equations, linearized around the forward Navier—Stokes
solution u(x, #, ¢). The adjoint equations correspond to [3]

V-u*=0, (10)
ou*
ot

1
—u-Vu* —u-(Vu*) - Vp* - R—evzu* =0, (11)

with p* the adjoint pressure. These equations are solved for the current problem using periodic boundary conditions in
x1 and x,, and symmetry boundary conditions in the x3 direction. The equation is of parabolic nature in the backward
time direction, with ‘initial’ condition at t = T of [3]

oJu(x,T,)]

w*(x,T,¢) = o

(12)
Hence, based on one forward simulation to determine u(x, T, @), and one backward simulation that determines
u*(x,0,¢), the Gateau differential § # is determined through Eq. (9) with a cost of two simulations, independent
of the number of degrees of freedom in the controls ¢.

Finally, given the Gateau differential, the gradient of the cost functional may be determined. To this end, we first
define the function space for the controls ¢. If we choose ¢ € H'(Q), i.e. the Sobolev space of order one in the domain
Q (which is, e.g., smoother than an L, space, and better ensures regularity of the optimal solution), it follows from the
Riesz representation theorem for the derivative that the gradient g = V_¢ is expressed as [22]

57 (u(x.T.$);6¢] = (8.60) ¥ 6¢ € H'(Q). (13)
Hence, using Eq. (9) in combination with the definition of the H' inner product, we find
1
—fu*(x,0,¢)‘5¢ dx = fg'5¢+(Vg)‘(V5¢) dx (14)
1Q Jo Q
= fg~6¢—V2g~6¢dx Vép € H(Q), (15)
Q

where the second equality follows from partial integration, and the boundary conditions for ¢. Hence, we find the
gradient of the cost functional to be a solution of the elliptic equation g — V?>g = u*/|Q|. This corresponds to applying
a second-order differential low-pass filter to #*. Instead of solving this elliptic partial differential equation, we follow
a more pragmatic approach for the regularization of u* that was also used in Refs. [3, 4] (this allows us to compare
the SQP method elaborated in the current work with the CG method used in Refs. [3, 4] — cf. Section 4.2). First of all,
in periodic directions, we restrict ¢, and d¢ to wavelengths larger or equal to 1/16th of the box size. This effectively
amounts to the use of a spectral cut-off filter in these directions. In the normal direction, we approximate the above
second-order differential filter with a Gauss filter [3].

2.3. Discretization and computational set-up

A mixed pseudo-spectral finite volume code is used to discretize both the forward Navier—Stokes and the adjoint
equations [3, 4]. In the two periodic directions, a pseudo-spectral Fourier discretization is used, and dealiasing is
performed with the 2/3rd dealiasing rule [35]. The normal direction is discretized using a fourth-order energy-
conserving finite-volume scheme [36], where the position of the normal velocities u3 are shifted by half a cell in the
normal direction, while u;, u,, and p are kept in the center of the cell. Continuity is imposed by solving a Poisson
equation for the pressure using a direct solver. A fourth order explicit Runge—Kutta scheme is used to integrate the
system of equations in time. The convective and diffusive Courant—Friedrichs—Lewy (CFL) numbers are set to 0.2.
All simulations are performed on a N=128x128x256 mesh. The mesh is stretched in the normal direction with grid
spacing A x3 proportional to |x3|1/ 4 [41.

For the formulation of the adjoint equations, we follow the continuous approach, in which the adjoint equations
are first formulated before they are discretized (another approach is to first discretize the Navier—Stokes equations,
and then linearize and formulate the discrete adjoint equations — cf., e.g. [12, 15]). We discretize the adjoint equations
using the same method as the forward equations, and on the same grid. The equations are integrated backward in time,
and require the solution u(x, t, ¢) from the forward solution (cf. Eq. 11). To this end, the solution is stored on disk at
every time step during the forward simulation.

A consequence of the discretization is that ¢ € H'(Q) is mapped onto a discrete grid function ¢, € R”, with
n = 3 x N. Following [4], N =32%32x256, i.e., in parallel directions ¢ is restricted to wavelengths larger or equal to
1/16th of the box size (cf. also discussion at end of §2.2). The continuity constraint (Eq. 5) is a linear constraint that
after discretization can be used to define a set of independent parameters ¥, € R™, such that ¢, = M -, satisfies the

6

discretized continuity equations, and with m = 2 X N (for details on M, we refer to [3]). The resulting optimization
problem after elimination of the continuity constraint then corresponds to

min _Zylus(M -)], (16)
l/lde]R’"
1
s.t. CW,) =Ey- m'ﬁgMTVM‘/’d =0,

where ¢, is the discrete approximation of ¢ based on the discretized velocity field u,, and where V is a diagonal
matrix with the cell volumes as diagonal elements. Further details are found in [3, 4].

3. Sequential Quadratic Programming with damped L-BFGS

We now focus on the optimization algorithm based on Sequential Quadratic Programming damped L-BFGS em-
ployed in the current work. Firstin §3.1, the formulation and solution of the quadratic programming problem is briefly
reviewed. Subsequently, we discuss a damped limited-memory BFGS algorithm in §3.2. Next, in §3.3 we discuss
some issues related to the initialization of the L-BFGS algorithm, and finally, in §3.4 the selection of step sizes using
an L; merit function is further discussed.

In order to formulate the algorithm, we introduce the Lagrange functional associated with the constrained opti-
mization problem (16), i.e.

LY, = _JuM -)] -1CHY), a7

with A the Lagrange multiplier. The subscripts ‘d’ in _#,, and ¥, are dropped to keep notation sober. The Jacobian
matrix of the constraint is defined as

AW = VCW). (18)

Remark that in our case, with only one constraint, AA” is a scalar. Also note that the SQP algorithm is straightforward
to elaborate with multiple constraints, and A(¥)” = [VC (), VC2(¥), - - -], but that is not necessary in the current case.

3.1. Step direction via Quadratic Programming

The SQP algorithm is briefly reviewed in the context of the current equality constrained optimization problem.
More information on SQP algorithms may be found in [18, 37-39], amongst others. The SQP algorithm is an iterative
procedure for solving nonlinear constrained optimization problems. Given an intermediate estimate of the optimum
¥, during the kth step of the procedure, it determines the step direction Y, by solving a quadratic sub-problem. The
latter is derived using a second-order Taylor approximation of ., and a linearization of C around the point (¥, A).
In the present study, we cast this quadratic problem into following standard form

1
min X V2L W Ay + (L7 (M - YD x + (M -] (19a)
st AWx +CWy) =0 (19b)

The Lagrange functional of this quadratic sub-problem is expressed as

1
L' w) = X" VLx + (V) X+ Ji— (A +Co), (20)

with w the Lagrange multiplier, and where we introduced the short-hand notations .%; = 2, &), i = 7 [u(M -
Yl Ax = A(Y,), and C, = C(¢,). From this, the KKT conditions, written in matrix form, are derived as

Vi ATl x| _[-V%
[_Ak Ok}' /lkfl]_[Cv | @D

further using the result w = A;4;. The derivation of (21) is quite lengthy, but may, e.g., be found in Ref [18].
The matrix on the left hand side of Eq. (21) should be nonsingular in order to have a solution for the QP problem.
This is satisfied if the following conditions hold in the point (¥;,4;):

7

1. The constraint Jacobian A has full row rank, and
2. d"V2.% d > 0 for Vd # 0, with Ad = 0.

In the current study, the first condition is trivially satisfied as long as ¢, # 0, i.e. there is only one non-linear constraint,
of which the gradient is easy to verify (cf. Eq. 16).

The second condition is an important constraint to consider when constructing approximations to the Hessian of
the Lagrange functional. For large problems, as encountered in the current study, it is impossible to compute and even
store the full Hessian of the Lagrange functional. Instead, using a damped L-BFGS method, further discussed below
in §3.2, we will approximate

V4] ~ H,, (22)

and by construction, d' H;' d > 0 (¥d # 0) will be enforced.
Since both conditions discussed above are satisfied, Eq. (21) can be solved as

w1 = (AcHRAD) (AHN 7y — Cp), (23)
Xt = —Hkak + T(AkaV/k — Ck), (24’)

where we introduced the projection matrix T = HkAZ(AkH kAZ)‘l.
The calculation of x; and A requires the computation of

1. HV 7, and HkA,{. In both cases, the product H; with a vector is required. Instead of storing Hj itself and
directly performing this product, a two-loop recursion algorithm is used in combination with the L-BFGS
algorithm (cf. §3.2).

2. the inverse: (AkaAZ)‘l, appearing in the projection matrix 7. Since the the number of constraints in the
current study equals one, this operation is trivial as the product A;H, kAZ results in a scalar number.

Hence, the step direction y, can be computed, provided we are able to construct matrix-vector products with Hy. This
is further discussed in next subsection. The selection of the step size is discussed in §3.4.

3.2. Updating the approximated inverse Hessian of the Lagrange functional

In the current section we discuss the construction of a limited-memory BFGS approximation of the inverse of
the Hessian of the Lagrange functional (i.e. cf. Eq. 22). We inspire our algorithm on the damped BFGS algorithm
proposed by Powell [40].

First, we review some aspects of the conventional L-BFGS approach, as used for unconstrained problems. In that
case Hj represents an approximation to the inverse of the Hessian of the cost functional (since there are no constraints,
a Lagrange functional does not need to be formulated). H} is then constructed using the following recursion relation
(cf. Ref. [18])

Hyy = VIH Vi + pisisy, (25)
with
Vi=I-pysi, pr= TL (26)
Vi Sk
and
Sk = Xierl — Xpo Yi = V1 = V. 27)

In order to guarantee that Hy, is positive definite (given that H} is positive definite), which is required in order to get
a descent direction for the objective functional in the unconstrained problem, the “curvature condition” should hold,

s;y. > 0. (28)

It can be shown that this condition indeed holds provided that the strong Wolfe conditions are imposed for the de-
termination of the step size. The resulting positive-definite construction of H; has been shown to be very robust, cf.
Ref [18] for further details. The startup of the algorithm further uses Hy = yol, with I the identity matrix, and y, a
well-chosen strictly positive number (cf. section 3.3 for a discussion on the selection of).

8

For the constrained L-BFGS case, the quadratic programming sub-problem is based on the Lagrange functional,
and an approximation H; to the inverse of the Hessian of the Langrange functional is needed. In that case

Vi = VLW, Akrt) = VLW, Awr) (29)

However, using this definition, and the conventional L-BFGS construction for Hy, the curvature condition may not
hold. For constrained BFGS, Powell [40] suggested a solution to this problem, called damped BFGS. His approach is
based on the Hessian of the Lagrangian, instead of on its inverse. In the current work, we follow the same idea, but
formulated in terms of Hy. In a first step, define

ry = Osi + (1 = 6)Hy,, (30)

with S = X1 — X Vi = V-Zi+1 — V-2, and where the scalar 6; is defined as

Tl for 57y, > 0.2y] Hyy,,
= 0.8y, H
Ok —(T Y kka) for 57y, <0.2y] Hyy,. @1
O Hiye — 5, Y1)
Using the definitions in Eqgs. (30), and (31), a recursion relation for Hy is given by
Hiy = Vi HiVi + prery (32)
with |
pe=—=— Vi=I-pry]. (33)
l‘k Vi

Hence, this mimics standard L-BFGS, but with s, replaced by r¢, and with y, defined using the Lagrangian functional.
For this version of damped L-BFGS it is possible to show that Hy, is positive definite when H, is positive definite.
We refer to Appendix A for a short proof.

Finally, in the limited-memory version of the BFGS algorithm, H; is not explicitly stored, since it is too large.
Instead an approximation Hj is stored implicitly using the g vector pairs ry_;, y,_; (i = 1---g). To that end, the
recursion relation (32) may be explicitly expressed for the last g steps, leading to

q i
He=WIH W+ Y oo Wt Wi+ pearart g, with Wy = [Vi, (34)

=2 j=1

For the limited-memory version, Hy_, is now simply replaced by Hg = 1, where (simillar to Ref. [18], but in terms
of ry instead of s;)

Ve = 1 et /O i-1)s (35)
so that

q
H,~H, = VkWZWq + Z,Ok—iW,-T,ll‘k—ir;{,iWi—l + P11 Th - (36)
i

The approximation H;. nor the matrices W or V are ever explicitly calculated, i.e., they have the same size and
storage requirements as H;. However, in the SQP algorithm, only products of H; with a vector are required, which
allows to avoid the storage of these full matrices. In fact, it is appreciated from Egs. (33,36) that all matrices V (and
consequently W) are constructed by outer products of the form ry”, and rr”. Hence, if a matrix-vector product is
elaborated (with a vector ¢), this would lead to expressions of the form ry” ¢, and rr”c. In these, the second (inner)
product can be elaborated first, leading to a scalar, before the first (outer) product is calculated. Further elaboration
leads to the so-called two-loop recursion algorithm (details are found in [18]). In Ref. [18], values for g between 3
and 20 are recommended. For further practical elaboration in the current study we make a somewhat ad hoc choice of
g = 5 that is on the low side of this range, so that the total memory overhead remains limited.

3.3. Initialization of the L-BFGS algorithm

For the initialization of the L-BFGS algorithm at k = 0, ¥, cannot be evaluated using Eq. (35), so instead yy = 1
is often used. In fact, convergence of modern Broyden-like methods is usually insensitive to the initial matrix in the
algorithm (cf. Ref. [41]). However, using yo = 1 for the turbulent mixing layer optimal control problem, we obtained
an initial step that led to a solver crash. We observed that the initial search step y¢ calculated from the quadratic
programming was giving a point ¥y + x that was by orders of magnitude too far off from the constraint surface to
allow for a feasible Navier—Stokes solution. This is not so much related to convergence properties of the L-BFGS
method, but rather to the computational robustness of the Navier—Stokes solver.

To remedy this, we determine yq so that it gives a point ¥y + Y that is sufficiently close to constraint surface. To
that end, we require C({g + xo) < aEy, with a user-selected constant a. Further on, we shall simply take a = 1. Since
C is a quadratic constraint (cf. Eq. 16), we find

1
Cro + Xo) = CWh) + Aoxo + 5x0 (VO)xy < ak. @37

To further simplify this expression we use C(¥) + Agx,, = 0, since the search direction in SQP satisfies the linearized
constraint (cf. Eq. 19a). Moreover, we apply the rough approximation V2C ~ I. This leads to

Xo' X0 < 2aE. (38)
Finally, xy is given by Eq. (24) with Hy = y,!. Inserting in Eq. (38) yields
vo8" g < 24k, (39)

with g = (-V. % + Ag/ll), and A; = (AoAg)flAOVjo. Hence, we select the initial y-value as

(40)

3.4. Global convergence via the use of a merit function

It is possible to show that the SQP method corresponds to Newton’s method applied to the KKT conditions
[18]. Therefore, at least locally, it converges quadratically from a point which is close to the solution. To enforce
convergence from any starting point, a line search method with a merit function is used. The merit function is a
scalar-valued function that aims to minimize the objective functional while maintaining the constraint violations as
low as possible. To that end, Han [42], and Powell [40] combine an SQP algorithm with an L; merit function

e = 7 +pliCll (41)

with u a penalty parameter. Given an intermediate estimate of the optimum ¥, from the kth step of the procedure, the
line search method determines Y+1 such that

Yo = ¥ + ax,. (42)
The step length « is determined based on a ‘sufficient decrease’ condition, i.e. the so-called Armijo condition [43]:
Wy + Xy) < oW) + ma Sl W i) X » and n¢€(0,1), (43)

with the directional derivative in the point ¥, and for direction Y, given by

Spl W s il = 67 [Xl = s Gl - (44)

We use a value of n = 10™* as suggested in [18]. In Eq. (44), the value of g still needs to be specified. A sufficient
condition for y, to be a descent direction of the merit function is to select pg > [Ax11| [42], with Agy; coming from

10

the solution of the SQP problem above. However, it has been observed that the performance of the merit function is
sensitive to the choice of the weights p; [44]. Therefore we adopt Byrd et al.’s [44] proposal to set

20 ;
e = st +6), with g = max(l' V i xd) (45)

(| Aks1] + OICK]

with & set to 1074,

Finally, the step length « is then iteratively determined. It is initialized with @ = 1, corresponding to the Newton
value. In many cases this directly satisfies the Armijo condition (43). If not, a; is iteratively updated, following the
strategy described by Powell [40]. To that end, the minimum &; (normalized by «;) of a quadratic interpolation using
the points @o = (W, tk), Yo = (W, + X, 1), and the directional derivative 6@[(¥, ux); X,], is formulated. Hence,

a;op 46)

_ 1
@¥=z————.

2 ibp = ¢a + ¢0
The next iterate a;,1, is then formulated as ;1 = @; max[0.1, min(0.9, @;)], where the min-max construction is used
to choose iterates that are not too close to the previous step «;, or too close to zero.

4. Results and discussion

In a first step, in §4.1 we test the current damped L-BFGS SQP algorithm on a Rosenbrock function. Next,
we apply the algorithm to the turbulent mixing layer case in §4.2, and we compare with a conventional non-linear
conjugate gradient method.

4.1. Optimization of Rosenbrock function

The extended Rosenbrock problem is a well-known benchmark that serves as a good verification case for opti-
mization algorithms [45, 46]. The problem is defined as

i=n/2
. 2 n
n}én f(x) = Zl (xgi - x%i_l) +(1 - xZi_l)z, x eR 47)
S.t Z xiz —-n=0. (48)

i=1

In the current work, we choose n = 50000 to mimic optimization in large parameter spaces. The global minimum of
the problem corresponds with x* = [1, 1,, 1].

To test convergence, we initialize the algorithm with a number different starting points, as listed in Table 1, and
in Table 2. The construction of the starting points is rather ad hoc: in Table 1, we include a number of deterministic
points, with different distances from the optimum, while in Table 2, a number of randomly generated starting points
are included. For all the starting points, 7y is set to 1 in the L-BFGS method (cf. §3.3). The number of SQP iterations
is also listed. We base convergence on the norms of the gradient of the Lagrangian and of the constraint < 10~°. In all
cases the global optimum x* is found.

Table 1, and 2 also include the total number of function and gradient evaluations to reach the optimum. As these
are particulary expensive in the context of DNS (either requiring a Navier—Stokes simulation, or an adjoint simulation),
this total needs to remain as low as possible. For the starting points in Table 1, it is appreciated that the total number
of evaluations ranges between 20 and 179. Clearly, the initial locations of the random-generated starting points in
Table 1 are more challenging. Here we find that up to 168 evaluations are required for 0 < x? < 1. This increases to
up to 378 for 0 < xJ < 1000.

It is also well documented that Quasi-Newton SQP algorithms display superlinear convergence near the optimum
[18]. Super-linear convergence is characterized by a Convergence Rate ratio

sy — x|

CR = (49)

lloex — x|l
11

Starting Point SQP iterations :rlarlrclli(e)rﬁtzl\?aclsggoirsld
x=2 9 20
x=5 11 25
W=10 15 37
x'=30 38 95
x=50 20 51
x) =90 30 76
x) =120 20 52
X = 1111 27 73
x = 2000 56 154
x) = 4786 52 179
N =X =T 28 65
x(l’ﬁn/2 =10, xg/zﬂﬂ =10° 50 128
)c(l)_m/2 = 35, x2/2+1_m =35° 54 146
x(l’_m/2 =68, x2/2+1—>n = 682 62 168
X =89 %05, =89 55 146

Table 1: Number of SQP iterations, and sum of function and gradient evaluations for the extended Rosenbrock problem, using different starting
points x¢ (with elements x?, i=1---n)

Iterations Evaluations | Iterations Evaluations | Iterations Evaluations
Starting Point 0<x<1 0<x)<100 0 < x? <1000
seed = 120655 71 146 127 283 160 364
seed= 2802505 81 168 108 236 138 323
seed= 95012783 70 147 106 230 164 378

Table 2: Number of SQP iterations and function/gradient evaluations for randomly generated starting points, generated using Fortran’s intrinsic
random function, and three different seeds. Each of the random series is scaled such that 0 < x? <1;0< x? <100;0r0 < x? < 1000; leading to 9

different starting points.

12

Xo : x? =2 Xo - x? =50 Xo : x? = 4786

llxx — x| CR llxx — x| CR llxx — x| CR
2.236E+02 1.014E+02 1.286E+01
2.421E+02 1.083E+00 | 8.102E+01 3.761E-01 | 1.374E+01 1.069E+00
6.663E+01 2.752E-01 | 3.048E+01 1.009E+00 | 1.045E+01 7.601E-01
7.841E+00 1.177E-01 | 3.074E+01 3.733E-01 | 4.421E+00 4.232E-01
1.545E+00 1.970E-01 | 1.148E+01 3.662E-02 | 3.312E-01 7.492E-02
2.060E-01 1.333E-01 | 4.203E-01 5.978E-02 | 2.390E-01 7.217E-01
1.067E-03 5.178E-03 | 2.512E-02 6.865E-02 | 1.589E-03 6.646E-03
8.904E-07 8.348E-04 | 1.725E-03 1.248E-04 | 4.409E-04 2.775E-01

1.242E-10 1.395E-04 | 2.153E-07 6.472E-05 | 2.718E-09 6.166E-06

Table 3: Rate of Convergence CR of damped L-BFGS applied to Rosenbrock optimization problem.

*

X = XA/ xy = x|l

20 30 40 50
k

Figure 2: Convergence of Rosenbrock problem from different starting points xo with elements (—-): x? =2;(—): x? =50; and (——): x? = 4786.

that converges itself to zero. In Table 3 we report results from the last few iterations of the damped L-BFGS SQP
algorithm for three selected starting points (x? =2, 50, 4786), showing the values of ||x; — x*|| and CR. It is observed
that the value of CR converges to zero, indicating that convergence is indeed superlinear.

The convergence of the error ||x; — x*|| normalized with the initial error ||xo — x*|| is shown in Figure 2 for three
different starting points. We observe very fast convergence for starting points that are close to the solution. In that
case, also almost no additional function evaluation are required in the line search algorithm, i.e., the SQP step with
a = 1 usually directly satisfies the Armijo condition. For instance, for x? = 2 twenty function or gradient evaluations
are required for 9 SQP iterations (cf. Table 1). This corresponds to the minimum that is required, i.e., one function
and one gradient evaluation per SQP step, and one of each at the end of the final step for the convergence evaluation.
For starting points further away from the solution, the line-search algorithm described in §3.4 starts to play a role,
e.g., for x? = 4786, seventy-three additional function evaluations are required in the line search on top of the 106
function or gradient evaluations that are minimally required for 52 SQP iterations (as is seen in Figure 2, the initial
stages of convergence are in that case also slower). Note that the ratio of evaluations over SQP iterations in this case
is approximately 3.4. This is the highest ratio for all starting points considered in Table 1 and 2.

13

Case T Method Iterations (¢ — ¢o)/E, Ci/Eo Wall time

MKE 20 SQP 200 ~0.011 004 41h
MKE 40 SQP 200 -0.039 610 70h
TKE 20 SQP 700 ~0.0026 6104 147h
TKE 40 SQP 300 -0.011 6(10%) 98h
MKE 20 CG 200 ~0.0074 — 160 h
MKE 40 CG 200 ~0.031 — 265 h
TKE 20 CG 700 -0.0015 — 505 h
TKE 40 CG 300 ~0.0060 — 413 h

Table 4: Mixing-layer optimization cases.

| SQP CG Ratio CG/SQP

MKE, T=20 | 2.17 8.35 3.85
MKE, T=40 | 2.06 8.72 4.23
TKE, T=20 | 2.11 9.15 4.34
TKE, T=40 | 2.05 8.95 4.37

Table 5: Average number of simulations (sum of function and gradient evaluations) per iteration for the SQP and CG methods.

4.2. Evaluation of the SQP damped L-BFGS algorithm for the optimal control of a temporal mixing layer

We now turn to an evaluation of the SQP L-BFGS algorithm for a turbulent mixing layer. As point of comparison,
we also use a conventional non-linear Polak—Ribiere Conjugate Gradient (CG) method, with projection of the gradient
on the non-linear constraint surface, in combination with a Brent line-search method. We refer to [3, 4] for practical
details of the implementation. Two different cost functionals are used (cf. §2.1, Eqs. 6,7), i.e. based on minimization of
mean-flow kinetic energy (MKE), or of total kinetic energy (TKE). Next to that, two different time horizons T are used,
ie. T =20, and T = 40. Details are provided in Table 4. To keep computational resources reasonable, optimization
was stopped after 200 CG or SQP iterations for the MKE cases. For the TKE cases, we iterated somewhat longer,
i.e. 300 iterations for T = 40, and 700 iterations for 7" = 20. All simulations were performed on a high-performance
computer, using 64 processors, and optimization wall times are also listed in Table 4.

In Figure 3, the evolution of the merit function and cost functional are monitored for all cases. Note that in case
of the CG projection method, the merit function and cost functional are identical, since the constraints are satisfied at
every iteration (which is not the case in SQP damped L-BFGS). It is appreciated that the SQP method is converging
much faster than the CG projection method for all cases. Moreover, the computational effort required per iteration
is significantly lower for SQP than for CG. In Table 5 the average number of adjoint and/or forward simulations per
iteration is listed for the different cases. For SQP, we find that the average number of simulations per iteration is
close to 2 (which is the minimum required), indicating that the initial step length estimation of the SQP algorithm (i.e.
a = 1, cf. §3.4) in most cases directly satisfies the Armijo condition. For the CG algorithm, the number of function
evaluations is much higher, i.e. approx. 9 per iteration. This is related to the Brent line-search algorithm required in
this method.

A precise quantification of the speed differences between the SQP method and the CG method for the current
mixing-layer case is difficult, as our optimization (in particular the CG cases) are not formally converged, but stopped
after 200 (300, and 700) iterations for reasons of computational resources. However, it is appreciated from Figure 3
that the CG method may require at least twice the amount of iterations before the cost functionals reach the same
levels as observed for SQP. Also taking into account that CG is 4 times more expensive per iteration than SQP (cf.
Table 5), we believe that the SQP method is at least an order of magnitude faster than the CG method, while still
retaining the computational robustness that is required for the use of direct and adjoint Navier—Stokes solvers.

Finally, in Figure 4 the evolution of the temporal mixing layer starting from the different optimized perturbations
¢ is displayed at different time instances (¢ = 0, 20, 40, 60). For minimization of mean-flow kinetic energy (top

14

0 0
. < —0.005
3 —0.002 5
> = -0.01
S- S-
| —0.004 |
< ~ -0.015
S S .
- =0.006f . -0.02
3 S
= 0.00d = -0.025
N U N
| I -0.03
N -0.01} N\
i\ 5—0.035
-0.012 : : : -0.04 : : :
0 50 100 150 200 0 50 100 150 200
k (b)
0
&) —0.002
~ \
§ ~
| -0.004 Y~
_§; Vl I —
- —0.006t T
s
<
< -0.008
S\
|
X -o0.01}
-3 : : : : : : -0.012 : : : : :
0 100 200 300 400 500 600 700 0 50 100 150 200 250 300
k (c) k (d)

Figure 3: Convergence of SQP L-BFGS and conjugate gradient methods for the optimal control of a mixing layer using different cost functionals.
(a) T = 20 and cost functional based on mean-flow kinetic energy (cf. Eq. 6); (b) T = 40 and cost functional based on mean-flow kinetic energy
(cf. Eq. 6); (c) T = 20 and cost functional based on total kinetic energy (cf. Eq. 7); (d): T = 40 and cost functional based on total kinetic energy
(cf. Eq. 7). Lines: (—) SQP cost functional _Z;; (——) SQP merit function ¢; and (—-) Conjugate gradient cost functional _Z.

two rows), it is seen that the solution is dominated by large two-dimensional vortical structures. These structures are
known to grow fast, rapidly increasing the unsteady motion in the mixing layer [3]. The turbulent kinetic energy con-
tained in this unsteady vortical motion is extracted from the mean-flow kinetic energy, thus explaining their relation to
the minimization of mean-flow kinetic energy. The minimization of total kinetic energy (bottom two rows), displays
a totally different behavior. Here, the total dissipation of kinetic energy over the time window is maximized. This re-
quires fine-scale vortical structures with large velocity gradients, such that the effect of viscosity on the flow increases.
Finally, further details related to physical aspects of mixing-layer optimization and more in-depth discussion may be
found in Ref. [4].

5. Conclusion

In the current work, we presented an efficient optimization algorithm for DN'S-based optimization of turbulent flow
with an equality constraint on the controls. Focus is on cases that are characterized by large parameter spaces. Thus,
gradient-based methods are required, and gradient calculations are based on the solution of the adjoint equations.

15

Figure 4: Evolution of optimized mixing layers (based on the SQP method). From top to bottom: MKE & T = 20, MKE & T = 40, TKE &
T =20, TKE & T = 40. From left to right: r = 0, 20, 40, 60. Vertical planes x = 0, and y = Ly colored by stream-wise velocity u;, and
iso-surface of vorticity (at w = 0.9 max(0U/dy), with w = ||V X ul|, and U the plane-average stream-wise velocity) colored by stream-wise velocity.
(In z-direction, solution is only displayed in the range —40 < z < 40.)

16

Further, the large number of control dimensions does not allow to easily compute or store the Hessian of the problem.
The algorithm is based on Sequential Quadratic Programming (SQP) in combination with a damped limited-memory
BFGS method, and special care is taken to formulate a robust algorithm that works well in combination with an
unsteady Navier—Stokes solver. In particular the initial guess of the L-BFGS algorithm needs to be selected carefully,
so that first optimization steps are feasible for the solver. To that end, we proposed an appropriate scaling of the initial
Hessian estimate that is based on a feasibility region around the constraint surface.

The method is first tested on an extended Rosenbrock problem which is a well-know benchmark for optimiza-
tion methods, and we mimic optimization in large parameter spaces by selecting the number of dimensions in the
Rosenbrock function equal to 50000. We found that the proposed method was fast converging, with a superlinear con-
vergence rate in the neighborhood of the optimum. Also for starting points far from the optimal solution, the method
was found to be robust. Moreover, the required number of function and gradients evaluations remained limited, and
in most cases close to the minimum of one function and one gradient evaluation per SQP step.

To test the method in the context of DNS of turbulent flows, a temporal mixing-layer problem [3, 4] was selected,
and four different cost functionals were tested. We compared optimization using the new SQP method with a con-
ventional non-linear Polak—Ribiere Conjugate Gradient (CG) method [3], which is the current standard in DNS-based
turbulent-flow optimization. We found that the damped L-BFGS SQP method was at least an order of magnitude
faster than conventional non-linear CG. This was both attributed to a faster decrease of cost functionals per iteration
for the SQP method, and less function evaluations per iteration (4 times less than for CG).

Finally, we believe that the level of speed-up observed by using the SQP method, compared to conventional CG
methods, is essential for computer intensive DNS-based turbulent flow optimization problems that are characterized
by large parameter spaces, and require extensive parallel computing. Nowadays, many other efficient optimization
algorithms are employed in the context of simpler PDE-constrained optimization (e.g., multi-grid methods, or single-
shooting approaches [47]). Their combination with DNS-based optimization is however far from trivial, and subject
of further research.

Acknowledgment

The authors acknowledge support from OPTEC (OPTimization in Engineering Center of excellence KU Leuven),
which is funded by the KU Leuven Research Council under grant no PFV/10/002. Simulations were performed on
the computing infrastructure of the VSC Flemish Supercomputer Center, funded by the Hercules Foundation and the
Flemish Government.

Appendix A. Demonstration of the positive definiteness of H}

We briefly demonstrate that the recursive construction of Hy, guarantees the matrix to be positive definite given
H, positive definite. The derivation largely follows the one by Powell [40] for damped BFGS, but is formulated in
terms of Hy, i.e., the inverse of the Hessian of the Lagrangian, instead of in terms of the Hessian of the Lagrangian
itself.

First of all, y[rk > 0 is shown. Using Eq. (30), and Eq. (31) for the case that 6, = 1, we trivially find y[rk =
yisk > 0.2y Hyy, > 0, since Hy positive definite is given. For the other case in Eq. (31), we find

yire = Y6+ (1= 6)Hy,] (A.1)
| 08y Hy, 0.2y Hiyy — 5[¥y
= V|7 7o Sk T 7. Hi
Yo Hiy — s, i Yo Hiy — s, i
yi Hiyy

= —K 0.8y sy + 0.2y Hyy, —sly
y,fHkyk—S,fyk(¢ FHiy = siv)

0.2y; Hyy; > 0.

17

Based on y,{rk > 0, and H; positive definite (starting with H, positive definite), it is now possible to show that
H,,,, constructed with Eq. (25), is also positive definite. Indeed, for any non-zero vector z and using (25), we find

("' r)?
}’Zrk

ZHipz=0 Hiw + (A.2)

with w = z— pi(r! 2)y;. We now have two cases, i.e., (1) r] z = 0, for which trivially follows that z" Hy,1z = 2" Hyz >

0, and (2) r,fz # 0. For the second case, we find 0" Hyw > 0, and (z7ry)? /(y,{rk) > 0, so that also for this case
T

z' Hiy1z2 > 0.

[1] T. R. Bewley, P. Moin, R. Temam, DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms, Journal of
Fluid Mechanics 447 (2001) 179-225.
[2] M. J. Wei, J. B. Freund, A noise-controlled free shear flow, Journal of Fluid Mechanics 546 (2006) 123-152.
[3] S. Delport, M. Baelmans, J. Meyers, Constrained optimization of turbulent mixing-layer evolution, Journal of Turbulence 10 (18) (2009) 26.
[4] S. Delport, M. Baelmans, J. Meyers, Maximizing dissipation in a turbulent shear flow by optimal control of its initial state, Physics of Fluids
23 (2011) 045105.
[5] J.B. Freund, Adjoint-based optimization for understanding and suppressing jet noise, Journal of Sound and Vibration 330 (2011) 4114—4122.
[6] A. Hilgers, B. J. Boersma, Optimization of turbulent jet mixing, Fluid Dynamics Research 29 (6) (2001) 345-368.
[7]1 S. Kern, P. Koumoutsakos, Simulations of optimized anguilliform swimming, The Journal of Experimental Biology 209 (2006) 4841-4857.
[8] T. Verstraete, Z. Alsalihi, R. A. Van den Braembussche, Multidisciplinary optimization of a radial compressor for microgas turbine applica-
tions, Journal of Turbomachinery — transactions of the ASME 132 (2010) 031004.
[9] M.D. Gunzburger, Perspectives in Flow Control and Optimization, SIAM, Philadelphia, 2003
[10] F. Abergel, R. Temam, On some Control Problems in Fluid Mechanics, Theoret. Comput. Fluid Dynamics 1 (1990) 303-325
[11] S.S. Sritharan (ed.), Optimal Control of Viscous Flow, SIAM, Philadelphia, 1998
[12] M. B. Giles, N. A. Pierce, Adjoint equations in CFD — duality, boundary conditions and solution behavior, in: 13th AIAA Computational
Fluid Dynamics Conference, 1997, pp. AIAA-1997-1850.
[13] A. Jameson, L. Martinelli, N. A. Pierce, Optimum aerodynamic design using the navier-stokes equations, Theoretical and Computational
Fluid Dynamics 10 (1-4) (1998) 213-237.
[14] H. Choi, M. Hinze, K. Kunisch, Instantaneous control of backward-facing step flows, Applied Numerical Mathematics 31 (1999) 133-158.
[15] M. B. Giles, N. A. Pierce, An introduction to the adjoint approach to design, Flow Turbulence and Combustion 65 (3-4) (2000) 393—415.
[16] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical recipes in FORTRAN 77: The art of scientific computing, 2nd
Edition, Cambridge University press, 1996.
[17] D.G. Luenberger, Linear and nonlinear programming, 2nd Edition, Springer, New York, 2005.
[18] J. Nocedal, S. Wright, Numerical optimization, 2nd Edition, Springer, New York, 2006.
[19] R. Brent, Algorithms for minimization without derivatives, Series in automatic computation, Prentice-Hall, Inc., Englewood Cliffs, New
Jersey, 1973.
[20] F. Nicoud, J. S. Baggett, P. Moin, W. Cabot, Large eddy simulation wall-modeling based on suboptimal control theory and linear stochastic
estimation, Physics of Fluids 13 (10) (2001) 2968-2984.
[21] J. A. Templeton, M. Wang, P. Moin, An efficient wall model for large-eddy simulation based on optimal control theory, Physics of Fluids
18 (2).
[22] M. Hinze, R. Pinnau, M. Ulbrich, S. Ulbrich, Optimization with PDE Constraints, Vol. 23 of Mathematical Modelling: Theory and Applica-
tions, Springer, 2009.
[23] O. Ghattas , J.-H. Bark, Optimal Control Of Two- And Three-Dimensional Incompressible Navier-Stokes Flows, Journal of Computational
Physics 136 (1997), 231-244
[24] M. Heinkenschloss, Formulation and Analysis of a Sequential Quadratic Programming Method for the Optimal Dirichlet Boundary Control
of Navier-Stokes Flow, In Optimal Control Theory, Algorithms, and Applications (eds. W.H. Hager, P.M. Pardalos), Applied Optimization
15, Springer, Dordrecht, 1998, pp. 178-203
[25] M. Hinze, K. Kunisch, Second order methods for optimal control of time-dependent fluid flow. Siam J. Control and Optim. 40 (2001), 925-946
[26] M. Hintermiiller, M. Hinze, Globalization of SQP-Methods in Control of the Instationary Navier-Stokes Equations. ESAIM: Mathematical
Modelling and Numerical Analysis 36 (2002), 725-746
[27] S.S. Ravindran, Numerical approximation of optimal control of unsteady flows using SQP and time decomposition, Int. J. Numer. Meth.
Fluids 45 (2004), 21-42
[28] M. Ulbrich, Constrained Optimal Control of Navier-Stokes Flow by Semismooth Newton Methods, Pfeil, Systems & Control Letters 48
(2003), 297-311
[29] M. M. Rogers, R. D. Moser, The 3-dimensional evolution of a plane mixing layer - the Kelvin-Helmholtz rollup, Journal of Fluid Mechanics
243 (1992) 183-226.
[30] R. D. Moser, M. M. Rogers, The 3-dimensional evolution of a plane mixing layer - pairing and transition to turbulence, Journal of Fluid
Mechanics 247 (1993) 275-320.
[31] M. M. Rogers, R. D. Moser, Direct simulation of a self-similar turbulent mixing layer, Physics of Fluids 6 (2) (1994) 903.
[32] B. Vreman, B. Geurts, H. Kuerten, Large-eddy simulation of the turbulent mixing layer, Journal of Fluid Mechanics 339 (1997) 357-390.
[33] R.T. Pierrehumbert, S. E. Widnall, The two-dimensional and 3-dimensional instabilities of a spatially periodic shear-layer, Journal of Fluid
Mechanics 114 (Jan) (1982) 59-82.
[34] O. Pironneau, On optimum design in fluid mechanics, Journal of Fluid Mechanics 64 (1) (1974) 97-110.
[35] C. Canuto, M. Hussaini, A. Quarteroni, T. Zang, Spectral methods, fundamentals in single domains, Scientific computation, Springer, 2006.

18

(36]

(37]
[38]
(39]
[40]

[41]

(42]
[43]
[44]

[45]
[46]
[47]

R. Verstappen, A. E. P. Veldman, Symmetry-preserving discretization of turbulent flow, Journal of Computational Physics 187 (1) (2003)
343-368.

R. Fletcher, Practical methods of optimization, John Wiley, Chichester, 1987.

P. E. Gill, W. Murray, M. Wright, Practical optimization, Academic press, London, 1982.

P. T. Boggs, J. W. Tolle, Sequential quadratic programming, Acta Numerica 4 (1982) 1-51.

M. J. Powell, A Fast Algorithm for Nonlinearly Constrained Optimization Calculations, Numerical Analysis, G.A.Watson ed., Lecture Notes
in Mathematics, Springer Verlag 630 (1978).

A. Griewank, A. The local convergence of Broyden-like methods in Lipschitzian problems in Hilbert spaces. SIAM J. Numer. Anal. 24
(1987), 684-705

S. P. Han, A Globally Convergent Method for Nonlinear Programming, J. Optimization Theory and Applications 22 (1977) 297.

L. Armijo, Minimization of functions having Lipschitz continuous first partial derivatives, Pacific Journal of Mathematics 16 (1966) 1-3.

R. H. Byrd, R. A. Tapia, Y. Zhang, An SQP augmented Lagrangian BFGS algorithm for constrained optimization, SIAM J. Optimization
2 (1992) 210-241.

Y.-W. Shang, Y.-H. Qiu, A note on the extended Rosenbrock function, Evolutionary Computation, 14 (2006), 119-126.

H. H. Rosenbrock, An automatic method for finding the greatest or least value of a function, The Computer Journal 3 (1960) 175-184.

A. Borzi, V. Schulz, Computational optimization of systems governed by partial differential equations, SIAM, Philadelphia, 2012.

19

