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We present an exact and efficient algorithm for reaction–diffusion–nucleation processes
on a 2D-lattice. The algorithm makes use of first passage time (FPT) to replace the
computationally intensive simulation of diffusion hops in KMC by larger jumps when
particles are far away from step-edges or other particles. Our approach computes exact
probability distributions of jump times and target locations in a closed-form formula, based
on the eigenvectors and eigenvalues of the corresponding 1D transition matrix, maintaining
atomic-scale resolution of resulting shapes of deposit islands. We have applied our method
to three different test cases of electrodeposition: pure diffusional aggregation for large
ranges of diffusivity rates and for simulation domain sizes of up to 4096 × 4096 sites,
the effect of diffusivity on island shapes and sizes in combination with a KMC edge
diffusion, and the calculation of an exclusion zone in front of a step-edge, confirming
statistical equivalence to standard KMC simulations. The algorithm achieves significant
speedup compared to standard KMC for cases where particles diffuse over long distances
before nucleating with other particles or being captured by larger islands.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Systems that evolve as a result of random stochastic movement and interaction among particles are typically modeled by
Kinetic Monte Carlo (KMC) methods owing to their simple and robust computational framework that can provide essentially
exact results [1]. However, significant limitations are known to arise when time-scales are disparate, such as when it takes
many random steps for particles to find each other and interact.

KMC simulations of reaction–diffusion–nucleation systems based on the algorithm by Bortz, Kalos and Lebowitz (BKL) [1]
have been widely used with success. However, an unfavorable situation may arise whenever the walker density is low and
walkers have long distances to travel before they can nucleate or attach to an edge; in such cases, most of the computational
effort will be spent on the independent random walks in order to bring two particles close enough to each other for an
event to happen. This situation arises when the surface diffusion rate is large compared to the deposition rate [15]. In such
cases, poor computational efficiency can render traditional KMC methods infeasible.

Coarse-grain Monte Carlo methods (CGKMC) superimpose a coarse grid over the particles and use local mean-field values
or quasi-chemical approximations to characterize their properties. Transition rates are then based on the coarse cell size,
generally allowing for larger diffusion hops at lower rates. The main challenges in using these methods are the loss of
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atomic-scale resolution, as well as the need for assumptions on interactions that occur within the coarse cells. (An overview
of KMC and CGKMC methods is available in [4] and the references therein.) Hybrid methods are available [6,29,12] in which
continuum regions far from growth sites are coupled with a KMC method close to the growth sites.

Island dynamics (ID) [14,3,5,25] has also been used to simulate surface evolution during growth. This method has been
shown to be applicable for complex systems including electrodeposition with additives [30,31]. The accuracy and efficiency
of the original method have been enhanced by using adaptive grids for the level set function [20], or by combining the
island dynamics method with KMC simulations at the edge of islands [33]. However, ID still requires a priori information
on the nucleation rates for the simulation of epitaxial growth, as the particles are not tracked individually. Additionally, ID
does not assume a physical grid for the movement of particles. Instead, particles move according to the continuum diffusion
equation and, as such, ID is not well suited to replicate the small-scale geometric shapes of actual deposits on an atomic
lattice.

Although approximate methods such as CGKMC and ID have had success in achieving improved computational speed,
these too can fail when accuracy is critically important for events occurring at scales below that of the applied coarse grid
[6]. In this work we address an application for which KMC is too time-consuming and approximate methods are unable
to capture all of the relevant details of the phenomenon of interest: the atomic-scale nucleation and growth of thin metal
deposits by electrodeposition at the very low rates associated with epitaxial and/or single crystal growth.

Precise control of nucleation and growth dynamics on metal and semiconductor surfaces is essential for manufacturing
processes associated with solar cells, catalysts, new battery materials, and superlattices having unique optical and electronic
properties. Many of these applications have the potential to be deployed in large-scale manufacturing processes. The need
for fast algorithms arises for a number of reasons associated with the design of well-engineered materials. For example,
although the fundamental science is relatively well-advanced for pristine systems, the surface chemistry and dynamics are
often less clear and subject to modeling trial-and-error. For the case investigated in this work, nucleation densities are
extremely low, and thus require large simulation domains to obtain accurate statistics for comparison with experimental
measurements of nucleation densities and island size distributions. In addition, highly efficient algorithms are needed for
the massively iterative calculations required for estimating parameters from experimental data, for identifying uncertainties
and sensitivities, and for optimization and control [8,9]. For all these reasons it is crucial to have a fast and efficient
simulation framework that can still capture the relevant physics.

We are specifically interested in simulation of the early stages of nucleation on a pristine flat surface on which mobile
atomic-scale adatoms (particles), formed by electrodeposition, diffuse about the surface by hopping from one lattice site to
another. The adatoms diffuse until they encounter either another mobile adatom to form an immobile two-atom nucleus, or
the edge of a previously-formed nucleus that grows by accretion of adatoms to form an island (as described in Section 2).
The exact location of the diffusing particles is of less interest than the time and location of the interaction events associated
with nucleation and growth. The use of various computational methods in the modeling of electrochemical systems has
been reviewed recently [2].

Under these conditions, the density of mobile atomic-scale particles on the surface is so low that it is difficult for
atomic-scale particles to find each other and interact to form a nucleus. Moreover, accurate simulation of nucleation events
is critically important since long-term growth patterns are influenced by atomic-scale events. We report here a variation of
the first-passage-time-KMC approach, tailored to 2D on-lattice surface processes [23,22].

In the first-passage-time (FPT) approach, unoccupied zones are established around each diffusing adatom on the surface,
and one calculates the probability of when and where the adatom will exit its zone for the first time. The accuracy and
performance of the FPT algorithm relies on the fast and accurate calculation of the exit time and exit location probability
distributions.

A similar approach to FPT has been presented by van Zon and ten Wolde with the Green’s Function Reaction Dynamics
(GFRD) method [36]. Both approaches are based on the finding that particles diffuse independently as long as they are far
enough from each other. The GFRD method has its origins in chemistry where it has been applied to simulate stochastic
systems with bimolecular reactions. Similarly to FPT, the particles in GFRD methods are assumed to be free of a physical
lattice and the motion of particles can be described by Brownian motion. Both FPT and GFRD methods allow particles to
take jumps much larger than the atomic length at appropriately reduced rates, as long as the assumption of non-interaction
is valid. This can be accomplished by relying on analytic solutions of the diffusion equation to sample the motion of diffusive
particles. The division of systems into sub-parts with master equations that can be analytically solved, has also proven very
beneficial for chemical reaction systems [16,10] and reaction–diffusion systems [24].

DeVita et al. [7] proposed another method that involves the rescaling of jump rates and allows for larger jumps. Their
method scaled the time of the next diffusive jump with the inverse of the square of the jump distance. For each jump, a
search is performed to decide whether that jump violates the no-interaction criteria. This approach is somewhat different
than FPT and GFRD as it does not rely on the construction of protective zones. Instead, a large jump is rejected a posteriori
if the no-interaction criteria are found to be violated.

We assume a discrete on-lattice random walk for the diffusive motion of particles and a continuous-time master equation
due to the nature of surface diffusion on metal surfaces. Exit time and exit location probability distributions must be
formulated accordingly. On a lattice, the first passage time for a random walk inside a domain can be computed analytically
and exactly, as has been shown for the one-dimensional First Passage Time KMC (FPKMC) in [21] and [34]. To the best of our
knowledge, there are no publications that address the surface diffusion on a two-dimensional physical lattice, incorporating
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Fig. 1. Schematic drawing of possible state transitions for a particle: (1) flux, (2) random walk on surface, (3) nucleation, (4) attachment to an edge, (5) edge
diffusion, (6) kink site.

nucleation and island growth based on an exact FPKMC algorithm. We present an efficient exact-lattice-FPT (ELFPT) method
that gives exact probability distributions for the exit times and exit locations of protective zones on a 2D-lattice. Our
algorithm is exact: it solves the same master equation and produces the same statistics on the entire domain as KMC
simulations on a lattice. The benefit of the proposed method over KMC lies in the combination of many diffusive lattice hops
into larger jumps to the edge of the protective zones, while leaving the other parts of the KMC event queue untouched.
We investigate the conditions under which this approach may be advantageous by comparison with the KMC method,
which calculates all the diffusion hops. The ELFPT method makes use of exact formulas that allow for an extremely efficient
calculation of FPT’s on a lattice in two or more dimensions.

The paper is organized as follows: In Section 2 we describe the reaction–diffusion–nucleation problem and present the
ELFPT method. This entails the derivation of the exact FPT distributions for random walks on a lattice in one, two and
higher dimensions, as well as a method for efficiently sampling an exit location in two or more dimensions. In Section 3 we
demonstrate the efficiency of our algorithm compared to standard KMC. We conclude in Section 4 with a discussion.

2. The exact-lattice-first-passage-time (ELFPT) method

The reaction–diffusion–nucleation problem selected for investigation here consists of the physical phenomena shown in
Fig. 1. Reactions generate a flux F of new particles depositing onto the surface, which constitutes the simulation domain (1).
Those particles can then move around the domain according to the laws of random walks (2). Particles can collide and form
a nucleus (3), which is assumed to be a stable aggregate of two adjacent particles. When more particles collide with the
aggregate they attach to it (4), leading to aggregate growth. Particles with one bond to an aggregate can diffuse along the
aggregate edge (5) until they encounter a kink site (6), i.e. a site with two or more bonds to the aggregate, at which point
the particles become immobile. In this work we always consider a two-particle nucleus to be immobile, even if the particles
have only one lateral bond to other particles. Additional effects at island edges such as detachment from edges or dimer
diffusion, while possible, are not considered in this work. While these assumptions provide a pristine model system suitable
for algorithm development, there are many additional physical phenomena that may influence the complicated behavior of
actual systems [11].

As mentioned previously, standard KMC algorithms struggle when the particles diffuse a long way before they encounter
other particles or islands, because they must resolve all lattice hops of the diffusing particles. The main interest for reaction–
diffusion–nucleation systems is the final outcome of aggregate size and shape. As long as the algorithm accurately predicts
where particles nucleate and aggregate, it is not necessary to resolve the exact path a particle has taken before becoming
part of an aggregate. ELFPT greatly reduces the computational cost for the simulation of particles diffusing long distances
until nucleation or attachment to islands. The average inter-island distance depends strongly on the ratio D/F , where D is
the surface diffusion rate and F is the rate of influx of particles per atomic site.

Before proceeding with the description of the algorithm, it is beneficial to define two types of event classes: A KMC-type
event is defined as an event that has an exponentially distributed probability of happening within the next time increment
δt [13]. These are called KMC-type events because they can be simulated using standard KMC methods based on the
algorithm of Bortz, Kalos and Lebowitz [1] (BKL). Examples of KMC events include influx of particles onto the surface,
external reactions, and other events represented by reactions. An FPT event is defined as a diffusion step of a particle. If the
diffusion step is taken over more than one lattice site, then the FPT probability is not distributed exponentially because it
combines a series of atomic lattice hops into one large FPT event. Only hops to direct neighbors (Ls = 1) are exponentially
distributed (see Eq. (6)). The lack of an exponential probability distribution disqualifies FPT diffusion steps to be used in the
classical KMC algorithm.

The ELFPT algorithm is based on a chronological event queue and proceeds as follows:

1. Draw non-overlapping square protection zones centered around each particle (protection zones must not touch or in-
clude deposit sites).

2. Sample FPT’s τ1, . . . , τN for all particles, based on the size of their respective protection zone.
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Fig. 2. A top view of a 2D simulation in a 100 × 100 domain with moving particles (diamonds), their zones at different sizes (dashed lines), and islands
(black squares) with absorbing edge sites (grey squares).

3. Add τi to ordered event queue.
4. Compute the time τKMC of the next KMC event (edge attachment, lattice site hops, etc.). Add τKMC to event queue.
5. Execute event with smallest τmin.

(a) If next event is a FPT event:
i. Sample exit position for particle with lowest FPT and move particle.

ii. If new position violates zones of other particles, update position of those particles inside their zone (no-passage
propagator) and remove their FPT’s from the event queue.

iii. Construct a new protective zone for each particle that moved in Steps i. and ii. above.
iv. Sample new FPT’s for each of these particles and put the FPT’s in the event queue.

(b) If next event is a KMC event:
i. Perform event.

ii. Check for nucleation, edge attachment or other events that change topology.
iii. Check all zones in neighborhood for violations due to new KMC event.
iv. If violations are found, remove FPT’s of those particles from event queue, update particles’ locations inside their

zones (no-passage propagator), calculate new FPT’s for each of those particles and add FPT’s to event queue.
6. If zone violations occurred in the previous step, check for violations again and keep updating the locations and zones

of particles whose zone is violated until all zones adhere to the rules in Step 1.
7. Update system time to τmin.
8. Continue with Step 3 until termination criterion has been met.

Fig. 2 shows a snapshot of a 2D simulation with particles at the center of their zones and some previously formed
aggregate islands.

We note that the above algorithm requires that zones be constructed symmetrically around the particles. This require-
ment could be relaxed to non-symmetric zones with different sidelengths in each direction. At first glance, asymmetric
zones of different side lengths might appear more promising, because such protective zones can cover the simulation do-
main more completely. However, the benefit of larger zones will be dampened and possibly annihilated by the overhead
due to the construction and maintenance of the asymmetrical zones as well as the much more costly sampling of exit times
and locations. In the next section we show how FPT’s for symmetric protection zones in two and more dimensions can be
very calculated extremely efficiently by reduction to FPT’s in one-dimension.

The algorithm requires the computation of exit times and exit locations, as well as updates of positions inside an existing
zone. In the next few subsections we derive an exact and efficient method to calculate those distributions. We also note that
the update at point (5) eventually reduces the movement of particles to standard KMC once they are close to each other or
close to an island edge. Therefore, nucleation is detected when two particles get close enough to each other. In all of our
simulations, the interaction radius of particles is one atomic lattice space. Thus particles nucleate when they are in adjacent
lattice sites. The assumption of no interaction for particles that are more than one lattice spacing apart also justifies the
fact that only particles who see their zones violated need to be updated [22]. It is therefore computationally favorable to
maintain a chronological event queue.
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Fig. 3. A particle on a 1D lattice starts at the center of its protective zone and performs a random walk until it lands outside its protective zone. The length
of the protective zone Ls = 7 and its effective half length L = 4.

2.1. FPT distribution in one-dimension

Step 2 in the above algorithm consists of sampling a FPT for a particle starting at the center of its zone at time t = 0.
The FPT is a random sample of the probability distribution that the particle leaves its protective zone for the first time at
time t . The cumulative distribution function (CDF) of the FPT distribution can then be interpreted as the probability that
the particle has left the zone at or before time t . The FPT CDF has a closed form analytical solution for lattice systems. For
a square pattern of surface sites (e.g., the 〈100〉 plane of a cubic lattice), the FPT CDF in higher dimensions can be obtained
from the FPT CDF in 1D, effectively reducing the computation. Therefore it is sufficient to know the FPT CDF in 1D.

Fig. 3 illustrates a random walker and its 1D protective zone of arbitrary length Ls . For illustrative purposes, Ls is set to
7 here. The FPT is the time that the particle lands outside its protective zone for the first time, i.e. the first time the particle
reaches either site L = 4 or L = −4. (Note: in general L = (Ls + 1)/2.) The particle moves with an average hopping rate of
ω:

ω(1D) = 2D/a2, (1)

where D is the diffusion constant and a the lattice spacing.
The particle starts at site i = 0 and in the next infinitesimal time step dt , it jumps to one of its neighboring sites

with probability ωdt . This problem is essentially a continuous time discrete space Markov process. The distribution is thus
governed by the master equation

dPi(t)

dt
= ω

2

[
Pi−1(t) − 2Pi(t) + Pi+1(t)

]
, (2)

with initial probability distribution

Pi(0) = δi,0, (3)

where Pi(t) denotes the probability that the particle is at site i at time t and sites −L and L are absorbing sites for the
probability of the random walker.

As shown in more detail in Appendix A, solving Eq. (2) becomes equivalent to solving the discrete Laplacian equation
with absorbing boundary conditions. This problem can be solved directly by means of the eigenvalues λi of the discrete
Laplacian with pure Dirichlet boundary conditions. The calculation of the FPT CDF on a discrete lattice can thus be solved
using the λi which are readily derived [35] and given in numerous textbooks cf. [32],

λ j = −4 sin2
(

π j

4L

)
, j = 1,2, . . . , Ls. (4)

F (t), the FPT CDF, is the probability that the particle is at state i = L or i = −L at time t . It follows that F (t) = P−L(t) +
P L(t). F (t) is given by

F (t) = 2

(
1 +

L∑
i=1

exp(λ2i−1
ω
2 t) + 1

λ2i−1
∏L

j=1, j �=i (λ2i−1 − λ2 j−1)

)
. (5)

The derivation of this formula is presented in Appendix A.
It is important to note that F (t) is a closed form solution for the FPT CDF and does not require any approximation in

terms of truncation. As such, the proposed method produces the same diffusion and nucleation statistics as a standard KMC
method, because it is solving the same master equation (2) with no approximation. Also note that in the extreme case of
Ls = 1, Eq. (5) reduces to the exponential function for a single lattice hop.

F (t)|Ls=1 = 1 − exp(−ωt). (6)

Fig. 4 shows the validity of Eq. (5) by comparing FPT CDF’s with simulated examples that were generated by 10 000 KMC
samples for several values of L. The hopping rate has been chosen as ω = 5. Since both approaches solve the same master
equation, the KMC results should approach F (t) for the limit of an infinite number of runs.
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Fig. 4. FPT CDF’s for zones of sizes L = 5 (©), 7 (�), 9 (�), 11 (+), 13 (�), and 15 (×).

2.2. FPT in 2D

The FPT CDF for a random walk in two dimensions can be found in a similar way as explained above, using the eigenval-
ues of the 2D discrete Laplacian. This is efficiently done by separation of variables, since the probability Pi, j(t) in a random
walk to find a particle at site i, j at time t can be written as

Pi, j(t) = Pi(t)P j(t), (7)

as the random walk in the x-direction is independent of the random walk in the y-direction. However, we are not primarily
interested in the probabilities Pi, j(t), instead we focus on the exit time probability F (t) and its complement, the survival
probability S(t).

Consider the survival probability CDF S(t), i.e. the probability that a particle has never exited its protective zone by
time t . In one-dimension it is simply

S(t) = 1 − F (t). (8)

The probability that a particle survives a two-dimensional random walk inside a rectangle is equal to the probability that
it survives two independent random walks in one-dimension, one in the x-direction and one in the y-direction. Thus we
obtain

S(2D)(t) = S(1D)
x S(1D)

y (t) = (
1 − F (1D)

x (t)
)(

1 − F (1D)
y (t)

)
. (9)

Converting back to the FPT CDF and using Eqs. (8) and (9), we obtain the 2D FPT expressed in terms of the 1D FPT as

F (2D)(t) = 1 − S(2D)(t) = 1 − (
1 − F (1D)

x (t)
)(

1 − F (1D)
y (t)

)
. (10)

The same argument can be made for a random walk inside a hyperrectangle of an n-dimensional Cartesian lattice. The
FPT CDF in n dimensions can be computed as:

F (nD)(t) = 1 −
n∏

i=1

(
1 − F (1D)

i (t)
)
. (11)

If the hypercube has different side lengths in all directions, then it is necessary to compute n one-dimensional exit time
CDF’s F (1D)

i (t) to determine the exit time CDF for the entire hypercube F (nD) . By choosing an equilateral protection zone, i.e.
a square in 2D or a cube in 3D, (11) is reduced to a function of a single one-dimensional CDF

F (nD)(t) = 1 − (
1 − F (1D)(t)

)n
. (12)

The FPT simulation requires random samples of F (t) to determine a first passage time for a particle and a given zone
size. In general it is not possible to invert Eq. (5) to determine an FPT sample, given a uniform random number r in [0,1].
However, F (t) is a CDF and as such a monotonically increasing function. This observation allows the use of the method of
bisection to very quickly and efficiently determine the exit time sample t∗ such that F (t∗) = r. Using equilateral protection
zones replaces the cost of up to n evaluations of F (1D)

i (t∗) to that of a single evaluation, but it bears the small price of an
exponentiation.
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2.3. Exit location

Since we chose for the particles in 1D to always begin their random walk at the center of their zone, they are equally
likely to exit the zone through either the left or the right boundary. In two or more dimensions, the question of exit location
becomes a bit more intricate. First, an exit edge must be determined, and second, the exact location along the zone edge
must be chosen. The former problem can be solved easily when the zones are constructed equilaterally and symmetrically
around the particle. The particle is then equally likely to exit through any of its zone’s boundaries. For the remainder of this
work, we thus use exclusively symmetric and equilateral zones.

In 2D, suppose that a particle leaves its square protective zone in the positive x-direction. Then the location along the
y-direction can be found by a conditioned 1D random walk for the y-direction, the condition being that the random walk
never touched the sites −L or L. The y-location just after the exit is the same as the y-location just before the exit. Thus
we must first sample a y-location at the exit time. Combined with the coin flip for the x-location (x0 + L or x0 − L), we then
have the coordinates of the exit location. This problem can be written formally in terms of the evolution of the probability
density function Pi(t) already given by the diffusion master equation (2). The initial conditions are given by

Pi(0) = δi,0, (13)

and the governing equations are (compare to Fig. 3):

Ṗ i(t) = ω

2

⎧⎨
⎩

Pi−1(t) − 2Pi(t) + Pi+1(t), |i| < L − 2,

Pi−1(t) − 2Pi(t), i = L − 1,

−2Pi(t) + Pi+1(t), i = −L + 1,

(14)

which can be written in matrix form as

�̇P (t) = ω

2
A�P (t), (15)

where A is again the discrete Laplacian for a regular grid with absorbing boundaries at −L and L. This system does not
conserve probability because of the absorbing sites, so in order to sample the exit location we need to renormalize �P (t)
with the total probability of finding the particle inside the zone

∑
i P i(t) at time t . This procedure is the discrete equivalent

to the “No-Passage” propagator presented in [23].
Eq. (15) with initial conditions (13) has the analytic solution

�P (t) = exp

{
ω

2
At

}
�P (0). (16)

Numerically, Eq. (16) can be evaluated using the eigen-decomposition of A,

�P (t) = V exp

{
ω

2
Λt

}
VT �P (0), (17)

where Λ is a diagonal matrix with the eigenvalues λ j of A on the diagonal (see Eq. (4)), and V is the corresponding matrix
of eigenvectors �v j of A. The eigenvectors �v j also have an exact closed form solution [35]

vk, j =
√

1

L
sin

(
kjπ

2L

)
, k = 1,2, . . . , Ls, (18)

where the subscripts k, j denote the k-th entry of the eigenvector �v j corresponding to the eigenvalue λ j .
With Eqs. (4), (18), and (17) it is now possible to determine the conditional distribution for the y-location of the particle,

given that it exited its zone in the x-direction at time t:

P̃ i(t) = �Pi(t)

S(t)
. (19)

S(t) normalizes �P (t) such that
∑

i P̃ i(t) = 1 due to the fact that S(t) = ∑
i P i(t). It is technically not needed for sampling

the exit location, but reported here for mathematical completeness. If the problem is in n dimensions, then n − 1 samples
of P̃ i(t) need to be drawn, one for every dimension except the exit dimension.

2.4. No-passage propagator

Particles whose zones become violated (Steps 5(a)ii and 5(b)iii) during the execution of the algorithm need to update
their position inside their zone before a new zone can be constructed around the particle. This event is referred to as
No-Passage (NP) event in [23]. The NP propagator for a particle starting at the center of a symmetric equilateral domain is
straightforward and relies on the same calculations that are used for the exit location. Eq. (19) can be used to sample n
coordinates inside the particle’s zone, with t being the time that the particle has resided in the zone until resampling of its
new position.
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2.5. Nucleation and island boundaries

By choosing zones to be non-overlapping and exclusive to each particle, the algorithm reduces to a standard random
walk KMC when two or more particles are close to each other. Once particles are three or fewer sites apart from each other,
their zone sizes reduce to their current site. The FPT then reduces to movement of single lattice hops with an exponentially
distributed time between hops with mean hopping rate ω, as mentioned previously in Eq. (6) – essentially a KMC movement
of particles.

The same holds for the edges of larger islands. Once a particle gets close enough to an island, its movement gradually
reduces to a KMC random walk until it either attaches to the island or it moves further away again where it can have a
larger zone. The algorithm can thus be seamlessly integrated with any physical phenomena that occur at the island edges.
In particular, edge diffusion and detachment kinetics can be incorporated in the same manner as in standard KMC methods.
It is also possible to incorporate a 1D FPKMC method for the edge diffusion as presented in [21]. Additional phenomena
may be included, as long as the events do not destroy the integrity of the zones of the particles. Possible phenomena
are detachment from the edge or Schwöbel–Ehrlich barriers in the case of multi-layer deposition [17]. There will be no
overhead in compute time by incorporating these additional features, compared to implementing them for a KMC method.
It is also possible to implement absorbing and reflecting boundaries using this feature of zone size reduction to KMC hops,
but these boundary conditions will artificially slow down the ELFPT simulation somewhat, due to the greater resolution of
the diffusive motion of particles at domain boundaries.

Based on these observations it is evident that the algorithm works best in situations with few particles and a low
edge density on the surface. The speedup is generated from situations where particles are far away from each other. In
particular, it is extremely efficient for the determination of island size distributions in cases of epitaxial growth where the
mean-free-path length of particles is high. In such situations the surface diffusivity D is high compared to the influx rate F
of particles. Furthermore, it is exact in the sense that it fully replicates the statistical results from standard KMC simulations.
The ELFPT method is efficient where many other simulation methods for epitaxial growth struggle: the determination of
island size distributions without prior knowledge of nucleation rates while maintaining atomistic resolution of the island
shapes. We have performed a few studies on island size distribution with and without edge diffusion, and we report on the
performance of the new algorithm compared to a standard KMC algorithm.

3. Computational results and discussion

The following experiments have been performed on a 2.5 GHz Quad Core Intel desktop computer with 4 GB RAM
memory running Ubuntu 11.10. The codes are written in C++. The codes ran on one core only for both the ELFPT and the
KMC simulations, so no speedup from multi-threading or parallelization is involved in these results.

3.1. Diffusion and nucleation for different D/F

The setup for the first example is the following: The surface is seeded with an initial deposit site at the center. Particles
subsequently appear at random locations on the surface at a mean rate of F = 1. The particles perform a random walk
with diffusion rate D on the surface. It is assumed that particles that land at a site adjacent to a deposit will be turned
into deposit immediately and irreversibly, i.e. they cannot detach in the future. In this first example, it is further assumed
that there is no diffusion of particles along island edges. The simulation is terminated when 10% of the surface is covered
with deposit. Runtimes for ELFPT and KMC are reported in Table 1. Both of the methods ELFPT and KMC were run with the
same code. It was written such that if Lmax is set to 1 by the user, the code reverts to a standard KMC method and avoids
neighborhood searches and list updates. As such, the KMC version of the code contains a few unnecessary if statements,
but we estimate this overhead to be negligible compared to the generation of random numbers and searches through lists
and arrays.

Numerical simulations are typically compared with experimental observations of early stages of nucleation and growth
such as may be obtained by atomic force microscopy (AFM). Such measurements are carried out on regions that are
1–2 μm2, which corresponds to about 2000 × 2000 to 4000 × 4000 lattice sites for metal surfaces with lattice spacings on
the order of 250 nm to 500 nm. Rates range from (D/F ) < 102 [28] to (D/F ) 	 108, above which standard KMC methods
become prohibitively expensive [38]. For this experiment we varied the surface diffusion rate of particles from D/F = 106 to
D/F = 1015. Preliminary runs suggested that the optimal speedup was obtained by limiting the maximum allowable size of
the protection zones to a value, Lmax, that was found heuristically, and which depended on simulation domain size and D/F
ratio. At present, the value of Lmax which yields optimal speedup must be found heuristically, and depends on simulation
domain size as well as the D/F ratio. We varied Lmax from 8 to 64 for all cases, which correspond to maximal zone sizes
of 15 × 15, 31 × 31, 63 × 63, and 127 × 127. The runtimes of the different cases are reported in Table 1. The reason why
largest possible zone sizes are not always optimal lies in the overhead that is spent while searching the neighborhood of
particles for edge sites or other particles. We performed the same simulation with a standard KMC by setting the Lmax value
to 1, reducing the FPT approach to a standard KMC simulation where the neighborhood search for edges and other particles
is reduced to direct neighbors. This experiment serves as a simple test case to compare the performance improvement in
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Table 1
Runtimes for different domain sizes and different D/F values. KMC runtimes and best ELFPT runtimes are bolded (CPU runtimes [s]).

Domain size
(# sites)

Lmax
D
F = 106 D

F = 109 D
F = 1012 D

F = 1015

64 × 64
(4096)

KMC 0.023 0.099 0.097 0.101
8 0.008 0.013 0.017 0.014

16 0.017 0.017 0.017 0.016
32 0.062 0.046 0.046 0.049
64 – – – –

128 × 128
(16 384)

KMC 0.094 0.791 1.392 1.569
8 0.034 0.069 0.114 0.112

16 0.071 0.075 0.104 0.101
32 0.214 0.193 0.206 0.187
64 0.691 0.646 0.639 0.652

256 × 256
(65 536)

KMC 0.406 3.350 16.87 18.49
8 0.140 0.285 1.395 1.363

16 0.292 0.321 0.594 0.606
32 0.805 0.799 0.836 0.841
64 2.601 2.560 2.563 2.560

512 × 512
(262 144)

KMC 1.710 13.63 118.4 250.3
8 0.600 1.185 8.879 16.706

16 1.239 1.396 2.879 5.407
32 3.391 3.191 3.768 4.522
64 11.53 10.35 11.01 11.26

1024 × 1024
(1 048 576)

KMC 7.241 50.98 514.2 2562
8 2.643 5.239 33.85 203.0

16 5.551 6.081 12.65 63.39
32 15.15 13.70 15.39 30.10
64 46.98 45.09 49.29 53.31

2048 × 2048
(4 194 304)

KMC 31.53 219.7 1812 15 663
8 11.49 21.87 135.1 867.8

16 25.67 25.80 52.55 310.6
32 60.48 56.59 64.81 156.9
64 199.6 193.9 206.7 242.8

4096 × 4096
(16 777 216)

KMC 175.0 925.7 7174 59 754
8 56.53 94.42 519.1 3782

16 116.2 105.7 218.1 1223
32 292.1 246.2 276.4 592.8
64 838.1 811.0 837.3 986.3

2D diffusion for ELFPT compared to a standard KMC approach. As expected, the optimal speedup is achieved for the largest
domains and highest values of D/F .

The results in Table 1 show that if Lmax is kept constant for ELFPT and the domain size is varied, then runtimes for both
algorithms scale approximately linearly with the size of the domain (number of sites) for any given D/F . However, when
comparing scaling over D/F , ELFPT shows much better scaling than KMC. In fact, for higher values of Lmax, ELFPT scales
constant with D/F for the tested domain sizes, whereas KMC (Lmax = 1) scales approximately with (D/F )1/3 for the large
domain sizes. This corresponds well with the findings from nucleation theory that predict an island density (N) scaling of
N ∝ (D/F )−1/3 [37,26].

Runtimes for KMC level off for small domain sizes and high D/F values. This stems from the fact that for high D/F
there is typically only one particle in the domain at a time. This particle diffuses very fast and attaches to the deposit before
another particle appears in the domain. The total number of diffusive KMC hops during a simulation remains independent
of D/F for those cases; only the simulation time increments change with D/F . The chance of having two particles diffusing
at the same time is very limited in such cases, and consequentially the chance for nucleation is minimal. This leads to
growth modes where only one island will grow in the simulation domain.

As may be seen in Table 1, the choice of the ideal maximum protection zone size depends on the simulation parameters.
Fig. 5 shows the speedup that FPT obtains versus KMC. The colors of the bars correspond to the optimal Lmax value. The
best speedup was found for high values of D/F and large domain sizes. An observable trend predicts that larger Lmax are
more favorable for simulations of larger domains and high D/F ratios. Further investigation will be needed to determine to
optimal value of Lmax a priori.
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Fig. 5. Speedup factors of FPT algorithm vs. KMC. The colors correspond to the optimal Lmax value for the given case: white: Lmax = 8; light grey: Lmax = 16;
dark grey: Lmax = 32.

3.2. Edge diffusion

In order to be able to simulate the physically more realistic situation where particles can diffuse along island edges, we
have included edge diffusion at different rates. The mechanism is the following: particles that are attached to islands with
one lateral bond are allowed to move along the edge of the island until they encounter either another edge-walker or they
land in a kink site where they have two or more lateral bonds. In both cases the particles become immobile and so part
of the island. Since particles moving along edges do not influence reaction and diffusion propensities, edge diffusion can
be executed synchronously after every flux or diffusion event. Our method consisted of letting particles with one bond to
islands hop with a mean rate of ωedge = Dedge/2a2. After every flux or surface diffusion step, all edge particles are moved in
a KMC fashion until they land in a kink site, collide with another edge particle or the time of the flux or surface diffusion
event is reached.

Situations arise during simulation with high Dedge/F where islands are perfectly rectangular and have no kinks. In such
cases it is possible that the edge particles circle around the island many times until the time of the next flux or surface
diffusion event is reached. We therefore terminated edge diffusion of individual particles after they performed 1000 edge
diffusion steps. This can introduce some error, but we estimate the error to be small since after 1000 hops, the probability
distribution of an edge-particle can be assumed to be nearly uniform around the island. Furthermore, those edge walkers
will continue moving along the edge after the next flux or surface diffusion event. This procedure illustrates how additional
phenomena can be seamlessly introduced by means of standard KMC. The added features can reduce the efficiency of ELFPT,
however their addition is not likely to render ELFPT less efficient than KMC. Fig. 6 shows how the island sizes and shapes
change with different D/F and Dedge/F ratios. The snapshots in the top row of Fig. 6 all show an island at the center of
the image. These islands are the islands that grew from the initial seed. All other islands grew from ‘wild’ nuclei, which
resulted from diffusing particles.

3.3. Exclusion zone in front of step-edge

As a third example, we investigate the experimentally observable effect of an exclusion zone in front of step-edges [18].
Theoretical results and experimental observations [19] predict that nucleation is less likely to occur close to step-edges. Far
away from a feature like a step-edge, all sites are equally likely to be covered with deposit, that is if the overall coverage is
20%, then there is a 20% chance that a site is covered with deposit. Close to an edge, however, a particle is more likely to
hit the edge and become part of the growing front than it is to find another particle for nucleation. Sites very close to the
initial location of the edge are therefore very likely to be covered with deposit at the end. There exists a zone between the
edge front and the far field where particles are unlikely to nucleate, because the edge acts as a sink for nearby particles.
This zone between the edge front and the far field is called the exclusion zone. It is of practical interest to know how far
the influence of the edge extends into the domain. Stephens et al. predicted regimes at which particles are very unlikely to
nucleate between step-edges [30]. We are interested in statistical results for those predictions to quantify the probability of
particles nucleating at a given distance from the advancing step-edge.

For the numerical experiment, we seeded the left border of our domain with an entire row of deposit, acting like a
step-edge. The edge diffusion rate Dedge was kept equal to the surface diffusion rate D for this experiment. The system was
then evolved with the same rules as in the first example, until 20% of the surface was covered with deposit. Snapshots of
the simulations with different D/F values are shown in Fig. 7. To obtain the statistical data, we ran 1000 independent runs
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Fig. 6. Snapshots of deposit (white) for different values of D/F and Dedge/F after deposition of 0.1 mono-layers. Nucleation density decreases with increasing
D/F , and island shapes are more compact for high Dedge/F . All domain sizes are 512 × 512 lattice sites. The inserts in the bottom two rows are magnified
10 times to show more detail.

Fig. 7. Snapshots of deposits (white) at 20% coverage. Shown here are 100 × 128 windows of the simulation which was 256 × 256 sites. Initially, the
simulation domain is seeded with deposits along the left boundary of the domain.

at different D/F ratios. It was therefore crucial to have an efficient algorithm that can handle all D/F ratios as well as the
sizes necessary to fully resolve the exclusion zone without effects from the domain boundary on the opposite site of the
edge. We recorded the locations of deposit for each D/F over 1000 runs and calculated the probability of the domain being
covered with deposit at a given distance from the edge. The probability distributions are shown in Fig. 8.

The exclusion zone is not very apparent near the edge (left side of image) for a value of D/F of 103 in the snapshots
of Fig. 7. For higher surface diffusion rates, one can clearly see that nucleation is less likely to happen in the vicinity of the
step-edge. Fig. 8 shows the resulting probabilities from our ensembles of simulations. For a lower ratio of D/F the exclusion
zone does not extend far into the domain, and it is less pronounced than for larger values of D/F . For large D/F ratios, the
edge is more likely to grow into the domain, i.e. particles are more likely to attach to the edge, which is in agreement with
the larger islands seen in the first experiment. Nonetheless, all ratios of D/F exhibit an exclusion zone, confirming physical
observations [18,19] and previous calculations [30].

To demonstrate that ELFPT is statistically equivalent to KMC, we have also run the same experiment with our KMC code
and plotted the results in Fig. 8. In this case, ELFPT was up to 12× faster than KMC. ELFPT speedup was compromised
somewhat by our standard KMC treatment of the edge diffusion. It is planned to adapt a FPT approach for edge diffusion in
a future version of the code to overcome this limitation. As Nandipati et al. have shown [21], edge diffusion is well suited
for an FPT approach and can yield considerable speedup.

4. Conclusions

We have presented a highly efficient, exact method to simulate and study reaction–diffusion–nucleation systems on
a lattice. Examples have been given for physical problems in two dimensions. We outlined how the algorithm can also be
efficiently applied to systems in higher dimensions. Our method requires no a priori knowledge of nucleation rates or attach-
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Fig. 8. Probability of deposit being located at distance x from a step-edge. The exclusion zone is larger for larger D/F . (Dip in probability of deposit in front
of growing edge.)

ment rates to edges. The new method produces the same statistical results as KMC simulations but with a very substantial
speedup when nucleation densities are low and mean free paths of particles are high. Fast and accurate simulations of this
system allow for the estimation of reaction rate parameters involved in thin film depositions. The new ELFPT method yields
substantial speedup compared to conventional KMC methods and it scales well with increasing ratios of D/F . The reduction
of the FPKMC to standard KMC near nucleation sites and edges allows for the incorporation of a multitude of additional
physical effects. As an example we have shown that edge diffusion can be seamlessly incorporated. Our approach is not
limited to square lattices and sub-monolayer systems. We will report results for the hexagonal lattice as well as multi-layer
growth in a future publication.
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Appendix A. Derivation of Eq. (5)

Note: Eqs. (20) to (30) are taken from [27, p. 72].
Consider a random walker starting at site 0 and hopping either left or right with a hopping rate ω. When the particle

reaches either site L or −L it will be absorbed by that site, or in other words, sites L and −L are traps. The total length of
the domain is thus 2L + 1. Fig. 3 illustrates the problem for L = 4.

For a domain with traps at sites −L and L we can write the following master equations:

Ṗ0(t) = ω

2

[
P−1(t) − 2P0(t) + P1(t)

]
, (20)

Ṗ1(t) = ω

2

[
P0(t) − 2P1(t) + P2(t)

]
, (21)

... (22)

Ṗ L−1(t) = ω

2

[
P L−2(t) − 2P L−1(t)

]
, (23)

Ṗ L(t) = ω

2

[
P L−1(t)

]
. (24)

The factor of 1/2 stems from the fact that half of the time the particle jumps to the left, and half the time it jumps to the
right. Due to this symmetry we have P−i(t) = Pi(t). Setting the hopping rate to 1 by the time rescaling t̄ → ω

2 t and taking
the Laplace transform of above equations we obtain a set of algebraic equations:

sP0(s) − P0(t̄ = 0) = P−1(s) − 2P0(s) + P1(s), (25)

sP1(s) − P1(t̄ = 0) = P0(s) − 2P1(s) + P2(s), (26)

... (27)

sP L−1(s) − P L−1(t̄ = 0) = P L−2(s) − 2P L−1(s), (28)

sP L(s) − P L(t̄ = 0) = P L−1(s). (29)

The initial conditions are Pi(t̄ = 0) = δi,0. Combining that with the fact that P−i = Pi we can write the above equations in
matrix form as
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⎡
⎢⎢⎢⎢⎣

s + 2 −2 0 · · · 0
−1 s + 2 −1 · · · 0

. . .

0 · · · −1 s + 2 0
0 0 · · · −1 s

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

P0(s)

P1(s)
...

P L−1(s)

P L(s)

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1
0
...

0
0

⎤
⎥⎥⎥⎥⎦ . (30)

We are interested in solving Eqs. (30) for the absorbing state P L(s). Denote the big system matrix in Eq. (30) by A. A is
a square matrix of size n = L + 1. In order to solve for P L(s) we need only the (n,1) entry of A−1, due to the structure of
the right hand side. A−1

n,1 can be obtained by finding the adjugate of A:

A−1 = 1

det(A)
adj(A). (31)

The transpose of the adjugate of A is the matrix C of cofactors of A. Thus we need to find C1,n . We are now going to
show that C1,n is always equal to 1 for the system (30).

First we write Ci, j as a function of the corresponding (i, j)-minor of A:

Ci, j = (−1)i+ j Mi, j. (32)

The (i, j)-minor, denoted by Mi, j , of an n × n square matrix A is defined as the determinant of the (n − 1) × (n − 1) matrix
formed by removing from A its i-th row and j-th column. Coming back to system (30), we write M1,n as:

M1,n =

∣∣∣∣∣∣∣∣∣∣

−1 s + 2 −1 0 · · · 0
0 −1 s + 2 −1 · · · 0

. . .

0 0 · · · 0 −1 s + 2
0 0 · · · 0 0 −1

∣∣∣∣∣∣∣∣∣∣
, (33)

which is the determinant of an upper triangular matrix with only (−1) on the diagonal. The size of the matrix is n − 1, thus

M1,n = (−1)n−1, (34)

and Eq. (32) becomes

C1,n = (−1)1+n(−1)n−1 ≡ 1 (35)

for all n > 0.
Combining this result with Eq. (31), we conclude that

A−1
n,1 = 1

det(A)
. (36)

Thus P L(s) is equivalent to the inverse of the determinant of the system matrix A. A can be written in the form A = (sI − Ã),
with

Ã =

⎡
⎢⎢⎢⎢⎣

−2 2 0 · · · 0
1 −2 1 · · · 0

. . .

0 · · · 1 −2 0
0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎦ . (37)

The determinant of A then becomes the characteristic polynomial of Ã. The characteristic polynomial of a matrix can also
be written in terms of the matrix eigenvalues λ̃i . The last column of Ã consists of only zeros, thus one of the eigenvalues of
Ã is zero and the other L eigenvalues turn out to be non-zero. We can now write

A−1
n,1 = 1

det(A)
= 1

s
∏L

i=1(s − λ̃i)
. (38)

In a final step, we point out that the eigenvalues of Ã are a subset of the eigenvalues of the discrete Laplacian on a regular
Cartesian lattice of size Ls = 2L +1. The connection can be made also through the fact that P−i = Pi in the derivation above.
The entire system is symmetric around site 0 and therefore only the odd eigenvalues of the discrete Laplacian are needed.
It turns out that the odd eigenvalues λ2i−1 of the discrete Laplacian are also the eigenvalues λ̃i of Ã. Thus we can finally
write
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P L(s) = 1

s
∏L

i=1(s − λ2i−1)
, (39)

now using the eigenvalues λi of the discrete Laplacian instead of those of matrix Ã. The inverse Laplace transform
L−1[P L(s)] can be computed analytically. First we denote λ−1 = 0 as the zero’th eigenvalue of A (corresponding to the
zero eigenvalue of Ã). Eq. (39) can then be rewritten as

P L(s) = 1∏L
i=0(s − λ2i−1)

. (40)

Before proceeding with the inverse Laplace transform L−1[P L(s)] it is important to note that all λ2i−1 are real and unique
for i = 0,1, . . . , L (λ−1 is zero by definition. For i = 1, . . . , L, the arguments to the sine function in λ2i−1 = −4 sin2(

π(2i−1)
4L )

are unique, real, positive and < π/2. Therefore, λ2i−1 are real and unique for i = 0, . . . , L). It is thus possible to invert
Eq. (40) by method of partial fractional expansion. We start by writing (40) as

P L(s) =
L∑

i=0

ci

s − λ2i−1
. (41)

The residues of P L(s), ci , are determined via the formula

ci = [
(s − λ2i−1)P L(s)

]
s=λ2i−1

, i = 0, . . . , L. (42)

The calculation of L−1[P L(s)] becomes straightforward and we can write

P L(t̄) =
(

L∑
i=0

ci exp (λ2i−1t̄)

)
u(t̄) (43)

where u(t̄) is the Heaviside step function.
After some algebraic clean-up and remembering that we used the time rescaling t̄ → ω

2 t , we can finally write for t > 0

P L(t) = 1 +
L∑

i=1

exp(λ2i−1
ω
2 t) + 1

λ2i−1
∏L

j=1, j �=i (λ2i−1 − λ2 j−1)
. (44)

The probability of the particle being absorbed at either site −L or L by time t is the sum of P−L(t) and P L(t) which is
simply 2P L(t).
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