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Abstract
Three-dimensional fluid–structure interaction (FSI) involving large deformations of flexible
bodies is common in biological systems, but accurate and efficient numerical approaches for
modeling such systems are still scarce. In this work, we report a successful case of combining an
existing immersed-boundary flow solver with a nonlinear finite-element solid-mechanics solver
specifically for three-dimensional FSI simulations. This method represents a significant
enhancement from the similar methods that are previously available. Based on the Cartesian grid,
the viscous incompressible flow solver can handle boundaries of large displacements with simple
mesh generation. The solid-mechanics solver has separate subroutines for analyzing general three-
dimensional bodies and thin-walled structures composed of frames, membranes, and plates. Both
geometric nonlinearity associated with large displacements and material nonlinearity associated
with large strains are incorporated in the solver. The FSI is achieved through a strong coupling and
partitioned approach. We perform several validation cases, and the results may be used to expand
the currently limited database of FSI benchmark study. Finally, we demonstrate the versatility of
the present method by applying it to the aerodynamics of elastic wings of insects and the flow-
induced vocal fold vibration.
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1. Introduction
Fluid–structure interaction (FSI) can be found for many biological tissues and organs.
Among the examples are insect wings, fish fins, human heart valves, and human vocal folds.
Although their anatomies, physiological components, and mechanical behaviors are quite
different from one another, these deformable bodies share the kinematic features of large
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deformation in the three-dimensional (3D) space, and the time-varying deformations are
critical for the bodies to perform their physiological functions. Because of the large
deformation and also the intrinsic complexity of the accompanying flow, computational
modeling of the 3D FSI for this type of problems is highly challenging and thus has not been
extensively explored.

Conventional numerical approaches for FSI are usually based on a body-fitted grid.
Examples include the arbitrary Lagrangian–Eulerian formulation (ALE) [1, 2] and the
space-time finite-element method [3, 4]. The grid in these methods can be either structured
or unstructured. Furthermore, the solid body and the flow are meshed separately. That is, a
Lagrangian mesh following the material points is used to discretize the solid body, and
another moving mesh is employed to discretize the flow and is generated to conform to the
instantaneous shape of the solid body. With this body-conformal mesh, the boundary
conditions of the flow can be imposed at the solid surface in a straightforward manner. In
addition, the flow mesh near the solid surface may be refined locally to resolve the boundary
layer. The disadvantage of these methods is that an algorithm is needed to move the mesh
points in the bulk fluid along with the points at the boundary. For example, an elliptic partial
differential equation can be solved numerically to generate an orthogonal mesh [5].
Alternatively, an elastic deformation problem can be solved for the pseudo material
occupying the fluid region to displace its mesh points [4]. Whichever method of mesh
generation is used, in the case of large deformations significant effort is usually required to
prevent severe mesh distortion from happening. For example, mesh smoothing techniques
[6] and overset grids [7] have been used to handle large displacements of solid bodies. In
general, mesh generation is an expensive process. Especially when the solid body has a
complex shape and experiences large deformations, extensive computations are needed to
frequently update the mesh topology. In such cases, the methods that are based on fixed and
non-body-conformal grids may provide more attractive alternatives.

There are several methods in computational fluid dynamics that have been designed for
complex/moving boundaries but are based on fixed grids. The most notable among them is
the immersed-boundary method which has gained popularity for a wide range of
applications in recent years. The underlying ideas of the immersed-boundary method are
very different depending on the specific implementations, for example, the continuous
forcing approach originally developed by Peskin [8], the direct forcing approach based on
local flow reconstruction [9, 10, 11], and the projection approach by Taira & Colonius [12].
Nevertheless, all of these versions of the method are able to treat the irregular and time-
varying boundaries using a fixed, single-block Cartesian grid without the need to contend
with the motion of the solid body. Therefore, they share the merits of simple grid generation,
efficient computation on the structured grid, and easy partition based on domain
decomposition [13]. On top of the fundamental ideas of the immersed-boundary method,
many additional features have been developed to enhance the capability or improve the
performance of the method, for example, multi-block and adaptive meshes to enable local
refinement [14], curvilinear grids to adapt to the overall geometrical feature of the fluid
domain [15, 16], and approaches to suppress the numerical oscillations associated with
moving boundaries [17, 18, 19].

Thanks to its advantages, the immersed-boundary method is particularly suitable for
simulation of the flows involved in the biological and biomedical FSI problems at the tissue
and organ levels. Indeed, this method has been adopted previously in many cases. For
example, Peskin [20] described a three-dimensional modeling approach for simulating the
interaction of a viscous flow with an immersed elastic thin structure that is motivated by the
fluid dynamics of the heart. De Tullio et al. [21] and Ge & Sotiropoulos [22] have
performed three-dimensional simulations of mechanical heart valves by coupling an
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immersed-boundary method with the spring-connected leaflets. Luo et al. [23] presented an
immersed-boundary approach for both the flow and the solid body and applied the method
to the flow-induced vocal fold vibration that occurs during phonation. These examples have
demonstrated the flexibility of the immersed-boundary method in the FSI applications.
However, these previous FSI studies using the immersed-boundary method are usually
limited to simple solid-body mechanics, i.e., 2D problems, rigid-body dynamics, or linear
elasticity. There are few cases that have applied the immersed-boundary method for the FSI
problems involving more complicated structural behaviors. For example, in Huang & Sung
[24], a first-order accurate immersed-boundary method is coupled with a structural model to
simulate a flapping flag. Their method is able to capture the large displacement and complex
deformation of the flag. However, the structural model in their work is based on a finite-
difference method and is only suitable for bodies with simple rest shapes. In solid
mechanics, the finite-element method is the predominant approach for analyzing nonlinear
structures of general shapes and complex material behaviors, but this method has not been
often combined with the immersed-boundary method for the FSI applications that involve
large deformations. A recent benchmark study by Bhardwaj and Mittal [25] describes such a
combination but the discussion is limited to 2D and the linear material behavior. A
preceding work of ours [26] discusses similar coupling with thin-walled structures, but the
method needs to be further validated.

Since using the immersed-boundary method for general FSI simulations has not been well
explored, a particular contribution of the current work is that we successfully combine an
existing second-order immersed-boundary method with a finite-element program for
modeling nonlinear biological structures whose large deformations can cause both geometric
nonlinearity and material nonlinearity. Compared with the previous FSI methods that adopt
a similar immersed-boundary flow solver and coupling approach [25, 26], the current
method is not a conceptually new method but nevertheless represents a significant
enhancement of those methods. Furthermore, an additional issue we would like to address in
this work is there has been a lack of the numerical benchmark cases for the FSI problems
involving deformable bodies [25]. One existing benchmark problem that consists of a
laminar channel flow past a vibrating beam attached to the lee side of a circular cylinder was
recently proposed by Turek and Hron [27], where the beam is modeled as a Saint Venant–
Kirchhoff material, i.e., an extension of the linear elastic material model to the geometrically
nonlinear regime. Several previous studies adopted this 2D problem for benchmarking their
FSI solvers [25, 28]. Given that similar validation cases are scarce, the second contribution
of the present work is that we enrich the current database of the FSI validation cases by
performing simulations of both 2D and 3D flexible bodies.

The immersed-boundary method we adopt in the current work is previously developed by
Mittal et al. [11] and later improved by Luo et al. [19]. These authors have demonstrated the
versatility of the method by applying it to several problems including fish swimming and
insect/bird flight. The structure solver is also an in-house program for nonlinear analysis of
solids and structures [29, 30, 31], which has separate modules to handle thin-walled
structures (e.g., frames, membranes, and plates) and general 3D elastic and hyperelastic
bodies. To enhance the numerical stability, a partitioned iterative procedure is applied to
combine the fluid and solid solvers in a strong coupling manner. In this work, we will focus
on several FSI benchmark cases, all of which involve large-displacement deformations but
have relatively simple setups. For each case, we will report details of the problem
configuration to help readers who wish to use it in future studies.

The organization of the paper is as follows. The governing equations of the fluid and solid
structures are described in Section 2; the numerical approach is introduced in Section 3; the
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validation and benchmark cases are presented in Section 4; two applications of the FSI
method are described in Section 5; and final conclusions are provided in Section 6.

2. Governing equations
The flow considered here is governed by the three-dimensional viscous incompressible
momentum equation and the continuity equation,

(1)

where ρf is the constant density, ν is the kinematic viscosity, vi is the velocity, p is the
pressure.

The dynamics of the solid is governed by

(2)

where ui is the displacement, ρs is the density of the material, ηd is the damping coefficient,
σij is the Cauchy stress tensor, and bi is the body force such as gravity. The time derivative,
d/dt, in the equation is measured in the Langrangian framework. Two material behaviors are
included here for the 3D solid bodies: (1) elastic materials that undergo large-strain
deformations but still have a linear stress-strain relationship; (2) hyperelastic materials that
experience large-strain deformations and have a nonlinear stress-strain relationship. For the
first material, the constitutive relationship is the Saint Venant–Kirchhoff model expressed
by

(3)

Here Dijmn is the elastic matrix with 12 non-zero elements that depend on Young’s modulus
E and the Poisson’s ratio νs [32, 31]. Emn is the Lagrangian strain tensor defined by

(4)

where Xi refers to the material point in the initial configuration (undeformed state).  is the
second Piola–Kirchhoff stress tensor, which is related to σij by

(5)

with .

For the nonlinear material behavior, we consider rubber-like materials, which have been
commonly used for modeling soft tissues with elastic moduli ranging from on the order of
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100 Pa for the brain to 100000 Pa for soft cartilage [33]. The Mooney–Rivlin model
describes the constitutive relationship for this type of materials,

(6)

where Cij is Cauchy-Green deformation tensor given by

(7)

K plays the role of a bulk modulus and is set at a large value to represent incompressibility,
and the coefficients are given by

(8)

In Eqs. (6) and (8), α10 and α01 are free material parameters, and the invariants are given by

(9)

where λ1, λ2, and λ3 are the principal stretches.

For reinforced thin structures such as insect wings and fish fins, we approximate the spars
with frames and the membranes with plates. For these structures, the local strain is assumed
to be small so that the linear stress-strain relationship in Eq. (3) is used. Furthermore, the
linear version of Eq. (4) can be used for the expression of the strain. However, since the
structures may experience large-displacement and large-rotation deformations, geometric
nonlinearity is thus incorporated in the formulation as discussed later in Section 3.2. Only
2D (for plates) or 1D (for frames) discretization is needed for these structural components.
Their deformation under the resultant forces and moments on the cross sections can be
derived using the classical theory of beams and plates. The mathematical formulations can
be found in many textbooks of solid mechanics [29]. For example, the in-plane (stretching
and drilling) behavior of the plate can be written as

(10)

and the out-of-plane (flexural) behavior of the plate can be written as

(11)

In these expressions, h is the thickness of the plate, I = h3/12 is the area moment of inertia of
the cross section, ūi is the displacement measured in the local coordinate system for which ξ
and η are the two tangential coordinates, Nij and Mij are respectively the resultant forces and
moments acting on the cross section.
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3. Numerical approach
3.1. The immersed-boundary method for the flow

An in-house FORTRAN 90 code is used to simulate the flow. Its numerical method is based
on an immersed-boundary method initially developed by Mittal et al. [11] and later
improved by Luo et al. [19]. A brief summary of the method is provided here.

The governing equations in (1) are discretized on a nonuniform Cartesian grid using a cell-
centered, non-staggering arrangement of the primitive variables, v and p. The momentum
equation is integrated in time using a variation of Chorin’s projection method which consists
of three sub-steps. In the first substep, an advection-diffusion equation is solved in the
absence of the pressure, and an intermediate velocity field, v*, is obtained. In this step, both
the nonlinear advection term and the viscous term are discretized using the Crank–Nicolson
scheme to improve the numerical stability. The discrete equation is written as

(12)

where vn is the velocity at the current time step, V is the face-centered velocity obtained by
computing the linear average of v along the corresponding direction, and the spatial
derivatives are discretized by a second-order central scheme. The algebraic system is solved
by using the Gauss–Siedel line relaxation method for the linearized system and using
successive substitution for nonlinear iteration. In the second substep, a projection function is
solved as an approximation of the pressure,

(13)

and in the third substep, the velocity is updated as

(14)

The special treatment at the fluid–solid interface is the improved second-order sharp-
interface immersed-boundary method [19]. In this method, the entire rectangular domain
including the fluid and the immersed body is discretized by the volume mesh, i.e., the
Cartesian grid, and the exposed surface of the solid body is represented by a set of
Lagrangian marker points and linear triangular elements. The algorithm of determining the
interior and exterior points is described in Mittal et al. [11]. To impose the velocity and
pressure boundary conditions at the interface, ghost nodes and hybrid nodes are defined near
the interface. Specifically, at the nodes immediately next to the interface, the finite-
difference stencil involves some nodes that are located inside the solid body. These special
nodes located in the fluid are termed hybrid nodes, and the corresponding nodes inside the
solid body are termed ghost nodes. The variables at the ghost nodes are extrapolated from
the interior flow field as described in Mittal et al. [11]. The variables at the hybrid nodes are
weighted averages between the interpolated solution and the solution to the momentum
equation (for the velocity) or the Poisson equation (for the pressure). Such a hybrid
formulation helps to suppress the numerical oscillations caused by a moving body.
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3.2. Finite-element formulation for the solid
The finite-element formulation in the structure solver is derived from the standard virtual
work method. Let the displacement in a volume element be represented by

(15)

where hk(X, Y, Z) is the shape function associated with the kth node in the element and uk is
the displacement u at this node. The second part of the equation is written in the compact
form, where [H] is the matrix containing hk and {u} is the vector containing the three
displacement components at all the nodes. Other variables can be expanded in a similar
manner as in Eq. (15).

Using the virtual work of the inertial load, body force {b}, and surface traction {f} along
with the expansion of the variables, the assembled equation system for the entire body can
be written as

(16)

where [M] is the mass matrix, [C] is the mass-damping matrix, {P} is the force vector from
the external load, and {F} is the body stress vector. These assembled terms are given by

(17)

(18)

(19)

(20)

where  represents the original volume of the mth element and [BE] is the matrix
containing the derivatives of the strain tensor Eij with respect to the displacement ui. The
increment of the body-stress term can be further written as

(21)

where [KT ] is the total stiffness matrix given by

(22)

and [BD] is a matrix containing the spatial derivatives of the shape function hk. The
formulations in Eqns. (16) to (22) can be used for both the rubber material and the elastic
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material with large deformations. The differences between the two materials are that the

calculations of the matrices such as [BE], [BD], [σK], and  depend on the material’s own
constitutive law. For general 3D bodies, hexahedral (or brick-type) quadratic 20-node
elements [34] (8 vertical nodes and 12 mid-edge nodes) are used in the finite-element
formulation. The numerical integration over the volume of an element is done using the 27-
point Gauss–Legendre quadrature.

The finite-element formulation of the thin-walled structures includes the three-node plate
elements and two-node frame elements, where each node has six global degrees of freedom,
including three displacement components, ui, and three angles of rotation, φi. The plate
elements used are the discrete Kirchhoff triangular element, which has been widely
researched and documented as being one of the most efficient flexural elements [35]. For
such structures, the discrete equations can be written in the same forms as in Eq. (16) to Eq.
(22), except that {u} represents the generalized displacement vector with φi included and
[σK] represents the generalized stress with moments included. In addition, the large-
displacement and small-strain deformation in the structure solver is handled using the
corotational scheme. That is, a local coordinate system is envisioned as moving with each
discrete element, and relative to this coordinate system, the element behaves linearly as
described by the constitutive law. Consequently, the nonlinearities of the problem are due to
large deflections and rotations.

For both thin-walled and general 3D structures, the time stepping is done using a case of
Newmark scheme [29], which is described below along with Newton–Raphson iteration,

(23)

where {Δu} is the incremental displacement, s is the iteration counter, and the predictors are
given by

γ = 0.5 and β = 0.25 are chosen in the scheme. Once {u}n+1 is obtained, the acceleration and
velocity are updated according to

The in-house software is written in FORTRAN 90, and more details can be found in its
documentation [30].

Tian et al. Page 8

J Comput Phys. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3.3. Fluid–structure coupling
The incompressible Navier–Stokes equation is combined with the structural dynamics
through the boundary conditions, which include the no-slip, no-penetration, and traction
conditions,

(24)

where Xb and vb are respectively the position and the velocity of the boundary, σ and f are
respectively the stress tensor and the hydrodynamic traction on the boundary including the
pressure and viscous components, and n is the surface normal. The flow and structure
solvers share the triangular mesh on the exposed surface of the solid, and the pressure and
the viscous stress are interpolated from the flow field onto the nodal points of the surface
mesh. The most straightforward way of coupling the two solvers is an explicit coupled
approach, i.e., weakly or loosely coupling [36]. That is, the flow and the structure are solved
sequentially and only once in one time step. Thus, at the end of a time step, the boundary
conditions between the flow and the solid body mismatch by one-half step. This approach is
computationally efficient, but it can sometimes lead to numerical instability. In particular,
when the solid-to-fluid density ratio is low enough, the explicit scheme becomes unstable. A
theoretical analysis for this issue can be found in Zheng et al. [37]. In the present work, an
implicit coupling, or strong-coupling [36], approach based on staggered sub-iteration is used
to improve the stability of the FSI coupling, which can be summarized as follows:

1. At time level n, the hydrodynamic traction f(k) is interpolated onto the solid surface

, where k is the iteration number and f(1) and  take the values from time
level n.

2. The solid dynamics, Eq. (16), with f(k) held constant, is solved for one full time step

using the method described in Section 3.2;  and  are obtained in the
end. This step may be further split into several substeps depending on the stiffness
of the equation and the stability of the structure solver.

3.  and  are supplied to the flow solver, and Eqns. (12) to (14) are solved;
v*k+1

, pk+1, and vk+1 are then obtained. Note that the Crank–Nicolson scheme
described in Eq. (12) utilizes the velocity vn that is saved throughout the fluid–
structure iteration.

The hydrodynamic traction f(k+1) is obtained from the updated flow field, and the
procedure is repeated over from Step 2.

To ensure the numerical stability of this staggered iteration, the velocity of the solid surface
are updated in the flow solver in a gradual fashion according to

(25)

where  is the predicted velocity by the structure solver and α is the relaxation factor
between 0 and 1. The displacement Xb in the flow solver and the traction f in the structure
solver can be updated in a similar manner if necessary. In most of our simulations, α = 0.6 is
chosen for the velocity update, and α = 1 for the displacement and traction update. For some
cases discussed later where numerical stability is difficult to achieve, α = 0.2 is also used
along with the cost of more iterations. The residuals as measured by the maximum errors of
the displacement, the velocity, and the traction at the solid surface are used to determine
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whether final convergence is reached. Typically, five fluid–structure iterations are sufficient
in our simulations to guarantee convergence of the coupling. A flow chart describing more
details of the entire solution process is given in Luo et al. [26].

The strong-coupling approach described here belongs to the partition method [36]. Although
the computational cost of this approach is high as compared to the explicit approach,
numerical stability can be achieved through the iteration, and the FSI algorithm is thus much
more robust. The reason is that the iteration ensures that at the end of each time step, the
displacement, velocity, and traction boundary conditions are matched (within specified
tolerances) between the flow and the solid body, thus leading to implicit coupling [36].
Another advantage of this simple method is that it maintains the modular form of each
solver and requires only a small amount of programming effort. For the applications
considered in the present work, the cost of solving the flow is singularly dominant over the
of cost of solving the structure. Therefore, the flow solver is parallelized for computation
acceleration, and this has been done by using a sparse matrix package, Aztec, which was
developed at the Sandia National Laboratories.

4. Validation of the numerical method
Six validation cases are considered in this section. The first three cases are designed for
separate validation of the structure and flow solvers, which are included here to show the
accuracy of the two in-house programs. The other three cases are designed specifically for
the FSI validation.

4.1. Validation of the structure solver: free vibration of a cantilever beam
Numerous examples of the current structure solver can be found in related publications [29,
31], including thin-walled and general 3D bodies of elastic and hyperelastic materials. We
describe only one validation case here to demonstrate the nonlinear solver’s accuracy. For
this purpose, the dynamic vibration of a cantilever beam is considered. As shown in Fig. 1, a
cantilever beam under uniformly distributed impulse load is analyzed using the finite-
element method introduced in Section 3. The material of the cantilever is assumed to be
isotropic and elastic with geometrical nonlinearity (i.e., large displacement) incorporated.
The parameter values in the setup are chosen to be the same as those in Bathe & Wilson
[38].

To study the dynamic vibration, an impulse transverse load is applied at t = 0 with a
magnitude of 2.85 psi, which is distributed evenly on the top and bottom surfaces as shown
in Fig. 1. For the simulation, 8 × 2 × 2 elements are used, and the time step is Δt = 0.45 ×
10−4 s which corresponds to about 126 steps for a complete vibration cycle. Fig. 2(a) shows
the sequence of the large-displacement deformation of the beam during onset of vibration.
Note that every 8 blocks in this figure represent a 20-node hexahedral element. Fig. 2(b)
shows the time-varying vertical displacement of the free end, D/L, calculated at point A as
indicated in Fig. 1. The result from Bathe & Wilson [38] is included here for comparison.
The figure shows that the current result is in very good agreement with the previously well-
established data. It should be pointed out that in this case only two elements are sufficient in
the transverse directions because the Hex20 element uses quadratic interpolation functions.

4.2. Validation for the flow solver: an oscillating sphere in a quiescent fluid
The flow solver in the present work is the same as that in Luo et al. [19], where most of the
moving-boundary cases are for 2D flows. Thus, an additional case is provided here to
strengthen the 3D code validation.
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The first case, as shown in Fig. 3(a), concerns the unsteady flow caused by an oscillating
sphere in a fluid that is quiescent at infinity. The oscillating velocity is prescribed as U = U0
cos(ωt), where U0 and ω are the velocity amplitude and the angular frequency of oscillation,
respectively. The Reynolds number is defined as Re = 2RU0/ν, and the Stokes number is

, where R is the radius of the sphere. The computational domain is a
34R×32R×32R rectangular box discretized by 200 × 184 × 184 Cartesian nodes. The
Cartesian grid is uniform in all three directions within a 4R×3.2R×3.2R inner box enclosing
the sphere, with grid spacing of Δx = Δy = Δz = 0.05R. The grid is stretched in the remainder
of the domain. The Reynolds number and the Stokes number are set at Re = 40 and ε = 4,
respectively, which are the same as Mei [39]. The simulation is performed with Δtω =
0.031416. The unsteady drag force is computed at each time step and is normalized by the
Stokes drag, 6πρf νU0R. After the flow becomes periodic, we compare the drag coefficient
of the sphere from our simulation with that in Mei [39], who solved the flow using the
Fourier expansions. Fig. 3(b) shows the comparison, which demonstrates that very good
agreement has been achieved between the two results.

4.3. Validation for the flow solver: a circular disk immersed in flow
The solid body in the preceding sphere case has a smooth surface. In some applications, e.g.,
insect wings and fish fins, thin structures are involved. Therefore, it would be preferable to
test the present flow solver for such bodies. In this section, we consider a circular disk
immersed in a uniform flow as shown in Fig. 4(a). The rigid disk has a diameter R and
thickness h, and it is centered at the origin. The Reynolds number is defined as Re = 2RU0/ν,
where U0 is the freestream velocity. The computational domain is a 35R × 24R × 24R
rectangular box discretized by 190 × 104 × 104 Cartesian nodes. The grid is uniform in all
three directions within a 4R × 2.4R × 2.4R inner box containing the disk, where the grid
spacing is Δx = Δy = Δz = 0.04R, and it is stretched in the remainder of the computational
domain. This setup is similar to that used in Shenoy and Kleinstreuer [40]. In addition to the
finite-thickness model with h/(2R) = 0.1, we also perform a separate series of simulations by
assuming h/R → 0. The additional simulations will be used to test the capability of the flow
solver in treating a “zero-thickness” body. Note that even for the zero-thickness body, an
artificial thickness of two grid intervals is introduced in the flow solver to allow
designations of ghost nodes inside the body [19].

Fig. 4(b) shows the time-averaged drag coefficient of the disk, CD, defined with

, for Re between 10 and 110. Along with the simulation results are the data
from the experiment by Roos and Willmarth [41] and from the simulation using a
commercial CFD package by Shenoy and Kleinstreuer [40], both studies having the finite
thickness at h/(2R) = 0.1. It can be seen from the figure that the drag coefficient with h/2R =
0.1 in the present study is in good agreement with those of previous studies for all of the
Reynolds numbers considered. For the cases with h/(2R) = 0, the drag coefficient is close to
that in the corresponding case of h/(2R) = 0.1 when Re is greater than 40 and the friction
drag on the edge becomes less significant. It should be pointed out that when the Reynolds
number is high, e.g., Re = 180, the flow becomes unsteady and vortex shedding occurs in the
wake. As a result, an instantaneous lift is produced. We also compared the time history of
the lift coefficient with that from Shenoy and Kleinstreuer [40] for h/(2R) = 0.1, and the
agreement (not shown here) is very good.

To demonstrate that the present flow solver can treat a thin body in motion, we reduce the
freestream velocity to 0.9U0 and move the disk against the flow with −0.1U0. Simulations
are performed at Re = 110 for this equivalent problem. The results show that the error in CD
is around 3.2% for h/(2R) = 0.0 and 1.5% for h/(2R) = 0.1, which is deemed satisfactory in
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this work. In summary, the present solver is capable of handling 3D flows involving
stationary or moving thin structures.

4.4. FSI validation: flow-induced vibration of an elastic beam behind a cylinder
In this section, we present the validation results for a 2D benchmark problem: flow-induced
vibration of a flexible beam that is attached to the downstream side of a stationary and rigid
cylinder, as shown in Fig. 5. The beam material is assumed to be governed by the Saint
Venant–Kirchhoff model. The problem was proposed by Turek and Hron [27] and has been
frequently used as a large-displacement benchmark validation for 2D FSI solvers [25, 28].
For this test, the 3D flow solver is set to perform 2D simulations in a thin slice, and the
structure has a wide span so that the cross section at the mid-span essentially experiences the
plane-strain deformations.

The computational domain is shown in Fig. 5 along with all of the geometric parameters.
The top and bottom sides of the domain are no-slip walls and the flow at the inlet (left side)
has a parabolic velocity profile. The average velocity at the inlet is Ū0; the cylinder diameter
is D; and the beam length is L and the thickness is h. Two cases are considered here: (1) ρs/
ρf = 10, Re = Ū0D/ν = 100 and (2) ρs/ρf = 1, Re = 200. The other parameters are chosen to be

, νs = 0.4, and the length and the thickness of the beam are 3.5D
and 0.2D, respectively. The rectangular domain is −2 ≤ x/D ≤ 9 and −2.05 ≤ y/D ≤ 2.05D,
and the cylinder is centered at the origin. A 240 × 100 nonuniform grid with Δxmin/D =
Δymin/D = 0.025 is applied to the region in which the beam is expected to move. The beam
is treated as a 3D body and is discretized with a uniform mesh of 32 × 2 × 20 elements. The
time-step size is set to be Δt = 0.01D/Ū0, which corresponds to about 500 steps per vibration
period. An initial perturbation is introduced to the beam to seed the system instability. For
the case with low density ratio, ρs/ρf = 1, to converge, the relaxation factor is set to be α =
0.2 for the boundary velocity and traction update during the FSI iteration.

The time-varying position of the free end of the beam for ρs/ρf = 10, calculated at point A as
marked in Fig. 5), is shown in Fig. 6 along with the results from Turek and Hron [27]. From
the figure we note that the flexible beam reaches a periodic oscillation approximately after
tŪ0/D = 40. During the stationary-state vibration, the period of a cycle is about 5.29D/Ū0,
and the amplitudes of the x- and y-coordinates of the free end are 0.132D and 0.784D,
respectively. Fig. 6 further shows an excellent agreement between the present result and that
of Turek and Hron [27].

The amplitude of the y-coordinate of the free end, the Strouhal number defined by St = fŪ0/

D (f is the vibrating frequency), and the average drag coefficient  are
shown in Table 1 along with the data from several sources. Here F̄x is the average drag of
the cylinder-beam system. From the table we found that the present results are in good
agreement with the previous results. We further plot in Fig. 7 the pressure contours,
streamlines, and deformation of the beam at four time instances that are labeled in Fig. 6.
These results qualitatively agree with those in Turek and Hron [27] and Bhardwaj and Mittal
[25]. The dominant strain component, E11, is also shown in this figure for future reference.

4.5. FSI validation: 3D flow around a flapping flag
A flapping flag in the wind is a classical model problem for the fundamental understanding
of FSI processes. However, the 3D simulation of the complex flapping motion is very
challenging and has only been done in a few cases [42, 24]. In the present work, we will
perform a 3D simulation of the flag and compare the results with those of Huang and Sung
[24] who adopted a diffuse-interface immersed-boundary method for the same problem.
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The setup is shown in Fig. 8, where a square flag of length L initially lies flat in the xy-
plane, and the center of its leading edge is positioned at the origin. The leading edge is
pinned, and the other three edges are free boundaries. The uniform freestream velocity U0 is
in the x-direction.

In the present simulations, the computational domain for the flow is a rectangular box
extending from (−2L, −4L, −2L) to (8L, 4L, 2L). The simulations are performed on a 164 ×
124 × 120 nonuniform grid with points clustering around the flag and in the near-field wake.
The minimum spacing is Δx = Δy = Δz = 0.02L. Two solid models are used for the flag to
test the different modules in the structure solver. One is a plate model where the thickness is
assumed to be infinitesimal (labeled as Flag 1), and the other is a 3D body with finite
thickness h = 0.01L (labeled as Flag 2). For the flow, the two models are nearly equivalent
since the Reynolds number considered here is moderate. As in Section 4.3, to treat an
infinitely thin body in the current immersed-boundary flow solver, an artificial thickness is
introduced so that the treatment approach of such boundaries is essentially the same as that
for general 3D bodies [19].

For Flag 1, a triangular mesh of 3200 elements are used to discretize the flag surface, and for
Flag 2, a 20-node hexahedral mesh of 25 × 25 × 2 elements are used to discretize the flag
body. In both cases, the Reynolds number is Re = U0L/ν = 200, the mass ratio is ρsh/(ρfL) =

1.0, the bending rigidity is , and Poisson’s ratio is νs = 0.4.
A time step of Δt = 0.002L/U0 is used.

Fig. 9(a) shows the time histories of the transverse displacement of point B on the trailing
edge of the flag (as indicated in Fig. 8) computed from both flag models. For comparison,
the result by Huang and Sung [24] is also plotted in this figure. The peak-to-peak excursion
amplitude, A/L, and the Strouhal number defined as St = fL/U0, f being the oscillation
frequency, all quantities measured for point B, are tabulated in Table 2. It can be seen that
the two flag models produce very similar results, and both are very close to the model in
Huang and Sung [24]. Fig. 9(b, c) further shows that the drag and lift coefficients, which are

defined with , are not very different for the two present flag models. Note that the
drag and lift coefficients are not available in Huang and Sung [24] but are included here for
future reference. These forces contain noticeable oscillations, which are due to the likely
noise from prediction of the thin plate. A refined method as recommended by Bathe [43]
will be considered in the future.

Fig. 10 shows a snapshot of the vortical structures for Flag 1, which is characterized by the
isosurface using the Q-criterion defined by Hunt et al. [44]. Flag 2 has almost the same
vortical structures and is thus not shown here. In this figure, the vortex shed from the trailing
edge and the vorticies from the side edges are joined together to form a hairpin-type
structure, and this hairpin may be connected with the downstream hairpin with two
antennae. The flow pattern seen here is qualitatively consistent with the wake structure
shown in Huang and Sung [24].

4.6. FSI validation: bending of a flexible plate in cross flow
In the last validation test, we consider a flexible plate that is bent by a cross flow. The
simulation results will be compared directly with those from a recent experimental study by
Luhar and Nepf [45]. As pointed out in the reference, this problem has been used as a model
to study the deformation of aquatic plants by flow of water.

As shown in Fig. 11, an elastic plate of length L, width b, and thickness h is vertically placed
in a uniform flow of velocity U0. One end of the plate is clamp-mounted and the other end is
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free. Following the experimental setup in Luhar and Nepf [45], we use these dimensionless

parameters in the simulation: Re = U0b/ν = 1600, L/b = 5, h/b = 0.2, ,

νs = 0.4, ρ* = ρs/ρf = 0.678, and . The buoyant force is
applied as the body force term in the equation of the solid body, Eq. (2). The computational
domain for the flow is a rectangular box extending from (−5b, −8b, −8.5b) to (16b, 8b,
8.5b). The center of the plate is located initially at the origin. The simulation is performed on
a 200 × 160 × 190 nonuniform grid with points clustering around the plate and in the near-
field wake. The minimum grid spacings are Δx = 0.020b and Δy = Δz = 0.022b.

We first compare the result of the baseline case with the experimental data. Fig. 12 shows
the deformation pattern of the plate from the present simulation as well as that obtained by
photogrammetry in Luhar and Nepf [45]. Under the experimental condition, the flexible
plate settles down to a steady configuration which reduces the drag as compared with the
rigid plate. This figure shows that the steady deformation is achieved by the present
simulation and the simulated deformation pattern is very close to that observed in the
experiment. Table 3 shows the drag coefficient of the deformed plate, CD, and the deflection
in the x- and z-directions of the center of the free end, Dx and Dz. Here

, where Fx is the total hydrodynamic force in the x-direction. Note that
the error of the drag coefficient in the experiment is estimated to be around 10% [45].
Taking this error into consideration, all of these measures from the present simulation are in
good agreement with the experimental data.

After validating the baseline case, we then perform a series of simulations to expand the
database of this problem for the future benchmark studies. For this purpose, we set the
gravity and buoyancy to zero by disabling them in the simulations, and we vary Re from 100
to 1600 while keeping the rest parameters the same as in the baseline case. The simulation
results are shown in Table 4 for the drag coefficient and the deflection of the free end.
Several observations can be made from this table. First, the displacement of the plate at Re =
1600 in the absence of buoyancy is larger than that with buoyancy. Specifically, Dx/b in
Table 4 is 2.45 and is around 16% larger than the baseline case in Table 3. Correspondingly,
the drag coefficient in the absence of buoyancy is lower than that with buoyancy. Another
observation from Table 4 is that the displacement increases with Re, which is in contrast
with the 2D situation studied by Zhu et al. [46], who considered lower Reynolds numbers,
Re ≤ 100. Finally, the drag coefficient decreases as Re is increased from 100 to 400 but then
the reduction is negligible when Re is greater than 400.

5. Applications of the numerical method
5.1. FSI simulation of the cicada

Having performed the validation studies, we now demonstrate the versatility of the current
numerical method for some practical applications. The first one we consider is aerodynamics
of the flexible flapping wings of insects. Since insect wings are thin structures typically
consisting of a membrane and a network of veins, it is reasonable to model them as
reinforced plates so that the inhomogeneous and anisotropic mechanical properties can be
easily incorporated in the model. The finite-element method is clearly the best available
approach for analyzing such structures as compared to other approaches that has been
applied in similar FSI applications, e.g. the finite-difference method [23, 24].

In this work, we present a simulation of the cicada during tethered flight. The geometrical
and mechanical properties of the wing structure, as well as the actuation kinematics of the
wings at the root, are obtained in Luo’s lab at Vanderbilt University as described in Luo et
al. [47]. Briefly, the live samples of the periodical cicada were collected, and the mechanical
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properties of their forewings were experimentally measured, which includes the mass
distribution of the wings and the bending stiffness of the major spars. The insects were
tethered and the wing motions were filmed by a high-speed camera. Then the wing actuation
was reconstructed by tracing the pre-labeled markers on the wings and by calculating the
three Euler angles of the wing root. The wing length L, chord width c, flapping frequency f,
and the stroke amplitude Φ of the wings are listed in Table 5.

The finite-element model of the forewings (Fig. 14) consists of a homogeneous and isotropic
plate and a network of the frames that are traced from the stationary image of the cicada
wings. The frames are assumed to have a circular cross section and undergo bending and
torsional deformations. Based on the experimental data, the bending stiffness of the 7 groups
of frames, EI, ranges from 3.7 to 2750 g·cm3/s2, and their torsional stiffness, GJ, ranges
from 3.0 to 1810 g·cm3/s2. Here G, I, and J are respectively the shear modulus, the area
moment of inertia of the cross section, and the torsional constant of the cross section. The
linear density distribution of the lead-edge spar is experimentally measured. For the rest of
the spars, the linear density is derived from their bending stiffness by assuming that they
have the same volume density as the leading-edge spar. The result ranges from 0.023 mg/cm
for the minor spars to 1.33 mg/cm for the major spars. The bending stiffness of the plate is
around 50 g·cm2/s2, and the surface density is ρsh = 0.4 mg/cm2. Poisson’s ratio is assumed
to be νs = 0.25 for both the plate and the frames. The total mass of each forewing is 6.4 mg,
including both the plate and frames. More mass is distributed toward the base area of the
wing. The average surface density of the wing model is around ρsh = 2.6 mg/cm2 in the
proximal half of the wing and around ρsh = 0.9 mg/cm2 in the distal half of the wing. This
setup is consistent to the experimental measurement of the cicada wings [47].

In the simulation, the air density is set to be 1.2 kg/m3. Using the mass ratio defined by m* =
ρsh/(ρfc) to represent the ratio between the wing inertia and the aerodynamic load [48], the
distal half of the wing is around m* = 0.76. Thus, both the aerodynamic load and the inertial
force are important contributing factors for the wing deformation. The Reynolds number
based on the chord width of the wing and the mean tip velocity is set at Re = 300. The
surface mesh in Fig. 14(b) for the cicada model consists of 2492 triangular elements for the
body and 435 triangular elements for each wing. The computational domain is 13c × 12c ×
11.5c. A nonuniform grid of 148 × 184 × 178 points is used. The minimum spacing is Δx =
Δy = Δz = 0.05c. The time step is set at Δt = 0.004 s.

A sequence of the wing deformation patterns obtained from the present simulation is shown
in Fig. 15, where the downstroke and upstroke frames are separated. The result shows that
the wings experience spanwise and chordwise bending and also twisting deformations.
These deformation characteristics are typical in insects [49] and are consistent with the
observations from our high-speed videos. Fig. 16 shows the vortical structures and
streamlines at four time instances within one flapping cycle: start of downstroke, mid-
downstroke, end of downstroke, and mid-upstroke. The distinguished flow features that are
associated with flapping wings, such as the leading-edge vortex, the trailing-edge vortex, the
tip vortex, and the spanwise flow [50] can be identified from this figure. In future studies,
we will investigate details of the unsteady aerodynamics and the effect of the wing
flexibility in this insect model.

5.2. Flow-induced vocal fold vibration
In the second example, we will show that the present numerical method has useful
application in biomedical flows by performing a simulation of the flow-induced vocal fold
vibration during voice production. There have been many numerical models for the FSI
study of the vocal folds [51, 52]. However, few of them incorporate the nonlinear mechanics
of the vocal fold tissue even though large deformations are common during phonation due to
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loud speech or posturing activities such as vocal fold abduction, adduction, and lengthening
[53].

In the present work, we incorporate the rubber-like hyperelastic material described in
Section 2 to model the tissue behavior of the vocal folds. The 3D model configuration is
shown in Fig. 17, where a rectangular channel represents the larynx lumen and a pair of
identical vocal folds are placed inside to obstruct the airflow. The dimensions of the channel
and of the vocal folds are chosen based on the characteristic data of the human vocal folds
[54] and are shown in the figure. The specific profile of the vocal fold is based on the
approximation of Luo et al. [23]. The x-, y- and z-coordinates represent the vertical,
anterior–posterior, and lateral directions, respectively, in terms of the human anatomy. The
material parameters are chosen as follows. The vocal folds are homogeneous and isotropic,
and their density is ρs = 1000 kg/m3. The elastic constants in Eq. (8) are α10 = 2 kPa and α01
= 0 kPa. The density of the fluid is ρf = 5 kg/m3 and the kinematic viscosity is ν = 2.5 × 10−5

m2/s. These parameters are chosen to produce significant deformations and a vibration
frequency on the order of 100 Hz, i.e., a characteristic fundamental frequency in human
phonation. The inlet velocity is assumed to be uniform and is 1 m/s. A nonuniform 152 × 72
× 96 Cartesian grid is employed for the flow domain with minimum grid spacings at Δx = Δz
= 0.022 cm and Δy = 0.027 cm, and a total number of 2398 Hex20 elements are employed
for each vocal fold. The time step is Δt = 2.5 × 10−4 cs (cs for centisecond) and this leads to
about 4000 time steps for each vibration cycle. A simple kinematic constraint [23] on the
vocal folds is applied to maintain a minimum gap of 0.1 cm between the two vocal folds.

Sustained vibration of the vocal folds is achieved in the present simulation after about 3
cycles. The transition of the oscillation is shown in Fig. 18, where the xz-positions of the
three selected points on the surface of the lower vocal fold (marked in Fig. 17) are plotted as
functions of time. From this figure it can be seen that the fundamental vibration frequency of
the vocal folds is around 96 Hz. Furthermore, the maximum vertical displacement of point A
is greater than 0.2 cm, i.e., 20% of the size of the vocal fold. Such large deformations justify
the need for a nonlinear model of the tissue.

Fig. 19 shows several frames of the flow field, the deformed vocal folds, and the
displacement in the middle xz-plane. Four time frames within a vibration cycle as labeled in
Fig. 18 are shown. It can be seen that the flow is highly skewed to one side of the vocal fold.
The gap between the two vocal folds, or glottis, forms an oval shape as viewed from the
negative x-direction during the opening phase. In the cross section, the glottal gap forms a
converging shape during vocal fold closure and a diverging shape during vocal fold opening.
These features have been discussed in previous numerical studies [55, 56, 52]. There are
also unique features that are captured by the present 3D simulation. For example, the flow
field downstream the vocal folds displays complex 3D features and consists of many slender
vortex structures. Wave propagation on the superior surface can be seen from an animation
not only along the lateral directions, i.e., mucosal waves, but also along the longitudinal
(anterior-posterior) direction. That is, the displacements of the vocal folds are not in-phase
in the longitudinal direction. These features were previously seen either in the experiment
using the vocal fold models [57, 58], or in the clinical observation of phonation [59], but
have not been well captured by numerical simulations. Further details of the flow and vocal
fold characteristics will be studied in the future.

6. Conclusion
We have presented a numerical approach, which is an enhanced method as compared to the
existing similar methods, for the simulation of 3D fluid–structure interaction (FSI) problems
that involve large deformations. In this method, the viscous incompressible Navier–Strokes
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equation is solved with a sharp-interface immersed-boundary method, and the solid
dynamics is solved with a conventional finite-element method. Since both programs are in-
house codes written in FORTRAN 90, the interface of coupling can be easily customized
and the combined program has great portability (as opposed to some commercial packages).

Based on a fixed Cartesian grid, the immersed-boundary method can treat complex and
moving boundaries with large displacements. On the other hand, the separate finite-element
modules in the solid-mechanics solver utilize an unstructured Lagrangian mesh and can
handle thin-walled structures as well as general three-dimensional bodies. The two solvers
share the unstructured mesh on the exposed surface of the solid body. We use a strong-
coupling approach for the FSI by iterating the fluid and solid solvers in a partitioned
manner. Such a method leads to numerical stability and in addition, it preserves the modular
form of each software so that the further development (e.g., inclusion of a different material
behavior for the solid) of the software is straightforward.

Both geometric nonlinearity associated with large displacements and material nonlinearity
associated with large strains of the solid body have been incorporated into the program. In
addition to separate validation efforts of the fluid and solid solvers, we presented three case
studies of FSI problems, specifically, vortex-induced vibration of a beam attached to a fixed
cylinder, three-dimensional flow of flapping flag, and a flexible plate bent by the cross flow.
The numerical results are successfully validated against previous experimental and
simulation data. Since there is only a limited database for computational FSI that involves
deformable bodies, the validated results in the present work can be used as benchmark cases
for the future development of FSI methods.

Finally, we have applied the present method to two distinct practical problems. In one case,
we modeled aerodynamics of the flexible wings of the cicada during tethered flight. A
sophisticated finite-element model for the insect’s forewings incorporating the vein structure
was combined with the three-dimensional unsteady flow, and the model can be used to
address the effect of aeroelasticity of the insect wings. In the second case, we modeled the
vocal fold tissue using a hyperelastic material and simulated the large-amplitude
deformation of the vocal folds induced by the glottal flow. These examples show that the
present numerical method is versatile and is well suited for modeling a range of biological
FSI systems.
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Figure 1.
A schematic of the cantilever beam under an impulse load, where L = 10 in., b = h = 1 in., E
= 12000 lbf/in.2, νs = 0.2, ρs = 10−6 lbf·s2/in.4, and P = 2.85 lbf/in.2.
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Figure 2.
(a) Deformation pattern of the cantilever beam during onset of vibration. (b) The vertical (y)
displacement of point A as indicated in Fig. 1.
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Figure 3.
(a) An oscillating sphere in a quiescent fluid. (b) Comparison of the drag coefficient during
an established cycle.
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Figure 4.
(a) A circular disk immersed in flow. (b) The drag coefficient CD for Reynolds number
between 10 and 110.
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Figure 5.
Model setup for flow-induced vibration of a flexible beam attached to a rigid cylinder.
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Figure 6.
Flow-induced vibration of the beam attached to a cylinder (ρs/ρf = 10 and Re = 100):
comparison between the present work and Turek and Hron [27] for the stationary-state
variation of the x- and y-positions of the free end (point A marked in Fig. 5).
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Figure 7.
Flow-induced vibration of the beam attached to a cylinder (ρs/ρf = 10 and Re = 100):
distribution of the strain component E11, pressure contours, streamlines, and deformation of
the beam at four time instances labeled in Fig. 6(b). The ranges of the contours are from
−0.03 to 0.03 for E11 and from −1.5 to 1 for pressure.
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Figure 8.
A flag flapping in uniform flow.
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Figure 9.
A flag flapping in uniform flow. (a) The transverse displacement of point B (marked in Fig.
8), (b) the lift coefficient, and (c) the drag coefficient as a function of time, where T is the
period of a flapping cycle.
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Figure 10.
3D vortical structures produced by a flag flapping in uniform flow.
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Figure 11.
Schematic of a vertical flexible plate in uniform flow.
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Figure 12.
Bending of a flexible plate in cross flow. (a) The present baseline simulation, and (b) an
image of the plate obtained from photogrammetry in Luhar and Nepf [45].
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Figure 13.
Bending of a flexible plate in cross flow: instantaneous vortical structures (a) and
streamlines (b) for the baseline setup.
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Figure 14.
The study of a cicada with forewings only. (a) A finite-element model of the wing in which
the spars are labeled as 7 groups of frame elements with different linear densities and
bending stiffnesses. (b) The triangular mesh discretizing the insect body and wings.
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Figure 15.
Deformation pattern of the cicada forewing from the present FSI simulation.
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Figure 16.
Instantaneous vortical structures and streamlines produced by the cicada forewings at (a)
start of down-stroke, (b) mid-downstroke, (c) end of downstroke, and (d) mid-upstroke.
Indicated are the leading-edge vortex (LEV), the trailing-edge vortex (TEV), the tip vortex
(TV), and the spanwise flow (SF).
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Figure 17.
Geometrical configuration of the 3D FSI of the vocal folds, where the inset shows the cross-
section profile of the vocal folds.
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Figure 18.
Time histories of the positions of the three points on the medial surface of the vocal folds, A,
B, and C, as labeled in Fig. 17.
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Figure 19.
Instantaneous vortical structures (left column), 3D vocal fold deformation pattern (center
column), and the displacement in the xz-plane at mid-span (right column) at four time
instances that are labeled in Fig. 18.
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Table 1

Flow-induced vibration of the beam attached to a cylinder: amplitude of the y-displacement of the free end, the
Strouhal number St, and the drag coefficient.

Cases Sources Am/D St CD

ρs/ρf = 10, Re = 100 Present result 0.78 0.19 4.11

Turek and Hron [27] 0.83 0.19 4.13

Bhardwaj and Mittal [25] 0.92 0.19 3.56

ρs/ρf = 1, Re = 200 Present result 0.32 0.29 2.16

Turek and Hron [27] 0.36 0.26 2.30

Bhardwaj and Mittal [25] 0.41 0.28 2.20
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Table 2

A flag flapping in uniform flow: comparison of the excursion amplitude and the Strouhal number.

Amplitude A/L St

Flag 1 0.812 0.263

Flag 2 0.806 0.266

Huang & Sung (2010) 0.780 0.260
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Table 3

Bending of a flexible plate in cross flow: quantitative comparison between the present result and the
experimental data [45].

CD Dx/b Dz/b

Present simulation 1.03 2.12 0.54

Luhar and Nepf [45] 1.15 (with 10% error) 2.14 0.59
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Table 4

Bending of a flexible plate in cross flow: deflection and the drag coefficient in the absence of gravity and
buoyancy.

Re CD Dx/b Dz/b

100 1.02 2.34 0.67

400 0.94 2.34 0.68

800 0.94 2.39 0.71

1200 0.93 2.41 0.73

1600 0.94 2.45 0.75
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Table 5

The characteristic geometric and kinematic data of the cicada forewing [47].

Wing length (L) Chord width (c) Flapping frequency (f) Stoke amplitude (Φ)

3 cm 1 cm 25 Hz 120°
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