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Abstract

This study introduces a non-intrusive approach in the context of low-rank
separated representation to construct a surrogate of high-dimensional stochas-
tic functions, e.g., PDEs/ODEs, in order to decrease the computational cost
of Markov Chain Monte Carlo simulations in Bayesian inference. The surro-
gate model is constructed via a regularized alternative least-square regression
with Tikhonov regularization using a roughening matrix computing the gra-
dient of the solution, in conjunction with a perturbation-based error indicator
to detect optimal model complexities. The model approximates a vector of
a continuous solution at discrete values of a physical variable. The required
number of random realizations to achieve a successful approximation lin-
early depends on the function dimensionality. The computational cost of
the model construction is quadratic in the number of random inputs, which
potentially tackles the curse of dimensionality in high-dimensional stochastic
functions. Furthermore, this vector valued separated representation-based
model, in comparison to the available scalar-valued case, leads to a signifi-
cant reduction in the cost of approximation by an order of magnitude equal
to the vector size. The performance of the method is studied through its
application to three numerical examples including a 41-dimensional elliptic
PDE and a 21-dimensional cavity flow.
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1. Introduction

An inverse problem arises when the inputs/complexities of a model are es-
timated indirectly from outputs, e.g., noisy observations [57, 38, 54, 12, 5, 13,
56]. In this context, the Bayesian approaches, which have recently attracted
much attention [6, 18, 52], provide applied probability and uncertainty mea-
surements for statistical inference. Indeed, as an extention of conventional
statistical methods [33, 23, 29, 57], the solution of the Bayesian inference is a
posterior probability distribution over the model input/complexities regard-
ing available/unavailable prior knowledge about them [3]. The computational
cost of estimating the posterior distribution is a challenge in practice, and,
in response, many asymptotic, deterministic, and sampling based methods
have been developed focusing on reductions of or surrogates the forward
model [48, 42, 40, 41, 32].

Deterministic methods might be reasonable alternatives in low to moder-
ate dimensions, but for high-dimensional and complex problems, the Markov
Chain Monte Carlo (MCMC) [44] strategy is a more general and flexible
approach [11, 55, 21, 30]. The MCMC approach requires evaluation of the
likelihood function [45], indeed, solving the forward model many times, which
might be costly and/or intractable. In the case of intensive computational
models, e.g., those described by a system of Ordinary Differential Equations
(ODEs) or Partial Differential Equations (PDEs), the cost of such an ap-
proach becomes prohibitive. To do so, generalized polynomial chaos (gPC)-
based [58], Stochastic Galerkin, and Collocation methods [42, 14] have been
developed. However, these approaches are attractive alternatives for low (or
moderate) dimensions. In the case of high-dimensional problems, low-rank
non-intrusive separated representation approximation of the model is pro-
posed to construct a surrogate of the forward model [8, 9, 2, 15]. Then, for
efficient Bayesian inference, this surrogate model is used in computing the
likelihood function, as well as the posterior probability distribution function.

In 1927, Hitchcock [31] introduced separated representation, which is also
known as parallel factor analysis or canonical decomposition, to express a
Polyadic as a sum of products of rank-one vectors. Subsequently, this ap-
proach has been widely used in a variety of areas including chemical kinetics
[15], data mining [1, 35, 28, 36], and image processing [17, 50]. Here, an
approach is proposed to construct a vector valued separated representation
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of a continuous stochastic function of a physical random variable ξ and input
random variables y, i.e., u (ξ,y), y = (y1, . . . , yd), d ∈ N. This function can
be approximated with accuracy O (ǫ) in a separated form as

u (ξ,y (w)) =
r
∑

l=1

slu
l
0(ξ)

d
∏

i=1

uli(yi(w)) +O (ǫ) , (1)

where ul
0(ξ), which is a vector valued univariate function of a physical vari-

able ξ;
{

uli(yi(w))
}d

i=1
, l = 1, . . . , r, which are univariate functions of ran-

dom variables; and sl, which are normalization constants; are unknown and
must be computed. Because the separation rank, r, as one of the model
complexities, is independent of problem dimensionality [7, 9, 8, 15], d, the
computational complexity is a weakly-linear function in d, which remarkably
reduces the curse of dimensionality, a bottleneck for uncertainty quantifica-
tion of high-dimensional functions. Furthermore, the model has low-rank
separated representation approximation structure if a small separation rank
can be found for it.

This study is organized as follows. In section 2, the Bayesian inference is
discussed in more detail. In section 3, the general problem setup described
for either system of ODEs or PDEs. Thereafter, in section 4, the vector
case of the separated representation is introduced, and in sections 4.1 and
4.2, a regularization approach and an error indicator are proposed for sta-
bilizing the method and finding the optimum construction of the separated
model. In section 5, the results are presented for three different examples: a
manufactured function, an elliptic equation, and a cavity flow problem.

2. Bayesian Inference

The goal of an inverse problem is to recover anterior information from
available data [12, 57, 5]. The quantity of interest, u, in the forward problem
context is computed given a mathematical model, A, and parameters, y;
however, in the inverse problem either the parameters or the mathematical
model is computed given the other two quantities.

Considering a general system of equations A(y) ≈ u, there are two
main approaches for parameter estimation: main classical least squares1 and

1The classical least square approaches are linear and non-linear regression, and data free
inference [57, 34].
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Bayesian strategies. In the Bayesian approaches the model is treated as
a random variable and the solutions are probability distributions for those
model parameters that are sought [3]. Detailed statistical knowledge (e.g.,
mode, mean, standard deviation, correlation, smoothness, etc.) of the pa-
rameters can be revealed using the probability distributions, while in the
classical methods the solutions are point quantities and the parameter statis-
tics are not available. In Bayesian approaches, the prior information, which
comes from other sources (e.g., physical and experimental observations), is
called the “prior distribution” of parameters y, and is denoted by p (y).
The “posterior distribution”, q (y|u), can be formulated by incorporating
the given data along with the prior distribution in Bayes’ theorem [4, 16] as
follows:

q (y|u) = p (u|y) p (y)
∫

p (u|y) p (y) dy . (2)

The data are incorporated in the formulation through the likelihood func-
tion p (u), which can be presented as L(y) ≡ p (u|y).
Remark 1. In reality, prior and posterior distributions show the strength of

perception about feasible values for the inputs, y, before and after experienc-

ing the outputs, u. More prior information on the model parameters, e.g., a

range of possible values, leads to a more suitable prior distribution. If there

is no available prior information about the parameters, then based on “the

principle of indifference” an “uninformative” prior distribution is chosen; in

which all the model parameter values are assumed to have the same likelihood.

In general, determining the posterior distribution is computationally ex-
pensive and problematic due to the integral in (2), which is usually a high-
dimensional integral. A typical simplified model is assumed when the value
of the integral is not really needed. In these situations two different model
posterior distributions are compared by computing the likelihood functions;
therefore Eq. (2) can be written as

q (y|u) ∝ p (u|y) p (y) . (3)

The general system of equations is converted to

u = A(y) + η, (4)

where η is assumed to be an independent and identically distributed (i.i.d)
noise vector of size n, which is normally distributed with zero mean, σ stan-
dard deviation, and pη noise density, i.e., ηk ∼ N (0, σ2

k) , k = 1, . . . , n. Here,
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η may cover both experimental and modelling errors. The modelling error
encompasses numerical errors and the errors due to simplifying assumptions
neglecting some physics of the problem. The likelihood function L (y) can
be presented as:

L (y) ≡
N
∏

j=1

pη
(

u(j) −A(j) (y)
)

. (5)

Therefore, the posterior distribution can be written as

q (y|u) ∝ L (y) p (y) , (6)

by comparing equations (5) and (3).

Remark 2. In the case of i.i.d noise in the measured data, A (u|y) is nor-

mally distributed with u mean and σ standard deviation, i.e., A (u|y) ∼
N (u,σ2).

The characteristics of the posterior distributions can be computed by
several methods including numerical integration, asymptotic approximation,
and sampling-based approaches [24, 43]. The sampling-based approaches
generate samples many times to examine whether the prior distribution ap-
proximates the posterior distribution. Several sampling methods are avail-
able to explore posterior distributions [19, 20, 53, 59, 51] for low and moderate-
dimensional problems. Because this work deals with high-dimensional prob-
lems, the Markov Chain Monte Carlo strategy (MCMC) of Bayesian inference
is used along with the combination of two powerful ideas: Delaying Rejection
(DR) [55, 46, 22] and Adaptive Metropolis (AM) sampling [26, 27], which
together are known as DRAM [25].

In the DRAM approach, the forward model may need to be computed,
e.g., 106 times, which might be very expensive. In order to decrease the
computational cost of the simulations, various methods such as generalized
polynomial chaos, Stochastic Galerkin, and Collocation were developed to
approximate the output [58, 42, 14]. The cost function of those proposed
models is exponentially proportional to the problem dimension; therefore
they are adequate for low to moderate-dimensional problems. Here, for high-
dimensional problem cases, a surrogate model in the context of separated
representation [8] is developed, in which the computational cost is a quadratic
function of the dimensionality. In section 4, the separated representation
approximation is explained in detail. In the next section, the problem setup
is introduced for the PDE/ODE system of equations.

5



3. Problem Setup

Let (Ω,F ,P) be a complete probability space, where F is the σ-algebra of
events, Ω is the set of elementary events, and P : F → [0, 1] is a probability
measure on σ−field F . A generic stochastic Partial/Ordinary Differential
Equation (PDE/ODE) can be formulated as

A (ξ,y(ω);u) = 0, (ξ, ω) ∈ [Ξ1,Ξ2]× Ω, (7)

where A defines the forward model. ξ ∈ [Ξ1,Ξ2] , (Ξ1,Ξ2) ∈ R × R, is a
physical (spatial/temporal) variable and y(ω) = (y1(ω), . . . , yd(ω)) : Ω →
R

d, d ∈ N, is a vector of random inputs contaminated by uncertainties.
According to a probability density function of yi, ρ(yi) : Γ ⊆ R→ R≥0, where
i varies from 1 to d, the components of the random vector y(ω) are assumed
i.i.d. u is the continuous solution, but, here, a discrete approximation or a
vector valued solution at n different values of ξ is considered, i.e., u : Rd+1 →
R

n. Indeed, the solution of interest can be shown as:

u (ξ,y (w)) := u (ξ, y1 (w) , . . . , yd (w)) : [Ξ1,Ξ2]× Γd → R
n. (8)

Furthermore, an appropriate boundary conditions and initial values are con-
sidered related to the problems introduced by (7).

4. Separated Representation

Separated representation techniques in high-dimensional function approx-
imations, potentially eliminate the curse of dimensionality by approximating
a d-dimensional function by solving d one-dimensional functions [8, 15, 9].
In this section the separated representation heuristic, an algorithm for the
technique, and core principles are reviewed. To avoid instability, a Tikhonov
regularization is introduced and to detect the optimal model structure, a
perturbation-based error indicator is defined.

The goal is to non-linearly estimate the vector valued functions u (ξ,y (w))
using the equivalent separated representation as:

u (ξ,y (w)) =

r
∑

l=1

slu
l
0(ξ)

d
∏

i=1

uli(yi(w)) + ε. (9)

Here, r ∈ N, the separation rank, is not given a priori and is esti-
mated by the defined error indicator, which is described in section 4.2. u0

6



is a vector valued univariate function of a temporal/spatial variable and
{

uli(yi)
}d

i=1
∈ R, l = 1, . . . , r are univariate functions of random input vari-

ables yi. {sl}rl=1 ∈ R>0 are scalar normalization values. Similar to the
separation rank, these values are not known a priori and must be computed.

Definition 1. The space of r-separation rank and d+1-dimensional functions

is

U r =

{

r
∑

l=1

slu
l
0

d
∏

i=1

uli(yi)

}

. (10)

Definition 2. Given a set of N independent random inputs y(j), j = 1, . . . , N ,

and the corresponding vector valued solutions with size n, the data set D is

defined by

D =
{(

y(j);u(j)
(

ξ,y(j)
))}N

j=1
, (11)

and the Frobenius norm of u is formulated as

‖u‖D = 〈u ,u〉
1

2

D , (12)

where the inner product between u and v can be defined such that

〈u , v〉D =
〈

{

y(j) ,u(j)
(

ξ,y(j)
)}N

j=1
,
{

y(j) , v(j)
(

ξ,y(j)
)}N

j=1

〉

D
(13)

=
1

nN

N
∑

j=1

u(j) · v(j).

The separated approximation of u, us, can be estimated via the solution
of a least-squares regression problem

us = arg min
ûs∈Ur

‖u− ûs‖2D. (14)

The current non-linear schemes to solve non-linear optimization prob-
lems (14), e.g., damped Gauss-Newton [10], are prohibitively expensive for
high-dimensional problems and are limited to low (or moderate)-dimensional
problems. Alternatively, for high-dimensional problems, the multi-linear al-
ternating least squares (ALS) method [49] is used. In this approach, at the
separation rank l, the univariate function along dimension k, ulk(yk), is solved
by constructing the related one-dimensional least-squares regression problem,
and freezing the other univariate functions uli(yi), i = 1, . . . , d, i 6= k, at their
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current values. The regression process is repeated for each dimension in turn
till all the univariate functions are solved.

With respect to the probability density functions of yi, ρ(yi), the uni-
variate functions uli(yi) are expanded into a finite dimensional bases, e.g.,
orthogonal spectral polynomials in the case of Polynomial Chaos Expansion
(PCEs). These functions are approximated by

uli ≈
M
∑

α=0

clα,iψα (yi) , (15)

where {ψα (yi)} is a set of spectral (e.g., Legendre and Hermit) polynomi-
als of degree α ≤ M ∈ N0 := N ∪ {0}. The expansion coefficients ci :=
(

c10,i, . . . , c
1
M,i, . . . , c

r
0,i, . . . , c

r
M,i

)

∈ R
r(M+1) along dimension i = 1, . . . , d, are

computed by reducing (14) to a discrete least-squares optimization such as

ci = argmin
ĉi

‖u− ûr‖2D (16)

= argmin
ĉi

∥

∥

∥

∥

∥

u− u0

r
∑

l=1

(

M
∑

α=0

ĉlα,iψα (yi)

)

sl

d
∏

k=16=i

ulk (yk)

∥

∥

∥

∥

∥

2

D

.

Here ûr is a ranked r approximation of u.
The first derivative of (14) with respect to the random input variables is

set to zero to compute the expansion coefficients, which leads to solve the
following system of system of equations:

AT
i Aici = A

T
i u, i = 1, . . . , d. (17)

The matrix Ai ∈ R
(nN)×(r(M+1)) is a column block structured matrix, Ai =

[A1
i . . .A

r
i ]. Each column-block matrix Al

i ∈ R
(nN)×(M+1), is computed by

Al
i ((j − 1)n+ 1 : (j − 1)n+ n, α + 1) (18)

= u0slψα(y
(j)
i )

d
∏

k=16=i

ulk(y
(j)
k ), i = 1, . . . , d.

Because the function u may not be a smooth function of the physical
random variable, u0 is directly solved without expanding it into a spectral
polynomial. The equivalent relations of (16), (17), and (18) for solving u0

8



are

u0 = argmin
û0

‖u− ûr‖2D (19)

= argmin
û0

∥

∥

∥

∥

∥

u− u0

r
∑

l=1

sl

d
∏

i=1

uli (yi)

∥

∥

∥

∥

∥

2

D

,

A0u0 = u, (20)

and

Al
0 ((j − 1)n+ 1 : (j − 1)n+ n, α + 1) (21)

= u0sl

d
∏

i=1

uli(y
(j)
i ), Al

0 ∈ R
(nN)×(r(M+1)),

respectively.
The non-intrusive separated representation approximation, similar to other

regression methods, may suffer from the issue of instability for the given com-
plexity parameters; therefore, Tikhonov regularization is utilized here.

4.1. Regularization

In each iteration of the ALS algorithm that the unknowns of the sepa-
rated representation formulation are updated, the residual norm ‖u− us‖D
decreases. Model structures with larger values of (r,M) lead to a greater
decrease of the residual norm; therefore, one may expect that the larger the
values of the model complexities, the more accurate the results. However,
in the cases of non-separable functions, lack of information, or noisy data,
excessive reduction of the residual norm results in instability, in which the
method can match the realization solutions individually but be completely
unreasonable for other data points. A naive parametric approach to avoid
this issue is choosing small values for (r,M), which may lead to unfitted
approximation. Instead, a non-parametric approach is used based on the
concept of regularization by encouraging additional smoothness constraints
on the approximated solution, us. For a given r and M a Tikhonov reg-
ularization [3] is examined by adding a smoothness penalty term ‖Lc‖22,
L ∈ R

(r(M+1))×(r(M+1)), to the regression cost function (16), i.e.,

creg = argmin
ĉreg

1

nN
‖Aĉreg − u‖22 + λ2‖Lĉreg‖22, (22)
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where L is a roughening matrix, λ ∈ R≥0 is a regularization parameter, and
creg is a matrix of the expansion coefficients.

Selecting suitable values for λ and L is essential for better performance
of the Tikhonov regularization. Among several available statistical methods
to estimate the λ, e.g., Morozov’s Discrepancy Principle, L-curve, Predictive
Risk Estimator, and Generalized Cross Validation (GCV) [47, 29, 3], the
GCV is found to be more accurate and used in this study. The value of
λ in comparison to the singular values of A is important to the question
of whether to regularize the problem. Consider ςj , where j = 1, . . . , nN ,
as a singular values of Singular Value Decomposition (SVD) of matrix A,
such that ς1 ≥ ς2 ≥ . . . ≥ ςnN . Intuitively, if the value of the regularization
parameter, λ, is close to the minimum singular value ςnN , i.e.,

λ ≤ C × ςnN , C ∈ R[0.99 1.01], (23)

the problem is not ill-posed and the penalty term just adds noise to it; there-
fore, the regularization is not needed. In each iteration of the ALS process
this condition is checked to decide whether to regularize the problem.

The other important factor of the Tikhonov regularization is the rough-
ening matrix, which affects the effectiveness and performance of the method.
In the standard form of the regularization, where the roughening matrix is an
identity matrix (L = I), the objecting function involving ‖c‖2 (and ‖u0‖2) is
minimized. In highly sparse regions, where large deviations are penalized in
the reconstruction, the standard Tikhonov regularization favors inaccurate
solutions. Therefore, a roughening matrix based on the solution gradient is
derived as follows

‖Lc‖22 = E
[

∇uT
s∇us

]

, (24)

where ∇us is the gradient of the separated approximation of u with respect
to the yi, i = 1, . . . , d. In comparison to the work of [15], where the second
order moment of the solution is considered, ‖Lc‖22 = E [u2

s], the value of (24)
is much larger, which can promote smoothness and more heavily penalize
coefficients corresponding to higher order polynomials. In practice, as will
be demonstrated by the numerical examples in section 5, less instability and
more control over the solution can be expected.

It is straightforward to show that E
[

∇uT
s∇us

]

= cTBc, where B =

LTL ∈ R
(r(M+1))×(r(M+1)) is a positive definite and symmetric matrix. Each
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(l, l′)-th block of B is computed by the following equation:

B (l, l′) = slsl′
(

uT
0l
u0l

)

d
∏

i 6=k

(

M
∑

α=0

clα,ic
l′

α,i

)(

M
∑

α=0

M
∑

α′=0

clα,kc
l′

α,kγαα′

)

IM+1,

(25)
where γαα′ = 〈∇ψα∇ψα′〉 and IM+1 denotes an identity matrix of sizeM+1.
The gradient of discretized u0 can be approximated by L0u0, where

L0 =













-1 1
-1 1

. . .
-1 1

-1 1













. (26)

Similarly, the equivalent equation of (22) for u0 is given by

u0reg = arg min
û0reg

1

nN
‖A0û0reg − u‖22 + λ2‖L0û0reg‖22. (27)

The issue of instability could be mitigated by regularization, but still there
is a need to detect the optimal r and M to tackle the issue of over/under-
fitting, when the complexity parameters are greater or smaller than the op-
timal values. In the next section, an indicator based on a perturbation error
is introduced to detect the optimal model complexities.

4.2. Perturbation based error indicator

To detect the optimal values of separated rank and polynomial degree,
(r,M), an error indicator is introduced by defining a perturbation bound on
the sensitivity of both regularized and non-regularized solutions (Equations:
16, 19, 22, and 27). For regularized cases and i = 1, . . . , d, the Perturbation-
based Error Indicator (PEI) can be derived as

PEIi =
(nN)0.5 λ−1

i ‖L−1‖2 σ̂i
‖ci‖2

, i = 1, . . . , d, (28)

where ci is the solution of the problem (16) and λi is the regularization
parameter for dimension i [57]. For non-regularized cases, where λi = 0, the
minimum singular value of matrix A in (28) is used instead. It is assumed
that the separated representation errors, ε, in (9) can be approximated by
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random variables with zero means and σ standard deviations. Here, σ̂i is
the estimation of the standard deviation σi, which is given by

σ̂i =
‖Aci − u‖22
nN − tr (Hi)

. (29)

The hat matrix, Hi = A
(

ATA+ λ2iL
TL
)−1

AT , is a mapping matrix of the
realizations to their separated representation approximations.

For the 0-th dimension the equivalent error indicator is derived as

PEI0 =
(nN)0.5 λ−1

0 ‖L−1
0 ‖2 σ̂0

‖u0‖2
, (30)

where λ0 is a regularization parameter for dimension d+ 1.
For each pair of (r,M) there is a (d+ 1) size PEI vector associated with

the last iteration of the ALS. For that particular pair, the maximum value of
the PEI vector, PEI

(r,M)
max , is chosen. Notice that the PEI depends on r andM

indirectly through c, and conservatively λ and L. The PEI associated with
unnecessarily small/large model complexities is a large value. However, it is
relatively small for those model complexities which could be optimal, e.g.,
where the standard deviation error is minimal. Among all possible model
structures, the one which corresponds to the minimum value of PEI

(r,M)
max is

selected as the optimal separated representation model. In algorithm (1), the
overall non-intrusive ALS procedure including the proposed regularization
strategy and perturbation error indicator is summarized.

4.3. Computational cost

It is worthwhile to elaborate on the computational cost and complexity
of the algorithm. For a given yi, each univariate function uli(yi), is evalu-
ated with complexity O(MK), where K is the number of ALS iterations.
Therefore, the cost of computing matrix A in (17) is O (rMdKNn). For
a full sweep of the ALS, all the normal equations (17) can be solved us-
ing Cholesky decomposition of ATA with complexity O (r2M2dK2Nn2) for
each. Similarly, equation (30) can be computed with cost O(r2K2Nn).

It is assumed that N ≫ rM(d+ 1), which is an asymptotic but relevant
assumption. Therefore, the complexity of the algorithm is O (r3M3d2K2n2),
which is quadratic in d. For the situations where the forward model is ex-
pensive or the cost of a surrogate model exponentially grows as a function of
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dimensionality, the separated approximation with this cost is an outstanding
success. In the next section, the results of numerical examples are provided.

• Input : Data set D =
{(

y(j);u(y(j))
)}N

j=1
and accuracy ǫ

• Output: r, M , {clα,i}di=1, and sl for α = 0, . . . ,M and l = 1, . . . , r

• Set r = 1 and M = 1 and initialize ci and u0 randomly

while ‖u− us‖D > ǫ do

while ‖u− us‖D decreases much do

for α← 0 to M do

• Fix {clα,i}di=1 and solve u0 using:
{

Eq.(19) if (23) is .True.

Eq.(27) if (23) is .False.

}

• Update sl ← sl ‖u0‖D and u0 ← u0/‖u0‖D,
for i← 1 to d do

• Fix {clα,k}k 6=i and solve {clα,i} using:
{

Eq.(14) if (23) is .True.

Eq.(22) if (23) is .False.

}

• Update sl ← sl ‖ul
i‖D and clα,i ← clα,i/‖ul

i‖D
end

end

end

• Set r = r + 1 and (randomly) initialize cri for i = 1, . . . , d, and ur
0

• If rMd > N set r = 1 and M =M + 1; (randomly) initialize ci
and u0

end

• Report the optimum r and M based on the error indicator and
correspondence c, u0, and sl

Algorithm 1: The algorithm for constructing a separated representa-
tion approximation model of a vector valued stochastic function, non-
intrusively.
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Figure 1: Perturbation based error indicator (PEI) (Section 4.2) performance in estimating
the optimal separation rank and polynomial degree (r,M). (a) Relative standard devia-
tion error and perturbation based error indicator vs. separation rank r for the optimal
polynomial degreeM ; (b) Relative standard deviation error vs. residual norm for different
polynomial degree M . (Relative error in standard deviation ( �− −−); Perturbation based
error indicator (PEI) ( ◦− − −)).

5. Results

In this section, the performance of the non-intrusive separated representa-
tion model and its application in Bayesian inference is investigated through a
11-dimensional manufactured function, a 1D in space 41-dimensional elliptic
PDE, and a 2D in space 21-dimensional cavity flow.

5.1. A manufactured function

Here, to verify algorithm 1, the following 11-dimensional function is con-
sidered:

u (ξ,y) = u (ξ, y1, . . . , y10) = a0 + a1 sin (πξ) y1 + a2 cos (3πξ)
(

y23 − 1
)

(31)

+ a3 sin (6πξ)
(

y39 − 3
)

+ ǫ,

where {yi}10i=1 are independent normal random variables, ξ is a spatial vari-
able, and u is a discretized vector of the solution with size n = 20, i.e.,
u = {uj}nj=1. The coefficients {ai}3i=0 are equal to {0.55, 1,

√
2
4
, 0.1√

6
}. The

noise ǫ is a i.i.d standard normal random variable with 0.005 standard devi-
ation. The results are shown in Figures 1 and 2.
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Figure 1 shows the performance of the perturbation based error indicator
(PEI) in estimating the optimal separation rank and polynomial degree for
the case N = 500. In Figure 1.a the PEI shows that the values of pair
(r,M) = (6, 4) are the optimal model complexities, which correspond to the
smallest value of the standard deviation relative error. The PEI functionality
for the case N = 500 is more clear, but for some cases it refers to the pair
(r,M), where the standard deviation error is not necessarily minimal, but
it is still acceptable. In figure 1.b, relative standard deviation error with
respect to the residual norm is plotted for various M . The optimal pair
(r,M) = (6, 4) refers not only to the minimum standard deviation error
but also to the smallest residual norm as well. The small separation rank
r = 6 means that this manufactured function can be approximated by a low-

rank separated model. It also can be shown that larger values of polynomial
degree, (M = 5), do not necessarily lead to more accurate models. In general,
the optimal values of pair (r,M) are not unique for a problem and might be
different for different data sets as well as different numbers of samples.

Figure 2.a shows the optimal (r,M) for different numbers of samples for
the same problem. When the number of samples is increased, more infor-
mation is provided; therefore, the constructed models compute the solutions
with higher accuracy. This is shown in figure 2.b, where the error in standard
deviation decreases about one order of magnitude by increasing the number
of samples from N = 500 to N = 1000. The mean value of the solution is
constant and equal to 0.55. In figure 2.c, the difference of the predicted and
exact mean is illustrated with respect to the spatial variable ξ. Figure 2.d
shows the standard deviation of the problem based on the separated repre-
sentation for the case N = 1000 in comparison to the exact value. It also
can be observed from figure 2.b that the average over the spatial variable
of the relative errors in standard deviation and mean are 0.001 and 0.0001,
respectively.

5.2. Elliptic stochastic equation

The objective of considering an elliptic stochastic equation is to esti-
mate the diffusion coefficients from available (noisy) observations of the so-
lution field by MCMC, applying the separated representation-based surrogate
model.

Here, the forward model, A, is considered as the following 1D in space el-
liptic stochastic PDE on the unit interval [Ξ1,Ξ2] = [0, 1] and the continuous
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Figure 2: (a) Optimal pair of (r,M) based on PEI vs. number of samples; (b) Relative
error in standard deviation and mean vs. number of samples (based on the reference
solution); (c) Approximated mean values minus the exact mean equals to 0.55 vs. spatial
variable; and (d) standard deviation of the problem vs. spatial variable. (Separation rank
r (�); Polynomial degree M (◦); Relative error in: standard deviation ( �−−−) and mean
( ◦− − −); Separated representation approximation (− −−); Reference value (. . .)).
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domain (D ⊂ R1), with Dirichlet boundary conditions on ∂D [39]:

∇ (κ (ξ,y (w))∇u (ξ, w)) = −f(ξ) (32)

u (0,y) = u (1,y) = 0,

where f(ξ) = 1 is assumed as a constant source term . Here, ∇ ≡ ∂/∂ξ
and the PDE is spatially discretized by the finite difference approach with
spacing ∆ξ = 1/1000 on a uniform grid. The κ describes a spatially heteroge-
neous (diffusion) coefficient as a source of uncertainties that is stochastically
discretized by the Karhunen-Loeve expansion

κ (ξ, w) = κ0 + exp

(

d
∑

i=1

√

λiφi (ξ) yi (w)

)

, (33)

along with an offset κ0 = 0.5. The {yi}di=1 are independent random variables
uniformly distributed on [−1, 1], where (λi, φi) are the pairs of eigenvalues
and eigenfunctions of the covariance function c (ξ, ξ′) respectively, i.e.,

∫

D
c (ξ, ξ′)φ (ξ′) dξ′ = λiφi (ξ) . (34)

The c (ξ, ξ′) is the covariance kernel of the Gaussian process with expo-
nential form as follows:

c (ξ, ξ′) = σ2exp

(

−(ξ − ξ
′)2

L2
c

)

, (35)

with a prior standard deviation σ = 1 and correlation length Lc = 1/14.
The eigenfunctions, φi, are discretized on the same grid, where the solution
field, u, is discretized. The observations, u, in equation (32) are obtained at
n = 20 points in D using a finite element based solver provided in FEniCS.
Following algorithm 1 with N = {500, 1000, 2000} samples, the separated
representation models are prepared to predict the solution of the elliptic
equation (32).

To find the optimal pair of (r,M), the minimum value of PEI is found.
Figure 3.a shows the standard deviation error and PEI for the case of N =
2000 and M = 3. In this case, the minimum value of PEI corresponds to
a separation rank of 12 and polynomial degree of 3, where the standard
deviation error is also minimal. The optimal pair of (r,M) is obtained with
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Figure 3: The model performance in estimating the problem’s statistics and optimal sep-
aration rank and polynomial degree with respect to the number of samples N (a) Relative
standard deviation and mean errors vs. number of samples and (b) Optimal pair of sep-
aration rank and polynomial degree vs. number of samples. (Relative error in: standard
deviation ( �− −−) and mean ( ◦− − −); Optimal separation rank (�); Optimal polynomial
degree (◦)).

the same analysis for different number of samples. As can be seen in figure
3.b, there is no unique separation rank and polynomial degree for the problem,
and these values depend on the number of samples and the data set, e.g.,
the optimal pairs for N = 1000 and 2000 are equal to (7, 3) and (12, 3),
respectively.

Figure 4 illustrates the average relative errors in standard deviation and
mean with respect to the number of samples. The average is over the physical
variable of size n. The reference statistics are obtained by the Monte Carlo
(MC) approach with N = 25000 samples to compare the predicted results
with. It can be seen that the separated representation model with N = 2000
predicts an average of mean and standard deviation relative errors equal to
9×10−4 and 4×10−4, respectively. In figure 4, the accuracy of the separated
representation model is compared to regression and MC approaches. It is
shown that to get the same accuracy the separated model needs fewer samples
by one order of magnitude. The problem statistics which are illustrated in
figures 5.a and 5.b are compared to the regression results and the reference
values.

Up to this point, an accurate surrogate separated representation model
to approximate the solution of the equation (32) has been provided and vali-

18



10
2

10
3

10
4

10
5

10
−4

10
−3

10
−2

10
−1

Number of samples (N)

A
ve

ra
ge

 o
f r

el
at

iv
e 

er
ro

r 
in

 s
ta

nd
ar

d 
de

vi
at

io
n

10
2

10
3

10
4

10
5

10
−4

10
−3

10
−2

Number of samples (N)

A
ve

ra
ge

 o
f r

el
at

iv
e 

er
ro

r 
in

 m
ea

n
(a) (b)

Figure 4: Comparison of the average relative errors in standard deviation and mean of
the solution for the separated representation, regression and Monte Carlo: (a) Relative
standard deviation error; (b) Relative mean error (Separated representation ( �− − −);
Regression ( ◦− − −); Monte Carlo ( ) )
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Figure 5: Statistics of the elliptic PDE solution as a function of spatial variable (ξ) (a)
Mean; (b) Standard deviation; (Estimated based on: Separated representation with: N =
1000 ( �. . . . . .) and N = 2000 ( �− − −); Regression with N = 25000 ( ◦− − −); Monte Carlo
with N = 25000 ( ) .
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dated. In the following, it will be shown how this surrogate model can be used
in inverse problems. Based on the true value of diffusion coefficient κ, equa-
tion (32) is solved to obtain the exact value of the solution, uexact. The true
κ is obtained by generating uniform independent random variables, {yi}di=1,
and computing equation (33). In the inverse problem context, one needs
noisy observations, e.g., experimental results. To do so, an i.i.d standard
normal noise vector is added to the exact solution, i.e., unoisy = uexact + ε,
where εj ∼ N (0, σnoise) , j = 1, . . . , n.

Here, one case where σnoise = 0.05 and n = 20 is considered for the
41-dimensional elliptic PDE (32). To decrease the computational cost of re-
peated evaluation of the forward model in Bayesian inference approaches, the
separated representation surrogate model is used to approximate the elliptic
PDE solution, u. The results are shown in figures 6.a and 6.b. Figure 6.a
illustrates the diffusion coefficients based on the posterior realizations com-
puted by DRAM [25]. Regarding the prior information, the KL modes in
equation (33) are uniformly distributed; however, a Gaussian prior distribu-
tion with priormean and priorstd is considered and transformed to uniform
distribution on [−1, 1] by

y = erf
(

(θ − priormean) /
(√

2× priorstd
))

∼ U (−1, 1) . (36)

Here, θ is a normal random variable θ ∼ N(priormean, priorstd) and erf
is the error function. Figure (6.a) shows the results of inverse modelling
for three cases with prior Gaussian distributions and the same priormean,
but different priorstd. The priormean value is approximated by the method
described in [37], which minimizes the square root of the differences between
the approximation and the exact value of the solution. The prior standard
deviations are equal to {0.3, 0.6, 1}. The solid line represents the true value
of the diffusion coefficients used to generate the data and the remaining lines
represent the DRAM simulations with various prior standard deviations. The
results are obtained using 106 DRAM samples, disregarding 2.5 × 105 of
them as burn-in samples. As expected, due to the ill-conditioning of the
problem the non-smooth part of the diffusion field is not easy to reconstruct.
However, by decreasing the prior-standard deviation, which defines more
narrower bound around the priormean for the realizations, more features of
the diffusion field can be captured.

Figure 6.b illustrates a boxplot of KL mode weights superimposed with the
posterior mean of realizations obtained with DRAM. In each boxplot a central
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Figure 6: MCMC results for one-dimensional elliptic PDE. (a) Diffusion coefficient ob-
tained with posterior realizations vs. the spatial variable. (σp = 0.3 (.− .− .−), σp = 0.6
(− − −), σp = 1 ( . . .), and truth (solid line). (b) Posterior boxplot obtained with the
MCMC. (Posterior mean (�) and the true value of KL weights (◦).

box represents the center (50%) of the posterior, a central line indicates the
median, upper and lower lines represent the 25% and 75% quantile of the
posterior, and two vertical lines, or whiskers indicate the entire range of the
posterior outside the central box. The exact value of the realizations which
were used to generate the data are also shown in this figure. It is shown in
the figure 6.b that the lower modes are approximated more accurately than
the higher modes. Because the elliptic operator in equation (32) smooths the
higher index-modes and consequently they are rougher and more difficult to
reveal by MCMC than the lower index-modes.

5.3. Cavity Flow

To investigate the performance of the algorithm in a more challenging
problem, a square 2D in space cavity flow is considered, which is filled with
a Newtonian fluid of density ρc, molecular viscosity µc, and thermal con-
ductivity κc. The right and left vertical walls are maintained at Th and
Tc temperature, respectively, where Th > Tc. The two horizontal walls are
assumed to be adiabatic. Furthermore, the reference temperature and the
temperature difference are defined as:

Tref = (Th + Tc) /2, (37)
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and
∆Tref = Th − Tc, (38)

where the two temperature boundary conditions are Th = −Tc = −1/2.
Using the Boussinesq approximation the normalized governing equations can
be derived as follows:

∂u

∂t
+ u · ∇u = −∇p+ Pr√

Ra
∇2u+ Pr T y, (39)

∇ · u = 0, (40)

∂T

∂t
+∇ · (uT ) = 1√

Ra
∇2T, (41)

where u is velocity, t is time, p is pressure, and T is normalized temperature
such that T ≡ (T − Tref) /Tref . The Pr and Ra are Prandtl and Rayleigh
numbers, which are equal to 0.71 and 106, respectively, which values lead
to a steady laminar circulating flow. The equations are discretized on a
1000× 1000 grid. The temperature on the cold wall (ξ1 = 1) is expressed as:

T (ξ1 = 1, ξ2) = Tc + T ′(ξ2). (42)

The mean temperature along the cold wall, 〈T (ξ1 = 1, ξ2)〉, is assumed to
be independent of ξ2 and equal to Tc = −0.5. Here, the effect of the cold wall
temperature fluctuations T ′(ξ2) on the temperature field is studied. These
fluctuations are approximated by a truncated KL expansion with d = 20
terms as follows:

T ′ (ξ2) =

d
∑

i=1

√

λiφi (ξ2) yi (w) , (43)

where {yi}di=1 are independent input random variables with Gaussian distri-
butions. λi, the eigenvalues, are computed by

λi = σ2
c

2Lc

1 + (ωiLc)
2 , (44)

in which ωi are positive roots of the characteristic equation

[1− Lc ωi tan(ωi/2)] [Lc ωi + tan(ωi/2)] = 0. (45)
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The Lc and σc are 1/21 and 11/100, respectively. In equation (43), φi are
eigenfunctions which are given by

φi (ξ2) =















cos[ωi(ξ2−0.5)]
√

0.5+
sin(ωi)

2ωi

sin[ωi(ξ2−0.5)]
√

0.5− sin(ωi)
2ωi

. (46)

The solver is provided in FEniCS based on finite element algorithm and
decoupling the governing equations and it ran 10, 000 times partially on the
Janus supercomputer at UC Boulder. In figure 7, the temperature contours
for the 2D-cavity flow are shown, in which two vectors with size n = 20 of
temperature on vertical line ξ1 = 0.5 and horizontal line ξ2 = 0.5 are con-
sidered for separated representation approximation. The separated represen-
tation models were constructed following algorithm 1. Figure 8 illustrates
the optimal separated rank and polynomial degree for a set of numbers of
samples {300, 600, 1000, 2000}. It can be observed that the separation ranks
of the separated models are smaller than 10, which lead to successfully ap-
proximate the function with low-rank separated models. The separated rep-
resentation complexities are sampling based and vary for different numbers
of samples. Figures 9.a and 9.b compare the convergence of the average
of standard deviation and mean of the scaled temperature on the two lines
ξ1 = 0.5 and ξ2 = 0.5 obtained by separated representation, polynomial chaos
expansion regression [15], and the standard Monte Carlo simulation. As the
separated representation model construction is based on random sampling of
the solution, the higher accuracy in the approximations may be achieved by
incorporating more samples, while in the PC regression the solution accuracy
may not improve by incorporating larger numbers of samples. Additionally,
the convergence rate of the separated representation is faster than the PC
regression.

To approximate the temperature and its standard deviation and mean
values on both lines ξ1 = 0.5 and ξ2 = 0.5, the separated representation
model which is constructed with N = 2000 samples is used. Figure 10
compares the approximations of the separated representation model with the
standard Monte Carlo method. Figures 10.a and 10.b illustrate the mean
values and figures 10.c and 10.d illustrate the standard deviation values.
The average of relative errors in standard deviation and mean on the line
ξ1 = 0.5 are {0.008, 0.00059} and corresponding values for the line ξ2 =

23



ξ
1

ξ 2

Scaled Temperature Field

 

 

0.0 0.5 1.0

1

0.5

0.0 −0.5

0

0.5

Figure 7: Scaled temperature field of a square 2D cavity flow and assigned vertical line
ξ1 = 0.5 (. − . − .−) and horizontal line ξ2 = 0.5 (− − −) for separated representation
approximations.
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Figure 8: Optimal values of separation rank r and spectral polynomial degree M obtained
by following algorithm 1 for the lines: (a) ξ1 = 0.5 and (b) ξ2 = 0.5. (Separation rank r

(�); Polynomial degree M (◦)).
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Figure 9: Comparison of the average of relative errors in standard deviation and mean
for the separated representation, Regression, and Monte Carlo simulation (Line ξ1 = 0.5
( ); Line ξ2 = 0.5 (− − −)). (a) Average of relative error in standard deviation and
(b) Average of relative error in mean. (Separated representation (�); PC regression (◦);
Monte Carlo (⋄)).

0.5 are {0.009, 0.00042}, which show the out performance of the separated
representation approximation.

Here, the analysis is focused on the posterior distributions of KL mode
weights in estimating the temperature fluctuations on the cold wall. In in-
verse modelling, Gaussian prior distributions with a prior mean computed by
the method in [37] and prior standard deviations {0.3, 0.6, 1} are assumed,
where the results are shown in figure 11.a. The solid line represents the
exact value of the fluctuations used to generate data before adding the ob-
servational noise term, and the rest of the lines represent the fluctuations
computed by eq (43) with the mean of the MCMC chains for {yi}d=20

i=1 . The
MCMC results with different prior standard deviations were obtained using a
DRAM with 106 samples, discarding the first 2.5×105 as burn-in samples. It
can be seen that by decreasing the prior standard deviation, which restricts
the sampling space around the prior mean and may lead to selecting more
accurate samples, more features of the temperature fluctuations can be cap-
tured. In figure 11.b a boxplot of the exact values of the KL mode weights
is illustrated, superimposed with the posterior mean of the MCMC chain.
It is shown that the mode weights from lower indices to higher indices are
identified accurately, and the exact values and MCMC means agree reason-
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Figure 10: The values of the mean and standard deviation of the scaled temperature as
a function of space. (a) Mean value on line ξ1 = 0.5; (b) Mean value on line ξ2 = 0.5 (c)
Standard deviation value on line ξ1 = 0.5; (d) Standard deviation value on line ξ2 = 0.5.
(Estimated with Monte Carlo (N = 10, 000) ( ♦− − −) and Separated representation
approximation (N = 2000) ( �−−−)).
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Figure 11: MCMC results for 2D cavity flow. (a) Temperature fluctuations on the cold
wall obtained with posterior realizations vs. the spatial variable. (σp = 0.3 ( . − . − .−),
σp = 0.6 (−−−), σp = 1 (. . .), and truth (solid line). (b) Posterior boxplot obtained with
the MCMC. (Posterior mean (�) and the true value of KL weights (◦).

ably well. For better illustration of the method performance, in figure 12,
the histograms of the MCMC chain for {yi}d=20

i=1 are plotted. In this figure
the exact values of yi are superimposed on the histogram of the posterior
samples. The density of variables generated by MCMC coincides with the
exact value of random variables.

Each MCMC chain takes approximately 24 hours with two 4-cores CPU
and 12 GB RAM computer, however inverse modelling using the physical
model generally deemed to be prohibitive. It is not claimed that this is the
most efficient inverse modelling approach, however, it is claimed that the
separated representation surrogate model not only provides opportunities
to do inverse modelling, but also it represents an out performance MCMC
approach.

6. Conclusion

In this study, a surrogate model has been introduced non-intrusively in
the context of the low-rank separated representation, which makes feasible
the use of an intractable Markov Chain Monte Carlo (MCMC) simulation
in Bayesian inference for high-dimensional stochastic functions. In the sepa-
rated representation approach, a high-dimensional stochastic function is bro-
ken down into a linear sum of unknown one-dimensional functions of random
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inputs. Here, the separated model approximates a vector of a continuous so-
lution at discrete values of a physical variable. This vector valued separated
model, which is an extension of previous work [15] for the scalar-valued case,
leads to a significant reduction in the computational cost of the approxima-
tion by an order of magnitude equal to the vector size. Because the solution
can be approximated by one vector valued separated model, while the solu-
tion at each physical variable must be approximated separately with different
scalar-valued separated models. An alternative least square regression-based
approach was presented to stably construct the separated models. Also,
the issue of instability which may occur in regression-based approaches was
tackled using the Tikhonov regularization. The regularization is applied
with a roughening matrix computing the gradient of the solution, which
leads to have more control over the solutions and penalizing and smoothing
the higher order polynomials. In order to find an adequate regularization
parameter, Generalized Cross Validation (GCV) is adopted. Furthermore,
a perturbation-based error indicator has been defined to find the optimal
model complexities known as separation rank and polynomial degree. These
parameters are independent from the function dimensionality d, which might
lead to a successful approximation with a number of randomly generated re-
alizations of stochastic functions linearly depends on d. The computational
cost of the approximation quadratically increases with respect to the function
dimensionality which may overcome the issue of the curse of dimensionality,
a bottle-neck for uncertainty quantification of high-dimensional stochastic
functions.

It has been shown numerically that the low-rank separated represen-
tation approximation model outperforms the current techniques for high-
dimensional approximations. And also, using these surrogates particularly
of high-dimensional stochastic functions, makes computationally prohibitive
inverse problem analysis feasible with high accuracy. The performance of the
approach was examined with three problems, including an 11-dimensional
manufactured function, a 41-dimensional (1D in space) elliptic PDE, and a
21-dimensional (2D in space) cavity flow. Overall, the Bayesian inference
with a surrogate separated representation model proceeds with more relia-
bility and efficiency than with a physical model.

For future works, the applications of low-rank separated representation
approximations in sensitivity analysis and function dimensionality reduction
might be attractive areas.
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