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flow
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Abstract

We propose a variant of the #-scheme for diffuse interface models for two-phase flow,
together with three new linearization techniques for the surface tension. These involve
either additional stabilizing force terms, or a fully implicit coupling of the Navier-Stokes
and Cahn-Hilliard equation.

In the common case that the equations for interface and flow are coupled explicitly,
we find a time step restriction which is very different to other two-phase flow mod-
els and in particular is independent of the grid size. We also show that the proposed
stabilization techniques can lift this time step restriction.

Even more pronounced is the performance of the proposed fully implicit scheme
which is stable for arbitrarily large time steps. We demonstrate in a Taylor flow applica-
tion that this superior coupling between flow and interface equation can render diffuse
interface models even computationally cheaper and faster than sharp interface models.

Keywords: time integration, diffuse interface model, dominant surface tension, time
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1. Introduction

The numerical simulation of two-phase flows has reached some importance in mi-
crofluidic applications. In the last decade, diffuse interface (or phase-field) models have
become a valuable alternative to the more established sharp interface methods (e.g.
Level-Set, Arbitrary Lagrangian-Eulerian, Volume-Of-Fluid). The advantages of dif-
tuse interface methods include the possibility to easily handle moving contact lines and
topological transitions as well as the fact that they do not require any reinitialization
or convection stabilization. The corresponding equations involve a Navier-Stokes (NS)
equation coupled to a convective Cahn-Hilliard (CH) equation. A lot of efficient spa-
cial discretization techniques and solvers for these equations have been proposed (e.g.
[19]). However, not much work has been done on time integration strategies and ef-
ficient coupling between the NS and the CH equation, which we will address in this
paper.

But at first, let us introduce the diffuse interface method more carefully. The method
was originally developed to model solid-liquid phase transitions, see e.g. [5, 13, 25].
The interface thereby is represented as a thin layer of finite thickness and an auxiliary
function, the so-called phase field, is used to indicate the phases. The phase field func-
tion varies smoothly between distinct values in both phases and the interface can be
associated with an intermediate level set of the phase field function. Diffuse interface
approaches for mixtures of two immiscible, incompressible fluids lead to the NS-CH
equations and have been considered by several authors, see e.g. [18, 14, 19, 10]. The
simplest model reads:

p(c) (Ou+ (u-V)u) = —=Vp+ V- (v(c)D(u)) + F+ uVe, (1)
V.ou = 0, @)

dec+u-Ve = V- (M(c)Vu), 3)

p = e "W (e) - delc, 4)
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in the domain 2. Here u, p, ¢ and . are the velocity, pressure, phase field variable and
chemical potential, respectively. The function W (c) is a double well potential, here we
use W = 1/4(c* — 1)* which ensures that ¢ &~ +1 in two fluid phases, respectively.

The function M (c) is a mobility, e defines a length scale over which the interface is
smeared out. In general for the diffuse interface fluid method, it is desirable to keep
M small such that one primarily gets advection. At the same time the mobility needs
to be big enough to ensure that the interface profile stays accurately modeled and the
interface thickness is approximately constant. Furthermore D(u) = Vu + Vu’ is the
strain tensor, p(c), v(c) and F are the (phase dependent) density, viscosity and body
force. The parameter ¢ is a scaled surface tension which is related to the physical surface
tensionby ¢ = a%. There are efficient solvers available to discretize and solve the Egs.
(1)-(4) in space (see e.g. [19]).

Surface tension is a major component of all multiphase fluid models and hence vari-
ous spatial discretizations of the surface tension force for diffuse-interface models have
been proposed (e.g. [21]). The surface tension force Ve introduces a strong coupling
between the NS equation providing the flow field and the CH equation evolving the
phase field. This is very similar to sharp interface models for two-phase flow where
the same interface-to-flow coupling introduces a severe time step restriction of the form
[6, 8]:

T < Cpll2p3/26-1/2, (5)

Here, 7 is the maximum time step size, p the average density of both fluids and h the
grid size. The above CFL-like restriction is particularly strong for large effective surface
tensions, e.g. when small physical length scales are considered. It is usually assumed
that this restriction also holds for diffuse interface models (e.g. in [20]). In Sec. 6.1 we
will show that this assumption is wrong.

Figure 1: Evolution of a semi-circular bubble under the diffuse interface model with too large time steps.
Left: initial shape; Right: Evolved shape after ten time steps.

However, also for diffuse interface models there is some time step restriction which
can make computations extremely costly, even in cases when the interface is supposed
to hardly move. Fig. 1 shows such a case of a perfectly circular interface, which is almost
stationary. However, if too big time steps are chosen, even such an equilibrated surface
will start to wobble and finally break up. In sharp interface models, there are techniques
to overcome such time step restrictions [16]. To the best of the authors” knowledge
there is no such technique available for diffuse interface models yet. We will develop
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techniques to improve the coupling between the NS and the CH equations, which will
turn out to lift the time step restrictions significantly.

Apart from increasing the computational performance, there is a second reason to
develop better time integration schemes for diffuse interface models. The simple time
discretization schemes available often imply the need to stabilize the system by choos-
ing a relatively high CH mobility. But this high artificial diffusion perturbs the sim-
ulation results since matched asymptotic analysis shows the convergence of diffuse-
interface methods toward the sharp interface equations only for small CH mobility [1].
Therefore better time integration strategies would not only speed-up the simulations
but also allow to take smaller (more physical) CH mobility and thus improve the accu-
racy of diffuse-interface methods.

The structure of the remaining paper is as follows. Secs. 2 and 3 will introduce a
simple variant of the § scheme as well as a block Gauss-Seidel coupling strategy. The
main attention is given to Sec. 4 where some new improved coupling techniques for dif-
tuse interface models are presented. The solution of the resulting systems is discussed
in Sec. 5. In Sec. 6 we perform numerical tests. In particular a CFL-condition for dif-
fuse interface methods is numerically derived and it is shown that the new proposed
coupling methods can, for some problems, result in an extreme gain of performance.
Finally, conclusions are drawn in Sec. 7.

2. Time discretization: A variant of the @-scheme

In this section we adopt the well-known §-scheme for the time discretization of the
NS-CH equations. Let the time interval [0, 7] be divided in N subintervals of size 7",
n = 1...N. We define the discrete time derivative of a (solution) variable v to be d,v™ :=
(v™ — v™) /7™, where the upper index denotes the time step number. For a shorter
notation we introduce

g(u, ¢, 1) i= —ple)u- Vu+ ¥ - (v()D(w)) + F(c) + pVe, 6)
flu,c,p) == —u-Ve+ V- (M(c)Vu). (7)

For a constant ¢ € [0, 1] we propose the following variant of the #-scheme:

pm-%atunﬂ + vpnﬂ :9g(u"+1, Cnﬂ,/ubm_l) + (1 . e)g(un7 an Iun)7 (8)
V- u™ =0, )

D™ =0 f (™ ™ ™) + (1 - 0) f(u”, ", i), (10)

™t =G TW (™) — GeAc™, (11)

where p™z = (p(¢™) + p(c*))/2 denotes an approximation to the intermediate densitiy.

Note that the system (8)-(11) differs from the standard 0-scheme by the use of p”%. To
derive a standard #-scheme one would have to divide the NS equation by p(c). Then the
§-scheme can be applied to the system 0,u = [g(u, ¢, 1) — Vp]/p(c). This leads to more
complicated equations requiring much more implementation effort. The above variant
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circumvents this problem by using p™z. One easily verifies that the method has the
same consistency order and stability properties as the standard #-scheme. To be more
precise, the method is of second order if # = 0.5 and of first order if § # 0.5. The most
important cases are § = 1 (backward Euler) and § = 0.5 (Crank-Nicolson). Both are A-
stable and are often used to discretize two-phase flow problems in practice. We will also
restrict our numerical experiments to these two cases. The biggest disadvantage of the
Crank-Nicolson scheme is that it has no smoothing property, i.e. it does not smooth high
frequencies. Therefore it is in some cases appropriate to use the optimally smoothing
backward Euler scheme, although it has lower order.

3. Linearization and coupling

The first question that arises when looking at equations (8)-(11) is: How to couple the
NS and CH equations. The nonlinear coupling between u™, ¢™ and p™ can be treated
by several decoupling strategies. One usually applies an iterative strategy where each
time step requires multiple solves of the governing equations until the approximation
error in the solution variables is sufficiently small. To our knowledge, only sequential
coupling of the NS and CH equations has been considered in the literature. Hence, both
equations are solved separately, using the solution of the other equation explicitly from
a previous computation.

3.1. Block Gauss-Seidel decoupling

The simplest decoupling strategy is the block Gauss-Seidel method. This method
is widely used, e.g. in [10, 15]. We use subscript indices to denote the variables of
the sub-iteration while superscripts still denote the time step number. Then the block
Gauss-Seidel strategy applied in every time step reads:

1. Initialize the sub-iteration with the values from the last time step:

u =u", c=c", po=p" (12)
2. for k=0,1,...
e Solve the NS equation to get uxy and pi:
pm%atukﬂ-l + vpk-l—l :eg<uk+17 Ck, :U’k) + (1 - e)g(un7 Cn7 :un>7 (13)
V- up =0, (14)

where p™2 is approximated by (p(cx) + p(c?))/2.
e Solve the CH equation to get ciy and jup:

Orcrn =0 f (W, o, pern) + (1 = 0) f (0", ", "), (15)
i =0€ W (Cp1) — FeAc, (16)

e proceed to the next k



3. stop the iterative process when a given tolerance is reached, e.g. ||ci4+1 — ci|| < tol,
and set the variables at the new time step to

e+l {axt ntl
u™ =, T o=cw, M= len 17)

Note that in Eq. (13) only previously calculated instances of the CH variables ¢ and
p appear. One can interpret the Gauss-Seidel strategy as a fix point iteration where
the fix point operator consists of one solve of the NS equation and one solve of the
CH equation. The fix point iteration consists in applying this operator on the iterates
(ug, ¢k, 1) multiple times until convergence is reached. Note, that convergence can be
very slow due to the high nonlinearity of the operators. In fact a contraction is only
assured for very small time steps and divergence may occur if the time step is choosen
too large.

3.2. Linearization

There are three remaining nonlinear terms: ugy - Vugy in Eq. (13), W/ (ckn ) in Eq.
(16) and V - (M (cpr ) Vien ) in Eq. (15). Using a Taylor series expansion gives the second
order linear approximations:

W' (cpn) = W'(cr) + W (er) (o — cr) (18)
Upy Vukﬂ ~ U - Vukﬂ + Upy - Vuk — Ug - Vuk (19)
V- (M(cpn)Vign) = V- (M (cx)Vign) + V- (M (ex)(ckn — k) Vi) (20)

If small length scales are considered, as in most applications of diffuse interface models,
convection does not dominate the NS equation. Hence, a simpler linearization than
Eq. (19) is sufficient. Here we skip the last two terms on the RHS of Eq. (19). Note
that this does not affect the accuracy of the method and would at most slow down the
convergence if the problem was dominated by convection. Similarly, the last term of Eq.
(20) can be omitted since it has very little effect on the convergence speed, at least in all
of our applications.

3.3. Special case: semi-implicit Euler

A special case of the linearized -scheme is when 6 = 1 and only one iteration of
Egs. (13)-(16) is performed. The resulting method can be written as the following semi-
implicit Euler scheme:

ple)B™ + V™ = — pu - Va4 V- (o(e)D (™)) + F() + 4"V, (1)

vV -um =0, (22)
™ = —ua™ V™ + V- (M(M)VE™), (23)
™ = W (™) — GeAc™, (24)

where W’ (c™) is again linearized by Eq. (18). In each time step Egs. (21)-(22) and
Egs. (23)-(24) can be solve sequentially. This semi-implicit Euler scheme is the simplest
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time-stepping strategy. It is of first order accuracy but may still give good results if
sufficiently small time steps are used. The scheme is has been used by many authors
[19, 3] including a benchmark comparison of diffuse interface with level-set and VOF
methods which showed good agreement [4].

3.4. Defect correction scheme

It is sometimes useful to apply a defect correction scheme when solving the fix-point
iteration in Egs. (13)-(16). Therefore, the solution variable is split into its previous value
plus an update value (here denoted with a star): ui = wi, + u*. Now, the linear system
is only solved for the update variable. Hence, solving a system of the form Auy = bis
replaced by solving Au* = b — Au”. Left and right hand side of the latter equation are
of the order of the defect u*, which minimizes errors in computer arithmetic. Another
advantage of this approach is that iterative solvers sometimes perform better, i.e. need
less iterations, when looking for solutions of the defect corrected scheme. To get a better
approximation ugy, the update equation may be altered to uiy = uy, + wu*, where the
step length w can be found by a line search strategy. The resulting Richardson type
method is described in detail in [26].

Combining a defect correction scheme with the above block Gauss-Seidel splitting
and the linearizations (18)-(20) is equal to applying one step of a Newton iteration alter-
nately to each of the two subsystems (NS and CH).

4. Advanced linearization techniques

We will now develop techniques to improve the coupling between the NS and the
CH equations, which will turn out to lift the time step restrictions significantly. In an
iterative scheme, like the block Gauss-Seidel coupling, this is equivalent to linearizing
the surface tension force more efficiently. We will start by coupling the NS and CH
equation really implicitly by assembling both equations in one large system.

4.1. Method 1: Fully-coupled scheme

The reason for the instability of the NSCH system for larger time steps or high sur-
face tensions is the explicit coupling of the NS and CH equations. To be more precise it
is the chemical potential that may oscillate (i.e. alters its sign) in every time step. Conse-
quently, the best way to stabilize the system is by taking the chemical potential from the
new time step, i.e. 11 Ve instead of 11, Ve, in the NS equation, while still advecting the
phase field with the new velocity usy. This can be done by assembling both, the NS and
CH equations, in one large system. Hence, step 2 of the block Gauss-Seidel iteration is
replaced by

2. for k=0,1,...



e Solve the coupled NS-CH equation

pn-%atukﬂ-l + Ve =09, ci, prenn) + (1 — 0)g(u”, ", u"), (25)
V - upy =0, (26)

Orcen =0 f (W, Cr, pa) + (1 — 0) f(u", ", "), (27)

i =€ "W (cpn) — GeAcpn, (28)

e proceed to the next &

The slight difference to the block Gauss-Seidel iteration from Sec. 3.1 is the usage of of
cr in Eq. (27) and pn in Eq. (25). We will see in Sec. 6 that this has a strong stabilizing
effect, may speed up convergence of the fix-point scheme and allows larger time-steps.

The fix point iteration with this fully coupled system corresponds to a Newton iter-
ation of the fully coupled system. Hence one can expect this method in most cases to
perform as well as a Newton iteration of the fully coupled equations, but without the
need to compute the full Jacobian of the system.

We also tested other variants of assembling NS and CH in one system, for instance
using the surface tension force ;1 Ve . We found all other variants not to give any im-
provements in stability. The key point here is really the use of the new curvature (con-
tained in ju441). This is a big advantage of diffuse interface models over other two-phase
flow models, because the curvature (1) here is a solution variable and can therefore be
implicitly coupled to the NS equation.

4.2. Method 2: Linearization of the chemical potential

In this section we present an alternative way which avoids solving NS and CH in one
system. We will derive a stabilizing term which can easily be added to the NS equation.
From the previous section we know that it is desirable to replace the surface tension
force 011, Vg, occuring in Eq.(13) by the more implicit version

Fy = O Vey, (29)

Instead of using u;, which is a first order approximation of the new chemical potential
ten, we will now derive a second order approximation. The idea is to predict py from
the available variables ¢, and u,y. To start, we use that the surface tension force F,; can
also be written as [14]:

Fst = —00€V - (VCkH ® Vck) (30)

Next, let us assume that the movement of c is primarily driven by advection, i.e. the
influence of the chemical potential in Eq.(15) is neglected. Substracting Eq.(15) of step
k + 1 from the same equation in step £ gives

Cit1 — C, — 7'0<1lk+1vck,+1 — uchk) (31)
~ cp — TO(upy — ug) Ve, (32)



Now, we may insert this expression in Eq.(30) and get
Fy~ —06eV - (Vck & Vck) + T760%6¢V - (V((ukﬂ —uk)Vck) & Vck) (33)
The first term in Eq.(33) can be transformed back in 61,V ¢, which gives

Fy = 0 NVeg + 10266V - (V(upn —uy) - Ve, @ V)
+ 70?6V - (VVe, - (W —up)) ® Ve (34)

The last term in Eq.(34) turned out to be very small in all our simulations and did not
influence neither accuracy nor convergence speed. We therefore omit it and get the
stabilizing term

Sy :=70°6eV - (V(up —uy) - Ver @ Vey) (35)

which should be added to the RHS of the NS equation (13). Note, that S, is a kind of
Laplacian of the velocity field and can therefore be expected to have a stabilizing effect
which will be confirmed in Sec. 6. Adding S; to Eq. (13) does not affect the accuracy
of the method since S; vanishes when the fix-point iteration converges. Also note, that
the derivation assumed that the phase field c is only advected, which corresponds to
vanishing mobility. For larger mobilities .5; should be scaled with an (unknown) factor
w € [0,1]. Here, we use w = 0.2 which turned out to speed up the convergence of the
tix-point method significantly.

4.3. Method 3: Stabilizing surface Laplacian

The introduction of a stabilizing Laplacian of the velocity field in the previous sec-
tion reminds of a very popular technique used in level-set methods first introduced by
Dziuk [12]. The idea is to use that kxn = —Aridr, where k = V - n is the mean curvature,
n the normal and Arid the Laplace-Betrami of the identity mapping. Hence, the implicit
part of the surface tension force can be expressed as

Fst = —U@(SkArkidpk. (36)

with some surface Delta function ;. To get a more implicit version of eq. (36), one can
replace idr, by idr . The latter can be approximated by

idp, ~ =2+ 07(Wwm — wy) (). (37)
which gives the surface tension force:

Fy ~ —006,Ar,idr, — 00?6, 7Ar, (W — uy) (38)
= —O'QékArkidFk — O‘QQTVrk . (5kvpk(uk+1 — uk)) . (39)

The first term on the RHS corresponds to the surface tension force 64, V¢, which is
already included in our NS equation (13). Consequently, the second term on the RHS of
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(39) is an additional stabilizing term which enters the NS equation. A diffuse interface
version is given by

Sy = —00?7V - (|Ver| PV (upn — uy)) (40)

where P = (I - %ﬁ) is the surface projection. Analogously to the derivation in

the previous section, we assumed here (in Eq.37) that the interface is only advected.
Hence, the derivation only holds in the limit of vanishing mobility. For larger mobility
we therefore scale S, in the same way as S; with a parameter w € [0,1]. Note, that
adding S, does not affect the accuracy of the method, since it vanishes when the fix
point iteration converges (and uy ~ uy).

5. Space discretization and solvers

For the numerical solution of the partial differential equations we adapt existing
algorithms for the NS-CH equation, e.g. [28, 11]. We use the finite element toolbox
AMDIS [27] for discretization with P? elements for u,c and p and P! elements for the
pressure p. In 2D we solve the resulting linear system of equations with UMFPACK [9].
For the larger systems in 3D we have to use preconditioned iterative solvers. Efficient
preconditioners are available for the individual systems, that is when NS and CH are
solved separately. We apply the F, preconditioner [19] and an FGMRES iteration to
solve the NS system. For the CH system we use the preconditioner proposed in [7] also
with FGMRES iteration.

It remains the case of the fully coupled NS-CH system, Eqgs. (25)-(28), which has
not been considered in the literature so far. From the discretization of Egs. (25)-(28) we

obtain a system of the form
Ays Mc J[Z] _| b
=1~ 1, 41
EAInEH %

where 7 contains the degrees of freedom of u and p, while ¥ contains the degrees of
freedom of c and p. M, and N, denote the coupling terms between the NS and the CH
system. Our (simple) approach to solve this system is to combine the two precondition-
ers for the CH and NS systems. Let Pyg the F, preconditioner for NS and Pry the CH
preconditioner. For the coupled system we use the matrix

P = |: PNS 1Mc :| (42)
~FPou

as a right preconditioner, with a scaling factor a. Hence, Eq. (41) is replaced by solving
the two systems

Ayvs M. [ Pyb —aPgiM.PoL [ 7] _ | b 3)
N. Acn 0 aPoy o )y
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and

Z1 | Pys —aPysM.Poy 1[0 (44)
gl 0 aPsl W |

A rigorous analysis of the matrix properties is still missing. However, in our numerical
tests, this preconditioned system can be solved by an FGMRES iteration with a = 0.1.

6. Numerical tests

We now validate the proposed linearization schemes on different test scenarios.
First, we assess the numerical stability of the time integration schemes (Sec. 6.1). Then
we conduct a benchmark comparison of the different linearization methods (Sec. 6.2).
At last we present an application to a Taylor-Flow simulation which clearly shows the
superior performance of the proposed methods. Throughout this section we use an
iteration tolerance of tol = 107!° (see Sec.3.1). Furthermore, we terminate the block
Gauss-Seidel scheme if no convergence is reached after 100 iterations. As stabilization
constant we use w = 0.2 (see Sec.4).

6.1. Stability investigations

In this section, we assess the time step stability of the proposed schemes. Our goal
is to find the maximum time step size at which a given two-phase flow configuration
is solvable. We use configurations with different surface tensions o, mobilities M, grid
sizes h and interface thicknesses €. In the end we want to find an estimate to predict
the maximum time step size from these parameters. As mentioned in Sec. 1 for other
two-phase flow methods (e.g. Level-Set, ALE) the estimate gives the CFL-like condition

Tinas < Cp20= 1232 (45)

with some non-dimensional constant C'. A common assumption is that such an estimate
also holds for diffuse interface methods which we will contradict in the following.

We use numerical testing to assess the time step stability, since analytical investiga-
tions on the coupled NS-CH system are extremely complicated. We restrict the numer-
ical tests to the Crank-Nicolson scheme (# = 0.5) '. As initial condition we use u = 0
and a phase field given by ¢ = tanh((y — 0.5)/v/2¢) in the domain Q = [0, 1]> which
represents a flat horizontal interface. Since the curvature is zero this initial condition
corresponds to a stationary state. To trigger an instability, a different random number
€ [—0.001,0.001] is added to each grid point of the phase field. Hence, the fix point
iteration will not converge for too large time steps. We then try to solve a single time
step of the system with these initial conditions. We do this multiple times for varied
time step sizes. We start with very small time steps which assure convergence. As long
as the system can be solved we increase the time step size (by a factor of 1.1) and start
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Table 1: Parameters used for stability estimations.

again. At some point the system will not be solvable and we denote the corresponding
time step as the maximum time step size 7,,,x for this configuration.

We repeat this procedure for various numerical parameters shown in Tab. 1. We use
equal densities in both phases and choose v = 0.01 to make sure that viscosity does not
play a dominant role?. Varying all other parameters (o, p, €, h, M) independently gives a
total number of 4-4-4-3-4 = 768 test cases and we denote the corresponding parameters
for some test case i € {1,...,768} by subscripts: o;, p;, €;, hi, M;. Our goal is to obtain
a relationship between the test parameters and the corresponding maximally possible
time step Tax,;. Assuming a multiplicative relationship with unknown exponents gives
the nonlinear least-squares problem:

768

min g
(e}
i=1

where a contains the searched unknowns, o = («y, ..., o). We use the routine LSCURVE-
FIT in MatLab to solve (46) and obtain o = (7.603,0.001, 0.916, —0.326, 0.374, 0.673) which
is equivalent to the time step restriction

2

(46)

ho2 X3 g% |5 H*6
log (Oél i €& 05 i Pi )

Tmax,i

Tmax < 7.603 h0.00160.9160_70.326M0.374p0.673 (47)

The calculation of this time step restriction involved some rounding, in particular the
maximum time steps may be over estimated by up to 10%, since we increased them
stepwise by 10%. These errors limit the precision of (47) and justifies to round the ob-
tained values. In this way, we get the following CFL-like time step restriction

Tmax < 70 € 0'_1/3 M1/3 p2/3 (48)

In strong constrast to (45) the new time step restriction is independent of i. The reason
for this lies in the fact that no sharp interface is used. The standard time step restric-
tion (45) is associated to the migration of capillary waves which might occur in sharp
interface models with a wave length proportional to the grid size. In a diffuse interface
context, the smallest wave length of capillary waves should be proportional to € which

'For # = 1, the obtained maximum time step would be need to be divided by 2.
Zanalogously to the derivation of (45), see e.g.[8]
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Figure 2: Log-log plots comparing the maximum time step size with the CFL-condition (48). Either one
of the variables p, 0, €, M, h, v is varied while keeping the other variables fixed.

would justify in (48) to substitute one power of i by e. Some additional smoothing is
introduced by the CH diffusion which consequently also occurs in (48). Using that M
is measured in m®s/kg we compute the physical unit of the RHS of (48) and obtain s
(seconds), which further justifies the new CFL-like condition.

Figure 2 shows the experimental maximum time step size compared to the CFL-
condition (48). Thereby, we vary one of the six variables (p, o, ¢, M, h, v) while keeping
the other variables fixed at p = 1.0,0 = 103, M = 107% ¢ = 0.04,h = 0.04,v = 0.01.
One can see an excellent agreement of the numerical data with the time step restriction
curve. But also the limit of the derived CFL condition becomes apparent looking at the
case of varied viscosity v in Fig. 2. According to our derivation, the time step restriction
only holds in the limit of small viscosities (here Re < 1). Note, that this coincides with
the famous CFL condition (45) which was also derived for the small viscosity case [8].

We also assess the time step stability of the advanced linearization schemes proposed
in Sec. 4. In particular the fully coupled sheme (Egs. (25)-(28)) shows a superior perfor-
mance. For all test cases the scheme converges in at most 10 iterations independently
of the time step. Hence, for a configuration close to the stationary state the fully cou-
pled scheme allows arbitrary large time steps. This outstanding property will further
exploited in Sec. 6.3.

But also the two schemes employing the stabilizing terms S; and S, (Egs. (35) and
(40), resp.) perform very well. We divide the maximum time step of the stabilized
schemes by the maximum time step of the simple explicit scheme. Fig. 3 shows this
ratio for the 256 test cases with h = 2e.

Using S, increases the maximum time step by a factor of 1.9-5.5 (average: 3.3). Much
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Figure 3: The ratio of maximum time steps (stabilized scheme S1 (left) and S2 (right) divided by explicit
scheme) for the different test cases. The straight line shows the average ratio. The vertical axis uses log
scaling.

more diverse ratios are obtained when using S,, which increases the maximum time
step by a factor between 1.0 and 65.9 (average: 6.8). Note, that the stabilizing effect of
S1 and Sy depends on the factor w. For the ease of comparison, we set w = 0.2 here, but
adjusting it manually to the used mobility would allow even much higher time steps.

6.2. Benchmark problem

We use the test setup from the two-phase flow benchmark of Hysing et al. [17]. It
considers a single bubble rising in a liquid column for a period of 3.0 time units. The
benchmark scenario has also been studied with a diffuse interface model [4].

We start with the same configuration as test case 1 in [4] with e = 0.02, M =2-107?,
p1 = 1000, po = 100,14 = 10,1, = 1,0 = 24.5. First, let us confirm the accuracy of the
g-scheme. To make the comparison computationally cheaper, we restrict the following
studies to the time interval [0,0.2]. We solve the system with different time step sizes
for # = 1.0 and # = 0.5. Table 2 shows the final bubble position for all of these cases.
We assume that the smallest time step together with § = 0.5 gives the most accurate
result and take this as a reference value to compute the errors of the other test cases.
The order of convergence (ROC) shows clearly first order convergence for § = 1.0 and
second order convergence for § = 0.5 (Tab. 2).

So far, it did not matter whether we use the standard block Gauss-Seidel coupling,
the fully coupled NS-CH system, or any of the introduced stabilizing terms 57, S;. All
of these methods give the same computational result as long as their inner fix-point
iteration converges. However, the number of needed iterations and the time for each it-
eration may vary among the methods. Therefore, we will next analyse the performance
of the four different solution methods:

o explicit: standard block Gauss-Seidel coupling (see Secs. 3.1-3.2)

e S1: with additional stabilization term .S; from Eq. (35)

14



T position error ROC T position error ROC

0.100 | 0.51280317 3.69E-03 0.100 | 0.50904344 7.45E-05

0.040 | 0.51064693 1.53E-03 0.96 0.040 | 0.50910657 1.14E-05 2.05

0.020 | 0.50989193 7.74E-04  0.98 0.020 | 0.50911533 2.66E-06  2.10

0.010 | 0.50950797 3.90E-04  0.99 0.010 | 0.50911762 3.70E-07 2.84

0.005 | 0.50931372 1.96E-04  0.99 0.005 | 0.50911799 0.00E-00 -
@) 0= 1.0 ®) 6 = 0.5

Table 2: Bubble position, errors and rate of convergence (ROC) for different time step sizes 7. The results
confirm first order convergence for § = 1.0 (a) and second order convergence for § = 0.5 (b).

explicit S1 S2 implicit
Iterations 85 52 55 28
CPU time (s) 116 71 89 95

Table 3: Performance of different solution methods.

e S2: with additional stabilization term Sy from Eq. (40)
e implicit: fully coupled NS-CH system (Egs. (25)-(28))

We use the same configuration as before, with ¢ = 0.005, M = 5 - 107%. We will use a
second order Crank-Nicolson time-stepping (¢ = 0.5) with 7 = 0.02 which gives com-
parable time discretization errors as in the original benchmark paper [4]

Table 3 shows the total number of iterations and CPU time in seconds for the differ-
ent simulations. One can see that the fully coupled system needs by far the least iter-
ations followed by the two stabilized schemes S1,52. The number of iterations for the
explicit method is more than three times higher than for the implicit system. However,
these differences in iterations are not directly reflected in the CPU timings. Apparently
one solution of the implicit system is almost three times as expensive as solving the
explicit system, reducing the advantage of the implicit system significantly.

Also the stabilized systems S1, S2 reduce the number of iterations compared to the
explicit scheme, while the resulting linear systems can be solved as fast as the explicit
system. Consequently, the methods S1 and S2 perform best in terms of CPU time.
Method S1 is the fastest.

In a next comparison we include higher surface tensions o and lower mobilities M,
since we expect our improved methods to be particularly fast in these cases. Figure 4
shows the number of iterations and CPU times for surface tensions increased by a factor
of 2 and 4. The number of iterations and CPU time increases for the explicit method
with increasing 0. For o = 98.0 the fix point iteration does not converge anymore. Also
the stabilized methods S1,5S2 become slower for increased o but they still converge.
Remarkably, the implicit method is not affected by the increase in o, neither the number
of iterations nor the CPU time changes significantly. A very similar picture can be seen
when the mobility is varied. In Fig.5 the mobility M is decreased by a factor of 2 and 4.
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Figure 4: Number of iterations and CPU times for different surface tensions . While the explicit scheme
does not even converge for large surface tensions, the implicit scheme seems unaffected.
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Figure 5: Number of iterations and CPU times for different mobilities A/. While the explicit scheme does
not even converge for low mobility, the implicit scheme seems unaffected.

Again the explicit method gets very slow and does not even converge for the smallest
M, whereas the implicit method remains almost unaffected.

6.3. Application to Taylor-Flow

We consider a Taylor flow simulation to further demonstrate the efficiency of the
proposed linearization techniques. Taylor flow is the flow of a single elongated bub-
ble through a narrow channel. Soon after its injection, the bubble assumes a quasi-
stationary state, i.e. a fixed shape which is only advected in the direction of the channel.
Many technical applications involve Taylor flow, e.g. catalytic converters [29], monolith
reactors [22], or microfluidic channels [24]. In these applications, bubbles of identical
size, shape, and distance to each other are typically required. Thus, the hydrodynamics
that lead to a perfect quasi-stationary bubble are of interest in these research areas. This
makes Taylor flow also interesting as a general benchmark for two phase flow methods
and indeed such a benchmark has been recently defined in 2D [2] as well as in 3D [23].

6.3.1. 2D Taylor-Flow
As in the above-mentioned benchmarks, we want to compute the quasi-stationary
state of a Taylor bubble driven through the channel by a pressure difference between
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Figure 6: Initial shape (top) and final shape (bottom) with flow streamlines of the Taylor bubble. The
bubble shape only changed slightly during the time evolution due to high surface tension pressing the
bubble against the channel wall.

inlet and outlet. An implicit Euler scheme is expected to converge fast to the stationary
solution due to its high numerical dissipativity. Therefore, we use the scheme proposed
in Sec. 3.3 (i.e. # = 1 and only one sub-iteration) in four different versions:

explicit: no stabilization (exactly as in Sec. 3.3)

S1: with additional stabilization term S; from Eq. (35)

S2: with additional stabilization term S, from Eq. (40)

implicit: fully coupled NS-CH system (Egs. (25)-(28) also with § = 1 and only one
sub-iteration)

As in [2] we use a moving frame of reference. Therefore we calculate the bubble
velocity u, by u, = ([,(1 —c)u) / (f,1 — ¢) and replace the velocity of the convective
terms in Eqgs. (21) and (24) by (u — u,). Hence the frame of reference moves with the
bubble and the quasi-stationary state becomes really-stationary. Similar to [2] we use
the parameters v; = v, = 10.0, p; = p = 1.0,0 = 5000, M = 3.0 - 1075 ¢ = 0.015,w = 1.0

To demonstrate the efficiency of the proposed linearization schemes, we use a sim-
ple adaptive time stepping. Our goal is to control the CFL number which can be accom-
plished by choosing something like 7 = 0.5/ max(Ju — u,|). Since the usage of u — u,
would not include movement due to CH diffusion we replace this term by the phase
field velocity 0,c/|V¢| and end up with the following time step selection:

Th =57 - max % (49)
where we choose the first time step, 70 = 10~

The initial condition for the bubble is as in [2]: A rod-like bubble of total length
5 is placed in the middle of a channel Q@ = [0,10] x [0,1], see Fig. 6. The pressure
difference between channel inflow and outflow is iteratively adjusted to give a bubble
velocity u, = 1. Though it is hard to see differences between the initial and final bubble
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shape with the naked eye, there is some significant bubble deformation going on. In
particular, the width of the thin liquid film between bubble and wall changes during
the time evolution.

Figure 7 shows the adaptive time steps (top) and the change in ¢ (bottom) for the
four methods. Let us first focus on the explicit scheme. Although the bubble is close to
its stationary shape, the explicit scheme becomes unstable for large time steps. Once 7
is larger than approximately 1073 the interface starts to oscillate (|0;c| increases), which
results in a rapid decrease of the time steps. After some calculations with small time
steps the bubble stabilizes and the time steps increase and the whole process starts over
again. This results in an up and down of time steps which renders the explicit scheme
almost useless. To reach the stationary state one would have to limit 7 from above to
approximately 10~%, which would require a hundred thousand of total time steps to
reach a sufficiently stationary state (say at ¢ = 100).

A similar instability occurs for the schemes S1 and S2 but at much larger time steps,
7 > 10~!. Hence adding either of the terms S; and S allows to increase the time steps al-
most by two orders of magnitude. To reach the stationary state one would have to limit
7 from above to approximately 10~!, which would require about 1000 total time steps
to reach the stationary state. Very impressing is the performance of the implicit scheme
which is stable for arbitrarily large time steps. Thus, while the bubble approaches the
stationary state, larger and larger time steps are possible. Hence, we obtain the station-
ary state in just 64 total time steps which makes absolutely worth the effort of solving
NS and CH in one large system.

We also took part in the Taylor flow benchmark paper [2] where we employed the
implicit scheme. We could come very close to the results of sharp interface models
and experimental data. However the sharp interface models needed several orders of
magnitude more time steps to reach the same end time. Hence, though they need a
lot more degrees of freedom, diffuse interface models can be computationally cheaper
and faster due to the superior possibility to couple flow equation and interface equation
implicitly.

6.3.2. 3D Taylor-Flow

Encouraged by the good results of the fully coupled time discretization for 2D-
Taylor, we venture to try a 3D Taylor flow example. We use the test setup from the
3D Taylor flow benchmark in [23]. Thereby a gas bubble of volume 17.5mm? is placed
in a domain of size 1.98mm x 11.88mm x 1.98mm. Exploiting the symmetry in x- and
z-direction, we restrict the calculations to a quarter of this domain. Further parameters
are in the liquid phase: p;, = 1195.6kg/m?, v, = 28.54 - 10~*kg/ms, in the gas bubble:
pc = 11.95kg/m3 vy = 28.54 - 10~°kg/ms, the surface tension is o = 66.69 - 103kg/s?
and the desired final bubble velocity is 205.57mm/s. For the diffuse interface model we
use M = 0.9-10?m3s/kg and ¢ = 0.03mm.

Again, we are looking for a stationary state. Hence, we use the fully coupled NS-
CH system (Egs. (25)-(28) with # = 1 and only one sub-iteration Starting with 7° =
2.0-107°s, we double the time step size every 50 time steps. A grid size of h = 0.087mm
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Figure 7: Comparison the Taylor-flow simulation with the four methods. Top: The adaptively chosen
time step over time. Bottom: The change in the phase field |0;c| over time. The stationary state is reached
when |0;¢| is sufficiently small. The explicit scheme becomes unstable already for small time steps. Only
the implicit scheme is stable for arbitrarily large time steps and comes very close to the stationary state.
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Figure 9: Quasi-stationary state of the Taylor bubble moving from the left to the right. The streamlines
show a recirculating flow pattern at the front and the rear of the bubble.

at the interface gives around 1 million total degrees of freedom. We use an MPI based
parallelization with 44 cores and the preconditioned FGMRES iteration described in Sec.
5. One time step is solved in approximately 1 minute. Figure 8 shows the time evolution
of |0,c| and the bubble velocity u,. The change in ¢ decays exponentially. We assume
that we are sufficiently close to the stationary solution if |9;c| < 1073,

The final bubble is depicted in Fig. 9 together with the streamlines showing a re-
circulating flow pattern at the front and the rear of the bubble. To compare the bubble
shape with the reference solution from [23], we cut the phase field vertically through the
middle of the domain. The zero level set of the phase field along this slice is compared to
the reference solution from DROPS [23] in Fig. 10 and shows a quite satisfactory agree-
ment. Note that these results are based on the implicit discretization scheme which here
allows around ?? times larger time steps than a sequential coupling of interface and

flow equation.

7. Conclusions

In this paper, we addressed time integration strategies for the diffuse interface model
for two-phase flows. We proposed a variant of the #-scheme together with three new
linearization techniques for the surface tension. These involve either additional stabi-
lizing terms (S, or S3), or a fully implicit coupling of the NS and CH equation.
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Figure 10: Final bubble shape at the rear(left) and the front(right) of the bubble. The line shows the
reference solution from DROPS|[23]. The crosses mark our diffuse interface solution. Both solutions are
aligned at the ends.

As in all two phase flow methods the coupling between the flow and the interface
equation plays a crucial role and limits the stability and the range of applicable time
steps significantly. This is particularly true if high surface tensions or small length scales
are considered. In the common case that interface and flow equation are coupled explic-
itly, we could show a time step restriction of the form

T < Ceo V3 M3 p2/3 (50)

which is very different to other two-phase flow models and in particular is independent
of the grid size. As in other two-phase flow models, this restriction can make compu-
tations extremely costly. Even in cases when the interface is almost stationary, too large
time steps will lead to oscillations and finally destruction of the interface.

We also showed that the proposed stabilization techniques could lift the above time
step restriction. The simple stabilizing terms S; and S; may allow an increase in time
step size of about two orders of magnitude. If a fix point or Newton sub-iteration is
used in each time step, these terms can reduce the number of iterations significantly,
while not affecting the accuracy.

Very impressing is the performance of the fully implicit scheme which is stable for
arbitrarily large time steps. We demonstrate in a Taylor flow application that this supe-
rior coupling between flow and interface equation can render diffuse interface models
even computationally cheaper and faster than sharp interface models.

Apart from increasing the computational performance, the improved time integra-
tion schemes allow to choose lower CH mobility, which may come closer to physically
correct values. Hence, the mean curvature flow included in the CH equation is sup-
pressed which may lead to more accurate computational results.
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