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A Spectral-Lagrangian Boltzmann Solver for a Multi-EnergyLevel Gas
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Abstract

In this paper a spectral-Lagrangian method for the Boltzmann equation for a multi-energy level gas is proposed.
Internal energy levels are treated as separate species and inelastic collisions (leading to internal energy excitation and
relaxation) are accounted for. The formulation developed can also be used for the case of a mixture of monatomic
gases without internal energy (where only elastic collisions occur). The advantage of the spectral-Lagrangian method
lies in the generality of the algorithm in use for the evaluation of the elastic and inelastic collision operators. The
computational procedure is based on the Fourier transform of the partial elastic and inelastic collision operators and
exploits the fact that these can be written as weighted convolutions in Fourier space with no restriction on the cross-
section model. The conservation of mass, momentum and energy during collisions is enforced through the solution
of constrained optimization problems. Numerical solutions are obtained for both space homogeneous and space in-
homogeneous problems. Computational results are comparedwith those obtained by means of the DSMC method in
order to assess the accuracy of the proposed spectral-Lagrangian method.

Keywords: Boltzmann Equation, Fourier Transform, Spectral Methods,Lagrange Multipliers, Rarefied
Gas-Dynamics

1. Introduction

Rarefied gas-dynamics has a broad domain of applications ranging from the study of the early phase of spacecraft
entry into planetary atmospheres to the investigation of evaporaton and condensation phenomena [11, 5, 17].

The degree of rarefaction in a flow depends on the local value of the Knudsen numberKn [11]. This is defined as
the ratio between the mean free path and a characteristic length of the problem. The higher is the value of the Knudsen
number, the more important rarefied gas effects are. When the Knudsen number exceeds values of the orderof 0.01,
rarefied gas effects start to become important and attempts to compute rarefied flows by means of a hydrodynamic
description based on the Navier-Stokes equations can give inaccurate results. This is precisely due to the failure of
Newton’s and Fourier’s law for the stress tensor and the heatflux vector, respectively, in the rarefied regime [15]. When
the medium (gas) is dilute, the Boltzmann equation providesan adequate kinetic description [11, 15, 13, 21]. The
Boltzmann equation is an integro-differential equation that describes the evolution in the phase-space of the velocity
distribution function of the gas species. Once the distribution function known, it is possible to compute macroscopic
observables such as density and hydrodynamic velocity by means of suitable moments.
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Saint-Genèse, Belgium,munafo@vki.ac.be

2Postdoctoral Fellow, Department of Mathematics, The University of Texas at Austin, 201 E. 24th Street, Austin, TX 78712, USA,
haack@math.utexas.edu

3Professor, Department of Mathematics & The Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin,
201 E. 24th Street, Austin, TX 78712, USA,gamba@math.utexas.edu

4Associate Professor, Aeronautics and Aerospace Department, von Karman Institute for Fluid Dynamics, Chaussée de Waterloo 72, 1640
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The solution of the Boltzmann equation by means of numericaltechniques represents a computational challenge.
This is due to the integro-differential nature of the equation. Another source of difficulty is the high-dimensionality
of the problem, since numerical solutions must be sought in the phase-space. In the 1960’s the DSMC (Direct-
Simulation-Monte-Carlo) method [7] was developed for obtaining stochastic solutions of the Boltzmann equation.
The former is a particle-based technique and has been provento be accurate [24]. However, it shares the drawbacks
of stochastic methods, the main one being the presence of noise in the numerical results. This problem affects, in
particular, the accuracy of the solution for low speed and unsteady flows. At the time when the DSMC method was
being formulated, the computational power available was quite limited. Deterministic solutions of the Boltzmann
equation could be obtained only in the case of model Boltzmann equations [32] where the Boltzmann collision oper-
ator was replaced by simpler phenomenological expressions(such as that formulated by Bhatnagar, Gross and Krook
- BGK model [6]). The continuous enhancement of computer performance has encouraged the development of deter-
ministic numerical methods for the Boltzmann equation (with no simplifying assumption on the collision operator).
These comprise, among all, discrete velocity models [33, 30, 25], numerical kernel methods [31, 27] and spectral
methods [9, 19, 20, 16, 22]. The main advantage of a deterministic method over the DSMC technique is that the
numerical solution obtained is not affected by noise. Deterministic methods can also be applied toflow problems in
the hydrodynamic and transition regime, where the use of theDSMC method becomes prohibitively expensive [26].

The purpose of the paper is to extend an existing spectral-Lagrangian method for the Boltzmann equation for a pure
gas without internal energy [19, 20] to a multi-energy levelgas. The proposed numerical method can be used for any
cross-section model, accounts for elastic and inelastic collisions and allows for the conservation of mass, momentum
and energy during collisions. The evaluation of the partialelastic and inelastic collision operators is performed in a
fully deterministic manner based on their Fourier transform. In the authors’ opinion, this is an important aspect, as in
discrete velocity models the same operation is often accomplished stochastically by means of Monte-Carlo integration
techniques.

The paper is structured as follows. In Sect. 2 the physical model is introduced. In Sect. 3 some important features
of the Fourier transform of the partial elastic and inelastic collision operators are obtained. The numerical method is
described in detail in Sect. 4. Computational results are given in Sect. 5. Conclusions are outlined in Sect. 6.

2. Physical model

2.1. Assumptions
The gas is composed of identical particles with internal degrees of freedom. Based on a quasi-classical approach,

it is assumed that the particles may have only certain discrete internal energy levels (treated as separate species).
The indices associated to the internal energy levels (species) are stored in the setIS = {1, . . . ,Ns} (with Ns being
the number of species). The quantitiesmi , Ei andgi indicate, respectively, the mass, the internal energy and the
degeneracy of the speciesi ∈ IS.

The following assumptions are introduced for the physical model:

1. The gas is dilute and composed of point particles.
2. There are no external forces.
3. The inert particle interactions are binary collisions:

i + j = k+ l, i, j, k, l ∈ IS. (1)

• Elastic collision:i = k and j = l.

• Inelastic collision: ( j, k, l) ∈ I in
i . The setI in

i stores the ordered triplets( j, k, l) for all the possible
inelastic collisions involving the speciesi as the first reactant in Eq. (1) and is defined as:

I in
i =



















( j, k, l) ∈
















IS × IS × IS�
⋃

s∈IS
(s, i, s)



































, i ∈ IS. (2)

The net internal energy trough the collision is defined by theexpression∆E kl
i j = Ek + El − Ei − E j . Notice that

the mass is identical for all particles (m). The species index (in Eqs. (1) - (2) and in what follows) is kept for
generality and to consider the particular case of a mixture of monatomic gases without internal energy.

4. The reactive collisions are not accounted for.
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2.2. The Boltzmann equation

Based on the hypothesis introduced in Sect. 2.1, a Boltzmannequation can be written for the velocity distribution
function fi(x, v, t) of the speciesi (in what follows, only the velocity dependence of the velocity distribution function
is explicitly stated):

∂ fi
∂t
+ v · ∂ fi

∂x
= Qel

i (v) + Q in
i (v), i ∈ IS, (3)

where the operators in Eq. (3) are, respectively, the elastic and inelastic collision operators for the speciesi:

Qel
i (v) =

∑

j ∈IS
Q i j (v), Q in

i (v) =
∑

( j, k, l) ∈I in
i

Qkl
i j (v), i ∈ IS. (4)

The partial elastic and inelastic collision operators are defined as:

Q i j (v) =
∫∫

w ∈ℜ 3

ω′ ∈S2

[

fi(v′) f j(w′) − fi(v) f j(w)
]

σi j u dω′ dw, i, j ∈ IS, (5)

Qkl
i j (v) =

∫∫

w ∈ℜ 3

ω′ ∈S2

[

gi g j

gk gl
fk(v′) fl(w′) − fi(v) f j(w)

]

σ kl
i j u dω′ dw, i ∈ IS, ( j, k, l) ∈ I in

i . (6)

In Eqs. (5) - (6), the quantitiesv andw are, respectively, the velocities of the speciesi and j, u is the relative velocity
magnitudeu = |v − w|, ω′ is the unit vector along the scattering direction, andσi j andσ kl

i j are, respectively, the
elastic and inelastic differential cross-sections. In Eqs. (5) - (6) (and in what follows), primed variables refer to post-
collisional values. These are related to pre-collisional values through the conservation of mass, momentum and energy.
The elastic and inelastic differential cross-sections (σi j andσ kl

i j , respectively) satisfy the following micro-reversibility
relations obtained from the application of Fermi’s golden rule [14]:

σi j u dω′ dw dv = σi j u′ dω dw′ dv′, i, j ∈ IS (7)

gi g j σ
kl
i j u dω′ dw dv = gk gl σ

i j
kl u′ dωdw′ dv′, i ∈ IS, ( j, k, l) ∈ I in

i . (8)

Equation (3) may also be used for the case of a mixture of monatomic gases without internal energy (Ei = 0, i ∈
IS). In this situation, all collisions are elastic and the inelastic collision operatorQ in

i (v) in Eq. (3) is zero.

2.3. Collisional invariants

During an elastic encounter, the number of particles in eachinternal energy level, the total momentum and the
total energy are conserved. This leads to the introduction of the elastic collisional invariants [21]:

ψ el r
i = mi δi r , r ∈ IS, (9)

ψ
el Ns+ν

i = mi vα, ν ∈ {1, 2, 3} , α ∈ {x, y, x} , (10)

ψ
el Ns+4
i =

1
2

mi v2, i ∈ IS, (11)

where the correspondence between the indicesν andα in Eq. (10) is such thatν = 1, 2, 3 for α = x, y, z, respectively.
In Eqs. (9) - (11) the symbolδi r stands for Kronecker’s delta, whilevα andv2 are, respectively, the generic Cartesian
component and the magnitude-squared of the velocity vectorv. After introducing the set of indices for the elastic
collisional invariantsC el = {1, . . . ,Ns + 4}, it is possible to write the relationψ el ν

i + ψ el ν
j = ψ

el ν
i + ψ el ν

j (ν ∈ C el) in
order to express the conservation of the number of particlesin each internal energy level, total momentum and energy
for the elastic collisioni + j = i + j. It can be shown that the kernel of the elastic collision operatorQel

i (v) in Eq. (3)
is spanned by the set of elastic collisional invariants [21]:

∑

i ∈IS

∫

v ∈ℜ 3

ψ el ν
i Qel

i (v) dv = 0, ν ∈ C el. (12)
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During an inelastic encounter, due to the transitions amongthe internal energy levels, the total number of particles,
momentum and energy are conserved. This leads to the introduction of the inelastic collisional invariants [21]:

ψ in 1
i = mi , (13)

ψ in 1+ν
i = mi vα, ν ∈ {1, 2, 3} , α ∈ {x, y, x} , (14)

ψ in 5
i =

1
2

mi v2 + Ei , i ∈ IS. (15)

After introducing the set of indices for the inelastic collisional invariantsC in = {1, . . . , 5}, it is possible to write the
relationψ in ν

i + ψ in ν
j = ψ in ν

k + ψ in ν
l (ν ∈ C in) in order to express the conservation of the total number of particles,

momentum and energy for the inelastic collisioni + j = k+ l. It can be shown that the kernel of the inelastic collision
operatorQ in

i (v) in Eq. (3) is spanned by the set of inelastic collisional invariants [21]:

∑

i ∈IS

∫

v ∈ℜ 3

ψ in ν
i Q in

i (v) dv = 0, ν ∈ C in. (16)

2.4. Conserved macroscopic moments

The elastic and inelastic collisional invariants (Eqs. (9)- (11) and Eqs. (13) - (15)) introduced in Sect. 2.3 allows
for the introduction of the following flow macroscopic quantities (in the hydrodynamic frame) as average microscopic
quantities:

ρ j =
∑

i ∈IS

∫

v ∈ℜ 3

ψ el i
j f j(v) dv, j ∈ IS, ρ =

∑

i ∈IS

∫

v ∈ℜ 3

ψ in 1
i fi(v) dv, (17)

ρVα =
∑

i ∈IS

∫

v ∈ℜ 3

ψ
el Ns+ν

i fi(v) dv, ρVα =
∑

i ∈IS

∫

v ∈ℜ 3

ψ in 1+ν
i fi(v) dv, (18)

ρetr + ρ
V 2

2
=

∑

i ∈IS

∫

v ∈ℜ 3

ψ
el Ns+4
i fi(v) dv, ρetr + ρeint + ρ

V 2

2
=

∑

i ∈IS

∫

v ∈ℜ 3

ψ in 4
i fi(v) dv, (19)

with α ∈ {x, y, x} andν ∈ {1, 2, 3} in Eq. (18). In Eqs. (17) - (19), the quantityρ j is the density of the species
j, ρ =

∑

i ∈IS ρi is the gas (or mixture) density,Vα andV 2 are, respectively, the generic Cartesian component and
the magnitude-squared of the hydrodynamic velocity vectorV, while etr andeint are, respectively, the gas specific
translational and internal energy. The macroscopic moments defined in Eqs. (17) - (19) represent the quantities that
are conserved in a flow in view of the properties satisfied by the elastic and inelastic collision operators given in Eq.
(12) and Eq. (16), respectively.

2.5. The Maxwell-Boltzmann velocity distribution function

Under thermodynamic equilibrium conditions, the solutionof the Boltzmann equation (Eq. (3)) is given by the
Maxwell-Boltzmann velocity distribution function [15]:

f eq
i (v) =

ρ
eq
i

mi

(

mi

2π kB T eq

)3/2

exp

(

−mi |v − V| 2
2kB T eq

)

, i ∈ IS, (20)

where the superscript eq stands for equilibrium. In Eq. (20), T eq is the gas (equilibrium) temperature andkB Boltz-
mann’s constant. The density of the speciesi at equilibrium is obtained through the Boltzmann distribution law:

ρ
eq
i

ρ eq
=

gi exp

(

− Ei

kB T eq

)

Q int
, i ∈ IS, (21)
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where the gas internal partition function is given by:

Q int =
∑

i ∈IS
gi exp

(

− Ei

kB T eq

)

, (22)

When the velocity distribution function is Maxwell-Boltzmann (Eq. (20)), the gas specific translational and internal
energy are given in the expressions [15]:

etr eq =
1
ρ eq

∑

i ∈IS

3
2

neq
i kB T eq, (23)

eint eq =
1

Q int

∑

i ∈IS

Ei

mi
gi exp

(

− Ei

kB T eq

)

, (24)

where the number density of the speciesi in Eq. (23) isneq
i = ρ

eq
i /mi . The gas pressure is given by Dalton’s law of

partial pressures,peq =
∑

i ∈IS neq
i kB T eq.

The above equations (with the exception of Eq. (21)) can be also used for the particular case of a mixture of
monatomic gases without internal energy. In this situation, the gas specific internal energy (Eq. (24)) is zero.

2.6. Non-equilibrium

Outside of equilibrium conditions, translational and internal temperatures are introduced:

• Species translational temperature components:

Ti α =
mi

ni kB

∫

v ∈ℜ 3

(vα − Vα) 2 fi(v) dv, i ∈ IS, α ∈ {x, y, x} . (25)

• Species translational temperature:

Ti =
1
3

∑

α ∈ {x,y,x}
Ti α, i ∈ IS. (26)

• Translational temperature components:

Tα =
1
n

∑

i ∈IS
ni Ti α, α ∈ {x, y, x} . (27)

• Translational temperature:

T =
1
3

∑

α ∈ {x,y,x}
Tα, i ∈ IS. (28)

• Internal temperature:
∑

i ∈IS
ni Ei = ρeint eq(T int). (29)

The gas number density in Eq. (27) isn =
∑

i ∈IS ni . Notice that Eq. (29) only provides an implicit definition
for the internal temperature. This is due to the fact that thegas specific internal energy (Eq. (24)) is a non-linear
function of the temperature. The gas pressure is always computed by means of Dalton’s law of partial pressures,
p =

∑

i ∈IS ni kB Ti . Other macroscopic moments of interest in non-equilibriumconditions are:

• Species diffusion velocity:

Ui =
1
ni

∫

v ∈ℜ 3

(v − V) fi(v) dv, i ∈ IS. (30)
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• Viscous stress tensor:

τ =
∑

i ∈IS

∫

v ∈ℜ 3

mi (v − V) ⊗ (v − V) fi(v) dv − p I , (31)

whereI is the second order identity tensor.

• Heat flux vector:

q =
∑

i ∈IS

∫

v ∈ℜ 3

(v − V)

(

1
2

mi |v − V|2 + Ei

)

fi(v) dv. (32)

3. The Fourier transform of the partial elastic and inelastic collision operators

The numerical method proposed in Sect. 4 makes use of the Fourier transform of the partial elastic and inelastic
collision operators (Eqs. (5) - (6)). The starting point is the weak form of the partial elastic and inelastic collision
operators [15, 8]:

∫

v ∈ℜ 3

Φi(v) Q i j (v) dv =
∫∫∫

v,w∈ℜ 3

ω′ ∈S2

[

Φi(v′) − Φi(v)
]

fi(v) f j(w)σi j u dω′ dw dv, i, j ∈ IS, (33)

∫

v ∈ℜ 3

Φi(v) Qkl
i j (v) dv =

∫∫∫

v′ ,w′∈ℜ 3

ω ∈S2

Φi(v) fk(v′) fl(w′)σ
i j
kl u′ dωdw′ dv′ −

∫∫∫

v,w ∈ℜ 3

ω′ ∈S2

Φi(v) fi(v) f j(w)σ kl
i j u dω′ dw dv,

i ∈ IS, ( j, k, l) ∈ I in
i , (34)

where the functionΦi(v) in Eqs. (33) - (34) is a smooth test function of the velocity vectorv. The substitution of a
Fourier velocity modeΦi(v) = (2π)−3/2 exp(−ı ζ ·v) in Eqs. (33) - (34) gives the Fourier transform of the partial elastic
and inelastic collision operators.

Remark. For the partial elastic collision operator Qi j (v) the weak form (Eq. (33)) is obtained by applying the usual
technique of swapping between primed and un-primed variables in the integral and by exploiting micro-reversibility
(Eq. (7)). Since in an elastic collision there are no transitions between the internal energy levels, swapping between
primed and un-primed variables has no effect on the species index. This allows for casting the weak form into a
unique integral unloving the species velocity distribution function in the pre-collision state. The same result cannot
be obtained the case of an inelastic collision (swapping between primed and un-primed variables leads to a species
index change). The weak form of the partial inelastic collision operator Qkl

i j (v) (Eq. (34)) is obtained by applying
micro-reversibility (Eq. (8)) to the gain part of the operator, while the loss part is left unchanged. As discussed by
Dellacherie [14], alternative expressions to that given inEq. (34) can be obtained. However, the one given in Eq.
(34) is the most suited for the present work.

Proposition 3.1. The Fourier transformQ̂ i j (ζ) and Q̂kl
i j (ζ) of the partial elastic and inelastic collision operators

(Q i j (v) and Qkl
i j (v), respectively) can be written as weighted convolutions in Fourier space:

Q̂ i j (ζ) =
∫

ξ∈ℜ 3

f̂i (ζ − ξ) f̂ j(ξ) Ŵi j (ζ, ξ) dξ, i, j ∈ IS, (35)

Q̂kl
i j (ζ) =

∫

ξ∈ℜ 3

[

f̂k (ζ − ξ) f̂l(ξ) Ĝkl
i j (ζ, ξ) − f̂i (ζ − ξ) f̂ j(ξ) L̂ kl

i j (ξ)
]

dξ, i ∈ IS, ( j, k, l) ∈ I in
i . (36)

In Eqs. (35) - (36), the quantitieŝfi , f̂ j , f̂k and f̂l are, respectively, the Fourier transform of the velocity distribution
functions of the species i, j, k and l, respectively, while the functionsŴi j (ζ, ξ), Ĝkl

i j (ζ, ξ) andL̂ kl
i j (ξ) are convolution
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weights defined as:

Ŵi j (ζ, ξ) =
1

(√
2π

)3

∫∫

u ∈ℜ 3,

ω′ ∈S2

uσi j

{

exp

[

−ı
µi j

mi
ζ · (u′ − u

)

]

− 1

}

exp(−ı ξ · u) dω′ du, i, j ∈ IS, (37)

Ĝkl
i j (ζ, ξ) =

1
(√

2π
)3

∫∫

u′ ∈ℜ 3,

ω ∈S2

u′ σ i j
kl exp

[

−ı
µi j

mi
ζ · (u − u′

)

]

exp
(−ı ξ · u′) dωdu′, (38)

L̂ kl
i j (ξ) =

1
(√

2π
)3

∫∫

u ∈ℜ 3,

ω′ ∈S2

uσ kl
i j exp(−ı ξ · u) dω′ du, i ∈ IS, ( j, k, l) ∈ I in

i . (39)

where the symbolµi j in Eqs. (37) - (38) stands for the reduced mass of the species iand j, µi j = mi mj/(mi + mj).
Notice that in obtaining Eq. (38) the relationµi j = µkl (valid for a multi-energy level gas) has been exploited.

Proof. The direct substitution ofΦi(v) = (2π)−3/2 exp(−ı ζ · v) in Eqs. (33) - (34) gives, after some algebra, the
thesis.

The above proposition, leads to the following observations:

1. The convolution weightŝWi j (ζ, ξ), Ĝkl
i j (ζ, ξ) and L̂ kl

i j (ξ) in Eqs. (37) - (39) only depend on the differential
cross-section. No dependence on the value of the species velocity distribution function occurs. This fact can be
exploited to develop a computational method (see Sect. 4) that makes use of Eqs. (35) - (36) for the numerical
evaluation of the collision operators (the weights associated to each collision can be pre-computed).

2. The convolution weightŝGkl
i j (ζ, ξ) and L̂ kl

i j (ξ) in Eq. (36) are associated to the gain and loss part of the par-
tial inelastic collision operatorQkl

i j (v) (Eq. (6)) and cannot be directly summed to give a unique convolu-
tion weight. This operation is possible only when the collision is elastic. For this case, it can be shown that
Ŵi j (ζ, ξ) = Ĝ i j

i j (ζ, ξ) − L̂ i j
i j (ξ).

3. Since in the definition provided by Eqs. (37) - (39) no assumption is made on the differential cross-section,
anisotropic interactions can also be taken into account.

In the case of isotropic interactions (differential cross-section depending only on the relative velocity magnitudeu),
the mathematical expressions for the convolution weightsŴi j (ζ, ξ), Ĝkl

i j (ζ, ξ) and L̂ kl
i j (ξ) given in Eqs. (37) - (39)

simplify.

Proposition 3.2. The convolution weightŝWi j (ζ, ξ), Ĝkl
i j (ζ, ξ) andL̂ kl

i j (ξ) appearing in the Fourier transform̂Q i j (ζ)
and Q̂kl

i j (ζ) of the partial elastic and inelastic collision operators (Qi j (v) and Qkl
i j (v), respectively), reduce to one-

dimensional integrals on the pre and post-collisional relative velocity magnitudes (u and u′, respectively) in the case
of isotropic interactions:

Ŵi j (ζ, ξ) = 4
√

2π
∫

u∈ [0,+∞)

σi j

[

j0

(

ζ
µi j

mi
u

)

j0

(
∣

∣

∣

∣

∣

ξ − ζ
µi j

mi

∣

∣

∣

∣

∣

u

)

− j0 (ξ u )

]

u3 du, i, j ∈ IS, (40)

Ĝkl
i j (ζ, ξ) = 4

√
2π

∫

u′ ∈ [u∗′ i j
kl ,+∞)

σ
i j
kl j0

(

ζ
µi j

mi

√

u′ 2 + 2∆E kl
i j /µi j

)

j0

(
∣

∣

∣

∣

∣

ξ − ζ
µi j

mi

∣

∣

∣

∣

∣

u′
)

u′ 3 du′, (41)

L̂ kl
i j (ξ) = 4

√
2π

∫

u∈ [u∗ kl
i j ,+∞)

σ kl
i j j0 (ξ u ) u3 du, i ∈ IS, ( j, k, l) ∈ I in

i . (42)

In Eqs. (40) - (42), the function j0(x) = sin(x)/x is the zero-order spherical Bessel function (or un-normalized sinc
function) while the quantitiesζ andξ are, respectively, the magnitudes of the vectorsζ andξ. The lower limits u∗′ i jkl
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and u∗ kl
i j for the integrals defining the gain and loss inelastic convolution weights (̂Gkl

i j (ζ, ξ) andL̂ kl
i j (ξ), respectively)

in Eqs. (41) - (42) are:

u∗′ i jkl =



























√

−
2∆E kl

i j

µi j
i f ∆E kl

i j < 0,

0 i f ∆E kl
i j ≥ 0,

u∗ kl
i j =



























√

2∆E kl
i j

µi j
i f ∆E kl

i j > 0,

0 i f ∆E kl
i j ≤ 0.

(43)

Proof. The use of a spherical coordinate system in the integrals over u, u′, ω andω′ in Eqs. (37) - (39) gives, after
some algebra, the thesis. As an example, the integral overω′ in Eq. (39) defining the convolution weightL̂ kl

i j (ξ) can
be computed by adopting a spherical coordinate system for the vectorω′ with the pole aligned along the direction of
the vectorξ. A similar procedure can be used for the other integrals in Eqs. (37) - (39).

4. Numerical method

The numerical method proposed for solving the Boltzmann equation (Eq. (3)) exploits the particularly simple
structure assumed by the Fourier transform of the partial elastic and inelastic collision operators (weighted convolution
in Fourier space - Eqs. (35) - (36)). Only zero/one-dimensional flows are considered and the velocity spaceis always
kept three-dimensional. This can be justified in view of the fact that the main purpose of the paper is to develop an
algorithm for the evaluation of the collision operators allowing for the conservation of mass, momentum and energy
during collisions (Eqs. (12) and (16)). The extension of themethod to multi-dimensional flows is trivial, as the
aforementioned algorithm remains the same whether the flow is multi-dimensional or not.

In the case when the flow is one-dimensional and its directionis aligned with thex axis of a Cartesian reference
frame (O; x, y, z), the Boltzmann equation (Eq. (3)) becomes:

∂ fi
∂t
+ vx

∂ fi
∂x
= Qel

i (v) + Q in
i (v), i ∈ IS. (44)

In order obtain numerical solutions to Eq. (44), the following steps have to be taken:

1. Discretization of the phase-space,
2. Choice of a time-marching method,
3. Development of a computational algorithm for an efficient evaluation of the collision operators in Eq. (44)

allowing to satisfy the conservation requirements stated in Eqs. (12) and (16).

All the items of the previous list are described in Sects. 4.1- 4.3.

4.1. Discretization of the phase-space

A Cartesian reference frame (O; vx, vy, vz) is introduced for the velocity space. The former is discretized by con-
sidering points falling inside a cube (with side semi-length L v) centered at the originO:

V =
{

v = (vx, vy, vz) ∈ ℜ3 | vα ∈ [−L v, L v), α ∈ {x, y, x}
}

. (45)

The individual discrete velocity nodes belonging to the setV in Eq. (45) are obtained as follows. Let∆ v be the
velocity mesh spacing, defined as:

∆ v =
2 L v

Nv
, (46)

whereNv is the number of velocity nodes along thevx, vy andvz directions, leth = (h x, hy, hz) be the vector of indices
associated to the discrete velocity nodev h = (vhx, vhy, vhz) and letIV be the setIV = {0, . . . ,Nv − 1}. The discrete
velocity nodev h belonging to the setV is computed as follows:

v h = −L v

(

i vx + i vy + i vz

)

+ h∆ v, h = (h x, hz, hy) ∈ I 3
V. (47)
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In Eq. (47), the vectorsi vx, i vy andi vz are, respectively, the unit vectors of thevx, vy andvz axes of the Cartesian frame
(O; vx, vy, vz), and the setI 3

V is defined asI 3
V = IV xIV xIV. A vector of integration weightsΩh = (Ω hx,Ω hy,Ω hz)

is introduced and associated to each discrete velocity nodev h.
As mentioned before, the algorithm proposed for the evaluation of the collision operators (given in Sect. 4.3)

is based on the Fourier transform of the former (Eqs. (35) - (36)). This is the reason why a Fourier velocity space
(associated to the velocity space described above) is introduced and discretized as follows. A Cartesian reference
frame (O; ζx, ζy, ζz) in the Fourier velocity space is introduced and the points falling inside a cube (with semi-length
L η) centered at the originO are considered:

VF =
{

ζ = (ζx, ζy, ζz) ∈ ℜ3 | ζα ∈ [−L η, L η), α ∈ {x, y, x}
}

(48)

The discrete Fourier velocity nodes belonging to the setVF in Eq. (48) are obtained as follows. Let∆ η be the Fourier
velocity mesh spacing, defined as:

∆ η =
2 L η

Nv
, (49)

and letε = (ε x, ε y, ε z) be the vector of indices associated to the discrete Fouriervelocity nodeζ ε = (ζ ε x, ζ ε y, ζ ε z).
The discrete Fourier velocity nodeζ ε belonging to the setVF is computed as follows:

ζ ε = −L η

(

i ζx + i ζy + i ζz

)

+ ε∆ η, ε = (ε x, ε y, ε y) ∈ I 3
V. (50)

In Eq. (50), the vectorsi ζx, i ζy andi ζz are, respectively, the unit vectors of theζx, ζy andζz axes of the Cartesian frame
(O; ζx, ζy, ζz). A vector of integration weightsΩ ε = (Ω ε x,Ω ε y,Ω ε z) is introduced and associated to each Fourier
velocity nodeζ ε.

In the present work, the semi-lengthL v and the number of nodesNv along each direction of the velocity space are
considered as input parameters. The velocity mesh spacing∆ v is then computed through Eq. (46). The semi-length
L η and the mesh spacing∆ η of the Fourier velocity space are found by imposing in Eq. (49) the condition:

∆ η∆ v =
2π
Nv
. (51)

The substitution of the expressions for∆ v and∆ η (Eq. (46) and Eq. (49), respectively) in Eq. (51) leads to:

L η =
πNv

2 L v
. (52)

In Eq. (52), the semi-lengthL η is completely determined from the values of the input parameters (Nv andL v). Once
L η computed, the Fourier velocity mesh spacing∆ η is then found from Eq. (49). The choose of a uniform mesh
along each direction of the velocity spaces (physical and Fourier) and of the condition given by Eq. (51) are due to the
use of the Fast-Fourier-Transform (FFT) algorithm [19, 20]for the evaluation of the Fourier and the inverse Fourier
transforms.

The position space is discretized by considering points belonging to the following subsetX of thex axis:

X = {

(x, 0, 0) ∈ ℜ | x ∈ [−L−x , L
+
x ]

}

, (53)

where the quantitiesL−x andL−x in Eq. (53) are both positive. A finite volume grid can be defined based on Eq. (53).
Let Nx be the number of nodes in the position space, s be the index corresponding to the nodexs in the discretized
position space andIX the setIX = {0, . . . ,Nx − 2}. The centroid locationxc

s and the volume∆xs of the cell s (volume)
contained between the nodes s and s+ 1 are computed as:

xc
s =

1
2

(xs+1 + xs), (54)

∆xs = xs+1 − xs, s ∈ IX. (55)

The time domain is discretized as follows. LetNT be the number time-steps,∆tn the time-step value associated to
the time-levelt n andIT the setIT = {0, . . . ,NT}. The set of nodes of the discretized time-domain is then:

T =














t n =
∑

m≤n

∆tm ∈ ℜ |n,m ∈ IT














. (56)
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For sake of later convenience, it is useful to introduce the following compact notation for the value of the velocity
distribution function of the speciesi at the point (xc

s, v h) of the discretized phase-space at the discrete time-levelt n:

fi
n
sh = fi(xc

s, v h, t
n), i ∈ IS, v h ∈ V, xc

s ∈ X, t n ∈ T . (57)

4.2. Time-marching method

In order to obtain numerical solutions to Eq. (44), the methods of lines is employed [23]. The Finite volume
method is firstly applied to Eq. (44) (written for each discrete velocity node as given in Eq. (47)) in order to perform
the discretization in the position space. Secondly, the semi-discrete set of equations obtained is integrated in time by
means of a time-marching method. In the present work, explicit time-integration methods are considered due their
ease of implementation and low memory requirements when compared with implicit methods [28, 29].

The application of the Finite volume method to Eq. (44) written for the discrete velocity nodev h leads to the
following semi-discrete equation:

∆xs
∂ fi sh

∂t
+ Hi s+ 1

2 h − Hi s− 1
2 h = ∆xs Q i sh, i ∈ IS, s ∈ IX, h ∈ I 3

V, (58)

whereHi s+ 1
2 h andHi s− 1

2 h are, respectively, the numerical fluxes at the interfaces s+ 1/2 and s− 1/2 of the cell s,∆xs

is the volume of the cell s (Eq. (55)) andQ i sh represents the sum of the elastic and inelastic collision operators for
the speciesi evaluated at the node (xc

s, v h) of the discretized phase-space (the algorithm for its numerical evaluation is
explained in Sect. 4.3) The numerical fluxHi s+ 1

2 h in Eq. (58) is computed by means of a second order slope-limited
upwind scheme [23]:

Hi s+ 1
2 h = a+h fi

L
sh + a−h fi

R
s+1h, i ∈ IS, s ∈ IX, h ∈ I 3

V, (59)

wherea+h anda−h in Eq. (59) are, respectively, the positive and negative wave speeds:

a+h = max(vhx, 0), (60)

a−h = min(vhx, 0), h x ∈ IV, (61)

and fi
L
sh and fi

R
s+1h are the reconstructed values of the distribution function at the left and right sides, respectively, of

the interface s+ 1/2 between the cells s and s+ 1. The reconstructed values of the distribution functions (fi L
sh and

fi
R
s+1h in Eq. (59)) are obtained by means of a limited MUSCL reconstruction [35]:

fi
L
sh = fi sh +

1
2
φ(r L)

(

fi sh − fi s−1h
)

, (62)

fi
R
s+1h = fi s+1h −

1
2
φ(r R)

(

fi s+2h − fi s+1h
)

, i ∈ IS, s ∈ IX, h ∈ I 3
V. (63)

In Eqs. (62) - (62),φ(r) is a slope limiter function (such as those proposed by van Albada, van Leeret al [23]) andr L

andr R are, respectively, the left and right ratios of consecutivedifferences:

r L =
fi s+1h − fi sh

fi sh − fi s−1h
, (64)

r R =
fi s+1h − fi sh

fi s+2h − fi s+1h
, i ∈ IS, s ∈ IX, h ∈ I 3

V. (65)

Equation (58) is integrated in time by means of the Forward Euler method [23]:

fi
n+1
sh = fi

n
sh −

∆t s

∆xs

[(

Hi
n
s+ 1

2 h
− Hi

n
s− 1

2 h

)

− ∆xs Qi
n
sk

]

, i ∈ IS, s ∈ IX, h ∈ I 3
V, n ∈ IT . (66)

The time-step∆t s in Eq. (66) is computed according to [28]:

∆t s =
CFL

1
∆t c
+

L v

∆xs

, s ∈ IX, (67)
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where CFL in Eq. (67) is the Courant-Friedrich-Lewi number [23] and∆t c is the collision time-step. Equation (67)
can be derived by means of an entropy dissipation analysis and is strictly valid for a model Boltzmann equation with a
BGK collision operator [28]. However, the use of Eq. (67) forthe evaluation of the time-step did not lead to particular
problems while performing the calculations presented in the paper.

As alternative to the Forward Euler method, multi-stage schemes (such as Runge-Kutta methods [23]) could be
considered for the time-integration of Eq. (58). Boundary conditions are applied through ghost cells [23].

4.3. Algorithm for the evaluation of the collision operators

In order to evaluate the elastic and inelastic collision operators (Eq. (4)) on the discrete velocity nodes given by
Eq. (47), the following algorithm is proposed. For the elastic collision i+ j = i+ j, the partial elastic collision operator
Q i j (v) is computed as follows:

1. Compute the Fourier transform of the velocity distribution function of the speciesi and j:

f̂i, j(ζ) = F ( fi, j(v)) → O(N 3
v logNv).

2. ForN 3
v discrete Fourier velocity nodes compute the Fourier transform of the partial elastic collision operator by

means of the weighted convolution in Fourier space (Eq. (35)):

Q̂ i j (ζ) =
∫

f̂i (ζ − ξ) f̂ j(ξ) Ŵi j (ζ, ξ) dξ → O(N 6
v ).

3. Compute the inverse Fourier transform of the partial elastic collision operator:

Q̃ i j (v) = F −1(Q̂ i j (ζ)) → O(N3
v logNv).

4. ForN 3
v discrete velocity nodes enforce conservation through the solution of a constrained optimization problem:

Q i j (v) = Opt(Q̃ i j (v)) → O(N3
v ).

The modification of the above procedure in the case of an inelastic collision is straightforward and can be deduced
from Eq. (36). The global cost of the algorithm isO(N 6

v ) (per partial collision operator) and the last step is performed
in order to ensure conservation of mass, momentum and energyduring collisions as stated in Eqs. (12) (Eq. (16)
for an inelastic collision). This approach was originally proposed and formulated by Gambaet al [19, 20] for the
case of a pure gas without internal energy. In the present work, an extension of the original method to a multi-
energy level gas is proposed. Due to the existence of separate sets of collisional invariants (elastic and inelastic),
the conservation of mass, momentum and energy during collisions is enforced through the solution of two separate
constrained optimization problems:

1. Elastic collisions:

P
el =



















min



















∑

i, j ∈IS

∣

∣

∣Q̃ i j −Q i j

∣

∣

∣

2



















,
∑

i, j ∈IS
C el

i Q i j = 0Ns+4



















. (68)

2. Inelastic collisions:

P
in =































min

































∑

i ∈IS
( j, k, l) ∈I in

i

∣

∣

∣Q̃ kl
i j −Q kl

i j

∣

∣

∣

2

































,
∑

i ∈IS
( j, k, l) ∈I in

i

C in
i Q kl

i j = 05































. (69)

In Eqs. (68) - (69), the vectorsQ i j , Q̃ i j , Q kl
i j andQ̃ kl

i j store the values of the partial collision operatorsQ i j (v) and
Qkl

i j (v), respectively, on the discrete velocity nodes given by Eq.(47) (the tilde symbol is used to indicate the values
obtained after the inversion of the Fourier transform that do not satisfy conservation). In the same equations, the
constraints imposed represent the conservation requirements the collision operators must satisfy (Eqs. (12) and (16)).
In view of the discretization introduced for the velocity space, this operation is realized at discrete level through
multiplication with the elastic and inelastic integrationmatrices (C el

i andC in
i , respectively). The columns of these
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matrices are precisely given by the elastic and inelastic collisional invariants (Eqs. (9) - (11) and Eqs. (13) - (15),
respectively) evaluated at the discrete velocity nodes given by Eq. (47). Hence, for the columns associated to the
discrete velocity nodev h one has:

(

C el
i

)

h
= ∆ v3Ω h

[

mi δ i mi v h
1
2

mi v2
h

]T

, (70)

(

C in
i

)

h
= ∆ v3Ω h

[

mi mi v h
1
2

mi v2
h + Ei

]T

, i ∈ IS, h ∈ I 3
V. (71)

In Eqs. (70) - (71), the quantityΩ h = Ω hx Ω hy Ω hz is the global integration weight associated to the velocitynode
v h, v2

h = v2
hx
+ v2

hy
+ v2

hz
andδ i is a vector made ofNs components whosej th component isδi j .

Proposition 4.1. The solution of the constrained optimization problemP el for elastic collisions (Eq. (68)) is:

Q i j = Q̃ i j − C el
i

T
C el−1

Q̃ el, i, j ∈ IS. (72)

In Eq. (72), the symbolT is used to indicate the transpose operator while the matrixC el and the vectorQ̃ el are,
respectively, defined as:

C el = Ns

∑

i ∈IS
C el

i C el
i

T
, (73)

Q̃ el =
∑

i, j ∈IS
C el

i Q̃ i j . (74)

Proof. The Lagrangian associated to the constrained optimizationproblemP
el in Eq. (68) is:

L
el =

∑

i, j ∈IS

∣

∣

∣Q̃ i j −Q i j

∣

∣

∣

2
+ λelT

∑

i, j ∈IS
C el

i Q i j . (75)

The vectorλel in Eq. (75) is the Lagrange multiplier vector and hasNs + 4 components. The solution of the problem
P

el is given by the stationary points of the LagrangianL
el (Eq. (75)). These are found by imposing:

∂Lel

∂Q i j
= 0Ns+4, i, j ∈ IS, (76)

∂Lel

∂ λel
= 0Ns+4. (77)

The application of Eqs. (76) - (77) leads to:

Q i j = Q̃ i j −
1
2

C el
i

T
λel, i, j ∈ IS, (78)

0Ns+4 =
∑

i, j ∈IS
C el

i Q i j . (79)

The left multiplication of Eq. (78) by the matrixC el
i and the sum of the result obtained over all elastic collisions gives

(after some algebra):

λel = 2

















Ns

∑

i ∈IS
C el

i C el
i

T

















−1 

















∑

i, j ∈IS
C el

i Q̃ i j



















. (80)

The substitution of Eq. (80) in Eq. (78) gives the thesis.

Equation (72) reduces to the original result obtained by Gambaet al [19, 20] for the case of a pure gas without internal
energy:

Q = Q̃ − C elT
(

C el C elT
)−1

C el Q̃, (81)
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where the elastic integration matrixC el in Eq. (81) is obtained from Eq. (70) whenNs = 1:

C el = ∆ v3Ω h

[

m mv h
1
2

m v2
h

]T

, h ∈ I 3
V. (82)

Proposition 4.2. The solution of the constrained optimization problemsP
in for inelastic collisions (Eq. (69)) is:

Q kl
i j = Q̃ kl

i j − C in
i

T
C in−1

Q̃ in, i ∈ IS, ( j, k, l) ∈ I in
i . (83)

In Eq. (83), the matrixC in and the vector̃Q in are, respectively, defined as:

C in = Ns (N2
s − 1)

∑

i ∈IS
C in

i C in
i

T
, (84)

Q̃ in =
∑

i ∈IS
( j, k, l) ∈I in

i

C in
i Q̃ kl

i j . (85)

Proof. The Lagrangian associated to the constrained optimizationproblemP
in in Eq. (69) is:

L
in =

∑

i ∈IS
( j, k, l) ∈I in

i

∣

∣

∣Q̃ kl
i j −Q kl

i j

∣

∣

∣

2
+ λ inT

∑

i ∈IS
( j,k, l) ∈I in

i

C in
i Q kl

i j . (86)

The vectorλ in in Eq. (86) is the Lagrange multiplier vector and has 5 components. The solution of the problemP in

is given by the stationary points of the LagrangianL
in (Eq. (86)). These are found by imposing:

∂L in

∂Q kl
i j

= 05, i ∈ IS, ( j, k, l) ∈ I in
i , (87)

∂L in

∂ λ in
= 05. (88)

The application of Eqs. (87) - (88) leads to:

Q kl
i j = Q̃ kl

i j −
1
2

C in
i

T
λ in, i ∈ IS, ( j, k, l) ∈ I in

i , (89)

05 =
∑

i ∈IS
( j, k, l) ∈I in

i

C in
i Q kl

i j . (90)

The left multiplication of Eq. (89) by the matrixC in
i and the sum of the result obtained over all the inelastic collisional

processes given by the setI in
i gives (after some algebra):

λ in = 2

















Ns (N 2
s − 1)

∑

i ∈IS
C in

i C in
i

T

















−1

































∑

i ∈IS
( j, k, l) ∈I in

i

C in
i Q̃ kl

i j

































. (91)

The substitution of Eq. (91) in Eq. (89) gives the thesis.
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5. Computational results

The numerical method presented in detail in Sect. 4 has been implemented in a parallel C code (Boltzmann
Equation Spectral-Lagrangian Solver - BESS in what follows). Parallelization is performed by means of the OpenMP
library [12]. The FFTW [18, 1] (Fastest-Fourier-Transformin the West) and the GSL [2] (GNU-Scientific Library)
packages have been used, respectively, for the evaluation of FFTs (and inverse FFTs) and vector/matrix manipulation.

Both space homogeneous and space in-homogeneous benchmarks have been considered. The former consist in
studying the evolution towards equilibrium of isochoric systems initially set in a non-equilibrium state, while the
latter consist in computing the steady-state flow across normal shock waves. In all the cases, macroscopic moments
(given in Sects. 2.4 and 2.6) have been computed and comparedwith the DSMC results obtained by Torres [34]. The
numerical approximation of the integrals defining the macroscopic moments are given in Appendix C.

5.1. Isochoric equilibrium relaxation of a Ne-Ar mixture

The system under investigation is a binary mixture of Neon and Argon. The electronic energy of the atoms is
assumed to be negligible. Only elastic collisions are accounted for. The hard-sphere collision model [7] is used for
the differential cross-section,σi j = (di + d j) 2/16 with di andd j being, respectively, the diameters of the speciesi
and j. The system is initially set in a non-equilibrium state where both species follow a Maxwell-Boltzmann velocity
distribution function (Eq. (20)) with zero hydrodynamic velocity at different temperatures. The numerical values of
the species diameter and mass (taken from [7]) are reported in Table 1 together with the values of the species density
and initial temperature. The mixture temperature corresponding to the conditions provided in Table 1 is 333.63 K.

The velocity space is discretized by adopting the values ofNv = 24 nodes andL v = 3000 m/s (see Sect. 4.1). The
collision time-step∆t c is set to 1× 10−9 s in order to have a value lower than the mean collision time. The number of
partial elastic collision operators to be evaluated at eachtime-step is equal to 4. The simulation is stopped after 300
time-steps. The CPU time required is approximately 3 minutes when using 4 threads.

i mi [kg] di [m] ρi [kg/m3] Ti [K]
Ne 3.35× 10−26 2.77× 10−10 5× 10−3 300
Ar 6.63× 10−26 4.17× 10−10 2× 10−3 500

Table 1: Species mass, diameter, density and initial temperature.
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Figure 1: Isochoric equilibrium relaxation of a Ne-Ar mixture: time-evolution of the species and mixture density and
temperature (lines BESS - symbols DSMC).
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Once the simulation is started, collisions bring the systemfrom its initial non-equilibrium condition to the final
equilibrium state. Since the system is isochoric and no external mass, momentum and energy sources are present, the
following statements hold:

• The density of each species is constant and maintains its initial value. The same can be said for the mixture
density.

• The species and mixture hydrodynamic velocity is constant and maintains its initial value (zero).

• The mixture temperature is constant and maintains its initial value. On the other hand, the temperature of each
species experiences variation and approaches the mixture temperature value at equilibrium.

The foregoing are a direct consequence of mass, momentum andenergy conservation during collisions and should
be obtained as a result if the numerical method used for solving the Boltzmann equation is conservative. In order to
assess that, the time-evolution of the species and mixture density and temperature is monitored (see Fig. 1). Both
the mass and mixture densities remain constant and do not show any variation. The same is valid for the mixture
temperature, while the species temperatures evolves towards the correct equilibrium value. The species and mixture
hydrodynamic velocities retain their initial values (zero) and are not shown in Fig. 1. From the analysis of the results
shown in Fig. 1, one can conclude that the proposed extensionof the original spectral-Lagrangian method [19, 20]
to a mixture of monatomic gases without internal energy enables to respect the requirements stated in Eq. (12). The
agreement with the DSMC results is excellent.

Figure 2 shows the time-evolution of thevx axis component of the species velocity distribution functions (the
vy andvz axis components are not shown because they are practically identical to thevx component). The results
obtained show that the evolution towards the equilibrium state occurs through sequences of Maxwell-Boltzmann
velocity distribution functions.
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Figure 2: Isochoric equilibrium relaxation of a Ne-Ar mixture: time-evolution of thevx axis component of the species
velocity distribution function.
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5.2. Isochoric equilibrium relaxation of a multi-energy level gas

The system under investigation consists of a monatomic gas with 5 internal energy levels whose values for degen-
eracy and energy (taken from [3]) are given in Table 2. The mass of the gas particlesm is equal to that of Argon (the
value is equal to that used in Sect. 5.1) and its diameterd is 3.0× 10−10m.

i gi Ei [J]
1 1 0.0
2 1 8.30× 10−21

3 1 1.66× 10−20

4 1 2.50× 10−20

5 1 3.30× 10−20

Table 2: Level degeneracy and energy.

Both elastic and inelastic collisions are allowed to occur.For the evaluation of the related cross-sections, the
model proposed by Anderson [3] is considered. According to this model, the differential cross-section associated to
the collisioni + j = k+ l is written as a product between a hard-sphere differential cross-sectiond2/4 and a transition
probability pkl

i j , that is,σ kl
i j = pkl

i j d2/4. The transition probabilitypkl
i j only depends on the pre-collisional relative

velocity magnitudeu and has the following expression:

pkl
i j =

max
[

gk gl

(

µu2 − 2∆E kl
i j

)

, 0
]

∑

m,n∈IS
max

[

gm gn

(

µu2 − 2∆Emn
i j

)

, 0
] , i, j, k, l ∈ IS, (92)

where the reduced mass of the colliding speciesµ in Eq. (92) is equal tom/2 for the present simulation. Notice that
Eq. (92) comprises also the case of elastic collisions.

The initial state of the system corresponds to a partial equilibrium condition. The velocity distribution functions
of all levels (species) is a two temperature (translationalT and internalT int) Maxwell-Boltzmann velocity distribution
function (Eq. (20)) with zero bulk velocity. This is obtained by assuming that the level densities appearing in Eq. (20)
are given by the Boltzmann distribution law (Eq. (21)) at theinternal temperatureT int.

The gas has a density of 1 kg/m3. The initial values of the translational and internal temperatures are 1000 K and
100 K, respectively. The initial condition of the system approximates the state of a gas immediately behind a normal
shock wave when this is treated as a discontinuity.

The velocity space is discretized by adopting the values ofNv = 16 nodes andL v = 3000 m/s (see Sect. 4.1).
The collision time-step∆t c is set to 1× 10−12 s in order to have a value lower than the mean collision time (based on
a hard-sphere collision model). The number of partial collision operators to be evaluated at each time-step is equal
to 625 (25 elastic and 600 inelastic). The simulation is stopped after 2500 time-steps. The CPU time required is
approximately 2 hours when using 12 threads.

As for the case studied in Sect. 5.1, when the simulation is started, collisions bring the system to equilibrium.
However, due to the presence of inelastic collisions, some differences arise in the time-evolution:

• The mixture density is constant and maintains its initial value. On the other hand, the density of each level
changes in time and evolves from the initial non-equilibrium condition to its final equilibrium value.

• The level and mixture hydrodynamic velocity is constant andmaintains its initial value (zero).

• The mixture temperature changes in time and evolves from theinitial non-equilibrium condition to its final
equilibrium value.

The value of the temperature at equilibrium can be computed from the energy balance between the initial and the
final equilibrium state. For the present simulation, the value of 723.5 K is obtained. Once the equilibrium temper-
ature determined, it is possible to compute the equilibriumvalues of the level densities by means of the Boltzmann
distribution law given in Eq. (21).
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In order to assess the conservation properties of the proposed spectral-Lagrangian method for the case of a multi-
energy level gas, the time-evolution of the density of each level and the translational and internal temperatures are
monitored (see Fig. 3). The time-evolution of the level densities and temperatures given in Fig. 3 confirms the previous
considerations regarding the behavior of the system. In particular, the population of the ground state (first level)
decreases while that of the upper states increase. The translational temperature decreases till the equilibrium valueis
not reached. The opposite behavior (as expected) is observed for the internal temperature. The former demonstrates
the existence of a net macroscopic energy transfer from the translational to the internal degree of freedom of the gas.
The level and mixture hydrodynamic velocities retain theirinitial values (zero) and are not shown in Fig. 3. The
agreement with the DSMC solution (also shown in Fig. 3) is excellent.
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Figure 3: Isochoric equilibrium relaxation of a multi-energy level gas: time-evolution of the level density, translational
temperature and internal temperature (lines BESS - symbolsDSMC).

T [K] ρ1 [kg/m3] ρ2 [kg/m3] ρ3 [kg/m3] ρ4 [kg/m3] ρ5 [kg/m3]
BESS 723.4029 0.573 0.245 0.1088 0.0474 0.02069
eq 723.543 0.573 0.245 0.1089 0.0474 0.02064

Table 3: Final values of temperature and level density (comparison between simulation and equilibrium calculation).

Table 3 compares the final values of the temperature and the level densities as obtained from the simulation with those
determined by means of equilibrium calculations. The agreement between the two data sets very good. This further
confirms that the proposed spectral-Lagrangian method allows for respecting the conservation requirements as stated
in Eqs. (12) and (16) when both elastic and inelastic collisions are accounted for.

5.3. Flow across a normal shock wave of a Ne-Ar mixture

The flow across a normal shock wave of a mixture of Neon and Argon is computed by solving the space in-
homogeneous Boltzmann equation in the shock wave referenceframe (where the shock velocity is zero). The physical
model in use (in terms of species diameter and mass, and elastic collision cross-section) is the same as that used for the
space homogeneous calculations shown in Sect. 5.1. A peculiar aspect of this flow is the species separation occurring
within the shock wave. The latter is due to the mass difference between the two species [7] with the lighter species
experiencing the compression sooner than the heavier one. This fact has been confirmed by both DSMC calculations
[7] and experimental measurements [10].

The mixture is composed of 50% of Neon and 50% of Argon. The corresponding species mass fractions (yi =

ρi/ρ, i ∈ IS) are 0.34 and 0.66, respectively. The mixture free-stream (∞) density, temperature and velocity are
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1×10−4 kg/m3, 300 K and 744 m/s, respectively. The latter correspond to a mixture free-stream Mach number equal to
2. Post-shock (ps) values for mixture density, velocity andtemperature are computed based on the Rankine-Hugoniot
jump relations [4] and are 2.29× 10−4 kg/m3, 623.44 K and 325.45 m/s, respectively.

The numerical values of the parameters used for the discretization of the phase-space (Sect. 4.1) and the appli-
cation of the time-marching method (Sect. 4.2) are providedin Table 4. The position space is discretized by using a
uniform Finite volume grid.

Nv L v [m/s] Nx L−x [m] L+x [m] ∆t c [s] CFL Limiter
22 3200 201 2× 10−2 2× 10−2 1× 10−8 0.5 van Albada

Table 4: Simulation parameters.

In the present simulation, the gas flow is directed along the positive direction of thex axis of the position space. At
the boundariesx = −L−x andx = L−x , a Maxwell-Boltzmann velocity distribution function (Eq.(20)) corresponding,
respectively, to the pre and post-shock conditions is imposed for each species. The numerical solution is initialized
by prescribing the pre-shock Maxwell-Boltzmann velocity distribution function in the interval−L−x ≤ x ≤ 0, while
the post-shock Maxwell-Boltzmann velocity distribution function is used for the remaining part of the position space.
The time-marching method described in Sect. 4.2 is then applied until the steady-state is not reached.

In order to perform a meaningful comparison with the resultsobtained by means of the DSMC method, a common
origin has to be determined for the numerical solutions. Thelatter is taken at the location where the normalized
density difference (ρ − ρ∞)/(ρ ps− ρ∞) is equal to 0.5 [7].

Figure 4 shows the evolution across the shock wave of the species hydrodynamic velocity and parallel temper-
ature. The results confirm, as expected, that the Neon experiences the compression before the Argon. This effect
progressively disappears while the flow approaches the post-shock equilibrium state (where no species separation
exists). The parallel temperature of both species does not show a monotone behavior. Instead, it reaches a maximum
and then approaches the post-shock equilibrium value. Thisfeature of the flow-field is due the distortion (along thevx

axis of the velocity space) experienced by the species velocity distribution functions while the flow crosses the shock
wave (see Fig. 6). Notice that the peak is more pronounced forthe heavier species (Argon). The comparison with the
DSMC results is again very good. A further confirmation to that is provided by Fig. 5 showing the evolution across
the shock wave of the mixture density and temperature (together with the related parallel and transverse components).
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Figure 4: Flow across a normal shock wave of a Ne-Ar mixture: evolution across the shock wave of the species
hydrodynamic velocity and parallel temperature component(lines BESS - symbols DSMC).
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Figure 5: Flow across a normal shock wave of a Ne-Ar mixture: evolution across the shock wave of the mixture
density, temperature and related parallel and transverse components (lines BESS - symbols DSMC).

The evolution across the shock wave of thevx axis component of the species velocity distribution function is
shown in Fig. 6. Due to the low value of the free-stream Mach number, small deviations from a Maxwell-Boltzmann
shape are observed for thevx axis component. This justifies, in turn, the moderate maximareached by the species
parallel temperature in Fig. 4. The evolution across the shock wave of thevy andvz axis components of the species
distribution function (not shown in Fig. 6) occurs through asequence of Maxwell-Boltzmann distributions.
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Figure 6: Flow across a normal shock wave of a Ne-Ar mixture: evolution across the shock wave of thevx axis
component of the species distribution function.
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5.4. Flow across a normal shock wave of a multi-energy level gas

The steady-state flow across a normal shock wave of a multi-energy level gas is studied in the shock wave reference
frame by considering the same physical model as that used in Sect. 5.2. For the present calculations, only 2 energy
levels are accounted for (the related values of degeneracy and energy are given in Table 5). The total number of partial
collision operators to be evaluated reduces to 16 (4 elasticand 12 inelastic).

i gi Ei [J]
1 1 0.0
2 1 4.14× 10−21

Table 5: Level degeneracy and energy.

The free-stream values of the gas density, temperature and velocity are 1× 10−4 kg/m3, 300 K and 945.33 m/s,
respectively. The latter correspond to a free-stream Mach number equal to 3. Due to the presence of internal energy,
the flow post-shock conditions are obtained by solving numerically the set of equations expressing the conservation
of mass, momentum and energy fluxes between the free-stream and post-shock states (the Rankine-Hugoniot jump
relations [4] cannot be applied as they are valid only for thecase of a calorically perfect gas). For the present
calculations, post-shock conditions are computed by usingthe technique suggested in [4]. The values obtained for the
post-shock density, temperature and velocity for are 3.25× 10−4 kg/m3, 1046.2 K and 311.07 m/s, respectively.

The numerical values of the parameters used for the discretization of the phase-space (Sect. 4.1) and the applica-
tion of the time-marching method (Sect. 4.2) are provided inTable 6.

Nv L v [m/s] Nx L−x [m] L+x [m] ∆t c [s] CFL Limiter
30 3400 201 2× 10−2 2× 10−2 1× 10−8 0.5 van Albada

Table 6: Simulation parameters.

As already done in Sect. 5.3, the position space is discretized by means of a uniform Finite volume grid. At the
boundariesx = −L−x andx = L+x , a Maxwell-Boltzmann distribution function (Eq. (20)) corresponding, respectively,
to the pre and post-shock conditions is imposed for each level. The steady-state flow across the shock wave is
computed by using the same initialization procedure as in Sect. 5.3.
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Figure 7: Flow across a normal shock wave of a multi-energy level gas: evolution across the shock wave of the species
mass fraction and diffusion velocity (lines BESS - symbols DSMC).
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Figure 7 shows the evolution across the shock wave of the level mass fraction and diffusion velocity. The relative
amount of atoms occupying a given energy level changes due tothe presence of inelastic collisions. In the case when
the energy levels of a chemical component are treated as separate species (like in the present case), one may say
that the gas undergoes a chemical composition variation when it crosses the shock wave. The gradients in chemical
composition lead, in turn, to mass diffusion (as confirmed by the species diffusion velocity). Species separation occurs
within the shock wave. However, in a comparison with the results of Sect. 5.3, some differences arise. In the present
case, the separation is the result of chemical composition gradients caused by inelastic collisions. In the case of Sect.
5.3, the separation is due to the mass disparity between the species that leads, in turn, to a local chemical composition
variation within the shock. The comparison with the DSMC results is again excellent.
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Figure 8: Flow across a normal shock wave of a multi-energy level gas: evolution across the shock wave of the
gas pressure, translational temperature and related parallel and transverse components, internal temperature, normal
viscous stress and heat flux (lines BESS - symbols DSMC).

Figure 8 shows the evolution across the shock wave of the gas pressure, translational temperature (together with
the related parallel and transverse components), internaltemperature, normal viscous stress and heat flux. The inter-
nal temperature lags behind the translational temperatureas a result of the finite number of collisions that are needed
to excite the upper internal energy levels. The parallel component of the gas translational temperature shows a pro-
nounced maximum. As already mentioned in Sect. 5.3, this is due to the distortion experienced by the level velocity
distribution function along thevx axis of the velocity space. The former is confirmed in Fig. 9 showing the evolution
across the shock wave of thevx axis component of the level velocity distribution function. The distortions in thevx

axis component are concentrated within a narrow region around the locationx = 0 m. The evolution across the shock
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wave of thevy andvz axis components of the level velocity distribution function (not shown in Fig. 9) occurs through
a sequence of Maxwell-Boltzmann velocity distribution functions.
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Figure 9: Flow across a normal shock wave of a multi-energy level gas: evolution across the shock wave of thevx axis
component of the level distribution function.

6. Conclusions

A spectral-Lagrangian method for the Boltzmann equation for a multi-energy level gas has been developed. The
formulation of the numerical method accounts for both elastic and inelastic collisions and can also be used for the
particular case of a mixture of monatomic gases without internal energy. The conservation of mass, momentum and
energy during collisions is enforced through the solution of constrained optimization problems. The effectiveness
of the former has been shown by the computational results obtained for both space homogeneous and space in-
homogeneous problems. In all the cases, species and mixturemacroscopic moments have been compared with the
results obtained by means of the DSMC method. Excellent agreement has been observed.

Future work will focus on alternative phase-space representation (such as momentum space) and on possible
benefits, in terms of CPU time reduction, for cases where the velocity distribution admits certain symmetry properties
in the velocity space. Computational benchmarks will be also performed by using more accurate cross-section models
based on realistic interaction potentials. The results obtained will be then compared with experiments for sake of
validation.
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Appendix A. Numerical evaluation of the Fourier and inverseFourier transform

Let f = f (v) be a function of the velocityv and letĝ = ĝ(ζ) be a function of the Fourier variableζ. According to
the definitions introduced in Sect. 3, the Fourier transformof the functionf and the inverse Fourier transform of the
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functionĝ are:

f̂ (ζ) =
1

(√
2π

)3

∫

v ∈ℜ 3

exp(−ı ζ · v) f (v) dv, ζ ∈ ℜ3, (A.1)

g(v) =
1

(√
2π

)3

∫

ζ∈ℜ 3

exp(ı ζ · v) ĝ(ζ) dζ, v ∈ ℜ3. (A.2)

The integrals in Eqs. (A.1) - (A.2) must be replaced with discrete sums because of the discretization of the velocity
space introduced in Sect. 4.1.

The substitution of the Eq. (47) and Eq. (50) forv h andζ ε, respectively, in Eqs. (A.1) - (A.2) and the replacement
of continuous integrals with discrete sums, leads to:

f̂ (ζ ε) =
1

(√
2π

)3

∑

h ∈I 3
V

Ω h exp
(−ı ζ ε · v h

)

f (v h)∆ v3, ζ ε ∈ VF , (A.3)

g(v h) =
1

(√
2π

)3

∑

ε ∈I 3
V

Ω ε exp
(

ı ζ ε · v h
)

ĝ(ζ ε)∆ η
3, v h ∈ V, (A.4)

where the global integration weightsΩ h andΩ ε associated to the discrete velocity nodev h and the discrete Fourier
velocity nodeζ ε, respectively, areΩ h = Ω hxΩ hyΩ hz andΩ ε = Ω ε xΩ ε yΩ ε z. The expansion of the dot productζ ε ·v h

in Eqs. (A.3)-(A.4) gives:

ζ ε · v h = (−L v + h x∆ v) (−L η + ε x∆ η) + (−L v + hy∆ v) (−L η + ε y∆ η) + (−L v + hz∆ v) (−L η + ε z∆ η). (A.5)

After some algebraic manipulation and the use of the relation∆ v∆ η = 2π/Nv (Eq. (51)), Eq. (A.5) can be re-written
as:

ζ ε · v h = 3 L v L η − L v∆ η (ε x + ε y + ε z) − L η ∆ v (h x + hy + hz) +
2π
Nv

(h · ε). (A.6)

The substitution of Eq. (A.6) in Eqs. (A.3) - (A.4) gives:

f̂ (ζ ε) =
exp [−ı δ(ε)]

(√
2π

)3

∑

h ∈I 3
V

f ∗(v h) exp

[

−ı 2π
Nv

(h · ε)
]

, ζ ε ∈ VF , (A.7)

g(v h) =
exp

[

ı γ(h)
]

(√
2π

)3

∑

ε ∈I 3
V

ĝ∗(ζ ε) exp

[

ı
2π
Nv

(h · ε)
]

, v h ∈ V. (A.8)

The quantitiesδ(ε) andγ(h) in the exponential in front of the sums in Eqs. (A.7) - (A.8) are:

δ(ε) = L v

[

3 L η − ∆ η (ε x + ε y + ε y)
]

, ε ∈ I 3
V, (A.9)

γ(h) = L η

[

3 L v − ∆ v (h x + hy + hz)
]

, h ∈ I 3
V, (A.10)

while the functionsf ∗(v h) andĝ∗(ζ ε) in the same equations are defined as:

f ∗(v h) = Ω h f (v h) exp
[

ı L η ∆ v (h x + hy + hz)
]

∆ v3, v h ∈ V, (A.11)

ĝ∗(ζ ε) = Ω ε ĝ(ζ ε) exp
[

−ı L v∆ η (ε x + ε y + ε z)
]

∆ η 3, ζ ε ∈ VF . (A.12)

The sums in Eqs. (A.7) - (A.8) correspond, respectively, to the definitions of the Fast-Fourier-Transform (FFT) and
inverse Fast-Fourier-Transform (FFT−1 of inverse FFT) of the functionsf ∗ andĝ∗ (with no scaling):

FFT(f ∗)(ζ ε) =
∑

h ∈I 3
V

f ∗(v h) exp

[

−ı 2π
Nv

(h · ε)
]

, ζ ε ∈ VF , (A.13)

FFT−1(ĝ∗)(v h) =
∑

ε∈I 3
V

ĝ∗(ζ ε) exp

[

ı
2π
Nv

(h · ε)
]

, v h ∈ V. (A.14)
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In order to exploit Eqs. (A.13) - (A.14) for computing the Fourier and the inverse Fourier transform, the following
algorithm is proposed:

1. Given the discrete values of the functiong (or ĝ), the functionf ∗ (or ĝ∗) is evaluated by means of Eq. (A.11)
(or Eq. (A.12)).

2. The FFT off ∗ (or the inverse FFT of ˆg∗) is computed by means of Eq. (A.13) (or Eq. (A.14)).
3. The result obtained is substituted in Eq. (A.7)) (or Eq. (A.8)).

In the present work, the computation of the FFT and the inverse FFT of functions is performed by means of the FFTW
(Fastest-Fourier-Transform in the West) package [18].

Appendix B. Numerical evaluation of the weighted convolution

The continuous integrals defining the weighted convolutions in Eqs. (35) - (36) are approximated as follows. Let
κ = (κx, κy, κz) andΩ κ = (Ω κ x,Ω κ y,Ω κ z) be, respectively, the vector of indices and the vector of integration weights
associated to the discrete Fourier velocity nodeξ κ. The Fourier transform of the partial elastic and inelasticcollision
operators (Q i j (v) andQkl

i j (v), respectively) evaluated at the discrete Fourier velocity nodeζ ε become:

Q̂ i j (ζ ε) =
1

(√
2π

)3

∑

κ ∈I ∗κ

Ω κ f̂i
(

ζ ε − ξ κ
)

f̂ j(ξ κ) Ŵi j
(

ζ ε, ξ κ
)

∆ η 3, i, j ∈ IS, (B.1)

Q̂kl
i j (ζ ε) =

1
(√

2π
)3

∑

κ ∈I ∗κ

Ω κ

[

f̂k
(

ζ ε − ξ κ
)

f̂l(ξ κ) Ĝkl
i j

(

ζ ε, ξ κ
) − f̂i

(

ζ ε − ξ κ
)

f̂ j(ξ κ) L̂ kl
i j

(

ξ κ
)

]

∆ η 3,

i ∈ IS, ( j, k, l) ∈ I in
i , ζ ε ∈ VF . (B.2)

In Eqs. (B.1) - (B.2), the quantityΩ κ = Ω κ xΩ κ yΩ κ z is the global integration weight associated to the discreteFourier
velocity nodeξ κ, while the setI ∗κ is defined as:

I ∗κ =
{

(κ−x , κ
+
x ) × (κ−y , κ

+
y ) × (κ−z , κ

+
z )

}

⊂ I 3
V. (B.3)

In Eq. (B.3), the− and the+ upper-scripts are used to indicate, respectively, the lower and the upper limits for the
indicesκ x, κ y andκ z associated to the discrete Fourier velocity nodeξ κ and are computed based on the following
relations:

κ−s =















0 if εs < Nv/2,

εα − Nv/2+ 1 if εα ≥ Nv/2,
(B.4)

κ+s =















εα + Nv/2− 1 if εα < Nv/2,

Nv if εα ≥ Nv/2, α ∈ {x, y, x} .
(B.5)

The introduction of the above lower and upper limits on theκ x, κ y andκ z indices is equivalent to set to zero the
functions f̂k and f̂i , respectively, in the discrete sums given in Eqs. (B.1) - (B.2) when their argument

(

ζ ε − ξ κ
)

goes
beyond the limits of the Fourier velocity space (Eq. (50)).

Appendix C. Macroscopic moments

The macroscopic moments defined in Sects. 2.4 and 2.6 are approximated as follows:

• Species density:
ρi = mi

∑

h ∈I 3
V

Ωh fi(v h)∆ v3, i ∈ IS. (C.1)
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• Hydrodynamic velocity:

V =
1
ρ

∑

i ∈IS

∑

h ∈I 3
V

Ωh mi v h fi(v h)∆ v3. (C.2)

• Species diffusion velocity:

Ui =
1
ni

∑

h ∈I 3
V

Ωh (v h − V) fi(v h)∆ v3, i ∈ IS. (C.3)

• Species translational temperature components:

Ti α =
mi

ni kB

∑

h ∈I 3
V

Ωh
[

vhα − Vα

] 2 fi(v h)∆ v3, i ∈ IS, α ∈ {x, y, x} . (C.4)

• Viscous stress tensor:
τ =

∑

i ∈IS

∑

h ∈I 3
V

Ωh mi (v h − V) ⊗ (v h − V) fi(v h)∆ v3 − p I . (C.5)

• Heat flux vector:

q =
∑

i ∈IS

∑

h ∈I 3
V

Ωh (v h − V)

(

1
2

mi |v h − V|2 + Ei

)

fi(v h)∆ v3. (C.6)
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