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Galilean invariance is a fundamental property; however, although the lattice 

Boltzmann equation itself is Galilean invariant, this property is usually not taken 

into account in the treatment of the fluid-solid interface. Here, we show that 

consideration of Galilean invariance in fluid-solid interfacial dynamics can 

greatly enhance the computational accuracy and robustness in a numerical 

simulation. Surprisingly, simulations are so vastly improved that the force 

fluctuation is very small and a time average becomes unnecessary.  
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I. INTRODUCTION 

In the governing equations in numerical simulations, Galilean invariance is 

usually guaranteed from a fundamental perspective. The original lattice gas 

automaton (LGA) [1] was not Galilean invariant due to the presence of a nonphysical 

coefficient in the nonlinear advection term [2]. The lattice Boltzmann equation (LBE) 

[3-6] eliminated this artifact with the use of a proper equilibrium distribution function 

in the collision term, and in some investigations a few high-order, even complete 

Galilean invariant LBE models have been achieved [7-9]. Nowadays, LBE is 

particularly successful in simulations involving interfacial dynamics [10-13], 

microflows [14, 15], multiphase flows [16-18], and complex fluid flows [19-21]. 

However, Galilean invariance in the treatment of the fluid-solid interface has received 

little attention although it is well known that the boundary has a major influence on 

the fluid flow. For example, the widely used momentum exchange method does not 

satisfy Galilean invariance [22-25], and this may be why the method does not have 

very high computational accuracy. 

In the lattice Boltzmann method (LBM), the momentum transfer across a given 

interface can be computed effectively with the discrete momentum component, and 

the hydrodynamic force is evaluated easily using the momentum exchange method. 

Ladd [26] defined originally the suspending particle as a shell with interior fluids and 

the momentum transfer across the particle boundary is obtained considering the inside 

and outside fluids separately. This work promoted the lattice Boltzmann method to 

become a popular tool in simulating fluid-solid interaction problems. Aidun et al. [27] 



directly represented the impermeable particle without an interior fluid by using a 

modified half-way bounce-back boundary condition, and the solid-to-fluid density 

ratio can be regulated freely. Mei et al. [28] applied a curved boundary condition to 

evaluate the hydrodynamic force on the real particulate geometry. Aidun et al. [27], 

Huang et al. [29] and Wen et al. [30] further considered the additional momenta 

induced by the type-changing lattices. In these advances, the conventional equation of 

the momentum exchange methods remains the same, but Galilean invariance is not 

guaranteed in the treatment of the fluid-solid interface yet [22-25]. Recently, Caiazzo 

et al. [22] and Lorenz et al. [24] introduced a correction term to improve the Galilean 

invariance of the momentum exchange method. Clausen et al. [23] proposed a 

correction to reduce the error of normal stress and investigated the effect on the 

rheological properties in particle suspensions. Zhou et al. [25] coupled the Lees-

Edwards boundary condition with a node-based method to studied particle-fluid 

suspensions. Although the numerical errors caused by non-Galilean effects are 

significantly diminished, attempts to achieve full Galilean invariance along with high 

simulating accuracy have not been satisfactory [24, 25]. 

In this paper, we present a Galilean invariant momentum exchange equation by 

introducing the relative velocity into the interfacial momentum transfer to compute 

the hydrodynamic force. The algorithm is simple and independent of boundary 

geometries. It is demonstrated to ensure Galilean invariance and achieve high 

accuracy in the dynamic fluid. Remarkably, the consideration of Galilean invariance 

can greatly enhance the computational accuracy and robustness of fluid-solid 



interfacial dynamics, so that the widely used time averaged computation of velocity 

and force becomes unnecessary.  

 

II. LATTICE BOLTZMANN METHOD 

With its roots in kinetic theory and the cellular automaton concept, the lattice 

Boltzmann equation can obtain the incompressible Navier-Stokes equations in the 

nearly incompressible limit [2, 31, 32]. Discretized fully in space, time and velocity, 

the lattice Boltzmann equation can be concisely written as  

)(),()1,( iiii ftftf Ωxex  ,     (1) 

where ),( tfi x is the particle distribution function at lattice site x  and time t , moving 

along the direction defined by the discrete speeds ie  with Ni ...,  ,0 , and )( ifΩ  is 

the collision operator. With the different collision operators, several variations of the 

LBE can be read as the single-relaxation-time (SRT) mode [3-6], the multiply-

relaxation-time (MRT) model [33, 34], the two-relaxation-time (TRT) model [35], the 

entropic lattice Boltzmann equation (ELBE)  [36, 37], etc. The mass density and the 

momentum density are defined by  if  and  ii feu , respectively. One can 

consider if  to be a mass component of a lattice node, and ii fe  to be the corresponding 

momentum component. The evolution of the LBE can be decomposed into two 

elementary steps, collision and advection: 

collision:    )(),(),(
~

iii ftftf Ωxx   ,       (2) 

advection:  ),(
~

)1,( tftf iii xex   ,         (3) 



where if  and if
~

 denote pre-collision and post-collision states of the particle 

distribution functions, respectively. The dominant part of the computations, namely 

the collision step, is completely local, hence the discrete equation is natural to 

parallelize.  

 

III. GALILEAN INVARIANT MOMENTUM EXCHANGE METHOD 

A. Conventional momentum exchange equation 

The interfacial momentum transfer in the conventional momentum exchange 

methods (CME) [26-30] can be generalized by a common schematic diagram as 

shown in Fig. 1(a). A moving boundary is located between a fluid node fx  and a 

boundary node bx  (it is an interior fluid node in the method of Ladd [26]). The 

boundary has a vector velocity v  at the point of intersection S . In the collision step, 

the distribution function ),(
~

tf bi
x  can be calculated by the interior fluid evolution 

[26], the half-way bounce-back boundary condition [27] or the curved boundary 

conditions [28-30], in which the forcing terms [38-40] based on the boundary velocity 

need to be included.  

 

Fig. 1 (color online). (a) A common schematic diagram to illustrate a moving 

boundary crossing a fluid-solid link at the point of intersection S. xf and xb denote the 



adjacent fluid and boundary nodes. The boundary has a velocity v at the point S.  (b) 

Relative errors in the one-sided pressure on a vertical thin plate in the relatively 

stationary fluid without boundaries. This equilibrium system is connected to various 

velocities of the reference frame. The conventional equation, i.e., Eq. (4), obviously 

violates Galilean invariance. Since it properly considers the boundary velocity, the 

present method (GME), i.e., Eq. (5), is fully Galilean invariant and thus has a very 

high computational accuracy. 

 

When distribution functions propagate, the mass component ),(
~

tf fi x  streams 

into the boundary and contributes a momentum increment, while ),(
~

tf bi
x  streams out 

of the boundary and contributes a momentum decrement. In the literature [26-28, 30], 

these momentum components are calculated by directly using the discrete velocities 

ie  and 
i

e , namely ),(
~

tf fii xe  and ),(
~

tf bii
xe . The conventional equation for the 

momentum exchange methods to evaluate the force on a fluid-solid link can be 

written as [26-28, 30]  

),(
~
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)( tftf biifiis xexexF  .      (4) 

Although a few modifications have been proposed to improve the accuracy and 

Galilean invariance [22-24], the concept of the conventional equation remains the 

same all the time. 

 

 

 



B. Galilean invariant momentum exchange method 

It is clear that the momentum component ii f
~

e  uses the lattice as the frame of 

reference, and Eq. (4) is unrelated to the boundary velocity v . Considering that 

relative velocity is used in the momentum theorem, Eq. (4) makes an implicit 

assumption that the boundary would be motionless during the momentum transfer, 

regardless of the speeds of the reference frame and the actual boundary. This 

assumption obviously violates Galilean invariance and causes a divergent difference, 

which can be expressed numerically in Fig. 1(b) and analytically in an equilibrium 

system in Part C. 

However, the momentum transfer is correlated to the relative velocity and is 

independent of the frame of reference. When a distribution function propagates across 

the boundary, the relative velocity at the intersection point should be used in the 

momentum computation. Crossing the point of intersection S , the mass component 

),(
~

tf fi x   has the velocity )( ve i  relative to the boundary and it contributes a 

momentum increment ),(
~

)( tf fii xve   to the boundary. Simultaneously, the mass 

component ),(
~

tf bi
x  has the relative velocity )( ve 

i
 and decreases a momentum 

),(
~

)( tf bii
xve   from the boundary. According to the theorem of momentum, the 

Galilean invariant momentum exchange method (GME) can be defined by 
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~
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~
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The total hydrodynamic force F  and torque T  acting on the solid particle are 

evaluated in the same way as the convention methods [28, 30] 
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and 

  )()( ss R xFxT ,       (7) 

where R  is the mass center of the solid particle, and the summation runs over all the 

fluid-solid links.  

The momentum components used in the force evaluation are always on the fluid-

solid links and GME turns into CME when the boundary is motionless, GME 

therefore is consistent to the previous theoretical analysis [41]. It should be noted that 

the consideration of the boundary velocity in Eq. (5) is different from the forcing 

terms [38-40] in the moving boundary conditions [40-44]. A forcing term, which 

contains a boundary velocity, represents the effect that the moving boundary exerts on 

the bounced-back distribution functions, whereas the present method use the 

boundary velocity to compute the momentum transfer in terms of the momentum 

theorem. GME evaluates the hydrodynamic force in the fluid-solid interaction and 

works on the motion state of moving boundaries, but has not any direct influence on 

distribution functions.   

 

C. Comparisons in equilibrium state 

We employ a simple analysis to compare straightforward the present equation 

and the conventional one. Suppose both of the fluid and the boundary in Fig. 1(a) 

have an arbitrary uniform velocity v , then the system is physically related to a frame 



of reference with the uniform velocity v  and is equivalent to a quiescent system. As 

the system remains in the equilibrium state, the distribution functions are always 

equal to the equilibrium functions. Let us use the equilibrium distribution function [2] 
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where i  is the weighting coefficient and u  is the fluid velocity, the hydrodynamic 

force on a fluid-solid link can be obtained according to Eqs. (4) and (8) 
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Because of the term iii evve ])(3[3 22  , the resulting force changes abnormally 

with the speed of the reference frame. Hence, the conventional equation obviously 

presents an inherent flaw of Galilean invariance, and the difference is in proportion to 

the modulus square of the reference velocity.  

As the discrete velocity ie  is constant in the LBE, Galilean invariance cannot be 

satisfied on a single fluid-solid link, just like a single ie  cannot express the fluid 

velocity of a lattice node. However, the discrete velocity set is symmetrical, so that 

the Galilean invariant force evaluation can be achieved locally on the lattice. Using 

the D2Q9 model with the discrete velocity set 

)}1,1(),1,1(),1,1(),1,1(),1,0(),0,1(),1,0(),0,1(),0,0{( e ,  without loss of generality, 

we assume that the boundary intersects with 2e , 5e , and 6e . In the equilibrium system 

above, the local hydrodynamic forces on the three fluid-solid links are calculated 

analytically according to Eqs. (5) and (8) 
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With the simple vector calculation, the term related to the reference velocity v, as 

shown in Eq. (9), is eliminated due to the symmetry of the velocity set. The local 

hydrodynamic force remains constant regardless of the speed of the reference velocity; 

thus, GME is proven to be completely Galilean invariant in the equilibrium system. 

The simplest case that shows the difference between GME and the conventional 

equation is a computation of the one-sided pressure on a vertical thin plate, which is 

placed in the relatively static fluid without boundaries. The equilibrium system is 

connected to a horizontal reference speed and the benchmark is computed in the 

quiescent system. Fig. 1(b) compares the percentage of the computational errors in the 

hydrodynamic forces computed by GME and the conventional equation. The case is 

independent of the relaxation time and the plate length. It is clear that the 

conventional equation violates Galilean invariance whereas GME fully satisfies in the 

equilibrium system.  

 

IV. SIMULATION RESULTS AND DISCUSSION 

Particle suspension is a very effective way to investigate the accuracy and 

Galilean invariant of force evaluation. Since the particles in our test cases are 

unconfined freely moving cylinder and sphere under the combined action of gravity 

and hydrodynamic force, the errors of the forces will be accumulated and then be 



displayed apparently. In this section, we deeply investigate the accuracy, robustness 

and Galilean invariance of GME by a series of direct numerical simulations, in which 

part (A), (B) and (C) are two-dimensional cylinder sedimentations and part (D) is a 

three-dimensional rigid sphere migrating laterally in a Poiseuille flow. The 

simulations apply the second-order interpolation boundary condition [40] on the SRT 

model with the single relaxation time 6.0 . The highly consistent results are 

obtained by using the multireflection boundary condition [41] on the MRT model 

with the diagonal relaxation matrix )1 ,1 ,9.1 ,0 ,9.1 ,0 ,54.1 ,64.1 ,0(diagˆ S  [33, 45]. 

  

A.  Galilean invariance in dynamic system 

We demonstrate Galilean invariance and the computational accuracy of the 

present scheme in a dynamic system by examining cylinder sedimentations [46]. As 

shown in Fig. 2, a cylinder is initially released away from the centerline of a vertical 

channel with static fluid. Since the mass density of the cylinder is somewhat bigger 

than the fluid’s, it rotates and translates under the gravitational and hydrodynamic 

forces. Finally, it reaches a steady state descending along the centerline at a constant 

velocity. The channel width is 0.4 cm and the cylinder diameter is 0.1 cm. The fluid 

density and kinematic viscosity are 1 g/cm3 and 0.01 cm2/s.  The cylinder is released 

at 0.076 cm away from the left wall, and then it settles under the gravity acceleration 

|G|=980 cm2/s. The width of the channel is 120 lattice units and the length is 10 times 

the width.  



 

Fig 2. A schematic diagram of cylinder sedimentation in a vertical channel, G is the 

gravity and V is the velocity of the reference frame. 

 

 

Fig. 3 (color online). Time-dependent (a) trajectories, (b) angular velocities, (c) 

horizontal velocities and (d) vertical velocities relative to the channel. The density of 

the cylinder is 1.003 g/cm3 and the terminal Reynolds numbers is 1.03. The dynamic 



simulation system is connected to three velocities of the reference frame, i.e., V=0, 

0.001, and 0.002.  

 

Fig. 4 (color online). Time-dependent (a) trajectories, (b) angular velocities, (c) 

horizontal velocities and (d) vertical velocities relative to the channel. The density of 

the cylinder is 1.03 g/cm3 and the terminal Reynolds numbers is 8.33. The dynamic 

simulation system is connected to three velocities of the reference frame, i.e., V=0, 

0.01, and 0.02.  

 

The densities of the cylinder in two simulations are 1.003 and 1.03 g/cm3, 

respectively. The terminal Reynolds numbers of the particles are 1.03 and 8.33 

correspondingly, which is defined by vduRe p / , where up is the final velocity of the 



particle and   is the kinematic viscosity. We place the simulation system in several 

uniform frames of reference. Explicitly, we initially assign additional uniform 

velocities to the fluid, the particle and the channel, V = 0, 0.001, 0.002 for the former 

and V = 0, 0.01, 0.02 for the latter, respectively. The time-dependent trajectories, 

angular velocities, horizontal velocities and vertical velocities relative to the channel 

are presented in Fig. 3 and 4 together with the comparison with the results by the 

conventional equation and the arbitrary Lagrangian–Eulerian technique (ALE) [46]. 

The results of the conventional equation show sizeable differences from the 

benchmarks, even if the reference frame is stationary. And the deviations grow larger 

and larger as the reference velocities increase. These indicate that the conventional 

equation is not suitable for moving boundaries. However, regardless of the speed of 

the reference velocities, the GME results are always in excellent agreement with the 

benchmarks. These numerical simulations support that GME meet a full Galilean 

invariance, and therefore we draw only one line to represent the GME results with the 

various reference speeds.  

 

B.  Accuracy of hydrodynamic force 

Now, without any reference velocity, we consider the sedimentation of the 

cylinder with 1.03 g/cm3 to demonstrate the vast improvement in the computational 

accuracy by using the present method. Figs. 5(a) and (b) draw the compare with the 

simulating results from the previous momentum exchange methods, ALD [27] and 

LME [30], together with the benchmarks from ALE. The hydrodynamic forces 



computed by GME extremely agree with the benchmarks, while the results by ALD 

and LME have large fluctuations. Please note that all of the data from GME are raw, 

whereas the data from ALD and LME have been smoothed using the adjacent-

averaging method — per 30 points for the horizontal forces and per 100 points for the 

vertical forces. As the improvement in the force evaluation is so great, the force 

fluctuation of GME is very small and the time average becomes unnecessary.  

 

Fig. 5 (color online). (a) Time-dependent horizontal forces and (b) time-dependent 

vertical forces evaluated by GME, LME, and ALD, compared with the ALE 

benchmark. The density of the cylinder is 1.03 g/cm3. The GME data is raw, whereas 

the ALD and LME data have been smoothed by the adjacent-averaging method. (c) 

The relative L2-norm error of the horizontal forces (Fx, black) and vertical forces (Fy, 

blue) under increasing lattice scales. (d) GME simulations coupled with the different 



algorithms to fill newborn fluid nodes, second-order extrapolation (A1), linear 

extrapolation (A2) and neighbor-node average (A3). 

 

We carefully compare the effect of the lattice scale for different schemes of force 

evaluations by performing a set of simulations in which the various lattice sizes are 

used to simulate the same cylinder sedimentation with the particle density 1.03 g/cm3. 

The lattice width of the channel increases gradually from 50 to 200 lattice units, while 

the length remains 10 times the width. The degree of force deviation is indicated by 

the relative L2-norm error, which is defined by  
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where f(t) is a LBM result and F(t) is an ALE result. Fig. 5(c) illustrates that the 

relative errors of the GME results rapidly decrease with the increase of the lattice 

scale. However, the relative errors of the ALD and LME results always remain very 

high and are more than one order larger than those from GME.  

We emphasize that the small fluctuations of the GME data are mostly unrelated 

to Eq. (5); they are mainly caused by the inaccurate distribution functions of the 

newborn fluid nodes and have the potential to be reduced further. Using the fluid 

nodes on the around fluid-solid links, three straightforward algorithms are employed 

to fill the newborn fluid nodes [30, 47], namely second-order extrapolation [40] (A1), 

linear extrapolation (A2) and neighbor-node average (A3). If the participant fluid-

solid links are more than one, the newborn is assigned as their average. It is evident in 

Fig. 5(d) that a good algorithm can remarkably reduce the fluctuations. The A1 



algorithm is also used in all other simulations in the present work. Please refer to the 

papers [24, 40, 47] to know more useful algorithms about the issue. 

 

C.  Fluctuations of velocity and angle velocity 

We further analysis the accuracy of the velocities and the angle velocities by 

GME, ALD and LME. As shown in Figs. 6(a), (b) and (c), all velocities from GME 

are very smooth and in excellent agreement with the ALE benchmarks, whereas the 

results from ALD and LME clearly fluctuate with some deviations. The density of the 

cylinder is 1.03 g/cm3 in the simulations. 

 

 

Fig. 6 (color online). (a) Time-dependent horizontal velocities, (b) time-dependent 

vertical velocities, and (c) time-dependent angular velocities evaluated by GME, LME, 



and ALD, compared with the ALE benchmark.  (d) The relative L2-norm errors of the 

horizontal velocity (Vx, black) and the angular velocity (ω, red) with various particle 

densities. 

 

To investigate the influence of the Reynolds number, a set of simulations are 

performed with the different particle densities which increase from 1.02 to 1.22 g/cm3. 

The moderate Reynolds number is defined by /duRe  , where d  is the cylinder 

diameter, u  is the final velocity of the particle and   is the kinematic viscosity. In 

these simulations, the Reynolds number grows gradually from 6.13 to 34.75. The 

degree of fluctuation is also indicated by the relative L2-norm error, where f(t) is the 

simulation result and F(t) is the smoothed result by the adjacent-averaging method per 

20 points. It is clearly shown in Fig. 6(d) that the GME results are more accurate and 

far steadier than the ALD and LME results and that the time average of the velocities 

is totally unnecessary. 

 

D. Three dimensional numerical simulation 

The Galilean invariant momentum exchange method can be easily extended to 

three-dimensional systems. We perform the simulations of a neutrally buoyant rigid 

sphere migrating laterally in a tube Poiseuille flow, which is schematically illustrated 

in Fig. 7. This phenomena is called the Segré-Silberberg effect and was discovered in 

1962 [48]. The tube radius is 0.2 cm and the sphere radius is 0.061 cm. The fluid 

density is 1.05 g/cm3, the dynamic viscosity is 1.2 poise and the flow rate is 0.0711 



cm3/s. In the present simulations, the sphere radius is 5.9 lattice units and the length of 

the tube is 150 lattice units. The pressure drops from the inlet to the outlet is 1.825E-5 

and pressure boundary condition [49] is applied at both the inlet and outlet of the tube. 

 

 

Fig 7. A schematic diagram of a neutrally buoyant sphere migrating in a tube 

Poiseuille flow. 

 

Fig. 8 (color online). Three-dimensional simulations of the Segré-Silberberg effect by 

the lattice Boltzmann equation with GME.  

 

Fig. 8 presents two trajectories of the spheres released at the dimensionless radial 

positions of r*/R=0.21 and 0.66, where r* is the radial distance from the tube 

centerline. Different from the 2D results [30], the equilibrium positions of the spheres 



are far from the centerline. The numerical results by the lattice Boltzmann simulations 

with GME are highly consistent with the experiments by Karnis et al. [50]. This 

verifies that GME is competent to three-dimensional dynamic simulations. 

 

V. CONCLUSION 

In this work we propose a Galilean invariant momentum exchange equation to 

compute the hydrodynamic force by introducing the relative velocity into the 

interfacial momentum transfer. Numerical cases support strongly that the scheme 

meet full Galilean invariance. We further find that Galilean invariance is not only a 

basic rule, but also plays a key role in improving the numerical accuracy in lattice 

Boltzmann simulations. Direct numerical simulations of the cylinder sedimentations 

and the three-dimensional Segré-Silberberg effect confirm that GME is able to exactly 

depict the behaviors of suspension particle and holds an excellent stability. The 

present algorithm only uses local data and is independent of boundary geometries; 

thus, it is efficient and easily implemented in both two and three dimensions. GME 

can be combined with many curved boundary conditions [40-44] and be adopted in 

different lattice Boltzmann models, such as SRT, MRT, TRT, and ELBE. We expect 

the present method will promote the applications of LBM in various dynamic and 

complex systems, for example moving vehicles, artery motions, colloidal suspensions, 

etc.  
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