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Abstract

In this paper, we propose a numerical regularized moment method to solve the
Boltzmann equation with ES-BGK collision term to simulate polyatomic gas flows.
This method is an extension to the polyatomic case of the method proposed in [9],
which is abbreviated as the NRxx method in [8]. Based on the form of the Maxwellian,
the Laguerre polynomials of the internal energy parameter are used in the series ex-
pansion of the distribution function. We develop for polyatomic gases all the essential
techniques needed in the NRxx method, including the efficient projection algorithm
used in the numerical flux calculation, the regularization based on the Maxwellian it-
eration and the order of magnitude method, and the linearization of the regularization
term for convenient numerical implementation. Meanwhile, the particular integrator
in time for the ES-BGK collision term is put forward. The shock tube simulations
with Knudsen numbers from 0.05 up to 5 are presented to demonstrate the validity
of our method. Moreover, the nitrogen shock structure problem is included in our
numerical experiments for Mach numbers from 1.53 to 6.1.

Keywords: polyatomic ES-BGK model; moment method; NRxx method

1 Introduction

The kinetic theory has long been playing an important role in the rarefied gas dy-
namics. As a mesocopic theory standing between the fluid dynamics and the molecular
dynamics, the kinetic theory is built on the basis of the Boltzmann equation, which uses
a distribution function to give a statistical description of the distribution of microscopic
particles’ velocities. In 1940s, Grad [11] proposed the idea using the Hermite expansion to
approximate the distribution function, and a 13-moment theory was given in detail in [11].
Recently, based on the idea of Grad, systems with large numbers of moments together with
their numerical schemes are considered in [7, 9, 8], where some regularizations inspired
by [21, 19] are also taken into account. In [8], the numerical regularized moment method
is abbreviated as the NRxx method. However, all these works concentrate only on the
monatomic gases, and in this paper, we will develop the NRxx method for the polyatomic
case.

The study to apply the moment method to polyatomic gases can be traced back to
McCormack [15], where a 17-moment model was proposed. As far as we know, the most
recent polyatomic extension of Grad’s 13-moment equations is the work of Mallinger [14],
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whose system contains only 14 moments. In both models, a great amount of work is
devoted to the deduction of the collision terms. In order to generalize the moment theory
to large number of moments, we prefer a BGK-like simplified collision operator. As in the
monatomic case, the simplest BGK model fails to give correct heat conduction, and for
polyatomic gases, it also gives incorrect relaxation collision number, resulting in qualitative
errors in temperatures compared with the Boltzmann equation [3]. Possible alternatives
include the Rykov model [18] and the ES-BGK model [4], which incorporate physical
Prandtl number and relaxation collision number into the collision term. In this work, our
investigation is restricted to the ES-BGK model.

For polyatomic gases, besides the velocities of microscopic particles, an additional
nonnegative ordinate representing the energy of internal degrees of freedom appears in
the distribution function. Thus, in order to expand the distribution function into series,
the basis functions are chosen as a combination of Hermite polynomials and Laguerre
polynomials with proper translation and scaling based on the macroscopic velocity and
translational and rotational temperatures of the gas. By considering the coefficients of
the basis functions as moments, a system with infinite number of moment equations is
derived. A moment closure is then followed to truncate the system with infinite equations
and get a system with only finite equations. The framework for the moment closure is the
same as [9]:

1. the Maxwellian iteration is applied to determine the order of magnitude for each
moment;

2. by dropping higher order terms, the truncated moments are expressed by moments
with lower orders;

3. for easier numerical implementation, the expression is linearized around aMaxwellian.

However, the details of the Maxwellian iteration are significantly different. In the poly-
atomic case, the iteration is much more complicated than the monatomic case because of
the existence of both translational and rotational temperatures in the basis functions, and
the process should be conducted carefully. Moreover, for the ES-BGK model, analysis
on the moments of the Gauss distribution also increases the complexity. Fortunately, the
final result remains a similar form as simple as in [9].

As to the numerical scheme, the general framework in [8] is applicable. A split scheme is
applied to divide the transportation part and the collision part, and the transportation part
is processed by a finite volume method. Recalling that a special “projection” introduced in
[7, 8] is required in the calculation of numerical fluxes, we further develop this technique to
the polyatomic case in this paper. Meanwhile, the polyatomic ES-BGK collision term can
no longer be solved analytically as the BGK operator [7], and the Crank-Nicolson scheme
is applied to ensure the unconditional numerical stability. Our numerical experiments
show that our scheme correctly converges to the solution of the Boltzmann equation as
the number of moments increases. The distinction between BGK and ES-BGK models,
together with the relation between monatomic and polyatomic cases, is illustrated by the
numerical results of shock tube problems. Also, we apply the NRxxmethod to the nitrogen
shock structure problem, and the results are comparable to the experimental data.

The rest of this paper is arranged as follows: in Section 2, a brief review of the poly-
atomic ES-BGK model is given. In Section 3, the polyatomic NRxx method is introduced
comprehensively, and in Section 4, a number of numerical experiments are carried out to
validate our algorithm. As a summation, some concluding remarks are given in Section 5.
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Finally, some involved calculations are collected in the appendix for better readability to
the body matter.

2 The ES-BGK Boltzmann equation for polyatomic gases

The ES-BGK model for polyatomic gases, which gives correct Navier-Stokes heat con-
duction compared with the BGK model, has been deduced in [4, 6]. The polyatomic
ES-BGK Boltzmann equation reads

∂f

∂t
+ ξ · ∇xf = Pr · p

µ
(G− f), (2.1)

where f denotes the molecule distribution, which is a positive function f = f(t,x, ξ, I)
with x, ξ ∈ R

3 and t, I ∈ R
+. The parameters t, x and ξ stand for the time, spatial position

and microscopic molecule velocity respectively, and I is an internal energy parameter. In
the right hand side of (2.1), Pr is the Prandtl number, p is the pressure, and µ denotes
the viscosity coefficient. G is a generalized Gaussian defined as

G(t,x, ξ, I) =
ρΛδ

√

det(2πT )(RTrel)δ/2
exp

(

−1

2
(ξ − u)TT −1(ξ − u)− I2/δ

RTrel

)

. (2.2)

Here δ is the total number of molecular internal degrees of freedom, and R is the gas
constant. The density ρ and the macroscopic velocity u are related to the distribution
function f through

ρ =

∫

R3×R+

f dξ dI, u =
1

ρ

∫

R3×R+

ξf dξ dI, (2.3)

and Trel is a relaxation temperature

Trel = Z−1Teq + (1− Z−1)Tint, (2.4)

where Z is the relaxation collision number. For polyatomic gases, three temperatures are
used frequently, including the translational temperature Ttr, the internal temperature Tint,
and the equilibrium temperature Teq. They are defined by

Ttr =
1

3ρR

∫

R3×R+

|ξ − u|2f dξ dI, (2.5)

Tint =
2

δρR

∫

R3×R+

I2/δf dξ dI, (2.6)

Teq = (3Ttr + δTint)/(3 + δ). (2.7)

And the pressure p is obtained from the ideal gas law:

p = ρRTeq. (2.8)

Now it only remains to define Λδ and T :

Λδ =

[∫

R+

e−I2/δ dI

]−1

, T = (1 − Z−1)[(1 − ν)RTtrId + νΘ/ρ] + Z−1RTeqId, (2.9)

where

Θ =

∫

R3×R+

(ξ − u)⊗ (ξ − u)f dξ dI, ν =
1− Pr−1

1− Z−1
, (2.10)

and Id stands for the identity matrix.
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3 The NRxx method for polyatomic ES-BGK equation

In this section, we are going to extend the NRxx method proposed in [7, 9] to the
polyatomic case, which includes the following steps:

1. The distribution function is expanded into a series with specially selected basis func-
tions.

2. A system with infinite number of moment equations is deduced.

3. The moment system is truncated at a certain place and made closed by regulariza-
tion.

4. The regularization term is linearized in order to simplify the numerical implementa-
tion.

5. The numerical method is carried out following [8].

The details are introduced in the following five subsections.

3.1 Spectral representation of the velocity space

In the NRxx method for the monatomic gases, the Hermite polynomials have been
employed to construct the basis functions of the velocity space, since Hermite polynomials
are orthogonal over the region (−∞,+∞). For the polyatomic distribution function, since
I ∈ R

+, we use the Laguerre polynomials, which are orthogonal over the region [0,+∞),
as the basis functions in the ordinate I. Thus the basis function has the following form:

ψα,k,Ttr,Tint
(v, J) =

2

δ

(

γ
(m)
k

)−1
(RTint)

−(δ/2+k)L
(m)
k (J) exp(−J) ·

(√
2π
)−3

(RTtr)
− |α|+3

2

3
∏

d=1

Heαd
(vd) exp

(

−v
2
d

2

)

,
(3.1)

where α = (α1, α2, α3) is a multi-index, and

m = δ/2 − 1, γ
(m)
k =

Γ(m+ k + 1)

Γ(k + 1)
, (3.2)

L
(m)
k (J) =

J−meJ

k!

dk

dJk
(e−JJk+m), (3.3)

Hen(x) = (−1)n exp

(

x2

2

)

dn

dxn
exp

(

−x
2

2

)

. (3.4)

Some properties of the Laguerre polynomials L
(m)
k and the Hermite polynomials Hen can

be found in Appendix A. With equation (3.1), the distribution function f(ξ, I) is expanded
as

f(ξ, I) =
∑

α∈N3

∑

k∈N

fα,kψα,k,Ttr,Tint

(

ξ − u√
RTtr

,
I2/δ

RTint

)

. (3.5)

Let us consider the general case when Ttr, Tint and u have no relation with the distribution
function f . Using the orthogonality of the Laguerre and Hermite polynomials, we can
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deduce that
∫

R3×R+

f dξ dI = f0,0, (3.6a)

∫

R3×R+

ξjf dξ dI = f0,0uj + fej ,0, j = 1, 2, 3, (3.6b)

∫

R3×R+

I2/δf dξ dI =
1

2
δRTintf0,0 − f0,1, (3.6c)

∫

R3×R+

1

2
|ξ|2f dξ dI =

1

2
f0,0|u|2 +

3
∑

j=1

(

1

2
RTtrf0,0 + ujfej ,0 + f2ej ,0

)

. (3.6d)

If u is the macroscopic velocity and Ttr, Tint are the translational and internal temperatures
for the distribution f , using (2.3), (2.5), (2.6) and (3.6), we conclude

f0,0 = ρ, fej ,0 = f0,1 =
3
∑

d=1

f2ed,0 = 0, j = 1, 2, 3. (3.7)

If (3.7) is satisfied, then (3.5) is called as a normal representation of f . If (3.5) is not a
normal representation, then the density, momentum and translational and internal energies
can be easily calculated through (3.6). For a normal representation, we have

Θij = (1 + δij)fei+ej ,0 + δijρRTtr, i, j = 1, 2, 3. (3.8)

where Θ is defined in (2.10).

3.2 The moment equations for the ES-BGK model

In this section, we are going to derive equations for the moment set {fα,k}. The general
strategy is to substitute (3.5) into (2.1), and then match the coefficients of the same basis
functions. For the left hand side of (3.5), the process is similar as that in [9], and the
detailed derivation can be found in Appendix B. Suppose G has the following expansion:

G(t,x, ξ, I) =
∑

α∈N3

∑

k∈N

Gα,k(t,x)ψα,k,Ttr,Tint

(

ξ − u√
RTtr

,
I2/δ

RTint

)

, (3.9)

Then the analytical expressions of the moment equations are obtained as

∂fα,k
∂t

+
3
∑

d=1

∂ud
∂t

fα−ed,k +
1

2

∂(RTtr)

∂t

3
∑

d=1

fα−2ed,k − (m+ k)
∂(RTint)

∂t
fα,k−1

+
3
∑

j=1

[(

RTtr
∂fα−ej ,k

∂xj
+ uj

∂fα,k
∂xj

+ (αj + 1)
∂fα+ej ,k

∂xj

)

+

3
∑

d=1

∂ud
∂xj

(

RTtrfα−ed−ej ,k + ujfα−ed,k + (αj + 1)fα−ed+ej ,k

)

+
1

2

∂(RTtr)

∂xj

3
∑

d=1

(

RTtrfα−2ed−ej ,k + ujfα−2ed,k + (αj + 1)fα−2ed+ej ,k

)

− (m+ k)
∂(RTint)

∂xj

(

RTtrfα−ej ,k−1 + ujfα,k−1 + (αj + 1)fα+ej ,k−1

)

]

= Pr · p
µ
(Gα,k − fα,k),

(3.10)
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where fβ,l is taken as zero when l or any of the components of β is negative, and m is
defined in (3.2).

Now we focus on the relation between Gα,k and fα,k. The expression of G (2.2)—
(2.10) and the equalities under normal representation (3.7) and (3.8) show that Gα,k are
functions of ρ, Ttr, Tint and fei+ej ,0 with i, j = 1, 2, 3. Thus the system (3.10) is closed for
α ∈ N3 and k = 0, 1, which means only the expressions of Gα,0 and Gα,1 are needed. The
following results are trivial:

G0,0 =

∫

R3×R+

Gdξ dI = ρ, (3.11a)

Gej ,0 =

∫

R3×R+

ξjGdξ dI −G0,0uj = 0, (3.11b)

G0,1 =
δ

2
RTintG0,0 −

∫

R3×R+

I2/δGdξ dI

=
δ

2
ρ[RTint − Z−1RTeq − (1− Z−1)RTint]

=
δ

2Z
ρ(RTint −RTeq),

(3.11c)

where (3.11c) comes from the physical meaning of the relaxation collision number. More-
over, since G(ξ, I) has the form

G(ξ, I) = G1(ξ)G2(I), (3.12)

where

G1(ξ) =
ρ

√

det(2πT )
exp

(

−1

2
(ξ − u)T T (ξ − u)

)

, G2(I) =
Λδ

(RTrel)δ/2
exp

(

− I2/δ

RTrel

)

,

(3.13)
and the basis functions ψα,k,Ttr,Tint

have the same structure (see (B.1))

ψα,k,Ttr,Tint
(v, J) = ψ1,α,Ttr

(v)ψ2,k,Tint
(J), (3.14)

we can conclude
Gα,1 = CGα,0, (3.15)

where C is independent of α. From (3.11a) and (3.11c), we find

C =
δ

2Z
(RTint −RTeq). (3.16)

Until now, what remains is to work out the expressions of Gα,0 for |α| > 2. This needs
some involved calculation with details in Appendix C. The final result is in a recursive
form as

Gα,0 =
1

αi

3
∑

j=1

[(1− Pr−1)(Θij/ρ−RTtrδij) + Z−1(RTeq −RTtr)δij ]Gα−ei−ej ,0, (3.17)

where i ∈ {1, 2, 3} such that αi > 0, and Gα−ei−ej ,0 is taken as zero when αj − δij − 1 < 0.
With (3.11b), one can easily observe that Gα,0 = 0 when |α| is odd.
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As the end of this subsection, we give the equations for the velocity u and the trans-
lational and internal temperatures Ttr, Tint. The equation for ud can be obtained by
substituting α with ed in (3.10), and the result is

ρ
∂ud
∂t

+

3
∑

j=1

(

ρuj
∂ud
∂xj

+
∂Θjd

∂xj

)

= 0, j = 1, 2, 3. (3.18)

The equation for Ttr can be obtained by substituting α with 2e1, 2e2, 2e3, and then
summing up all the three equations. The result is

∂Ttr
∂t

+
3
∑

j=1

uj
∂Ttr
∂xj

+
2

3ρR

3
∑

j=1

(

∂Qj

∂xj
+

3
∑

d=1

Θjd
∂ud
∂xj

)

=
Pr

Z
· p
µ
(Teq − Ttr), (3.19)

where

Qj = 2f3ej ,0 +

3
∑

d=1

fej+2ed,0, j = 1, 2, 3. (3.20)

Similarly, if we set α = 0 and k = 1, then we have

∂Tint
∂t

+
3
∑

j=1

uj
∂Tint
∂xj

− 2

δρR

3
∑

j=1

∂fej ,1

∂xj
=

Pr

Z
· p
µ
(Teq − Tint). (3.21)

3.3 Truncation and closure with regularization

Since the moment system (3.10) contains an infinite number of equations and cannot be
used for computation, we need to choose a finite set from them as the governing equations
of our method. However, due to the existence of the last term in the second line of (3.10),
the resulting moment system will be unclosed, which leads to the “closure problem” for
the moment method.

We first consider the truncation of the spectral expansion. In general, we can choose
two non-negative integers M0 > 2 and M1 > 0, and use the moment set {fα,0}|α|6M0

∪
{fα,1}|α|6M1

as the finite subset. Such choice well retains the Galilean invariance since
{fα,0} and {fα,1} only couple with each other in the collision term. We will postpone the
discussion of the relation between M0 and M1. Below we use I to denote the index set
such that the set {fα,k}(α,k)∈I contains all the moments appearing in the final moment
equations.

Now we are going to make the system closed. The simplest way is to set fα+ej ,k = 0
in (3.10) if (α + ej, k) /∈ I, which leads to the Grad-type moment equations for poly-
atomic gases. Mallinger’s work [14] has generalize the Grad 13-moment equations to the
polyatomic case. Here, we follow [17, 19, 9] and use the Maxwellian iteration together
with the order of magnitude method to give a more reasonable closure. The procedure of
Maxwellian iteration is constructed by rearranging (3.10) and adding superscripts repre-
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senting the iteration steps:

f
(n+1)
α,k = A

(n)
α,k −B(ε)

{

∂f
(n)
α,k

∂t
+

3
∑

d=1

∂ud
∂t

f
(n)
α−ed,k

+
1

2

∂(RT
(n+1)
tr )

∂t

3
∑

d=1

f
(n)
α−2ed,k

− (m+ k)
∂(RT

(n+1)
int )

∂t
f
(n)
α,k−1

+

3
∑

j=1

[(

RT
(n+1)
tr

∂f
(n)
α−ej ,k

∂xj
+ uj

∂f
(n)
α,k

∂xj
+ (αj + 1)

∂f
(n)
α+ej ,k

∂xj

)

+

3
∑

d=1

∂ud
∂xj

(

RT
(n+1)
tr f

(n)
α−ed−ej ,k

+ ujf
(n)
α−ed,k

+ (αj + 1)f
(n)
α−ed+ej ,k

)

+
1

2

∂(RT
(n+1)
tr )

∂xj

3
∑

d=1

(

RT
(n+1)
tr f

(n)
α−2ed−ej ,k

+ ujf
(n)
α−2ed,k

+ (αj + 1)f
(n)
α−2ed+ej ,k

)

− (m+ k)
∂(RT

(n+1)
int )

∂xj

(

RT
(n+1)
tr f

(n)
α−ej ,k−1 + ujf

(n)
α,k−1 + (αj + 1)f

(n)
α+ej ,k−1

)

]}

,

(3.22)

where ε = µ/(Pr · p) is considered as a small parameter and (α, k) satisfies

(α, k) ∈ S := {N3 × {0, 1} : |α| > 2 if k = 0, |α| > 1 if k = 1}. (3.23)

In the first line of (3.22), A
(n)
α,k and B(ε) are defined as

A
(n)
α,k =

{

1
2Pr · Z−1ρ(RTeq −RT

(n+1)
tr )δij , if α = ei + ej , k = 0,

G
(n)
α,k, other cases.

(3.24)

B(ε) =

{

Pr · ε if |α| = 2, k = 0,
ε, other cases.

(3.25)

The reason why the iteration scheme for |α| = 2 is special is that Gα,k are functions of
fα, |α| = 2. Note that f0,0(ρ), u, fej ,0(≡ 0) and f0,1(≡ 0) remain invariant during the
iteration, and according to (3.19) and (3.21), Ttr and Tint evolves as follows:

T
(n+1)
tr = Teq − εZ





∂T
(n)
tr

∂t
+

3
∑

j=1

uj
∂T

(n)
tr

∂xj
+

2

3ρR

3
∑

j=1

(

∂Q
(n)
j

∂xj
+

3
∑

d=1

Θ
(n)
jd

∂ud
∂xj

)



 , (3.26)

T
(n+1)
int = Teq − εZ





∂T
(n)
int

∂t
+

3
∑

j=1

uj
∂T

(n)
int

∂xj
− 2

δρR

3
∑

j=1

∂f
(n)
ej ,1

∂xj



 , (3.27)

where Teq also remains invariant during the iteration. The iteration starts with

T
(0)
tr = T

(0)
int = Teq, f

(0)
0,0 = ρ, f

(0)
α,k = 0 for (α, k) 6= (0, 0). (3.28)

In order to simplify the notation, we define the following vectors:

F
(n)
m,k = (f

(n)
α,k)|α|=m, F

(n)
[m1,m2],k

= (F
(n)
m1,k

, · · · ,F (n)
m2,k

), m1 < m2. (3.29)
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and rewrite (3.22) and (3.26) as

f
(n+1)
α,k = A

(n)
α,k − εL

(n+1)
α,k · F (n)

[|α|−3,|α|+1],k + εL
(n+1)
α,k · F (n)

[|α|−1,|α|+1],k−1, (3.30)

T
(n+1)
tr = Teq − εL(T (n)

tr ,F
(n)
[2,3],0), (3.31)

T
(n+1)
int = Teq − εL(T (n)

int ,F
(n)
1,1 ), (3.32)

where L(·, ·) is a linear operator, and L
(n)
α,k is a vector of linear operators. Each of L(n)’s

components has the following form:

3
∑

j=1

∑

s1+s2+s3+s461

2
∑

r=0

Cj,r,s
∂s1+s2(RT

(n)
tr )r

∂ts1∂xs2j

∂s3+s4

∂ts3∂xs4j
, s ∈ {0, 1}4, (3.33)

where Cj,r,s = Cj,r,s(ρ,u, ∂/∂t,∇x), which can be considered as a “constant” during the

iteration. L
(n)
α,k is a vector, whose components can be expressed as

3
∑

j=1

∑

s1+s2=1,s3+s461

Cj,s
∂s1+s2(RT

(n)
int )

∂xs1j ∂t
s2

(RT
(n)
tr )s3us4j , s ∈ {0, 1}4, (3.34)

where Cj,s are also constants. Now we are ready to carry out the Maxwellian iteration.

The first step of iteration In the first step, the formulae for the translational and
internal temperatures can be written as

T
(1)
tr = Teq + εS(0), T

(1)
int = Teq + εU (0), (3.35)

where S(0) ∼ O(1) and U (0) ∼ O(1). It is easy to find

G
(0)
α,k = f

(0)
α,k, ∀α ∈ N

3, k = 0, 1. (3.36)

Thus

A
(0)
α,k =

{

−1
2εPr · Z−1ρRS(0), if α = 2ei, k = 0,

0, other cases.
(3.37)

Now, it can be easily deduced from (3.30) that f
(1)
α,k is nonzero if and only if 0 ∈ [|α| −

3, |α| + 1], k = 0 or 0 ∈ [|α| − 1, |α| + 1], k = 1. Precisely, we have

f
(1)
α,k ∼







O(ε), (α, k) ∈ S and |α| 6 3, k = 0,
O(ε), (α, k) ∈ S and |α| = 1, k = 1,
0, other cases for (α, k) ∈ S,

(3.38)

and
F

(1)
[2,3],0 = F

(0)
[2,3],0 + εH

(0)
[2,3],0, F

(1)
1,1 = F

(0)
1,1 + εH

(0)
1,1, (3.39)

where H
(0)
[2,3],k and H

(0)
1,1 has an order of magnitude O(1). The meaning of the subscripts

of H is the same as F .
Now let us consider G

(1)
α,k. G0,0, G0,1 and Gα,k with odd |α| keep invariant during the

iteration. For Gα,0 with |α| > 2, (3.17) gives

G
(n)
α,0 =

3
∑

j=1

Lα,j

(

T
(n)
tr − Teq,F

(n)
2,0

)

G
(n)
α−ei−ej ,0

, (3.40)
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where Lα,j(·, ·) is a linear function independent of ε. Using (3.38), (3.35) and G0,0 = ρ ∼
O(1), we can easily get

G
(1)
α,0 ∼ O(ε|α|/2), |α| is even. (3.41)

Using (3.16), we have

G
(1)
α,1 =

δR

2Z
εU (0)G

(1)
α,0 ∼ O(ε|α|/2+1), |α| is even. (3.42)

The general progress In general case, we have

f
(n+1)
α,k ∼















O(ε⌈|α|/3⌉), (α, k) ∈ S and |α| 6 3(n + 1), k = 0,

o(ε⌈|α|/3⌉), (α, k) ∈ S and |α| > 3(n + 1), k = 0,

O(ε⌈(|α|+2)/3⌉), (α, k) ∈ S and |α| 6 3n + 1, k = 1,

o(ε⌈(|α|+2)/3⌉), (α, k) ∈ S and |α| > 3n + 1, k = 1,

(3.43)

and

F
(n+1)
[2,3(n+1)],0 = F

(n)
[2,3(n+1)],0 + εn+1H

(n)
[2,3(n+1)],0, (3.44)

F
(n+1)
[1,3n+1],1 = F

(n)
[1,3n+1],1 + εn+1H

(n)
[1,3n+1],1, (3.45)

T
(n+1)
tr = T

(n)
tr + εn+1S(n), (3.46)

T
(n+1)
int = T

(n)
int + εn+1U (n), (3.47)

where H
(n)
[m1,m2],k

∼ O(1), S(n) ∼ O(1) and U (n) ∼ O(1). (3.43)—(3.47) can be validated

by induction. Through the derivation in the last paragraph, we have known that (3.43)—
(3.47) hold for n = 0. Now we suppose (3.43)—(3.47) hold for n − 1. Then (3.40) gives

G
(n)
α,0 =

3
∑

j=1

[

Lα,j

(

T
(n−1)
tr − Teq,F

(n−1)
2,0

)

+ εnLα,j

(

S(n−1),H
(n−1)
2,0

)]

G
(n)
α−ei−ej ,0

. (3.48)

Now using G
(n)
0,0 = G

(n−1)
0,0 = ρ and (3.40) with n replaced by n− 1, simple induction gives

G
(n)
α,0 −G

(n−1)
α,0 ∼ O(εn+|α|/2−1), |α| > 2 and |α| is even. (3.49)

For G
(n)
α,1, we have

G
(n)
α,1 −G

(n−1)
α,1 = C(n)G

(n)
α,0 − C(n−1)G

(n−1)
α,0

=

[

C(n−1) +
δR

2Z
εnU (n−1)

]

G
(n)
α,0 − C(n−1)G

(n−1)
α,0

= C(n−1)(G
(n)
α,0 −G

(n−1)
α,0 ) +

δR

2Z
εnU (n−1)G

(n)
α,0

∼ O(ε) · O(εn+|α|/2−1) + εn · O(1) · O(ε|α|/2)

∼ O(εn+|α|/2), |α| > 2 and |α| is even.

(3.50)

Similarly, by (3.31), we have

T
(n+1)
tr = Teq − ε

[

L
(

T
(n−1)
tr ,F

(n−1)
[2,3],0

)

+ εnL
(

S(n−1),H
(n−1)
[2,3],0

)]

= T
(n)
tr − εn+1L

(

S(n−1),H
(n−1)
[2,3],0

)

.
(3.51)
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Defining S(n) = −L
(

S(n−1),H
(n−1)
[2,3],0

)

gives (3.46). The validation of (3.47) is almost the

same. (3.49), (3.50) and (3.51) imply that A
(n)
α,k −A

(n−1)
α,k is never greater than O(εn+1).

Now it remains to consider f
(n+1)
α,k . Similar as (3.50), the equations (3.33), (3.34) and

(3.51) show

L
(n+1)
α,k −L

(n)
α,k ∼ O(εn+1), L

(n+1)
α,k ∼ O(1), (3.52)

L
(n+1)
α,k −L

(n)
α,k ∼ O(εn+1), L

(n+1)
α,k ∼ O(1), (3.53)

Using the assumptions of the induction, one has

f
(n+1)
α,0 = A

(n)
α,0 − εL

(n+1)
α,0 · F (n)

[|α|−3,|α|+1],0

∼
{

O(ε|α|/2) + εO(1) ·O(ε⌈(|α|−3)/3⌉) ∼ O(ε⌈|α|/3⌉), |α| 6 3(n + 1),

O(ε|α|/2) + εO(1) · o(ε⌈(|α|−3)/3⌉) ∼ o(ε⌈|α|/3⌉), |α| > 3(n + 1),

(3.54)

and

f
(n+1)
α,1 = A

(n)
α,1 − εL

(n+1)
α,1 · F (n)

[|α|−3,|α|+1],1 + εL
(n+1)
α,1 · F (n)

[|α|−1,|α|+1],0

∼
{

O(ε|α|/2+1) + εO(ε⌈(|α|−1)/3⌉) + εO(ε⌈(|α|−1)/3⌉) ∼ O(ε⌈(|α|+2)/3⌉), |α| 6 3n + 1,

O(ε|α|/2+1) + εo(ε⌈(|α|−1)/3⌉) + εo(ε⌈(|α|−1)/3⌉) ∼ o(ε⌈(|α|+2)/3⌉), |α| > 3n + 1.

(3.55)

This gives (3.43). The validation of (3.44) and (3.45) needs

f
(n+1)
α,k − f

(n)
α,k = A

(n)
α,k −A

(n−1)
α,k − ε(L

(n+1)
α,k · F (n)

[|α|−3,|α|+1],k −L
(n+1)
α,k · F (n)

[|α|−3,|α|+1],k)

+ ε(L
(n+1)
α,k · F (n)

[|α|−1,|α|+1],k−1 −L
(n+1)
α,k · F (n)

[|α|−1,|α|+1],k−1)

= A
(n)
α,k −A

(n−1)
α,k − εL

(n+1)
α,k · (F (n)

[|α|−3,|α|+1],k − F
(n−1)
[|α|−3,|α|+1],k)

− ε(L
(n+1)
α,k −L

(n)
α,k) · F

(n−1)
[|α|−3,|α|+1],k

,

+ εL
(n)
α,k · (F

(n)
[|α|−1,|α|+1],k−1 − F

(n−1)
[|α|−1,|α|+1],k−1)

+ ε(L
(n+1)
α,k −L

(n)
α,k) · F

(n−1)
[|α|−1,|α|+1],k−1,

(3.56)

and then (3.49), (3.50), (3.52) and (3.53) show that

f
(n+1)
α,k − f

(n)
α,k ∼ O(εn+1). (3.57)

The equations (3.43)—(3.45) tell us that f
(n)
α,k is never greater than O(ε⌈(|α|+2k)/3⌉) for

arbitrary n, and the leading order of fα,k appears at the ⌈(|α| + 2k)/3⌉-th iteration step,
and never changes later. Based on these results, we can remove some high order terms in
the moment equations (3.10), and the remaining part is the formula for the regularization
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term. Precisely, we have

3
∑

d=1

∂ud
∂t

fα−ed,k +
1

2

∂(RTtr)

∂t

3
∑

d=1

fα−2ed,k +

3
∑

j=1

RTtr
∂fα−ej ,k

∂xj

− (m+ k)
∂(RTint)

∂t
fα,k−1 +

3
∑

j=1

3
∑

d=1

∂ud
∂xj

(

RTtrfα−ed−ej ,k + ujfα−ed,k

)

+
1

2

3
∑

j=1

∂(RTtr)

∂xj

3
∑

d=1

(

RTtrfα−2ed−ej ,k + ujfα−2ed,k + (αj + 1)fα−2ed+ej ,k

)

− (m+ k)
3
∑

j=1

∂(RTint)

∂xj
(RTtrfα−ej ,k−1 + ujfα,k−1 + (αj + 1)fα+ej ,k−1)

=
1

ε
(Gα,k − fα,k) + h.o.t.,

(3.58)

where h.o.t. stands for high order terms. The equations (3.18), (3.19) and (3.21) can be
used to make (3.58) more compact. Noting that the terms containing fei+ej ,0 or fej,1 can
be regarded as a high order term in (3.8), we can write (3.58) as

fα,k = ε

[

3
∑

j=1

(

1

ρ

∂(ρRTtr)

∂xj
fα−ej ,k −RTtr

∂fα−ej ,k

∂xj

)

+
1

3
RTtr





3
∑

j=1

∂uj
∂xj





3
∑

d=1

fα−2ed,k

−
3
∑

j=1

3
∑

d=1

1

2

∂(RTtr)

∂xj
(RTtrfα−2ed−ej ,k + (αj + 1)fα−2ed+ej ,k)

+ (m+ k)

3
∑

j=1

∂(RTint)

∂xj
(RTtrfα−ej ,k−1 + (αj + 1)fα+ej ,k−1)

−
3
∑

j=1

3
∑

d=1

∂ud
∂xj

RTtrfα−ed−ej ,k

]

+Gα,k + h.o.t..

(3.59)

If |α| = 2 and k = 0, the above equation becomes

fei+ej ,0 = ε

[

1

3
δijρRTtr

3
∑

d=1

∂ud
∂xd

− 1

1 + δij
ρRTtr

(

∂ui
∂xj

+
∂uj
∂xi

)

]

+ (1− Pr−1)fei+ej ,0 +
1

2
δijZ

−1ρ(RTeq −RTtr) + h.o.t..

(3.60)

With (3.8), it is reformulated as

(1 + δij)fei+ej ,0 = −2Pr · ερRTtr
∂u〈i

∂xj〉
+ δijPr · Z−1ρ(RTeq −RTtr) + h.o.t., (3.61)

which is similar as the Navier-Stokes law. Analogously, we can get the following relations
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similar as the Fourier’s law:

Qj = −5

2
ερRTtr

∂(RTtr)

∂xj
+ h.o.t.,

fej ,1 =
δ

2
ερRTtr

∂(RTint)

∂xj
+ h.o.t..

(3.62)

(3.61) and (3.62) can be used to eliminate most partial derivatives in (3.59). Direct
substitution gives the following result for |α| > 3:

fα,k = ε

3
∑

j=1

(

1

ρ

∂(ρRTtr)

∂xj
fα−ej,k −RTtr

∂fα−ej ,k

∂xj

)

+
1

2Pr · ρ

3
∑

j=1

3
∑

d=1

(1 + δjd)fej+ed,0fα−ed−ej ,k

− 1

2
Z−1(RTeq −RTtr)

3
∑

j=1

fα−ed−ej ,k

+
1

5ρRTtr

3
∑

j=1

3
∑

d=1

Qj[RTtrfα−2ed−ej ,k + (αj + 1)fα−2ed+ej ,k]

+
1

ρRTtr

3
∑

j=1

fej ,1[RTtrfα−ej ,k−1 + (αj + 1)fα+ej ,k−1] + h.o.t..

(3.63)

Neglecting the high order terms and applying the result for |α| = M0 + 1, k = 0 and
|α| = M1 + 1, k = 1, we carry out a reasonable approximation to the moments of the
corresponding orders. This completes the closure of the moment system.

There is still one question about the relation between M0 and M1 remaining. Since
when |α| > 1, fα,1 always has the same order of magnitude as fα+ei+ej ,0, it is natural to
choose M0 =M1 + 2. Thus the total number of moments is (M0 + 1)(M2

0 + 2M0 + 3)/3.

3.4 Linearization of the regularization term

The expression (3.63) is rather complicated and is inconvenient for numerical imple-
mentation. In [8], we have used the technique of linearization to simplify the regularization
term. Here, the same idea will be applied to derive a simplified regularization term.

We consider a local problem where the distribution function is around the Maxwellian
and the variations of the density, velocity and temperature are small. Thus we have the
local expansions with a small parameter ǫ indicating the magnitude of perturbation around
the Maxwellian as

ρ = ρ0(1 + ǫρ̂), u = u0 + ǫ
√

RT0û, Teq = T0(1 + ǫT̂eq), Ttr = T0(1 + ǫT̂tr),

x = Lǫx̂, µ = Lρ0
√

RT0ǫµ̂, fα,k = ρ0(RT0)
|α|/2+kǫf̂α,k for (α, k) 6= (0, 0),

(3.64)

where ρ0, u0 and T0 are the reference density, velocity and temperature, respectively,
the variables with hats ·̂ are dimensionless variables with magnitudes O(1) and L is the
characteristic length. The equations (2.8) and (3.20) show that

p = ρ0RT0(1 + ǫp̂), Qj = ρ0(RT0)
3/2ǫQ̂j, j = 1, 2, 3, (3.65)
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where p̂ and Q̂j are also O(1) dimensionless variables. Now we put (3.64) and (3.65) into
(3.63). Eliminating the constants on both sides, we get

f̂α,k =
µ̂

Pr(1 + ǫp̂)

3
∑

j=1

(

ǫR

1 + ǫρ̂

∂(ρ̂+ T̂tr + ǫρ̂T̂tr)

∂x̂j
f̂α−ej ,k −R(1 + ǫT̂tr)

∂f̂α−ej ,k

∂x̂j

)

+
ǫ

2Pr(1 + ǫρ̂)

3
∑

j=1

3
∑

d=1

(1 + δjd)f̂ej+ed,0f̂α−ed−ej ,k

− 1

2
ǫZ−1(RT̂eq −RT̂tr)

3
∑

j=1

f̂α−ed−ej ,k

+
ǫ

5(1 + ǫρ̂)R(1 + ǫT̂tr)

3
∑

j=1

3
∑

d=1

Q̂j [R(1 + ǫT̂tr)f̂α−2ed−ej ,k + (αj + 1)f̂α−2ed+ej ,k]

+
ǫ

(1 + ǫρ̂)R(1 + ǫT̂tr)

3
∑

j=1

f̂ej ,1[R(1 + ǫT̂tr)f̂α−ej ,k−1 + (αj + 1)f̂α+ej ,k−1].

(3.66)

Reserving only leading order terms on the right hand side, one has

f̂α,k ≈ − µ̂

Pr(1 + ǫp̂)
· R(1 + ǫT̂tr)

3
∑

j=1

∂f̂α−ej ,k

∂x̂j
. (3.67)

Using (3.64) and (3.65) again, we get a simple approximation of fα,k:

fα,k ≈ − µ

Pr · p · RTtr
3
∑

j=1

∂fα−ej ,k

∂xj
. (3.68)

This approximation is to be applied to |α| =Mk + 1 and used in our numerical method.

Remark 1. The linearization may cause the loss of accuracy in the moment method.
However, since the NRxxmethod is applicable up to arbitrary order of moments, the loss of
accuracy can be got back by increasing the highest order in the system by 1. An important
advantage of the regularization term (3.68) is to smooth the profile of macroscopic variables
such that the unphysical subshocks can be eliminated (see e.g. [12, 20]). We will find in
the numerical experiments that the regularization term (3.68) actually acts as a diffusion.

3.5 Numerical method

The framework of the numerical scheme for the NRxx method in the polyatomic case
is generally the same as that in the monatomic case. The fractional step method is utilized
to treat convection term and collision term separately. For the convection term, the finite
volume method with the HLL numerical flux is employed. Below we consider the one-
dimensional case and suppose a uniform spatial grid with grid size ∆x is used. For an
arbitrary quantity ψ, the symbol ψn

i denotes the average value of ψ on the i-th grid at the
n-th time step. Then the whole algorithm is outlined as follows:

1. Let n be zero and set fni (ξ, I) to be the initial value.
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2. For each i, apply the technique of linear reconstruction to determine the distributions
on both boundaries of the i-th grid. The results are denoted as fn+i−1/2(ξ, I) and

fn−i+1/2(ξ, I).

3. For each reconstructed distribution function, use (3.68) for |α| =Mk + 1 to approx-
imate the truncated moments.

4. Use CFL condition to determine the time step ∆t:

∆tmax
i

{

|u|ni + C(M0)
√

(RTtr)ni
∆x

+
2(M + 1)

(∆x)2
(εRTtr)

n
i

}

6
1

2
CFL, (3.69)

where C(M0) is the maximal root of the Hermite polynomial HeM0
(x), and CFL is

a specified Courant number between 0 and 1.

5. Solve the convection part with the HLL scheme:

fn∗i (ξ, I) = fni (ξ, I)−
∆t

∆x
[Gn

i+1/2(ξ, I)−Gn
i−1/2(ξ, I)], (3.70)

where

Gn
i+1/2(ξ) =



















































ξ1f
n−
i+1/2(ξ, I), 0 6 λn−i+1/2,

λn+i+1/2ξ1f
n−
i+1/2(ξ, I)− λn−i+1/2ξ1f

n+
i+1/2(ξ, I)

λn+i+1/2 − λn−i+1/2

+
λn−i+1/2λ

n+
i+1/2[f

n+
i+1/2(ξ, I)− fn−i+1/2(ξ, I)]

λn+i+1/2 − λn−i+1/2

, λn−
i+1/2

< 0 < λn+
i+1/2

,

ξ1f
n+
i+1/2(ξ, I), 0 > λn+i+1/2,

(3.71)
and

λn−i+1/2 = min
{

(u1)
n−
i+1/2 − C(M0)

√

(RTtr)
n−
i+1/2, (u1)

n+
i+1/2 − C(M0)

√

(RTtr)
n+
i+1/2

}

,

λn+i+1/2 = max
{

(u1)
n−
i+1/2 + C(M0)

√

(RTtr)
n−
i+1/2, (u1)

n+
i+1/2 + C(M0)

√

(RTtr)
n+
i+1/2

}

.

(3.72)

6. Solve the collision-only equation by ∆t, and the result is denoted as fn+1
i (ξ, I).

7. Increase n by 1 and return to Step 2.

The details of linear reconstruction and the numerical approximation of the truncated
moments are almost the same as the monatomic case, and we refer the readers to [8]
for our implementation. Here only Step 5 and Step 6 are expanded in the following
subsections.

3.5.1 The convection step

In [7], we have mentioned that two operations are needed to accomplish the HLL
scheme. One is the calculation of ξjf for f represented by (3.5), and the other is the
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linear operation on distribution functions. The former is straightforward:

ξjf(ξ, I) =
(

√

RTtrvj + uj

)

∑

α∈N3

∑

k∈N

fα,kψα,k,Ttr,Tint
(v, J)

=
∑

α∈N3

∑

k∈N

fα,k
[

RTtrψα+ej ,k,Ttr,Tint
(v, J) + ujψα,k,Ttr,Tint

(v, J) + αjψα−ej ,k,Ttr,Tint
(v, J)

]

,

(3.73)

where the recursion relation of Hermite polynomials is used, and

v = (ξ − u)/
√

RTtr, J = I2/δ/(RTint). (3.74)

In order to make linear operations on distribution functions applicable, we have to
solve the following problem:

For f(ξ, I) represented by (3.5), find a series of coefficients f ′α,k, such that

f(ξ, I) =
∑

α∈N3

∑

k∈N

f ′α,kψα,k,T ′
tr,T

′
int

(

ξ − u′

√

RT ′
tr

,
I2/δ

RT ′
int

)

for some given u′, T ′
tr and T

′
int.

This can be tackled by two steps. First, we will find a series of coefficients f ′′α,k, such that

f(ξ, I) =
∑

α∈N3

∑

k∈N

f ′′α,kψα,k,Ttr,T ′
int

(

ξ − u√
RTtr

,
I2/δ

RT ′
int

)

. (3.75)

Note that only fα,k’s with k = 0, 1 are interested, which significantly reduces the difficulty
of the problem. We calculate

Φα,k :=

∫

R3×R+

f(ξ, I)ψα,k,Ttr,Tref

(

ξ − u√
RTtr

,
I2/δ

RTref

)

exp

(

|ξ − u|2
2RTtr

+
I2/δ

RTref

)

dξ dI

(3.76)
using both (3.5) and (3.75), where Tref is an arbitrary positive real number. Thanks to
the orthogonality of Hermite and Laguerre polynomials, the results can be obtained as

Φα,0 = C0fα,0 = C0f
′′
α,0, (3.77)

Φα,1 = C1

[

fα,1 +
δ

2
(RTref −RTint)fα,0

]

= C1

[

f ′′α,1 +
δ

2
(RTref −RT ′

int)f
′′
α,0

]

, (3.78)

where

C0 =
2

δ

α!

(2π)3/2
Γ(m+ 1)(RTtr)

−(|α|+3)(RTref)
−δ/2, (3.79)

C1 =
2

δ

α!

(2π)3/2
Γ(m+ 2)(RTtr)

−(|α|+3)(RTref)
−(δ/2+2). (3.80)

With (3.77) and (3.78), we immediately get

f ′′α,0 = fα,0, f ′′α,1 = fα,1 +
δ

2
(RT ′

int −RTint)fα,0. (3.81)
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The second step is to calculate f ′α,k from f ′′α,k. Since the scaling factor on the I-axis RT ′
int

is not changed in such transformation, we can use the very technique introduced in [7] to
obtain f ′α,k efficiently. Specifically speaking, we define

F (v, J, τ) =
∑

α∈N3

∑

k∈N

Fα,k(τ)[(T̂ − 1)τ + 1]|α|+3ψα,k,Ttr,T ′
int

(

[(T̂ − 1)τ + 1]v + τw, J
)

,

(3.82)
where

T̂ =

√

Ttr
T ′
tr

, w =
u− u′

√

RT ′
tr

, τ ∈ [0, 1]. (3.83)

If we require

∂F

∂τ
≡ 0, ∀τ ∈ [0, 1], and Fα,k(0) = f ′′α,k, ∀(α, k) ∈ N

3 × N, (3.84)

then it is easy to find Fα,k(1) = f ′α,k, ∀(α, k) ∈ N
3 ×N. The next job is to write ∂F

∂τ in the
form of (3.5), and then require each coefficient to be zero. Thus an ordinary differential
system is obtained. The calculation of ∂F

∂τ is almost a repetition of that presented in [7],
which is omitted here. The resulting ordinary differential equations are











dFα,k

dτ
= [1− τS(τ)]2

3
∑

d=1

[

S(τ)RTtrFα−2ed,k + (ud − u′d)T̂ Fα−ed,k

]

,

Fα,k(0) = f ′′α,k,

(3.85)

where

S(τ) =
T̂ − 1

(T̂ − 1)τ + 1
. (3.86)

In our implementation, we solve (3.85) using Runge-Kutta method until τ = 1, and then
Fα,k(1) = f ′α,k can be obtained. The readers can find some properties of (3.85) in [7].
Equations (3.81) and (3.85) give a practical way to calculate f ′α,k for k = 0, 1.

3.5.2 The collision step

It remains to give a numerical method to solve the collision-only equation

∂f

∂t
=

1

ε
(G− f) (3.87)

by one time step. The corresponding moment equations can be extracted from (3.10) by
removing the terms arising in the convection term. This results

∂fα,k
∂t

+
3
∑

d=1

∂ud
∂t

fα−ed,k+
1

2

∂(RTtr)

∂t

3
∑

d=1

fα−2ed,k−(m+k)
∂(RTint)

∂t
fα,k−1 =

1

ε
(Gα,k−fα,k).

(3.88)
Let (α, k) = (0, 0) and (α, k) = (ej , 0) respectively, and one has

∂ρ

∂t
= 0,

∂uj
∂t

= 0. (3.89)
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Thus the second term in (3.88) vanishes. Let (α, k) = (2ej , 0), j = 1, 2, 3 and sum the
equations up, and we get

∂Ttr
∂t

=
1

εZ
(Teq − Ttr) (3.90)

Setting (α, k) = (0, 1) in (3.88), it becomes

∂Tint
∂t

=
1

εZ
(Teq − Tint). (3.91)

Using (2.7), it is easy to obtain
∂Teq
∂t

= 0. (3.92)

Equations (3.89) and (3.92) agree with the fact that the density, velocity and temperature
are not changed by collision. Now (3.88) can be rewritten as

∂fα,k
∂t

=
1

ε



Gα,k − fα,k − Z−1(RTeq −RTtr)





1

2

3
∑

j=1

fα−2ej ,k − (m+ k)fα,k−1







 .

(3.93)
Setting (α, k) = (ei + ej, 0) in (3.17) and substituting the result into (3.93), one finds that
the collision-only equation for fei+ej ,0 has also a simple form:

∂fei+ej ,0

∂t
= − 1

εPr
fei+ej ,0, i, j = 1, 2, 3, (3.94)

which agrees with the settings in [6]. Now suppose we want to solve (3.87) from tn to
tn+1. For simplicity, for any quantity ψ, we use ψn, ψn+1 and ψn+1/2 to denote ψ(tn),
ψ(tn+1) and ψ

(

1
2(t

n + tn+1)
)

, respectively. Then the following relations holds analytically
for i, j = 1, 2, 3 and t ∈ [tn, tn+1]:

ρ(t) ≡ ρn, uj(t) ≡ unj , Teq(t) ≡ T n
eq,

Ttr(t) = T n
eq + (T n

tr − T n
eq) exp

(

− t− tn

εZ

)

,

Tint(t) = T n
eq + (T n

int − T n
eq) exp

(

− t− tn

εZ

)

,

fei+ej ,0(t) = fnei+ej ,0 exp

(

− t− tn

εPr

)

.

(3.95)

These are deduced from (3.89)—(3.92) and (3.94). Based on (3.95), Gα,k(t) can also
be obtained since it can be observed from (3.11) and (3.15)—(3.17) that Gα,k are fully
determined by the variables listed in (3.95). For other cases, meaning |α| > 2 if k = 0 and
|α| > 0 if k = 1, the Crank-Nicolson scheme is employed to give a numerical approximation
of (3.93):

fn+1
α,k − fnα,k

∆t
=

1

ε

[

G
n+1/2
α,k −

fn+1
α,k + fnα,k

2
− Z−1

(

RT n+1/2
eq −RT

n+1/2
tr

)

×
(

1

2

3
∑

j=1

fn+1
α−2ej ,k

+ fnα−2ej ,k

2
− (m+ k)

fn+1
α,k−1 + fnα,k−1

2

)]

,

(3.96)

where ∆t = tn+1−tn. Note that no linear system needs to be solved when applying (3.96),
since when solving fn+1

α,k , the terms fn+1
α−2ej ,k

and fn+1
α,k−1 have always been obtained, and

then (3.96) is simply a linear equation of fn+1
α,k .
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Remark 2. When Pr = Z = 1, one has T = RTeqId and Trel = Teq in (2.2). Obviously,
in this case, the ES-BGK model reduces to the BGK model, and the above technique for
processing the collision terms is still valid.

4 Numerical examples

In this section, two one-dimensional numerical examples are presented to validate our
algorithm. The spatial variable x will be written in plain font as x. For both tests, the
non-dimensional form of the Boltzmann equation (2.1) is used. Thus the gas constant R
is chosen as 1, and the Knudsen number Kn, which is the ratio of the mean free path
to the characteristic length, controls the rarefaction of the gas. Only the diatomic gas is
considered below; therefore δ equals to 2.0. The CFL number is set to be 0.95 in all runs.

4.1 Shock tube test

There have been a number of studies on using the moment method to solve shock tube
problems. In [22], the 13-moment case is carefully investigated and the numerical results
in [5, 23] indicate that the theory for 13-moment case can also be applied to systems with
almost any number of moments. And in [7, 9], the shock tube problem in the monatomic
case is calculated to show the convergence of the original NRxx method and its improved
version when the number of moments increases. Here the similar settings are used the test
the polyatomic NRxx method. The initial conditions are

f(0, x, ξ, I) =

{

ρlψ0,0,Tl,Tl
(ξ/

√
Tl, I/Tl), x < 0,

ρrψ0,0,Tr,Tr(ξ/
√
Tr, I/Tr), x > 0,

(4.1)

where ρl = 7, ρr = 1, and Tl = Tr = 1. Recalling that R = 1 and δ = 2, we find the
fluid states on both left and right sides are in equilibrium. As an artificial test, a simple
expression for the viscosity coefficient µ is chosen as

µ = Kn · Teq. (4.2)

Four additional parameters, including the Prandtl number Pr, the relaxation collision
number Z, the Knudsen number Kn, and the maximal moment order M0, need to be
defined for this problem. Below, different combinations of these parameters are tested in
our numerical examples to show different properties of the polyatomic NRxx method. In
all the experiments, the computational domain is [−2, 2] and discretized using 400 uniform
spatial grids. In the following subsections, all plots show the numerical results at t = 0.3.

4.1.1 Convergence in the number of moments

In this part, we set Pr = 0.72 and Z = 5, and test the behavior of solutions for several
Knudsen numbers whenM0 increases. In order to provide a reference solution, Mieussens’
conservative discrete velocity model (CDVM) [16, 10] is computed. For CDVM, we use
the technique of dimension reduction to speed up the computation. That is, we define

g(t, x, ξ1) =

∫

R2×R+

f(t, x, ξ, I) dξ2 dξ3 dI,

h1(t, x, ξ1) =
1

2

∫

R2×R+

(ξ22 + ξ23)f(t, x, ξ, I) dξ2 dξ3 dI,

h2(t, x, ξ1) =

∫

R2×R+

If(t, x, ξ, I) dξ2 dξ3 dI,

(4.3)
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and solve g, h1 and h2 instead of the distributions with full three-dimensional microscopic
velocity. The velocity space is discretized by 400 grids. Currently, this skill is not used in
the NRxx method.

First, a relatively dense case Kn = 0.05 is considered. The density and equilibrium
temperature results forM0 = 3, · · · , 8 are given in Figure 1. ForM0 > 5, the NRxx results
match with the CDVM results very well. This agrees with the observation in [7, 9] that
for small Knudsen numbers, a small number of moments can describe the macroscopic
quantities in a high accuracy. The results for a rarefied case Kn = 0.5 from M0 = 3
to M0 = 20 are presented in Figure 2. It is obvious that in order to match the CDVM
results, much greater number of moments are needed. However, we can still find the NRxx
results converge as M0 increases, and the limit is probably the solution of the Boltzmann
equation.

Now we consider a severe case Kn = 5, and the results are given in Figure 3. Although
the NRxx solutions deviate from the reference solution greater than those in Figure 2, the
convergence is again very clear. From Figure 1—3, we can find the theory in [22] is also
valid for the regularized moment methods. For a fixed choice of M0, the corresponding
moment system always fails to describe the physical phenomenon when t→ 0 (or Kn → ∞
for a fixed time t) due to the very strong non-equilibrium. As t increases, the collision term
starts to show an effect of dissipation, and the solution of the moment system gradually
presents its physical meaning. As is shown in [5, 23], for a greater M0, such progress is
faster. Our numerical results correctly exhibit this behavior.

4.1.2 Comparison between BGK and ES-BGK collision terms

As is known, for monatomic gases, the BGK model fails to predict the correct Prandtl
number, while Pr is considered as a parameter in the ES-BGK collision term. For poly-
atomic gases, besides the Prandtl number, the BGK model also gives incorrect relaxation
collision number Z. Actually, the BGK model always gives Z = 1, which means the
translational and internal temperatures tend to the equilibrium temperature more rapidly
than the ES-BGK model. Thus it can be expected that the BGK model gives incorrect
translational temperature, internal temperature, and heat fluxes.

As a test, we set Pr = 0.72, Z = 5, Kn = 0.05 and M0 = 5, and both BGK and
ES-BGK collision models are computed. The results are shown in Figure 4 and Figure 5.
In Figure 4, it is found that the BGK model gives a pretty good prediction of the density,
whereas the deviation of temperature between two models is significant. Figure 5 shows
that the BGK model provides much smaller difference between the translational temper-
ature and the internal temperature than the ES-BGK model, which indicates different
relaxation collision numbers involved in the two models. The heat flux q1 is defined as

q1 =

∫

R3×R+

(ξ1 − u1)

(

1

2
|ξ − u|2 + I2/δ

)

f(ξ, I) dξ dI. (4.4)

The difference in the heat flux is caused by the discordance of both the Prandtl number
and the relaxation collision number.

4.1.3 Comparison between the monatomic case and the polyatomic case

Let Z = ∞ and define

g(t,x, ξ) =

∫

R+

f(t,x, ξ, I) dI. (4.5)
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Figure 1: Numerical results for the shock tube problem with Kn = 0.05. The dashed lines
are the NRxx results, and the solid thin lines are the CDVM results with linearization.
The dashdot lines are the results of discrete velocity model. The black lines denote the
density ρ and the gray lines denote the equilibrium temperature Teq.

Integrating the both sides of (2.1) over R
+ with respect to I, it is not difficult to find

that the reduced distribution function g satisfies the monatomic Boltzmann equation with
ES-BGK collision operator. Thus, it is natural to expect that when the relaxation collision
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(f) M0 = 8, 249 moments

Figure 2: Numerical results for the shock tube problem with Kn = 0.5. The dashed lines
are the NRxx results, and the solid thin lines are the CDVM results with linearization.
The dashdot lines are the results of discrete velocity model. The black lines denote the
density ρ and the gray lines denote the equilibrium temperature Teq (continued on the
next page).

number Z gets greater, the polyatomic case will get closer to the monatomic case. The
part is devoted to the numerical validation of this behavior.
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(i) M0 = 11, 584 moments
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(k) M0 = 13, 924 moments
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(l) M0 = 14, 1135 moments

Figure 2 (continued): Numerical results for the shock tube problem with Kn = 0.5. The
dashed lines are the NRxx results, and the solid thin lines are the CDVM results with
linearization. The dashdot lines are the results of discrete velocity model. The black lines
denote the density ρ and the gray lines denote the equilibrium temperature Teq (continued
on the next page).

The NRxx method for monatomic gases has been introduced in [7, 9, 8], where a
BGK collision model is considered. For the monatomic ES-BGK model, the collision
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Figure 2 (continued): Numerical results for the shock tube problem with Kn = 0.5. The
dashed lines are the NRxx results, and the solid thin lines are the CDVM results with
linearization. The dashdot lines are the results of discrete velocity model. The black lines
denote the density ρ and the gray lines denote the equilibrium temperature Teq.

only equation can be analytically solved, and the result will be reported elsewhere. Four
relaxation collision numbers Z = 1, 10, 100, 1000 are considered here, and other parameters
are Pr = 2/3, Kn = 0.01, M0 = 5. The numerical results can be found in Figure 6. It
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Figure 3: Numerical results for the shock tube problem with Kn = 5.0. The dashed lines
are the NRxx results, and the solid thin lines are the CDVM results with linearization.
The dashdot lines are the results of discrete velocity model. The black lines denote the
density ρ and the gray lines denote the equilibrium temperature Teq (continued on the
next page).

clearly shows that the polyatomic result tends to the monatomic result gradually as Z
increases.

4.2 Shock structure of nitrogen

In this section, we will use the polyatomic NRxx method to compute the shock struc-
ture of nitrogen, trying to reproduce the experimental results reported in [2]. In order to
get a steady shock structure with Mach number Ma, we solve a Riemann problem with
the following initial condition until a steady state:

f(0, x, ξ, I) =

{

ρlψ0,0,Tl,Tl

(

(ξ − ul)/
√
Tl, I/Tl

)

, x < 0,
ρrψ0,0,Tr ,Tr

(

(ξ − ur)/
√
Tr, I/Tr

)

, x > 0,
(4.6)
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Figure 3 (continued): Numerical results for the shock tube problem with Kn = 5.0. The
dashed lines are the NRxx results, and the solid thin lines are the CDVM results with
linearization. The dashdot lines are the results of discrete velocity model. The black lines
denote the density ρ and the gray lines denote the equilibrium temperature Teq.

where
ρl = 1, ul = (

√
γMa, 0, 0)T , Tl = 1,

ρr =
(γ + 1)Ma2

(γ − 1)Ma2 + 2
, ur =

ρl
ρr

ul, Tr =
2γMa2 − (γ − 1)

(γ + 1)ρr
.

(4.7)

Here γ is the adiabatic index. For nitrogen, γ equals to 1.4. The Prandtl number is chosen
as 0.72 as in [24]. The Knudsen number is Kn = 0.1, and the grid size is ∆x = 0.005.
The computational domain is [−1.5, 1.5], which is large enough to cover the whole shock
structure.

It remains to give the expressions of Z and µ. They have significant influence on the
thickness of the shock. For the relaxation collision number Z, both the gas-kinetic model
[24] and the direct simulation Monte Carlo (DSMC) [2] show that Z = 4 or Z = 5 best
fits the experimental data. However, in both [13] and [3], where the Rykov and ES-BGK
models are used respectively, it is reported that a smaller Z between 2 and 3 gives better
numerical results. The same conclusion is drawn by our numerical experiments. Since [13]
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Figure 4: Comparison between BGK and ES-BGK models. The black lines are the results
of the ES-BGK model, and the gray lines are the results of the BGK model. The solid
lines denote the profile of density ρ, and the dashed lines denote the profile of equilibrium
temperature Teq.
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Figure 5: Comparison between BGK and ES-BGK models. The black lines are the re-
sults of the ES-BGK model, and the gray lines are the results of the BGK model. The
dashed and dotted lines denote the profile of translational temperature Ttr and internal
temperature Tint, respectively, and the solid lines denote the heat flux q1.

also considers the shock structure problem, we use the same settings here:

µ =
5

8

√

π

2
KnT 0.72

eq , Z = 1.45

(

1 + 0.75
Tint
Ttr

)

. (4.8)
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Figure 6: Comparison between monatomic and polyatomic cases.

Six Mach numbers ranging from Ma = 1.53 to Ma = 6.1 are taken into account.
Similar as [9], in order to avoid the problem of hyperbolicity, only the 24 moment system
(M0 = 3) is used in our computation. The numerical results are plotted in Figure 7, where
all macroscopic variables are normalized so that the computational results can match the
data in [2]. Precisely, we use

ρ̂ =
ρ− ρl
ρr − ρl

, T̂tr =
Ttr − Tl
Tr − Tl

, T̂int =
Tint − Tl
Tr − Tl

, (4.9)

and λ denotes the mean free path. It can be found that the density profiles are in very

28



good agreements with the experimental data and no subshocks exist in the shock struc-
ture. With increasing Mach number, the numerical result gradually deviates from the
experimental data. Only when Ma is as great as 6.1, the deviation in the low density
region (around x/λ ∈ (−4,−1) in the figure) is becoming obvious.
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Figure 7: Structure of the nitrogen shock wave. All quantities are normalized.
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5 Concluding remarks

In this paper, the NRxx method is extended to the polyatomic gases. Further inves-
tigations such as the boundary conditions and the multidimensional simulations are in
progress.
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A Properties of Hermite and Laguerre polynomials

The Hermite polynomials defined in (3.4) are a set of orthogonal polynomials over the
domain (−∞,+∞). Below we list some of their properties which are used in this paper:

1. Orthogonality:
∫

R
Hen1

(x)Hen2
(x) exp(−x2/2) dx = n1!

√
2πδn1n2

;

2. Recursion relation: Hen+1(x) = xHen(x)− nHen−1(x);

3. Differential relation: He ′n(x) = nHen−1(x).

All these properties can be found in many mathematical handbooks such as [1]. And the
following equality can be derived from the last two relations:

[Hen(x) exp(−x2/2)]′ = −Hen+1(x) exp(−x2/2). (A.1)

As introduced in Section 3.1, the Laguerre polynomials defined in (3.3) are orthogonal
over [0,+∞). The Laguerre polynomials are closely related to the Hermite polynomials,
and they have very similar properties:

1. Orthogonality:
∫

R+ L
(m)
k1

(x)L
(m)
k2

(x)xm exp(−x) dx = γ
(m)
k1

δk1k2 ;

2. Recursion relation: (k + 1)L
(m)
k+1(x) = (m+ 1 + k − x)L

(m)
k (x)− xL

(m+1)
k−1 (x);

3. Differential relation: [L
(m)
k (x)]′ = −L(m+1)

k−1 (x).

And the last two relations give

[L
(m)
k (x) exp(−x)]′ = x−1[(k + 1)L

(m)
k+1(x)− (m+ 1 + k)L

(m)
k (x)] exp(−x). (A.2)

B The deduction of polyatomic moment equations

In this appendix, we are going to give the detailed deduction of (3.10). For simplicity,
we define

ψ1,α,Ttr
(v) =

(√
2π
)−3

(RTtr)
− |α|+3

2

3
∏

d=1

Heαd
(vd) exp

(

−v
2
d

2

)

,

ψ2,k,Tint
(J) =

2

δ

(

γ
(m)
k

)−1
(RTint)

−(δ/2+k)L
(m)
k (J) exp(−J).

(B.1)

30



Thus ψα,k,Ttr,Tint
(v, J) = ψ1,α,Ttr

(v)ψ2,k,Tint
(J). It has been deduced in [8] that

∂

∂η
ψ1,α,Ttr

(

ξ − u√
RTtr

)

=

3
∑

d=1

[

∂ud
∂η

ψ1,α+ed,Ttr

(

ξ − u√
RTtr

)

+
1

2

∂(RTtr)

∂η
ψ1,α+2ed,Ttr

(

ξ − u√
RTtr

)]

,

(B.2)
where η stands for t or xj , j = 1, 2, 3. Now using (A.2), we have

∂

∂η
ψ2,k,Tint

(

I2/δ

RTint

)

=− 2

δ

(

γ
(m)
k

)−1
(

δ

2
+ k

)

(RTint)
−(δ/2+k+1) ∂(RTint)

∂η
L
(m)
k

(

I2/δ

RTint

)

exp

(

− I2/δ

RTint

)

+
2

δ

(

γ
(m)
k

)−1
(RTint)

−(δ/2+k)RTint

I2/δ
∂

∂η

(

I2/δ

RTint

)

exp

(

− I2/δ

RTint

)

×
[

(k + 1)L
(m)
k+1

(

I2/δ

RTint

)

− (m+ 1 + k)L
(m)
k

(

I2/δ

RTint

)]

.

(B.3)

Since m = δ/2 − 1 and

RTint

I2/δ
∂

∂η

(

I2/δ

RTint

)

= − 1

RTint

∂(RTint)

∂η
, (B.4)

the equation (B.3) can be simplified as

∂

∂η
ψ2,k,Tint

(

I2/δ

RTint

)

=− 2

δ

(

γ
(m)
k

)−1
(k + 1)(RTint)

−(δ/2+k+1) ∂(RTint)

∂η
L
(m)
k+1

(

I2/δ

RTint

)

exp

(

− I2/δ

RTint

)

.

(B.5)

Noting that

γ
(m)
k+1

γ
(m)
k

=
Γ(m+ k + 2)

Γ(m+ k + 1)
· Γ(k + 1)

Γ(k + 2)
=
m+ k + 1

k + 1
, (B.6)

one finally obtains a simple expression:

∂

∂η
ψ2,k,Tint

(

I2/δ

RTint

)

= −(m+ k + 1)ψ2,k+1,Tint

(

I2/δ

RTint

)

. (B.7)

Thus the derivative of the basis function (3.1) is

∂

∂η
ψα,k,Ttr,Tint

= −(m+ k + 1)ψα,k+1,Ttr,Tint

+

3
∑

d=1

[

∂ud
∂η

ψα+ed,k,Ttr,Tint
+

1

2

∂(RTtr)

∂η
ψα+2ed,k,Ttr,Tint

]

.

(B.8)
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Here ψα,k,Ttr,Tint
stands for

ψα,k,Ttr,Tint

(

ξ − u√
RTtr

,
I2/δ

RTint

)

. (B.9)

The parameters are omitted for conciseness.
Now we expand the left hand side of (2.1) into series. Using (B.8), one immediately

has

∂f

∂t
=
∑

α∈N3

∑

k∈N

[

∂fα,k
∂t

ψα,k,Ttr,Tint
+ fα,k

∂

∂t
ψα,k,Ttr,Tint

]

=
∑

α∈N3

∑

k∈N

[

∂fα,k
∂t

+
3
∑

d=1

∂ud
∂t

fα+ed,k

+
1

2

∂(RTtr)

∂t

3
∑

d=1

fα−2ed,k − (m+ k)
∂(RTint)

∂t
fα,k−1

]

ψα,k,Ttr,Tint
.

(B.10)

For the convection term, we have

ξ · ∇xf =
3
∑

j=1

ξj
∂f

∂xj
=

3
∑

j=1

ξj
∑

α∈N3

∑

k∈N

[

∂fα,k
∂xj

+
3
∑

d=1

∂ud
∂xj

fα+ed,k

+
1

2

∂(RTtr)

∂xj

3
∑

d=1

fα−2ed,k − (m+ k)
∂(RTint)

∂xj
fα,k−1

]

ψα,k,Ttr,Tint
.

(B.11)

Now we use (3.73) and get

ξ · ∇xf =
∑

α∈N3

∑

k∈N

3
∑

j=1

[(

RTtr
∂fα−ej ,k

∂xj
+ uj

∂fα,k
∂xj

+ (αj + 1)
∂fα+ej ,k

∂xj

)

+
3
∑

d=1

∂ud
∂xj

(

RTtrfα−ed−ej ,k + ujfα−ed,k + (αj + 1)fα−ed+ej ,k

)

+
1

2

∂(RTtr)

∂xj

3
∑

d=1

(

RTtrfα−2ed−ej ,k + ujfα−2ed,k + (αj + 1)fα−2ed+ej ,k

)

− (m+ k)
∂(RTint)

∂xj

(

RTtrfα−ej ,k−1 + ujfα,k−1 + (αj + 1)fα+ej ,k−1

)

]

ψα,k,Ttr,Tint
.

(B.12)

Collecting (B.10)(B.12) and (3.9), the moment system (3.10) follows naturally.

C Expansion of the generalized Gaussian

This section is devoted to the calculation of Gα,0, which is defined in (3.9). In this
appendix, G is considered as a function of ξ and I, where the parameters t and x are
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omitted. It can be deduced from the orthogonality of Hermite and Laguerre polynomials
that

Gα,0 = Cα,Ttr

∫

R3×R+

pα,Ttr
(v)G

(

u+
√

RTtrv, I
)

dv dI, (C.1)

where pα,Ttr
is a polynomial defined as

pα,Ttr
(v) = ψ1,α,Ttr

(v) exp

(

−|v|2
2

)

=
(√

2π
)−3

(RTtr)
−

|α|+3

2

3
∏

d=1

Heαd
(vd), (C.2)

and Cα,Ttr
is a constant dependent on α and Ttr:

Cα,Ttr
=

(2π)−
3

2 (RTtr)
3+|α|

α1!α2!α3!
. (C.3)

For i ∈ {1, 2, 3}, if αi > 0, the recursion relation of Hermite polynomials shows that

pα,Ttr
(v) = (RTtr)

− 1

2 vipα−ei,Ttr
(v)− (RTtr)

−1(αi − 1)pα−2ei,Ttr
(v). (C.4)

Noting that

Cα,Ttr
=

(RTtr)
2

αi(αk − δik)
Cα−ei−ek,Ttr

=
(RTtr)

2

αi(αi − 1)
Cα−2ei,Ttr

, (C.5)

one directly obtains from (C.1) that

Gα,0 = Cα,Ttr
(RTtr)

− 1

2

∫

R3×R+

vipα−ei,Ttr
(v)G

(

u+
√

RTtrv, I
)

dv dI − RTtr
αi

Gα−2ei,0.

(C.6)
Now the expression of G (2.2) is put into the above equation. After integrating with
respect to I, one has

Gα,0 =
Cα,Ttr

ρ(RTtr)
− 1

2

√

det(2πT )

∫

R3

vipα−ei,Ttr
(v) exp

(

−RTtr
2

vTT −1v

)

dv − RTtr
αi

Gα−2ei,0.

(C.7)
The matrix T is required to be positive definite, since the density of the fluid should be
finite. Thus, there exists a matrix R = (rij) such that T = (RTtr)RRT . Making the
transformation w = R−1v, and noting that det(T ) = (RTtr)

3[det(R)]2, (C.7) becomes

Gα,0 =
Cα,Ttr

ρ

(
√
2π)3(RTtr)2

3
∑

j=1

rij

∫

R3

wjpα−ei,Ttr
(Rw) exp(−|w|2/2) dw − RTtr

αi
Gα−2ei,0.

(C.8)
The following relation is a direct result of the differential relation of Hermite polynomials:

∂

∂wj
pα,Ttr

(Rw) = (RTtr)
− 1

2

3
∑

k=1

αkrkjpα−ek,Ttr
(Rw). (C.9)

Thus it can be obtained by integrating by parts that
∫

R3

wjpα−ei,Ttr
(Rw) exp(−|w|2/2) dw

= (RTtr)
− 1

2

3
∑

k=1

(αk − δik)rkj

∫

R3

pα−ei−ek,Ttr
(Rw) exp(−|w|2/2) dw.

(C.10)
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Now we substitute (C.10) into (C.8), and apply the transformation v = Rw. The result
is

Gα,0 =
ρ

√

det(2πT )

3
∑

j=1

rij

3
∑

k=1

rkj ·
Cα,Ttr

(αk − δik)

RTtr
×

∫

R3

pα−ei−ek,Ttr
(v) exp

(

−RTtr
2

vTT −1v

)

dv − RTtr
αi

Gα−2ei,0.

(C.11)

Using (C.5), it is not difficult to find

Gα,0 =
RTtr
αi





3
∑

j=1

rij

3
∑

k=1

rkjGα−ei−ek −Gα−2ei,0



 . (C.12)

Recalling T = (RTtr)RRT , the above equation can be written as

Gα,0 =
1

αi

3
∑

k=1

(λik −RTtrδik)Gα−ei−ek,0, (C.13)

where λik is the (i, k)-element of T . The final result (3.17) is then obtained by substituting
the detailed expression of T into (C.13).
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