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Abstract

The adjoint method, among other sensitivity analysis methods, can fail in
chaotic dynamical systems. The result from these methods can be too large,
often by orders of magnitude, when the result is the derivative of a long time
averaged quantity. This failure is known to be caused by ill-conditioned initial
value problems. This paper overcomes this failure by replacing the initial value
problem with the well-conditioned “least squares shadowing (LSS) problem”.
The LSS problem is then linearized in our sensitivity analysis algorithm, which
computes a derivative that converges to the derivative of the infinitely long time
average. We demonstrate our algorithm in several dynamical systems exhibiting
both periodic and chaotic oscillations.

Keywords: Sensitivity analysis, linear response, adjoint equation, unsteady
adjoint, chaos, statistics, climate, least squares shadowing

1. Introduction

As more scientists and engineers use computer simulations, some begins
to harness the versatile power of sensitivity analysis. It helps them engineer
products [1, 2], control processes and systems [3, 4], solve inverse problems [5],
estimate simulation errors [6, 7, 8, 9], assimilate measurement data [10, 11] and
quantify uncertainties [12].

Sensitivity analysis computes the derivative of outputs to inputs of a simu-
lation. Conventional methods, including the tangent and the adjoint method,
are introduced in Section 2. These methods, however, fails when the dynami-
cal system is chaotic and the outputs are long time averaged quantities. They
compute derivatives that are orders of magnitude too large, and that grow ex-
ponentially larger as the simulation runs longer. What causes this failure is the
“butterfly effect” – sensitivity of chaotic initial value problems. This diagnosis
is first published by Lea et al [13], and explained in Section 3.
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Many researchers have become interested in overcoming this failure, a chal-
lenge in both dynamical systems and numerical methods. They have recently
developed a few methods for computing useful derivatives of long time averaged
outputs in chaotic dynamical systems. Lea et al pioneered the ensemble adjoint
method [13, 14], which applies the adjoint method to many random trajectories,
then averages the computed derivatives. Nevertheless, they need impractically
many trajectories, making the method costly even for small dynamical systems
such as the Lorenz system. Thuburn introduced an approach that solves the
adjoint of the Fokker-Planck equation, which governs a probability distribution
in the phase space [15]. However, this approach assumes the probability distri-
bution to be smooth, a property often achieved by by adding dissipation to the
Fokker Planck equation, causing error in the result.

In addition, researchers have adopted the Fluctuation-Dissipation Theorem
for sensitivity analysis [16]. This approach have several variants. Different
variants, however, has different limitations. Some assume the dynamical sys-
tem to have an equilibrium distribution similar to the Gaussian distribution, an
assumption often violated in dissipative dynamical systems. Other variants non-
parametrically estimate the equilibrium distribution [17], but add artificial noise
to the dynamical system to ensure its smoothness. The first author recently used
Lyapunov eigenvector decomposition for sensitivity analysis [18]. However, this
decomposition requires high computational cost when the dynamical system has
many positive Lyapunov exponents. Despite these new methods, nobody has
applied sensitivity analysis to long time averaged outputs in turbulent flows, or
other large, dissipative and chaotic systems.

This paper presents the Least Squares Shadowing method, a new method
for computing derivatives of long time averaged outputs in chaos. The method
linearizes the least squares shadowing problem, a constrained least squares prob-
lem defined in Section 4. It then solves the linearized problem with a numerical
method described in Section 5. Demonstrated with three application in Sections
6, 7 and 8, the method is concluded in Section 9 to be potentially useful in large
chaotic dynamical systems.

2. Conventional method for sensitivity analysis

In sensitivity analysis, an output J depends on an input s via a simulation,
which solves an ordinary differential equation

du

dt
= f(u, s) (1)

starting from an initial condition

u|t=0 = u0(s) , (2)

where the input s can represent control variables, design variables, and uncertain
parameters. This initial value problem (1-2) determines a solution uiv(t; s) that
depends on time and the input.
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An output J(u, s) is a function of the solution and the input. It can also be
viewed as a function of time and the input by substituting the solution uiv(t; s).
The time averaged output,

J
(T )

iv (s) :=
1

T

∫ T

0

J(uiv(t; s), s) dt , (3)

then depends only on the input s. Its derivative to s can be computed by the
conventional tangent method of sensitivity analysis [19].

The conventional tangent method first solves the linearized governing equa-
tion, also known as the tangent equation,

dv

dt
=

∂f(uiv, s)

∂u
v +

∂f(uiv, s)

∂s
(4)

with the linearized initial condition

v|t=0 =
du0

ds
. (5)

The solution viv(t; s) indicates how a small change in s alters the solution to
the initial value problem uiv(t; s):

viv(t; s) =
∂uiv(t; s)

∂s
(6)

This solution is then used to compute the derivative of J
(T )

iv (s):

dJ
(T )

iv

ds
=

1

T

∫ T

0

(
∂J(uiv, s)

∂u
viv +

dJ(uiv, s)

ds

)
dt (7)

This method can be transformed into the conventional adjoint method [19],
which computes the derivative of one objective function to many inputs simulta-
neously. This advantage makes the adjoint method popular in optimal control,
inverse problems and data assimilation applications.

3. Failure of the conventional method for time averaged outputs in
chaos

The conventional method fails when the simulation (1) is chaotic, and the
output (3) is averaged over a long time T . A chaotic dynamical system is
sensitive to its initial condition, causing the solution to the linearized initial
value problem (4) to grow at a rate of eλt, where λ > 0 is the maximal Lyapunov
exponent of the dynamical system. This exponential growth makes viv(t; s) large

unless t is small. When substituted into Equation (7), we expect a large
dJ

(T )
iv

ds

unless T is small.

The value of
dJ

(T )
iv

ds
can exceed 10100 time of what scientists had expected.

Lea et al. [13] documented this in the Lorenz system, which models heat con-
vecting from a warm horizontal surface to a cooler one placed above it. Their
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temperature difference, described by the Rayleigh number, affects how fast the
heat convects; it is therefore chosen by Lea at al as the input s. The heat con-
vection rate is chosen as the output J ; its time average should increase with s
at a ratio of about 1. 1

Lea et al. considered a range of input s and several values of the averaging
length T . At each s and T , they simulated the Lorenz system and computed

J
(T )

iv (s). They then computed the derivative
dJ

(T )
iv

ds
using the conventional adjoint

sensitivity analysis method. When T is large, they found the derivative of dJ
(T )

iv

orders of magnitude larger than its expected slope of about 1. By repeating Lea

et al.’s procedure, we found that the astronomical values of
dJ

(T )
iv

ds
, plotted in

Figure 1, are insensitive to how Equations (1-7) are discretized.

The computed derivative
dJ

(T )
iv

ds
is too large to be useful. The derivative is

useful in approximating the slope of the function,
J

(T )
iv (s+δs)−J

(T )
iv (s)

δs
. The better

it approximates this slope, and over a larger interval size δs, the more useful it
is. If the derivative is as large as 1050, the function must have a correspondingly
steep slope when plotted against s, but only so monotonically over intervals
smaller than 10−50. The derivative can approximate the slope of the function
well only within these impractically tiny intervals – computers cannot even
represent an interval of [1, 1 + 10−16] in double precision. For approximating
the slope of the function over a practical interval [s, s + δs], the derivative is
useless.

This failure happens not only to the Lorenz system, but to other chaotic
dynamical systems such as chaotic fluid flows [20]. It is caused by the sensitivity
of chaos. Popularly known as the “butterfly effect”, this sensitivity makes the

finite time average J
(T )

iv ill-behaved, its derivative with respect to s fluctuating
wildly. A small change in s almost always causes a large change in the solution
uiv, thus a large change in the tangent solution viv, and thus a large change in

the derivative
dJ

(T )
iv

ds
. As an s increases to s + δs, the derivative can vary over

a wide range of positive and negative values. These derivative values, by the
fundamental theorem of calculus, must average to the slope of the function

slope :=
J
(T )

iv (s+ δs)− J
(T )

iv (s)

δs
=

1

δs

∫ s+δs

s

dJ
(T )

iv

ds
ds′ , (8)

but because the derivative fluctuates rapidly and wildly between extreme values
of either sign, at almost any point within [s, s+δs], the derivative is much larger
in magnitude than the slope of the function over [s, s+ δs].

How sensitive a solution u is to its input s can be quantified by the condition
number, defined as ‖du/ds‖. We call a problem ill-conditioned if it has a large

1In Lea et al.’s original paper, the Rayleigh number is denoted as ρ and the convective heat
transfer rate is denoted as z. These notations are conventional in Lorenz system literature.
But in this paper, we denote the Rayleigh number as s and the heat transfer rate as J , so
that we are consistent with the general notation of input and output.
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Figure 1: Plots created following the procedure in Lea et al[13] (permission

granted). Left: time averaged output J
(T )

iv (s) plotted against the input s. Right:
the derivative of the time averaged output with respect to s. Note the order of
magnitude of the y-axes.

condition number, or well-conditioned if it has a small one. A chaotic initial
value problem has a condition number on the order of eλT , where λ is the
maximal Lyapunov exponent. Even moderately long simulations can be ill-
conditioned, causing sensitivity analysis to fail. To overcome this failure, we
must substitute the initial value problem with a well-conditioned one.
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4. Sensitivity analysis via Least Squares Shadowing

4.1. The nonlinear Least Squares Shadowing (LSS) problem

The initial condition of a simulation can be relaxed if the following assump-
tions hold:

1. We are interested in infinite time averaged outputs. When sci-
entists and engineers compute a long time averaged output, they often
intend to approximate the limit

J
(∞)

(s) := lim
T→∞

1

T

∫ T

0

J(u(t; s), s) dt . (9)

We assume that these infinite time averaged outputs, and functions thereof,
are the only outputs of interest.

2. The dynamical system is ergodic. An ergodic dynamical system be-
haves the same over long time, independent of its initial condition. Specifi-
cally, the initial condition does not affect an infinite time averaged outputs
defined above.

Under these two assumptions, we can approximate the outputs using a long
solution of the governing equation, regardless of where the solution starts.
We replace initial condition with a criterion that makes the problem better-
conditioned. Among all trajectories that satisfy the governing equation, we
chose one that is closest to a pre-specified reference trajectory ur in the follow-
ing metric:

minimize
τ,u

1

T

∫ T

0

(∥∥∥u(τ(t)) − ur(t)
∥∥∥
2

+ α2

(
dτ

dt
− 1

)2
)
dt ,

such that
du

dt
= f(u, s) .

(10)

We choose the reference trajectory ur(t) to be a solution to the governing equa-
tion at a different s, set the constant α so that the two terms in the integral
have similar magnitude, then minimize this metric among all trajectories u(t)
and all monotonically increasing time transformations τ(t).

We call this constrained minimization problem (10) the Least Squares Shad-

owing (LSS) problem. We denote its solution as u
(T )
lss (t; s) and τ

(T )
lss (t; s). They

are a solution of the governing equation and a time transformation that makes

this solution close to ur. Because u
(T )
lss (t; s) satisfies the governing equation, we

use it to approximate

J
(∞)

(s) ≈ J
(T )

lss (s) :=
1

τ(T )− τ(0)

∫ τ(T )

τ(0)

J(u
(T )
lss (t; s), s) dt . (11)

with sufficiently large T .
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4.2. Well-conditioning of the Least Squares Shadowing (LSS) problem

An initial value problem of chaos is ill-conditioned, causing failure to con-
ventional sensitivity analysis methods, a failure we now overcome by switching
to the LSS problem, a well-conditioned problem whose solution is less sensitive
to perturbations in the parameter value, and whose long time averages have
useful derivatives.

(a) J(uiv(t; s), s) (b) J(u
(T )
lss

(t; s), s) and τ
(T )
lss

(t; s).

Figure 2: Time dependent rate of heat transfer in the Lorenz system with
varying Rayleigh number s. This output is computed by solving initial value
problems in the left plot, and by solving LSS problems in the right plot. Each
vertical slice represents the time dependent output at an s value.
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Figure 3: The condition number in-
creases rapidly in an initial value prob-
lem (dashed line with squares), but
stays relatively constant in an LSS prob-
lem (solid line with circles).

Figure 2 visualizes how sensitive
the initial value problem is, whereas
how robust the LSS problem is2. The
initial value problem produces solu-
tions that grows more sensitive to the
input s as time advances. Its condi-
tion number grows exponentially as
the trajectory length increases. The
LSS problem produces solutions that
gradually depend on s. As shown in
Figure 3, it stays well-conditioned re-
gardless of how long the trajectory is.

The LSS problem is well-conditioned,
a result not only observed in the
Lorenz system, but also derives from

2In Figure 2(b), we solve a single initial value problem at s = 25, followed by a sequence
of Least squares problems at increasing values of s, each using the previous solution as its
reference trajectory ur .
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the shadowing lemma[21]. It guaran-
tees that a trajectory of the govern-
ing equation exists in the proximity
of any “δ-pseudo trajectory”, defined as an approximate solution that satisfies
the governing equation to δ-precision. The lemma assumes a set of properties
known as uniform hyperbolicity[22, 23], and states that for any ǫ > 0, there
exists δ, such that for all δ-pseudo trajectory ur of any length, there exists a
true trajectory u within ǫ distance from ur, in the same distance metric used
in Equation (10). If ur is a true trajectory at input value s, and thereby a

δ = sup ∂f(u;s)
∂s

δs -pseudo-trajectory at input value s+ δs, then the shadowing
lemma predicts the LSS solution ulss to be within ǫ distance from ur. Perturb-
ing s slightly makes ulss slightly different from ur, indicating a well-conditioned
problem regardless of how long the trajectory is.

Because the LSS problem is well-conditioned, its time averaged output J
(T )

lss (s)

has a useful derivative. This LSS derivative
dJ

(T )
lss

ds
can be computed by solv-

ing a linearized LSS problem (detailed in Section 4.3). Because of its well-
conditioning, perturbing the input between s and s+δs causes a small difference
in its solution, and therefore a small difference in the LSS derivative. This, and
the fundamental theorem of calculus

1

δs

∫ s+δs

s

dJ
(T )

lss

ds
ds =

J
(T )

lss (s+ δs)− J
(T )

lss (s)

δs
, (12)

make the LSS derivative at any s ∈ [s, s + δs] a useful approximation to the
slope.

As T → ∞, this slope converges to the slope of the infinite time average

J
(∞)

, and the LSS derivative converges to the derivative of this infinite time
average. Such derivative exists not only as a derivative of the limit (9) [24, 23],
but also as a limit of the LSS derivative as T → ∞. The limit and the derivative
commute because the slope of J

(∞)
between s and s + δs uniformly converges

to its derivative as δs vanishes – a proven result made possible by the well-
conditioned LSS problem [25].

4.3. Computing derivative from linearized Least Squares Shadowing (LSS) so-
lution

The linearized LSS problem derives from the nonlinear problem (10). We
choose a reference trajectory ur that satisfies the governing equation at an
input value s, then perturb s by an infinitesimal δs. By ignoring O(δs2) terms
in Taylor expansions, we obtain

minimize
η,v

1

T

∫ T

0

(
‖v‖2 + α2η2

)
dt , such that

dv

dt
=

∂f

∂u
v +

∂f

∂s
+ ηf(ur, s) ,

(13)
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where v(t) and η(t) are the solution of this linearized LSS problem. They relate

to the solution of the nonlinear problem τ
(T )
lss and u

(T )
lss via

v(t) =
d

ds

(
u
(T )
lss

(
τ
(T )
lss (t; s); s

))
, η(t) =

d

ds

dτ
(T )
lss (t; s)

dt
. (14)

The linearization is detailed in the Appendix. We also linearize the time aver-

aged output J
(T )

lss as defined in Equation (11), and obtain a formula for comput-
ing the desired derivative from the solution of the linearized LSS problem

d〈J〉

ds
≈

∫ T

0

(
∂J

∂u
v +

∂J

∂s
+ η

(
J − J

))
dt

T
, where J =

∫ T

0

J dt

T
(15)

This linearization is also derived in the Appendix.

5. Numerical solution of the Least Squares Shadowing (LSS) problem

The linearized LSS problem (13) can be solved with two numerical ap-
proaches. One approach, detailed in Subsection 5.1, first discretizes Problem
(13), then derive from the discretized minimization problem its optimality con-
dition, a system of linear equations that are finally solved to obtain the solution
v and η. The other approach, detailed in Subsection 5.2, applies variational
calculus to Problem (13) to derive its variational optimality condition, a system
of linear differential equations that are then discretized and solved to obtain
v and η. Both approaches can lead to the same linear system, whose solution
method is described in Subsection 5.3. Section 5.4 provides a short summary
of the numerical procedure. The algorithm admits an adjoint counterpart, de-
scribed in Subsection 5.5, that can compute derivatives to many parameters
simultaneously.

5.1. Derivation of the linear system via the discrete optimization approach

We first convert Problem (13) from a variational minimization problem to
a finite dimensional minimization problem. By dividing the time domain [0, T ]
into m = T/∆t uniform time steps3, denoting ui+ 1

2
= ur

((
i+ 1

2

)
∆t
)
, vi+ 1

2
=

v
((
i+ 1

2

)
∆t
)
, i = 0, . . . ,m− 1 and ηi = η(i∆t), i = 1, . . . ,m− 1, and approx-

imating the time derivatives of u and v via the trapezoidal rule4, we discretize

3 ∆t is chosen to be uniform for all time steps because it simplifies the notation. The
algorithm can be extended to nonuniform ∆t, as implemented in the lssode package[26].

4 We choose the trapezoidal rule because it is single-step and second-order accurate. Other
time discretization can be used, though the resulting system will be either more complex or
less accurate.
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the linearized LSS problem (13) into

minimize
vi,ηi

m−1∑

i=0

‖vi+ 1
2
‖22

2
+ α2

m−1∑

i=1

η2i
2

, such that

Eivi− 1
2
+ fiηi +Givi+ 1

2
= bi , 1 ≤ i < m

(16)

where

Ei = −
I

∆t
−

∂f

∂u
(ui− 1

2
, s) ,

fi =
ui+ 1

2
− ui− 1

2

∆t
,

Gi =
I

∆t
−

∂f

∂u
(ui+ 1

2
, s) .

bi =
1

2

(
∂f(ui− 1

2
, s)

∂s
+

∂f(ui+ 1
2
, s)

∂s

)
,

(17)

This linear-constrained least-squares problem has an optimality condition that
forms the following KKT system[27]
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(18)
This linear system can be solved to obtain the LSS solution vi and ηi.

5.2. Derivation of the linear system via the continuous optimization approach

Problem (13) is constrained by a differential equation. Its optimality condi-
tion must be derived using calculus of variation. Denote w(t) as the Lagrange
multiplier function; the Lagrangian of Problem (13) is

Λ =

∫ T

0

(
v⊤v + α2η2 + 2w⊤

(
dv

dt
−

∂f

∂u
v −

∂f

∂s
− ηf

))
dt
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The optimality condition requires a zero variation of Λ with respect to arbitrary
δw, δv and δη. This condition, through integration by parts, transforms into
the following differential equations and boundary conditions






dv

dt
−

∂f

∂u
v −

∂f

∂s
− ηf = 0

dw

dt
+

∂f

∂u

⊤

w − v = 0

w(0) = w(T ) = 0

α2η − w⊤f = 0 .

These linear differential equations consistently discretize into the same linear
system (18) derived in the last subsection.

5.3. Solution of the linear system
The KKT system (18) can be solved by using Gauss elimination to remove

the lower-left block, forming the Schur complement

BBTw = b , (19)

where
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


E1
f1
α

G1

E2
f2
α

G2

. . .
. . .

Em
fm
α

Gm


 , w =




w1

w2

...
wm


 , b =




b1
b2
...
bm


 . (20)

This Schur complement matrixBBT is symmetric-positive-definite and block-
tri-diagonal; its block size is the dimension of the dynamical system n. Equation
(19) can be solved using a banded direct solver with O(mn3) floating point oper-
ations [28]. One can also apply sparse QR factorization to the block-bi-diagonal
BT , and then use backward and forward substitution to compute w. The fac-
torization also takes O(mn3) floating point operations [28]. Iterative methods
can be used when n is large.

w is substituted into the upper blocks of Equation (18) to compute vi and
ηi. These blocks can be written as

vi+ 1
2
= −GT

i wi−ET
i+1wi+1 , 0 ≤ i < m ; ηi = −

fT
i wi

α2
, 0 < i < m . (21)

with the notation w0 = wm+1 = 0. The desired derivative is then computed by
discretizing Equation (15) into

d〈J〉

ds
≈

1

m

m−1∑

i=0

(
∂J(ui+ 1

2
, s)

∂u
vi+ 1

2
+

∂J(ui+ 1
2
, s)

∂s

)
+

1

m− 1

m−1∑

i=1

ηiJ̃i (22)

where

J̃i =
J(ui− 1

2
, s) + J(ui+ 1

2
, s)

2
−

1

m

m−1∑

i=0

J(ui+ 1
2
, s) , i = 1, . . . ,m− 1 (23)
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5.4. Summary of the algorithm
1. Choose a small time step size ∆t and sufficient number of time steps m.
2. Compute a solution to the equation (1) at ui = ur

(
(i + 1

2 )∆t
)
, i =

0, . . . ,m− 1.
3. Compute the vectors and matrices Ei, fi, Gi and bi as defined in Equations

(17).
4. Form matrix B. Choose an α so that fi/α is on the same order of magni-

tude as Ei and Gi. Solve Equation (19) for w.
5. Compute vi and ηi from Equation (21).
6. Compute desired derivative using Equation (22).

The computational cost is O(mn3) if a direct solver is used for Equation (19),
where m is the number of time steps and n is the dimension of the dynamical
system.

5.5. Adjoint formulation of the sensitivity computation method
The discrete adjoint computes the same derivative as in Equation (22) by

first solving the adjoint system





































































I ET
1

α2 fT
1

I GT
1 ET

2

α2 fT
2

I GT
2

. . .
. . . ET

m−1

α2 fT
m−1

I GT
m−1

E1 f1 G1

E2 f2 G2

. . .
. . .

Em−1 fm−1 Gm−1











































































































































v̂ 1
2

η̂1
v̂1+ 1

2

η̂2
v̂2+ 1

2

...
η̂m−1

v̂m−
1
2

ŵ1

ŵ2

...
ŵm−1







































































=













































































1
m

∂J(u1/2,s)

∂u
1

m−1 J̃1
1
m

∂J(u1+1/2,s)

∂u
1

m−1 J̃2
1
m

∂J(u2+1/2,s)

∂u
...

1
m−1 J̃m−1

1
m

∂J(um−1/2,s)

∂u

0
0
...
0













































































(24)
The system has the same matrix as Equation (18), but a different right hand
side. It can be solved by inverting

BBT ŵ = Bg , (25)

where B is defined in Equation (20), ŵ = (ŵ1, . . . , ŵm−1), and g is the upper
part of Equation (24)’s right hand side. Once ŵ is computed, d〈J〉/ds can be
computed via

d〈J〉

ds
≈

m−1∑

i=1

bTi ŵi +
1

m

m−1∑

i=0

∂J(ui+ 1
2
, s)

∂s
, (26)

where bi is defined in Equation (17). This adjoint derivative equals to the
derivative computed in Section 5.4 up to round-off error. The examples in this
paper use the algorithm in Section 5.4.
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6. Application to the Van der Pol oscillator

We apply our method to the Van der Pol oscillator

d2y

dt2
= −y + β(1− y2)

dy

dt
. (27)

to compute sensitivity to the parameter β in the system. Figure 4a shows the

−2 −1 0 1 2
y

−4

−3

−2

−1

0

1

2

3

4

dy
/d
t

(a) Limit cycle attractors of the Van der Pol
oscillator at β = 0.2, 0.8, 1.6 and 2.0.
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〈 J
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(b) For each value of β, 〈J〉
1
8 is estimated

20 times by solving initial value problems of
length 50 with random initial conditions.
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β
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0.2

0.4

0.6

0.8

1.0

1.2

d
〈 J

〉1 8
/d
β

(c) d〈J〉
1
8 /dβ estimated by finite differenc-

ing pairs of trajectories with ∆β = 0.05. For
each value of β, the black dots are computed
on 20 pairs of trajectories with length 50.
The red line is computed on pairs of trajec-
tories with length 5000.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
β

0.0

0.2

0.4

0.6

0.8

1.0

d
〈 J

〉1 8
/d
β

(d) d〈J〉
1
8 /dβ estimated with Least Squares

Shadowing sensitivity analysis. For each
value of β, the black dots are computed on
20 trajectories of length 50. The red line is
computed on trajectories of length 5000.

Figure 4: Least Squares Shadowing Sensitivity Analysis of the van der Pol
oscillator.

limit cycle attractor as β varies from 0.2 to 2.0. As β increases, the maximum
magnitude of dy/dt significantly increases. We choose the objective function to
be the L8 norm of dy/dt, which has a similar trend to the L∞ norm and reflects
the magnitude of the peak in dy/dt. By denoting u = (u(1), u(2)) = (y, dy/dt)
as the state vector, we convert the second order ODE (27) into two coupled first
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order ODEs, and write the objective function as

〈J〉
1
8 =

(
lim

T→∞

1

T

∫ T

0

J(u, β) dt

) 1
8

, J(u, β) =
(
u(2)

)8
(28)

The method described in Section 4.3 is then applied to compute v: for
each β, we start the simulation by assigning uniform [0, 1] random numbers to
(u(1), u(2)) as their initial condition at t = −50. This initial time is chosen to be
large enough so that when the ODE is integrated to t = 0, its state u(0) is on
its attractor. A trajectory u(t), 0 ≤ t ≤ 50 is then computed using a scipy[29]
wrapper of lsoda[30], with time step size ∆t = 0.02. The trajectory is about
50 times the longest timescale of the system. The m = 2500 states along the
resulting trajectory are used to construct the coefficient in Equation (18).

The solution to Equation (18) is then substituted into Equation (22) to
estimate the derivative of the 〈J〉 to the parameter β. Finally, the derivative of

the output 〈J〉
1
8 is computed using

d〈J〉
1
8

dβ
=

〈J〉−
7
8

8

d〈J〉

dβ
. (29)

The computed derivative is compared against finite difference in Figure 4. For
each value of β, we repeat both the finite difference and least squares shadowing
20 times on randomly initialized trajectories; the spread of the computed deriva-
tives represents the approximation error due to insufficient trajectory length.
Long trajectories are used to compute more accurate derivatives. The results
indicate that the least squares shadowing method is more accurate than finite
difference in this problem with the same trajectory length.

7. Application to the Lorenz system

We apply our method to the Lorenz system

dx

dt
= σ(y − x) ,

dy

dt
= x(r − z)− y ,

dz

dt
= xy − βz . (30)

and analyze sensitivity to the parameter ρ in the system. The behavior of the
Lorenz system as ρ changes from 0 to 100 is shown in Figure 5a, and can be
summarized as following [31]:

• Stable fixed point attractor at (0, 0, 0) for 0 ≤ ρ <= 1.

• Two stable fixed point attractors at x = y = ±
√
β(ρ− 1), z = ρ − 1 for

1 < ρ < 24.74.

• Quasi-hyperbolic strange attractors for 24.06 < ρ < 31. This includes the
classic Lorenz attractor at ρ = 28.

• Non-hyperbolic quasi-attractors for 31 < ρ < 99.5.
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• Periodic limit cycle attractors with an infinite series of period doubling
for ρ > 99.5.

Despite the many transitions in the fundamental nature of the system, the mean
z value

〈z〉 = lim
T→∞

1

T

∫ T

0

z dt (31)

apparently increases as the parameter ρ increases. 〈z〉 is chosen to be our time
averaged output quantity in this study.
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(a) Attractors of the Lorenz system at ρ =
10 (open circle), ρ = 25, 50, 75 and 100
(blue, green, red and black lines, respec-
tively)
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(b) For each value of ρ, 〈z〉 is estimated
20 times by solving initial value problems of
length 50 with random initial conditions.
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(c) d〈z〉/dρ estimated by finite differencing
pairs of trajectories with ∆ρ = 2. For each
value of ρ, the black dots are computed on
20 pairs of trajectories with length 50. The
red line is computed on pairs of trajectories
with length 5000.
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(d) d〈z〉/dρ estimated with Least Squares
Shadowing sensitivity analysis. For each
value of ρ, the black dots are computed on
20 trajectories of length 50. The red line is
computed on trajectories of length 5000.

Figure 5: Least Squares Shadowing Sensitivity Analysis of the Lorenz system.
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By denoting u = (x, y, z), the method described in Section 5.4 is applied to
the Lorenz system. For each ρ, we start the simulation at t = −50 with uniform
[0, 1] random numbers as initial conditions for x, y and z. The Lorenz system is
integrated to t = 0, so that u(0) is approximately on the attractor. A trajectory
u(t), 0 ≤ t ≤ 50 is then computed using a scipy[29] wrapper of lsoda[30], with
time step size ∆t = 0.01. The resulting m = 5000 states along the trajectory
are used to construct the linear system (18), whose solution is then used to
estimate the desired derivative d〈z〉/dρ using Equation (15).

101 102 103 104
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0.98

1.00

1.02

1.04

1.06

d
〈 z〉 /d

ρ

(a) For each time length T , the Least squares
shadowing algorithm runs on 10 random tra-
jectories, computing 10 different derivatives.

101 102 103 104

T

10-4
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10-2

10-1

st
d(
d
〈 z〉 /d

ρ
)

(b) The sample standard deviation of the 10
derivatives at each trajectory length T .

Figure 6: Convergence of Least Squares Shadowing Sensitivity Analysis applied
to the Lorenz system.

The computed derivative is compared against finite difference values in Fig-
ure 5. The dip in the finite difference value at around ρ = 22.5 is due to a
bifurcation from fixed point attractors to strange attractors at 24.0 ≤ ρ ≤ 24.74
(the two types of attractors co-exist within this range). For 24.74 < ρ < 31,
the Lorenz system is dominated by a quasi-hyperbolic attractor. Least squares
shadowing sensitivity analysis computes accurate and consistent gradients on
randomly chosen short trajectories on the attractor. The computed gradients
has a random error on the order of O(T−

1
2 ), a result derived theoretically for

discrete-time dynamical systems [25] and shown empirically here in Figure 6.
As ρ increases beyond 31, the system is non-hyperbolic and its trajectories

form an object known as a quasi-attractor [32]. For ρ > 99.5, the system
transitions to periodic oscillations, then goes through an infinite series of period
doubling bifurcations. Despite of the complex, non-hyperbolic behavior, our
method computes derivatives that are more accurate than finite difference on
the same trajectory lengths.

8. Application to an aero-elastic limit cycle oscillator

We apply our method to a simple model of aeroelastic limit cycle oscillation,
as shown in Figure 7. The model is described in detail by Zhao and Yang[33].
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Figure 7: Model aero-elastic oscillator

The governing equations are

d2h

dt2
+ 0.25

dα

dt
+ 0.1

dh

dt
+ 0.2 h+ 0.1Qα = 0

0.25
d2h

dt2
+ 0.5

d2α

dt2
+ 0.1

dα

dt
+ 0.5α+ 20α3 − 0.1Qα = 0

(32)

where h is the plunging degree of freedom, and α is the pitching degree of
freedom. We analyze sensitivity to the reduced dynamic pressure Q.

The bifurcation diagram of α as Q increases from 8 to 16 is shown in Figure
8a. The behavior of the system as Q varies is complex [34]: At low values of
Q, the system has an asymmetric limit cycle attractor. As Q increases beyond
about 10.25, a series of period doubling bifurcations occurs, leading to transition
into chaos just beyond Q = 11. At about Q = 12.5, the system ceases to be
chaotic, and transitions to symmetric periodic limit cycle oscillation. When Q
increases beyond about 13.25, there appears to be small windows of asymmetric
oscillations. Finally, at about Q = 13.9, the system recovers symmetric periodic
limit cycle oscillations. The phase plot of the system at several values of Q is
shown in Figure 8b. These include an asymmetric periodic limit cycle attractor
at Q = 8, a chaotic limit cycle attractor or quasi-attractor at Q = 12, and a
symmetric periodic limit cycle attractor at Q = 16.

We observe that the magnitude of the oscillation grows as Q increases, and
choose the L8 norm of the pitch angle α as the objective function. The L8 norm
has similar trend as the L∞ norm, and indicates the magnitude of the oscil-
lation in the pitching degree of freedom. Denoting u = (u(1), u(2), u(3), u(4)) =
(y, α, dy/dt, dα/dt) as the state vector, we convert the pair of second order ODEs
(32) into a system of four first order ODEs. The output can then be written as

〈J〉
1
8 =

(
lim

T→∞

1

T

∫ T

0

u(2) 8 dt

) 1
8

(33)

We use the method described in Section 5.4 to compute the derivative of the
objective function to the input parameter Q. For each Q, we initiate the simu-
lation at t = −300 with uniform [0, 1] random numbers as its initial condition.
The ODE is integrated to t = 0 to ensure that u(0) is approximately on an
attractor. A trajectory u(t), 0 ≤ t ≤ 300 is then computed using a scipy[29]
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(a) Bifurcation diagram in the parameter
range considered.
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(b) Phase plots (α vs α̇ = dα/dt) at Q = 8
(black), Q = 12 (green) and Q = 16 (red).

(c) d〈J〉
1
8 /dQ estimated by finite differenc-

ing pairs of trajectories with ∆Q = 0.2. For
each value of Q, the black dots are computed
on 20 pairs of trajectories with length 300.

(d) d〈J〉
1
8 /dQ estimated with Least Squares

Shadowing sensitivity analysis. For each
value of Q, the black dots are computed on
20 trajectories of length 300. The red line is
computed on trajectories of length 30000.

Figure 8: Least Squares Shadowing Sensitivity Analysis on the aero-elastic os-
cillator model (32).

wrapper of lsoda[30], with time step size ∆t = 0.02. The resulting 15000 states
along the trajectory are used to construct the linear system (18), whose solution
is used to estimate the derivative of the output with respect to Q. The computed
derivative is compared against finite difference values in Figure 8. Whether the
system exhibits periodic or chaotic limit cycle oscillations, the derivative com-
puted using least squares shadowing sensitivity analysis is more accurate than
finite difference results.

9. Conclusion

We presented the Least Squares Shadowing method for computing deriva-
tives in ergodic dynamical systems. Traditional tangent and adjoint meth-
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ods linearize the ill-conditioned initial value problem, thereby computing large
derivatives useless for control, optimization and inference problems. The new
method linearizes the well-conditioned least squares shadowing problem, thereby
computing useful derivatives of long time averaged quantities. The method is
demonstrated on the periodic van der Pol oscillator, the chaotic Lorenz attrac-
tor, and a simple aero-elastic oscillation model that exhibits mixed periodic
and chaotic behavior. These applications demonstrate the effectiveness of our
new sensitivity computation algorithm in many complex nonlinear dynamics
regimes. These include fixed points, limit cycles, quasi-hyperbolic and non-
hyperbolic strange attractors.

The Least Squares Shadowing method requires solving either a sparse matrix
system (in its discrete formulation) or a boundary value problem in time (in its
continuous formulation). This boundary value problem is about twice as large
as a linearized initial value problem, in terms of the dimension and sparsity of
the matrix for the discrete formulation, and in terms of the number of equations
for the continuous formulation. When the dynamical system is low dimensional,
the sparse matrix system can be solved using a direct matrix solver; computing
the derivative of the output costs a few times more than computing the output
itself by solving an initial value problem. When the dynamical system is high
dimensional, e.g., a discretized partial differential equation, iterative solution
methods should be used instead of direct matrix solvers. Because the system is
well-conditioned and only twice as large as an initial value problem, an iterative
solution can potentially cost only a small multiple of an initial value solution,
particularly if using an iterative solver specifically designed for this problem.
Therefore, we think that the Least Squares Shadowing method is not only ef-
ficient for low-dimensional chaotic dynamical systems, but also applicable to
sensitivity analysis of large chaotic dynamical systems.

Acknowledgments

The first author acknowledges AFOSR Award F11B-T06-0007 under Dr.
Fariba Fahroo, NASA Award NNH11ZEA001N under Dr. Harold Atkins, and
a subcontract of the DOE PSAAP Program at Stanford.

References

[1] Jameson, A., “Aerodynamic Design via Control Theory,” Journal of Sci-
entific Computing, Vol. 3, 1988, pp. 233–260.

[2] Reuther, J., Jameson, A., Alonso, J., Rimlinger, M., and Saunders, D.,
“Constrained multipoint aerodynamic shape optimization using an adjoint
formulation and parallel computers,” Journal of aircraft , Vol. 36, No. 1,
1999, pp. 51–60.

[3] Bewley, T., “Flow control: new challenges for a new Renaissance,” Progress
in Aerospace Sciences , Vol. 37, No. 1, 2001, pp. 21–58.

19



[4] Bewley, T., Moin, P., and Temam, R., “DNS-based predictive control of
turbulence: an optimal target for feedback algorithms,” J. Fluid Mech.,
Vol. 447, 2001, pp. 179–225.

[5] Tromp, J., Tape, C., and Liu, Q., “Seismic tomography, adjoint methods,
time reversal and banana-doughnut kernels,” Geophysical Journal Interna-
tional , Vol. 160, No. 1, 2005, pp. 195–216.

[6] Becker, R. and Rannacher, R., “An optimal control approach to a posteriori
error estimation in finite element methods,” Acta Numerica, Cambridge
University Press, 2001.

[7] Giles, M. and Suli, E., “Adjoint methods for PDEs: a posteriori error anal-
ysis and postprocessing by duality,” Acta Numer., Vol. 11, 2002, pp. 145–
236.

[8] Hartmann, R., Held, J., Leicht, T., and Prill, F., “Error Estimation and
Adaptive Mesh Refinement for Aerodynamic Flows,” ADIGMA - A Euro-
pean Initiative on the Development of Adaptive Higher-Order Variational
Methods for Aerospace Applications , edited by N. Kroll, H. Bieler, H. De-
coninck, V. Couaillier, H. Ven, and K. Srensen, Vol. 113 of Notes on Nu-
merical Fluid Mechanics and Multidisciplinary Design, Springer Berlin Hei-
delberg, 2010, pp. 339–353.

[9] Fidkowski, K. J. and Darmofal, D. L., “Review of output-based error es-
timation and mesh adaptation in computational fluid dynamics,” AIAA
journal , Vol. 49, No. 4, 2011, pp. 673–694.

[10] Thepaut, J.-N. and Courtier, P., “Four-dimensional variational data assim-
ilation using the adjoint of a multilevel primitive-equation model,” Quar-
terly Journal of the Royal Meteorological Society, Vol. 117, No. 502, 1991,
pp. 1225–1254.

[11] Courtier, P., Derber, J., Errico, R., Louis, J. F., and Vukicevic, T., “Impor-
tant literature on the use of adjoint, variational methods and the Kalman
filter in meteorology,” Tellus A, Vol. 45, No. 5, 2002, pp. 342–357.

[12] Wang, Q., Uncertainty Quantification for Unsteady Fluid Flow using
Adjoint-based Approaches , Ph.D. thesis, Stanford University, Stanford, CA,
2009.

[13] Lea, D., Allen, M., and Haine, T., “Sensitivity analysis of the climate of a
chaotic system,” Tellus , Vol. 52A, 2000, pp. 523–532.

[14] Eyink, G., Haine, T., and Lea, D., “Ruelle’s linear response formula, en-
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Appendix A. Derivation of Equations (13) and (15)

If dur

dt
= f(ur, s) in Problem (10), then ulss(t; s) ≡ ur(t) and τlss(t; s) ≡ t

solve the problem. Because Problem (10) is well-conditioned, its solution at a
perturbed parameter value s + δs for the same ur should be slightly different.
Denote

v(t) :=
d

ds

(
ulss(τlss(t; s); s)− ur(t)

)
, η(t) :=

d

ds

(
dτlss(t; s)

dt
− 1

)
, (A.1)

which for infinitesimal δs translate into

τlss(t; s+ δs) =

∫ t

0

(1 + η(t′)δs) dt′ ,

ulss(τlss(t; s+ δs); s+ δs) = ur(t) + v(t)δs .

(A.2)

The second equation translates the objective function in Problem (10) into the
objective function in Problem (13). dulss(t; s + δs) must satisfy the constraint
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in Problem (10), which translates into (ignoring O(δs2) terms)

d

dt

(
ur(t) + v(t)δs

)

=
dulss(τlss(t; s+ δs); s+ δs)

dt

=
dτlss(t; s+ δs)

dt

dulss(τ ; s+ δs)

dτ

∣∣∣∣
τ=τlss(t;s+δs)

=
dτlss(t; s+ δs)

dt
f
(
ulss

(
τlss(t; s+ δs); s+ δs

)
, s+ δs

)

=(1 + η(t)δs)

(
f(ur(t), s) +

∂f

∂u
v(t)δs +

∂f

∂s
δs

)

=f(ur(t), s) + η(t)f(ur(t), s)δs+
∂f

∂u
v(t)δs+

∂f

∂s
δs

(A.3)

Because dur

dt
= f(ur, s), we cancel all O(1) terms, leaving only

dv

dt
= η(t)f(ur(t), s) +

∂f

∂u
v(t) +

∂f

∂s
, (A.4)

the constraint in the linearized least squares shadowing problem (13).
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For infinitesimal δs, the definition of J
(T )

lss (s) in Equation (11) leads to

J
(T )

lss (s+ δs)− J
(T )

lss (s)

=

∫ τ(T ;s+δs)

τ(0;s+δs)

J(ulss(t; s+ δs), s+ δs) dt

τ(T ; s+ δs)− τ(0; s+ δs)
−

∫ τ(T ;s)

τ(0;s)

J(ulss(t; s), s) dt

τ(T ; s)− τ(0; s)

=

∫ T

0

J(ulss(τlss(t; s+ δs), s+ δs), s+ δs)
dτ(s; s+ δs)

dt
dt

τ(T ; s+ δs)− τ(0; s+ δs)
−

∫ T

0

J(ur(t), s) dt

τ(T ; s)− τ(0; s)

=

∫ T

0

J(ulss(τlss(t; s+ δs), s+ δs), s+ δs)
dτ(s; s+ δs)

dt
dt

∫ T

0

(1 + η(t′)δs)dt′
−

∫ T

0

J(ur(t), s) dt

∫ T

0

(1 + η(t′)δs)dt′

+

∫ T

0

J(ur(t), s) dt

∫ T

0

(1 + η(t′)δs)dt′
−

∫ T

0

J(ur(t), s) dt

T

=

∫ T

0

((
J(ur(t), s) +

∂J

∂u
v(t) δs+

∂J

∂s
δs

)(
1 + η(t)

)
− J(ur(t), s)

)
dt

∫ T

0

(1 + η(t′)δs)dt′

+

(∫ T

0

J(ur(t), s) dt

) −

∫ T

0

η(t′)δs dt′

T

∫ T

0

(1 + η(t′)δs)dt′

=




∫ T

0

(
∂J

∂u
v(t) +

∂J

∂s
+ η(t)J(ur(t), s)

)
dt

∫ T

0

(1 + η(t′)δs)dt′

−

(∫ T

0

J(ur(t), s) dt

)(∫ T

0

η(t′) dt′

)

T 2




δs+O(δs2)

=
δs

T

∫ T

0

(
∂J

∂u
v(t) +

∂J

∂s
+ η(t)

(
J(ur(t), s)− J

(T )

lss

))
dt+O(δs2)

(A.5)
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Therefore,

dJ
(T )

lss

ds
= lim

δs→0

J
(T )

lss (s+ δs)− J
(T )

lss (s)

δs

=
1

T

∫ T

0

(
∂J

∂u
v(t) +

∂J

∂s
+ η(t)

(
J(ur(t), s)− J

(T )

lss

))
dt

(A.6)
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