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Abstract

The resolution of Brownian motion in simulations of micro-particle suspensions can
be crucial to reproducing the correct dynamics of individual particles, as well as pro-
viding an accurate characterisation of suspension properties. Including these effects
in simulations, however, can be computationally intensive due to the configuration
dependent random displacements that would need to be determined at every time
step. In this paper, we introduce the fluctuating force-coupling method (FCM) to
overcome this difficulty, providing a fast approach to simulate colloidal suspensions
at large-scale. We show explicitly that by forcing the surrounding fluid with a fluc-
tuating stress and employing the FCM framework to obtain the motion of the par-
ticles, one obtains the random particle velocities and angular velocities that satisfy
the fluctuation-dissipation theorem. This result holds even when higher-order mul-
tipoles, such as stresslets, are included in the FCM approximation. Through several
numerical experiments, we confirm our analytical results and demonstrate the ef-
fectiveness of fluctuating FCM, showing also how Brownian drift can be resolved by
employing the appropriate time integration scheme and conjugate gradient method.

1 Introduction

Brownian motion, or the random movement of particles suspended in liquid
[1], results from the many collisions between the particles and the molecules
that make up the surrounding fluid. While this is inherently linked to the
discrete, molecular nature of the fluid, the effects of Brownian motion extend
upwards to longer, continuum length scales, affecting not only the dynam-
ics of individual particles, but also the properties of suspensions themselves.
For example, Brownian motion is known to affect the rheological properties
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of particulate suspensions, changing their linear response to applied stresses,
as well as contributing to their non-Newtonian behaviour [2,3,4]. In biolog-
ical systems, the diffusion of Brownian particles is a fundamental mecha-
nism of transport, regulating rates of many life processes, especially those
in crowded intracellular environments [5]. Characterising and quantifying the
role of Brownian motion in these contexts where interparticle forces, hydro-
dynamic interactions, and geometric constraints play a strong role presents
a current computational challenge. Moreover, with the development of parti-
cle self-assembly and aggregation-based fabrication techniques [6,7], as well
as the increasing number of highly engineered active, flow-generating and
field-responsive micro-particles [8,9,10], accurately characterising the effects
of Brownian motion on suspension dynamics and structure is of fundamental
technological importance.

In simulation techniques such as Brownian dynamics [11] and Stokesian dy-
namics [12], Brownian motion is incorporated by introducing random particle
velocities at each time step. However, in order for either of these methods to
yield the correct particle diffusion, the random particle velocities must follow
precise statistics, where their correlations are proportional to the hydrody-
namic mobility matrix [13,14]. This requires one to compute the square root
of the mobility matrix, an O(N3) calculation, at every time step. Thus, includ-
ing the effects of Brownian motion adds significant computational overhead
to both of these methods, and as a result, has limited such simulations to two
extreme cases – small particle numbers with the hydrodynamic interactions
adequately resolved, or larger-scale simulations in which the hydrodynamic
interactions are ignored completely. Further, the multiplicative noise, or noise
whose amplitude depends on the particle positions, introduced by the hydro-
dynamic interactions yields also a Brownian drift term [11] that is proportional
to the divergence of the mobility matrix. This term also needs to be computed
in order to produce the correct particle dynamics.

One approach to overcoming these limitations is to utilise a polynomial ex-
pansion of the matrix square root [15]. This method has been used successfully
in conjunction with both Brownian and Stokesian dynamics [16,17], allowing
for simulations with significantly more particles than would otherwise be pos-
sible. Another approach to increase the speed of Brownian simulations, and
the one that we will pursue in this work, is to introduce a white-noise, fluctu-
ating stress [18] to drive the surrounding fluid and require that the resulting
velocity field satisfy the no-slip condition, or some approximation to it, on the
particle surfaces. Indeed, Fox and Uhlenbeck [19] showed for rigid particles
that this approach does yield the correct particle velocity correlations and,
consequently, the correct diffusion matrix for the suspension. Since the fluc-
tuating stress itself is independent of the particle configuration, the O(N3)
matrix square root computation is not required. While this approach does
require one to solve for the random fluid flow, such fluid flow computations
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are typically already performed to find the deterministic motion of the parti-
cles. The effectiveness of fluctuating stresses in resolving Brownian motion has
been demonstrated in a variety of simulation techniques. They have been suc-
cessfully employed in large-scale Lattice-Boltzmann simulations of particulate
suspensions [20,21,22,23], as well as more traditional, continuum mechanics
based simulations of Brownian particles and structures. Fluctuating stresses
have been used with the distributed Lagrange multiplier (DLM) method [24]
where the induced fluctuating flow is constrained at the grid points within the
solid particle. Recently, they have been successfully employed with immersed-
boundary [25,26,27] and “blob” methods [28], resolving the fluctuations of
flexible structures, even in cases where inertial effects are present and lead to
power-law tails in the time-correlations of the particle velocities [29,1].

Based on the success of these approaches, we utilise fluctuating stresses, the
fluid flows they produce, and the simulation technique known as the force-
coupling method (FCM) to develop a fast method for large-scale simulations
of suspensions of interacting particles. FCM [30,31,32,33] employs regularised
multipole expansions of the force distributions the particles exerts on the sur-
rounding fluid and spatial averaging of the resulting flow to obtain the particle
motion. It has been shown to be very effective for large-scale simulations of
suspensions and particle-laden flows [34,35,36,37] over a wide range of volume
fractions. Here, we show analytically that when the surrounding fluid is also
forced by a fluctuating stress, FCM yields random particle velocity and an-
gular velocity correlations consistent with the fluctuation-dissipation theorem
[1]. A main result of this work is that fluctuating FCM gives the proper corre-
lations even when higher-order multipoles, such as the rotlet and stresslet, are
included in the multipole expansion. We provide numerical examples confirm-
ing these results. In addition, for dynamic fluctuating FCM simulations, we
show how to recover Brownian drift using Fixman’s midpoint time integration
scheme [38,39] and the conjugate gradient method. We employ this scheme to
examine long-time diffusion of interacting particles and suspension dynamics
in cellular flow fields.

2 Particle motion

In this study, we will be considering a suspension of N rigid spherical particles,
each having radius a. Each particle n, (n = 1, . . . , N), is centred at Yn and
can be subject to external forces Fn, and external torques τn. We will be
considering the motion of these particles in the over-damped, or Brownian
dynamics [11], limit where the Reynolds number [40,41] is low, and fluid and
particle inertia are neglected. While working in this limit does not resolve
the power-law decay of the velocity autocorrelation function, it provides an
accurate description of diffusive motion for times t ≫ ρa2/η (ρ is the density
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of the fluid and η the shear viscosity) [1], making it appropriate for describing
the dynamics of suspensions of micron-scale, colloidal particles. In this limit,
the equations of motion can be written as

dY
dt

= V + Ṽ + kBT∇Y · MVF (1)

where Y is the 3N × 1 vector containing the components of Yn for all of
the particles, V holds the components of the deterministic particle velocities,
and Ṽ gives the random velocities of the particles due to Brownian motion.
The Brownian drift term is given by kBT∇Y ·MVF where kB is Boltzmann’s
constant, T is the temperature of the system, and MVF is the translational
mobility matrix as described below.

The deterministic velocities, V, as well as the particle angular velocities, W,
are given by







V
W





 =







MVF MVT

MWF MWT





 = M







F
T





 (2)

where F is the 3N × 1 vector containing the components of Fn for all N
particles, and T holds the components of τn. The 6N × 6N matrix M is the
complete low Reynolds number mobility matrix and is comprised of the four
3N×3N submatrices MVF , MVT , MWF , and MWT . The exact values of the
mobility matrix entries are found by considering the Stokes equations

−∇p+ η∇2u=0

∇ · u=0 (3)

for fluid velocity u and pressure p subject to the no-slip boundary conditions,
u = Vn +Ωn × (x−Yn), on the surface of each particle, where the velocity,
Vn, and angular velocity, Ωn, for each particle n are unknown. By solving the
Stokes equations with the additional conditions that τn = 0 for all n, Fm = ei
(i = 1, 2, or 3), and Fn = 0 for n 6= m, the resulting values of Vn will give
the 3(m− 1) + i column of MVF while the values of Ωn are the 3(m− 1) + i
column of MWF . If instead, we take Fn = 0 for all n, but τm = ei and τn = 0

for n 6= m, the values of Vn will be the 3(m − 1) + i column of MVT , while
the values of Ωn are the 3(m− 1) + i column of MWT .

The remaining two terms on the right hand side of Eq. (1) are due to Brownian
motion. The focus of this paper is how to provide a consistent approximation
of these terms using fluctuating FCM. In order to achieve the correct particle
diffusion for a suspension, the statistics of random particle velocities, Ṽ, as well
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as the random particle angular velocities, W̃ , must satisfy a precise relation
known as the fluctuation-dissipation theorem [1]. The fluctuation-dissipation
theorem states that

〈Ṽ(t)〉=0 (4)

〈W̃(t)〉=0 (5)
〈







Ṽ(t)
W̃(t)







[

ṼT (t′) W̃T (t′)

]

〉

=2kBTMδ(t− t′) (6)

where we have used 〈·〉 to denote the ensemble average of a quantity. While the
random velocities and angular velocities have zero mean, the correlations de-
pend directly on the mobility matrix, M. We will show that fluctuating FCM
yields random velocities and angular velocities that satisfy this relationship,
with the correlation matrix being the FCM approximation to the mobility
matrix.

The second term introduced by Brownian motion is Brownian drift, kBT∇Y ·
MVF . This drift corresponds to the mean particle velocities established during
the inertia-friction relaxation time-scale (t ≪ m/(6πηa)) not resolved in the
over-damped limit. It can be derived by considering small displacements of
the particles in the full Langevin equations and carefully taking the limit
6πηat/m → ∞ [39]. In this work, we show that for dynamic fluctuating FCM
simulations, a direct computation of the Brownian drift term can be avoided
by employing the midpoint time integration scheme developed by Fixman
[38,39]. To use this scheme, however, one must work with random forces, F̃
and torques, T̃ , rather than Ṽ and W̃ that fluctuating FCM outputs. We
show, however, that these random forces and torques can be found using the
conjugate gradient method, allowing for the dynamics of colloidal suspensions
to be resolved in an efficient manner.

3 The force-coupling method

FCM provides an accurate and efficient way of simulating the deterministic
motion of particles in dilute suspensions. With respect to Eq. (2), it corre-
sponds to determining the velocities and angular velocities using an approx-
imation of the mobility matrix. We provide here an overview of FCM, sum-
marising the results presented in [30,31,32,33] and establishing the formulation
we will use in our analysis of fluctuating FCM.

In FCM, each particle is represented by a low order finite-force multipole
expansion in the Stokes equations
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−∇p+ η∇2u=−
∑

n

Fn∆n(x)−
1

2
τn ×∇Θn(x)− Sn ·∇Θn(x)

∇ · u=0. (7)

where Fn, τn, and Sn are, respectively, the force, torque, and stresslet asso-
ciated with particle n. The stresslets provide a higher-order representation of
the flow field generated by the particles, and, as discussed below, are deter-
mined through a condition on the local rate-of-strain. In Eq. (7), we also have
the two Gaussian envelopes that are used to project the particle forces onto
the fluid,

∆n(x) = (2πσ2
∆)

−3/2e−|x−Yn|2/2σ2

∆

Θn(x) = (2πσ2
Θ)

−3/2e−|x−Yn|2/2σ2

Θ . (8)

The length scales σ∆ and σΘ are related to the radius of the particles through

σ∆ = a/
√
π and σΘ = a/ (6

√
π)

1/3
. After solving Eq. (7), the velocity, Vn,

angular velocity, Ωn, and local rate-of-strain, En, of each particle n are deter-
mined from

Vn=
∫

u∆n(x)d
3x (9)

Ωn=
1

2

∫

[∇× u] Θn(x)d
3x. (10)

En=
1

2

∫

[

∇u+ (∇u)T
]

Θn(x)d
3x. (11)

where the integration is performed over the volume occupied by the fluid. For
rigid particles, the stresslets are found by enforcing the constraint En = 0 for
each n. This is equivalent to stating that the local rates-of-strain can do no
work on the fluid [31]. In demonstrating the resolution of particle Brownian
motion, we will consider the case where the stresslets are included in FCM,
as well as the case where they are omitted (Sn = 0).

While this description of FCM closely follows its implementation, in demon-
strating that fluctuating FCM yields linear and angular velocities consistent
with the fluctuation-dissipation theorem, we will utilise the equivalent matrix
representation [33] of FCM















V
W
0















=















MVF
FCM MVT

FCM MVS
FCM

MWF
FCM MWT

FCM MWS
FCM

MEF
FCM MET

FCM MES
FCM





























F
T
S















. (12)

This relates the linear and angular velocities for all N particles to the forces,
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torques, and stresslets on the particles. The 11N × 11N matrix on the right-
hand side is the FCM grand mobility matrix [33]. We can derive expressions
for the entries of its submatrices using the FCM Gaussian envelopes, Eq. (8),
and the Stokeslet,

G(x) =
1

8πη|x|

(

I+
xx

|x|2
)

, (13)

the Green’s function for the Stokes equations [42]. For example, the flow gen-
erated by the force on particle m can be expressed as

um(x) =
∫

G(x− y)Fm∆m(y)d
3y. (14)

Then, using Eq. (9), the velocity of particle n due to um will be given by

Vn =
∫ ∫

G(x− y)Fm∆m(y)∆n(x)d
3yd3x. (15)

We see, therefore, that the entries of MVF
FCM that relate the velocity of particle

n to the force on particle m are

MVF
FCM ;nm=

∫ ∫

∆n(x)G(x− y)∆m(y)d
3xd3y. (16)

Using the same approach, we can find similar expressions for the entries of the
other matrices in Eq. (12). We provide these expressions in Appendix A.

From Eq. (12), we can determine the FCM approximation to the 6N × 6N
mobility matrix, M in Eq. (2). We consider separately the cases where the
stresslets are ignored and where they are included. If they are ignored, we
have immediately S = 0, and the FCM mobility matrix is simply

MFCM =







MVF
FCM MVT

FCM

MWF
FCM MWT

FCM





 (17)

If the particle stresslets are included in FCM, they must be determined. This
can be done using the last line of Eq. (12), which gives

S = −RES
FCM

(

MEF
FCMF +MET

FCMT
)

. (18)

where we have written RES
FCM = (MES

FCM)−1. From this expression for S, we
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find the stresslet-corrected FCM mobility matrix is

MFCM−S =







MVF
FCM−S MVT

FCM−S

MWF
FCM−S MWT

FCM−S






(19)

where

MVF
FCM−S =MVF

FCM −MVS
FCMRES

FCMMEF
FCM , (20)

MVT
FCM−S =MVT

FCM −MVS
FCMRES

FCMMET
FCM , (21)

MWF
FCM−S =MWF

FCM −MWS
FCMRES

FCMMEF
FCM , (22)

MWT
FCM−S =MWT

FCM −MWS
FCMRES

FCMMET
FCM . (23)

In analysing fluctuating FCM, we will show that the random particle velocity
correlations are given by the FCM mobility matrices, MFCM and MFCM−S

and the resulting method is consistent with the fluctuation-dissipation theo-
rem.

4 The fluctuating force-coupling method

Modifying FCM to include Brownian motion involves including a white-noise,
fluctuating stress, P, in the Stokes equations, so Eq. (7) becomes

−∇p+ η∇2u=−∇ ·P
−
∑

n

(

Fn∆n(x) +
1

2
τn ×∇Θn(x) + Sn ·∇Θn(x)

)

∇ · u=0. (24)

As introduced in [18,19], the statistics for the fluctuating stress, in index no-
tation, are given by

〈Pjl〉=0 (25)

〈Pjl(x, t)Ppq(x
′, t′)〉=2kBTη (δjpδlq + δjqδlp) δ(x− x′)δ(t− t′). (26)

Beyond this additional term, fluctuating FCM follows the same steps as the
standard implementation of FCM. After solving Eq. (24) for the fluid flow, the
particle velocities, angular velocities, and local rates-of-strain are determined
from Eqs. (9), (10), and (11). Also, if the stresslets are included, we use the
usual condition, En = 0, to determine their entries.
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4.1 Particle velocity correlations

While including fluctuations in FCM only involves forcing of the Stokes equa-
tions randomly, one must ensure that the resulting particle velocities and an-
gular velocities do indeed satisfy the fluctuation-dissipation theorem. In this
section, we perform this analysis, taking Fn = 0 and τn = 0 for each n.

4.1.1 Without particle stresslets

If the particle stresslets are not included in the calculation, Sn = 0 for each
n, and the fluid is only driven by the fluctuating stress, P. Thus, Eq. (24)
becomes

−∇p+ η∇2ũ+∇ ·P=0 (27)

∇ · ũ=0. (28)

We can show (see Appendix B) the statistics of the resulting random fluid
velocity, ũ, will be given by

〈ũ(x, t)〉=0 (29)

〈ũ(x, t)ũT (y, t′)〉=2kBTG(x− y)δ(t− t′) (30)

where, again, G(x−y) is the Stokeslet, see Eq. (13). From Eqs. (9) and (10),
the particle velocities and angular velocities will be

Ṽn=
∫

ũ∆n(x)d
3x,

Ω̃n=
1

2

∫

[∇× ũ] Θn(x)d
3x. (31)

Taking the ensemble average of these equations, we immediately see that
〈Ṽn〉 = 0 and 〈Ω̃n〉 = 0.

We establish the velocity correlations between particles n and m by taking
the ensemble average of the outer product of Ṽn and Ṽm. This will give us

〈Ṽn(t)Ṽ
T
m(t

′)〉 =
∫ ∫

〈ũ(x, t)ũT (y, t′)〉∆m(y)∆n(x)d
3xd3y. (32)

Using Eq. (30) for the correlations of the fluctuating flow field, this becomes

〈Ṽn(t)Ṽ
T
m(t

′)〉 = 2kBTδ(t− t′)
∫ ∫

G(x− y)∆m(y)∆n(x)d
3xd3y. (33)
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We recognise the double integral as the entries of MVF
FCM , the submatrix of

the FCM mobility matrix MFCM , that relate the velocities of particle n and
the forces on particle m, see Eq. (16). Thus, taking into account all particle
pairs, we will have

〈Ṽ(t)ṼT (t′)〉 = 2kBTMVF
FCMδ(t− t′) (34)

By a similar analysis, see Appendix C, the angular-angular and linear-angular
velocity correlations are shown to be

〈W̃(t)W̃T (t′)〉=2kBTMWT
FCMδ(t− t′) (35)

〈Ṽ(t)W̃T (t′)〉=2kBTMVT
FCMδ(t− t′), (36)

and, consequently,

〈







Ṽ(t)
W̃(t)







[

ṼT (t′) W̃T (t′)

]

〉

=2kBTMFCMδ(t− t′) (37)

4.1.2 With particle stresslets

When we include the stresslets in fluctuating FCM, the resulting fluid velocity
may be expressed as

u(x, t) = ũ(x, t) +
∑

m

∫

G(x− y) · S̃m ·∇Θm(y)d
3y. (38)

We must first determine the unknown stresslets by inserting this expression
for the fluid velocity into Eq. (11) and setting the resulting local rate-of-strain
equal to zero. This gives us a linear system, and after solving it, we find the
stresslets, in matrix representation, to be

S̃ = −RES
FCM Ẽ (39)

where the 5N × 1 vector Ẽ holds the independent components of the random
local rate-of-strain,

Ẽn =
1

2

∫

[

∇ũ+ (∇ũ)T
]

Θn(x)d
3x (40)

for all of the particles. As demonstrated in Appendix C, Ẽ has the following
correlations with Ṽ , W̃ , and itself
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〈Ṽ(t)ẼT (t′)〉=−2kBTMVS
FCMδ(t− t′),

〈W̃(t)ẼT (t′)〉=−2kBTMWS
FCMδ(t− t′),

〈Ẽ(t)ẼT (t′)〉=−2kBTMES
FCMδ(t− t′), (41)

while from Eq. (30), we see immediately that 〈Ẽ〉 = 0.

With the stresslets known, the velocities and angular velocities are given by

ṼS = Ṽ +MVS
FCM S̃ (42)

W̃S = W̃ +MWS
FCM S̃ (43)

and we can now determine the particle velocity correlations when the stresslets
are included in fluctuating FCM. Taking the ensemble average of the outer
product of ṼS with itself gives

〈ṼS(t)ṼT
S (t

′)〉= 〈Ṽ(t)ṼT (t′)〉+ 〈Ṽ(t)(MVS
FCM S̃(t′))T 〉

+〈MVS
FCM S̃(t)ṼT (t′)〉+ 〈MVS

FCM S̃(t)(MVS
FCM S̃(t′))T 〉.

(44)

We then substitute Eq. (39) for S̃ and rearrange terms to find

〈ṼS(t)ṼT
S (t

′)〉= 〈Ṽ(t)ṼT (t′)〉 − 〈Ṽ(t)ẼT (t′)〉(RES
FCM)T (MVS

FCM)T

−MVS
FCMRES

FCM〈Ẽ(t)ṼT (t′)〉
+MVS

FCMRES
FCM〈Ẽ(t)ẼT (t′)〉(RES

FCM)T (MVS
FCM)T . (45)

From the velocity and rate of strain correlations, Eqs. (34) and (41) respec-
tively, and the fact that 〈ẼṼT 〉 = (〈ṼẼT 〉)T , Eq. (45) becomes

〈ṼS(t)ṼT
S (t

′)〉
2kBT

= δ(t− t′)

[

MVF
FCM +MVS

FCM(RES
FCM)T (MVS

FCM)T

+MVS
FCMRES

FCM(MVS
FCM)T

−MVS
FCMRES

FCMMES
FCM(RES

FCM)T (MVS
FCM)T

]

.

(46)

Finally, using the following properties of the FCM matrices, (MVS
FCM)T =

−MEF
FCM , (RES

FCM)T = RES
FCM , and RES

FCM = (MES
FCM)−1, we arrive at

〈ṼS(t)ṼT
S (t

′)〉/(2kBT )= δ(t− t′)
[

MVF
FCM −MVS

FCMRES
FCMMEF

FCM

]

= δ(t− t′)MVF
FCM−S. (47)
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Though not shown, repeating the same calculation for 〈WS(t)WT
S (t

′)〉 and
〈VS(t)WT

S (t
′)〉, one finds that

〈WS(t)WT
S (t

′)〉/(2kBT )= δ(t− t′)MWT
FCM−S (48)

〈VS(t)WT
S (t

′)〉/(2kBT )= δ(t− t′)MVT
FCM−S. (49)

Putting all of these results together, we see that

〈







ṼS(t)

W̃S(t)







[

ṼT
S (t

′) W̃T
S (t

′)

]

〉

=2kBTMFCM−Sδ(t− t′), (50)

satisfying the fluctuation-dissipation theorem.

5 Discretisation of fluctuating FCM

In our simulations, we use a Fourier spectral method to solve the Stokes equa-
tions, Eq. (24), on a triply periodic domain. Each side of the domain has length
L = 2π and we use M grid points in each direction, giving a total number
of Ng = M3 points. This sets the grid spacing to be h = 2π/M and the grid
points as xα = αh for α = 0, . . . ,M −1. The corresponding wave numbers are

kα =

{

α, 0 ≤ α ≤ M/2

α−M, M/2 + 1 ≤ α ≤ M − 1.
(51)

While we can utilise many of the numerical techniques typically employed
with FCM, see for example [30,31,32,33], the statistics for the fluctuating
stress, Eq. (26), must be handled appropriately in the discretised system. Here,
we follow other numerical methods where fluctuating stresses are considered,
especially DLM [24] and the immersed boundary method [26]. At each grid
point, the fluctuating stress is an independent Gaussian random variable with
the following statistics

〈Pij(xα, xβ , xγ)〉=0 (52)

〈Pij(xα, xβ, xγ)Ppq(xα, xβ , xγ)〉=
2kBTη

h3∆t
(δipδjq + δiqδjp) . (53)

where ∆t is the timestep. The computational cost associated with this step of
the calculation is O(Ng). With the discrete Fourier transform (DFT) and the
inverse DFT defined as
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ĝ(kα, kβ, kγ) =
∑

ζ

∑

ξ

∑

λ

g(xζ, xξ, xλ)e
−i(kαxζ+kβxξ+kγxλ), (54)

g(xα, xβ , xγ) =
1

M3

∑

ζ

∑

ξ

∑

λ

ĝ(kζ, kξ, kλ)e
i(kζxα+kξxβ+kλxγ), (55)

Eq. (53) will be

〈

P̂ij(kα, kβ, kγ)
〉

=0 (56)

〈

P̂ij(kα, kβ, kγ)Ppq(−kα,−kβ,−kγ)
〉

=
2kBTηM

3

h3∆t
(δipδjq + δiqδjp) (57)

in the discrete Fourier Space.

After generating the Gaussian random variables for the fluctuating stress, we
then evaluate the FCM force distribution,

fFCM(x) =
∑

n

Fn∆n(x)−
1

2
τn ×∇Θn(x) + Sn ·∇Θn(x), (58)

at the grid points. Since we may assume that for the rapidly decaying Gaussian
functions ∆n(x) = 0 and Θn(x) = 0 for |x −Yn| > 3a, [33] this stage of the
calculation can be done in O(N) operations. We then take the DFT of the
total force distribution, an O(NglogNg) calculation using FFTs, and compute
the DFT of the incompressible velocity field,

û(kα, kβ, kγ) =
1

η|k|2
(

I− kk

|k|2
)

(

ik · P̂(kα, kβ, kγ) + f̂FCM(kα, kβ, kγ)
)

,

(59)

where k = [ kα kβ kγ ]
T . The fluid velocity at the grid points, u(xα, xβ, xγ),

is found by taking the inverse DFT of Eq. (59) in O(NglogNg) operations.
The velocity, angular velocity, and local rate-of-strain for each particle are
then computed by applying the spectrally accurate trapezoidal rule to Eqs.
(9) – (11). Again, with the rapid decay of the Gaussian envelopes, we may
set ∆n(x) = 0 and Θn(x) = 0 for |x − Yn| > 3a, so the volume averaging
incurs an O(N) computational cost. In our simulations, we fix σΘ/h = 1.5
and σ∆/h = 1.86. Therefore, if we keep the volume fraction constant while
increasing N , Ng will increase linearly with N and the overall computational
cost will be O(N logN). For the simulations where the particle stresslets are
included, we employ the conjugate gradient scheme detailed in [33] to obtain
Sn for each n. Each iteration requires O(NglogNg) operations.
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6 Convergence

In order to obtain the correct random particle motion, it is important to
include a sufficient number of modes for the random flow. We can analyse
the dependence of V on the number of these modes by considering a single
particle in a periodic domain. If F = 0 and τ = 0, the particle velocity can
be written as

V =
1

(2π)3

∞
∑

ζ=−∞

∞
∑

ξ=−∞

∞
∑

λ=−∞

∆̂(k)ˆ̃u(k) (60)

where k = [kζ , kξ, kλ]
T and the Fourier coefficients ∆̂(k) and ˆ̃u(k) are given

by

∆̂(k) =
∫

∆(x)e−ik·xd3x (61)

ˆ̃u(k) =
∫

ũ(x)e−ik·xd3x. (62)

with the integrals being performed over a 2π3 domain. If we limit the number
of random flow modes to the lowest P +1 modes in each direction, the particle
velocity will be given by the truncated series

VP =
1

(2π)3
∑

|ζ|≤P/2

∑

|ξ|≤P/2

∑

|λ|≤P/2

∆̂(k)ˆ̃u(k), (63)

and, we have that

V −VP =
1

(2π)3
∑

|ζ|>P/2

∑

|ξ|>P/2

∑

|λ|>P/2

∆̂(k)ˆ̃u(k). (64)

Taking the ensemble average of (V−VP )
2 and using the correlations for ˆ̃u(k)

gives

〈(V −VP )
2〉 = 2kBT

(2π)3
∑

|ζ|>P/2

∑

|ξ|>P/2

∑

|λ|>P/2

[

∆̂(k)
]2
trace(Ĝ(k)). (65)

As trace(Ĝ(k)) = 2/(ηk2),

〈(V −VP )
2〉 = 4kBT

η(2π)3
∑

|ζ|>P/2

∑

|ξ|>P/2

∑

|λ|>P/2

[

∆̂(k)
]2
/k2. (66)
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For highly localised Gaussian distributions where, σ∆ ≪ π, we may approxi-
mate ∆̂(k) ≈ e−k2σ2

∆
/2 to obtain the estimate

〈(V −VM)2〉EST =
4kBT

η(2π)3
∑

|ζ|>P/2

∑

|ξ|>P/2

∑

|λ|>P/2

e−k2σ2

∆/k2. (67)

We have performed a series of computations where for each realisation of the
random flow, we computed VP for different values of P . For these compu-
tations, M = 256 and σ∆/π = 0.12. For these values, we also have that,
σ∆/h = 14.89 which is sufficient to reduce any error in ∆̂(k) from the DFT
to machine precision. Thus, the error we observe should come purely from the
neglected random flow modes. The RMS error for these computations, as well
as the values given by our estimate, Eq. (67), are shown in Fig. 1(a). We find
that the RMS error decays rapidly as we increase P , with the error for P = 32
being 3.6× 10−10.

In simulations, however, one has P = M and the resolution of the Gaus-
sian envelope is tied to the number of modes for the random flow. To better
understand this joint dependence, we computed the mean squared particle
velocity using for different values of M . For each case, 104 realisations of the
flow and random particle positions are used for the ensemble averaging. The
results from these computations are shown in Fig. 1(b). We see that even
when varying M itself, we still recover an accurate value of the mean square
velocity for values of M as low as M = 8. This corresponds to the value
σ∆ = 0.47h, which, based on our experience, is too low to accurately resolve
particle motion when forces are also present. Thus, as is typically done with
deterministic simulations FCM, we set σ∆ = 1.86h and σΘ = 1.5h. This value
provides sufficient accuracy while keeping the computational costs low. The
number of independent particles for a given volume fraction is, therefore, set
by M. For our simulations, we take M = 64, except for the periodic array
of spheres computations where we have M = 32 and vary σ∆ to obtain the
desired volume fraction.

7 Time integration and Brownian drift

To simulate the dynamics of a Brownian suspension using fluctuating FCM,
one must also account for the Brownian drift term, kBT∇Y ·MVF in Eq. (1).
For the case where the particle stresslets are ignored, Sn = 0, the entries of the
corresponding FCM mobility matrix MVF

FCM come directly from solutions to
the Stokes equations. Since these solutions satisfy the divergence free condition
and are translationally invariant for periodic boundary conditions, the Brow-
nian Drift term will be identically zero. To update the particle positions, we
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Fig. 1. (a) Root mean squared error in the particle velocity as a function of the
number of random modes, P , with M = 256. The symbols show the computed error
while the dashed line gives the error estimate based on a truncated Fourier series,
Eq. (67). (b) The computed value of the velocity correlations as a function of M .
The dashed line indicates the exact value.

integrate the equations of motion using the forward Euler-Maruyama scheme,

Yk+1 = Yk +
(

Vk + Ṽk

)

∆t. (68)

in the manner typically used for Brownian Dynamics simulations, as described
by Ermak and McCammon [11].

For simulations where the stresslets are included, the Brownian drift term is
no longer zero. We can, however, avoid computing it directly by using the first-
order midpoint integration scheme introduced by Fixman [38,39]. Specifically,
the particle positions are updated using the scheme

Yk+1/2=Yk +
∆t

2

(

Vk + Ṽk

)

(69)

Yk+1=Yk +∆t
(

Vk+1/2 + Ṽk+1/2

)

(70)

where

Vk+1/2=MVF
FCM−S;k+1/2Fk +MVT

FCM−S;k+1/2Tk (71)

Ṽk+1/2=MVF
FCM−S;k+1/2F̃k +MVT

FCM−S;k+1/2T̃k (72)

and MVF
FCM−S;k+1/2 and MVT

FCM−S;k+1/2 are the mobility matrices based on the
particle positions Yk+1/2. While this integration scheme circumvents the direct

calculation of the Brownian drift term, it utilises the random forces F̃k and
torques T̃k at time tk. We can, however, find F̃k and T̃k from Ṽk and W̃k by
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solving the linear system,


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




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

Ṽk

W̃k

−Ẽk








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

=















MVF
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













. (73)

This relationship comes directly from Eq. (12), the grand mobility matrix for
FCM [33], with the last line multiplied by negative one. This transforms the
linear system into one that is symmetric positive definite [33] and allows us
to determine F̃k and T̃k efficiently using the conjugate gradient method. Since
the diagonal elements of MVF ∼ a−1, while MWT ∼ a−3 and MES ∼ a−3, we
expect the condition number to scale like κ(M) ∼ a2 for dilute suspensions.
Thus, it can also be useful to use a preconditioner because with σΘ = 1.5h,
a = 3.3h < 1. For the preconditioner, we utilise a diagonal matrix based on
the mobility coefficients for a single particle in a periodic domain. Specifically,
we have

MVF
PRE =

γ

6πηa
I (74)

MWT
PRE =

1

8πηa3
I (75)

MES
PRE =

3

20πηa3
I (76)

where in each case I is the identity matrix of the appropriate size and the
coefficient γ, as described in the next section, is the modification of the Stokes
drag law due to domain periodicity. Fig. 2 shows the L2 norm of the residual
versus the number of conjugate gradient iterations with and without the pre-
conditioner. For both cases, we used identical realisations of the fluctuating
stress field and the same random positions of N = 183 particles, corresponding
to a volume fraction of φ = 0.10. The preconditioner provides faster conver-
gence, particularly when the residual is less than 1%. It is worth noting that
instead of using a preconditioner, one could alternatively set a = 1 and rescale
the domain length, L, and the wave numbers, Eq. (51). This would remove
the dependence of the mobility matrix condition number on the grid spacing.

8 Fluctuating FCM simulations

We perform a series of simulations to confirm the analytical results presented
above and demonstrate the effectiveness of fluctuating FCM. We compute
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preconditioner was used.
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Fig. 3. (a) Periodic array mobility coefficient, γ, as a function of φ. The markers
indicate the values given by fluctuating FCM, while the dash lines shows those
determined by constant force FCM simulations. (b) Short-time diffusion coefficients,
DT and DR. The markers indicate the fluctuating FCM values, while the the solid
and dash–dotted lines show those provided by Banchio & Brady [16]. The dashed
line shows the values of DT for small φ found by Batchelor [14].

both the short-time and long-time diffusion coefficients for suspensions of in-
teracting particles and determine the equilibrium concentration profiles for
Brownian suspensions subject to an external potential. For these simulations,
we compare the fluctuating FCM results with those found analytically, or with
numerical results from studies that employed Brownian or Stokesian dynam-
ics. In addition, we show how fluctuating FCM can be used to explore the
dynamics of suspensions in periodic cellular flow fields, highlighting the role
of hydrodynamic interactions and how they affect particle diffusion.
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8.1 Short-time self-diffusion coefficient

In the first set of computations, we consider the short-time self-diffusion coef-
ficient,

DT =
kBT

3N
trace(MVF). (77)

for a periodic array of spheres and a random suspension. Based on the rela-
tionship between the velocity correlations and the mobility matrix, Eq. (6),
we calculate DT from fluctuating FCM simulations using

DT =
∆t

6N

N
∑

n=1

〈

Ṽn · Ṽn

〉

. (78)

8.1.1 Periodic array of spheres

For a periodic array, the mobility matrix can be written as

MVF =
γ(φ)

6πaη
I (79)

where the coefficient γ depends on the volume fraction, φ, occupied by the
array. The value of γ can be determined by considering a single particle settling
under a unit force in a triply periodic domain. This calculation has been
performed for FCM [30] and compared well up to volume fractions of φ = 0.2
with the theoretical results of Hasimoto [43] and Sangani & Acrivos [44].

By calculating the short-time self-diffusion coefficient using Eq. (78), the co-
efficient γ can also be determined from the random particle velocities given
by fluctuating FCM. In these simulations, we set N = 1 and compute the
velocity of a sphere located at the centre of the domain. The force, torque,
and stresslet on the particle are set to zero. For each volume fraction, we de-
termine the particle’s velocity for 104 realisations of the fluctuating stress field
and average over these realisations to determine DT and γ.

Fig. 3(a) shows the values of γ given by fluctuating FCM along with those
found by allowing the particle to settle under a constant force. The values of
γ given by both approaches are nearly identical over the entire range of φ,
confirming our theoretical analysis presented in the previous sections. Their
agreement also indicates that our numerical implementation of fluctuating
FCM does indeed give particle velocity statistics that correspond to the FCM
mobility matrix.
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8.2 Short-time self-diffusion of a random suspension

To calculate the short-time self-diffusion coefficient for a suspension, we per-
form fluctuating FCM simulations with the particles randomly distributed in
the domain. These calculations are performed for N = 50− 400, correspond-
ing to the range of volume fractions φ = 0.0285− 0.23. We set the forces and
torques on the particles to be zero, however, we include the particle stresslets
in the computations. For each volume fraction, we compute the particle veloc-
ities for 104 realisations of the fluctuating stress field and average over them
to find the short-time self-diffusion coefficient according to Eq. (78).

To compare with previous results, we must correct for the periodicity of the
domain using the following relation [45,16]

DT = DT
PER +

kBT

6πaη̄
(1.7601(φ/N)1/3 − φ/N) (80)

where DT
PER is the short-time self-diffusion coefficient for the periodic domain

and η̄ is the suspension viscosity that we determine from independent FCM
simulations. The corrected values of DT given by fluctuating FCM are shown
in Fig. 3(b). The values are normalised by DT

0 = kBT/(6πaη). For compari-
son, the solid line in Fig. 3(b) show results from far-field Stokesian Dynamics
calculations [16] where it was found that DT/DT

0 ≈ 1− 1.5φ+0.75φ2. We see
that fluctuating FCM reproduces this dependence quite well, indicating the
changes in mobility due to the stresslets are captured in our simulations. The
dashed line in Fig. 3(b) shows the low volume fraction, short-time self-diffusion
coefficient, DT/DT

0 = 1 − 1.83φ + O(φ2) calculated by Batchelor [14]. These
values are based on exact, two-body hydrodynamics and include the near-
field lubrication effects that are neglected in fluctuating FCM and far-field
Stokesian Dynamics. Thus, to recover this asymptotic result, the near-field
corrections would also need to be included in fluctuating FCM.

In addition to DT , we determine the short-time rotational self-diffusion coef-
ficient by calculating

DR =
∆t

6N

N
∑

n=1

〈

Ω̃n · Ω̃n

〉

. (81)

The fluctuating FCM values of DR normalised by DR
0 = kBT/(8πa

3η) are also
shown in Fig. 5. We again compare our values with the far-field Stokesian
Dynamics results taken from [16] where it was found that DR/DR

0 ≈ 1 −
0.33φ − 0.16φ2. We see that the volume fraction dependence of DR given by
fluctuating FCM closely matches that given by far-field Stokesian dynamics.
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Fig. 4. (a) A particle’s trajectory in the xy-plane from a stresslet-free fluctuat-
ing FCM simulation for which the particles interact via the Yukawa potential and
nσ3

Y = 0.3 (φ = 0.15). (b) Mean-squared displacement, Eq. (83), versus time from
stresslet-free fluctuating FCM simulations with Yukawa interactions. The solid line
corresponds to nσ3

Y = 0.2, the dashed line nσ3
Y = 0.3, while the dash–dotted line

shows the mean-squared displacement for nσ3
Y = 0.4.

There is a slight difference in these data, which, after performing additional
simulations using different domain sizes, we may attribute to the effects of
periodicity.

8.3 Long-time self-diffusion of interacting particles

In addition to hydrodynamic interactions, colloidal particles in suspension
can interact via a range of other mechanisms such as electrostatic and surface
forces. These additional interactions can further modify diffusive behaviour.
Here, we study these effects using fluctuating FCM to calculate the long-time
self-diffusion coefficient

D∞ = lim
t→∞

R2(t)

6t
(82)

from the mean-squared displacement

R2(t) =
1

N

∑

n

〈|Yn(t)−Yn(0)|2〉 (83)

for a suspension of particles interacting via the soft, pairwise screened Coulomb,
or Yukawa potential

V (r) =
U0σY

r
exp (−λ(r − σY )/σY ) (84)
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Table 1
Long-time diffusion coefficients for Brownian suspensions with Yukawa interactions
as given by the Brownian dynamics simulations of Löwen & Szamel [46] and fluc-
tuating FCM for the different values of nσ3

Y .

Simulation nσ3
Y D∞/D0

Löwen & Szamel [46] 0.2 0.88(4)

0.3 0.77(2)

0.4 0.68(2)

FCM 0.2 0.934 ± 4e-3

0.3 0.8379 ± 8e-4

0.4 0.7698 ± 8e-4

FCM with stresslets 0.2 0.805 ± 3e-3

0.3 0.7151 ± 4e-4

0.4 0.6363 ± 4e-4

given by DLVO theory [47,48]. The Yukawa potential models the electrostatic
repulsion between similarly charged colloidal particles when ions are present
in the surrounding fluid. In Eq. (84), the strength of the repulsion is set by
U0, σY represents the diameter of the particle, and σY /λ provides the Debye
length, the distance over which the electrostatic interactions are screened by
the ions.

Similar simulations have been performed using Brownian dynamics [46], how-
ever, in these simulations, the hydrodynamic interactions between the parti-
cles were ignored. By comparing with these previous results, we can illustrate
the effects of hydrodynamic interactions on particle diffusion in these disper-
sions. We, therefore, in Eq. (84) take the same parameter values as [46], where
U0 = kBT and the dimensionless screening parameter λ = 8. We perform
these simulations for volume fractions φ = 0.10, 0.15, and 0.2, corresponding
to N = 183, N = 275, and N = 366, respectively. Taking σY = 2a, these
values of φ correspond to nσ3

Y = 0.2, 0.3, and 0.4 in [46]. For each case, we
perform fluctuating FCM simulations with and without the stresslets. The
simulations run for a total time t = 110tD with time step ∆t = 0.0013tD.
The timescale tD = a2/D0 is based on the short-time diffusion coefficient for
a single particle in the periodic domain, D0 = 0.854kBT/(6πaη). An example
particle trajectory from the nσ3

Y = 0.3 simulation is shown in Fig. 4(a). From
these trajectories, we compute the mean-squared displacement using the par-
ticle positions for t ≥ 10tD. The values of R2 as a function of time for the
stresslet-free simulations are shown in Fig. 4(b). For each case, we observe the
linear dependence of R2 on t that is characteristic of diffusive behaviour. We

22



0 2 4 6
0

0.1

0.2

0.3

0.4

x

c(
x
)

(a)

0 2 4 6
0

0.1

0.2

0.3

0.4

x

c(
x
)

(b)

Fig. 5. Concentration profiles for a suspension subject to the external potential
Φ(x) = Φ0 cos x (a) The solid line shows the Boltzmann distribution, see Eq. (86),
while the bars show the concentration given by stresslet-free fluctuating FCM with
no particle interactions. (b) Concentration profiles given by fluctuating FCM sim-
ulations with Yukawa interactions. The open bars correspond to stresslet-free sim-
ulations, while the closed bars show results from simulations where the particle
stresslets are included.

determineD∞ by finding the slopes of these lines, which we see decrease as nσ3
Y

(and φ) increases. The values of D∞ from the fluctuating FCM simulations,
as well as those from [46] are shown in Table 1. We see that for each case, D∞

decreases as nσ3
Y increases. We also see that the values of D∞ given by fluc-

tuating FCM without the stresslets, but where hydrodynamic interactions are
still present, are greater than those from [46]. Similar enhancements in long-
time diffusion due to hydrodynamic interactions have been found previously
in simulations [49], and later were confirmed by comparison with experiments
[50]. We see, however, that when the stresslets are included, that that the val-
ues of D∞/D0 do decrease dramatically. This decrease is presumably linked
to the lower values of the short-time self-diffusion coefficients (see Fig. 3(b))
observed when the stresslets are included.

8.4 Concentration profiles in an external potential

In this set of simulations, we consider a suspension of particles subject to the
periodic external potential

Φ(x) = Φ0 cosx. (85)
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For non-interacting particles, the equilibrium concentration profile will be
given by the Boltzmann distribution

c(x) =
1

Z
exp (−Φ0 cosx/kBT ) (86)

where Z =
∫ 2π
0 exp (−Φ0 cosx/kBT ) dx. We performed stresslet-free fluctuat-

ing FCM simulations with N = 183 and with the force on particle n given
by

Fn = −dΦ

dx

∣

∣

∣

x=Xn

x̂ (87)

where Xn = Yn · x̂. The simulation is run to t = 130tD with a time step of
t = 0.0013tD. Fig. 5(a) shows the time-averaged concentration for this sim-
ulation. We see that fluctuating FCM reproduces quite well the equilibrium
concentration given by Eq. (86). This, however, changes when we allow for
interactions between the particles. We perform the same simulation, but now
include particle interactions via the Yukawa potential with the same param-
eters used in the long-time diffusion simulations. The resulting concentration
profiles for simulations with and without the stresslets are shown in Fig. 5(b).
We see that hydrodynamic interactions do not affect the equilibrium profile as
both simulations yield nearly identical results. We do see, however, that since
the Yukawa interactions modify the total energy of the system, the spatial
distribution of particles is modified, and when compared with the case where
there are no interactions, Fig. 5(a), it is closer to being uniform.

8.5 Enhanced diffusion in cellular flows

As a final numerical example, we consider a suspension of particles in a peri-
odic, cellular flow field (see Fig. 6)

ucell(x) =
α

2η
(− sin x cos yx̂+ cosx sin yŷ) . (88)

Transport in cellular flow fields has served as a fundamental mathematical
model to understand particle motion in turbulent flows, especially for iner-
tial particles [51,52], self-propelled particles [53], and elastic filaments [54].
For Brownian tracers, it has been shown through asymptotic analysis and
homogenisation of the advection-diffusion equation [55], that at long times
particle motion becomes diffusive with a diffusion coefficient that is enhanced
by the flow.
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Fig. 6. The cellular flow field, Eq. (88), along with a particle’s trajectory from the
fluctuating FCM simulation where the particle stresslets are included. In the simu-
lation, the particles interact via the Yukawa potential and nσ3

Y = 0.2 (φ = 0.10).
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Fig. 7. Mean-squared displacement in the xy-plane as a function of time. The solid
line corresponds to the stresslet-free fluctuating FCM simulation of non-interacting
particles, the dashed line show the values from the stresslet-free fluctuating FCM
simulation with Yukawa interactions, and the dash-dotted shows the results from
the fluctuating FCM simulation that includes both particle stresslets and Yukawa
interactions.
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We can examine the transport of Brownian particles in cellular flows using
fluctuating FCM, where we may also consider the effects of particle interac-
tions. In the simulations, the cellular flow field is incorporated by including
the additional body force

fcell(x, y) = α (− sin x cos yx̂+ cos x sin yŷ) (89)

in the Stokes equations. This new total flow field is used to determine the
velocities and angular velocities of the particles, as well as the local rates-of-
strain if the stresslets are to be included. We perform the simulations with
N = 183 and α = 10 for three separate cases, one without the stresslets
or particle interactions, a second with Yukawa interactions, but without the
stresslets, and a third with both stresslets and Yukawa interactions. We run
our simulations until t = 130tD, again with time step ∆t = 0.0013tD. A
particle’s trajectory from the fluctuating FCM simulation with stresslets and
Yukawa interactions is shown in Fig. 6. We see that the particle is carried
along by the flow, but Brownian motion allows it to move across streamlines,
and eventually go from one cell to another. Fig. 7 shows the mean-squared
xy-displacement

R2
xy(t) =

1

N

∑

n

〈(Xn(t)−Xn(0))
2 + (Yn(t)− Yn(0))

2〉 (90)

as a function of time for all three simulations. In each case, we see that at long
times, R2

xy(t) depends linearly on t, and the motion is diffusive. From the slope,
we can determine the effective long-time diffusion coefficient, Dxy

∞ , for each
simulation. Without stresslets or Yukawa interactions, we find that Dxy

∞/D0 =
6.29, when there are only Yukawa interactions we have Dxy

∞/D0 = 6.07, and
when there are both the Yukawa interactions and stresslets, Dxy

∞/D0 = 5.42.
In each case, we see that the diffusion coefficient is much greater than the
corresponding values without the cellular flow (see the nσ3

Y = 0.2 cases in
Table 1) and we find the greatest enhancement (Dxy

∞/D∞ = 6.73) when both
the Yukawa interactions and stresslets are present. This enhancement is in
agreement with the results from [55], however, we see also that in suspensions
of interacting particles, the enhancement is, in fact, magnified.

9 Conclusions

In this paper, we presented fluctuating FCM and demonstrated its effective-
ness as an approach to simulate the dynamics of dilute colloidal suspensions.
This method involves computing the fluid flows generated by a fluctuating
stress and employing the FCM framework to determine particle Brownian
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motion. We have shown analytically that fluctuating FCM yields random par-
ticle velocities and angular velocities with correlations consistent with the
fluctuation-dissipation theorem even when higher-order multipoles, i.e. the
stresslets, are used. In addition, we showed that for dynamic simulations,
Brownian drift can be resolved using the midpoint time integration scheme
developed by Fixman [38,39] and the conjugate gradient method to obtain
the Brownian forces and torques. We have conducted several numerical ex-
periments confirming our theoretical results, demonstrating that fluctuating
FCM yields the correct diffusion for hydrodynamically interacting particles.
We have also shown the method’s versatility and how particle interactions
can affect diffusion coefficients, suspension concentration profiles in external
potentials, and enhanced diffusion in external flow fields.

There are several directions in which fluctuating FCM can be extended, or
modified to be used with other schemes. In our theoretical analysis, we did
not use the specific properties (other than differentiability) of the Gaussian
envelopes that regularise the multipole expansion and volume average the flow
field. Thus, the flows generated by fluctuating stresses could also be readily
integrated with other regularisation schemes, such as the method of regularised
Stokeslets [56,57]. Additionally, it might be possible to use random flows in
conjunction with particle-mesh Ewald schemes [58,59]. As we saw in examining
the short-time diffusion coefficient, lubrication and near-field hydrodynamic
interactions can affect the properties of Brownian suspensions, even at low
volume fractions. We are currently investigating how to incorporate lubrication
effects [32,33] into fluctuating FCM and enable the large-scale simulation of
dense Brownian suspensions. Another important direction is the incorporation
of particle and/or fluid inertia into fluctuating FCM. It has been demonstrated
[29,26,28] that inertia can lead to power-law time correlations and it would also
be of interest to explore these effects in large-scale suspension simulations.
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A Force-coupling method mobility matrices

In Section 3, we showed that
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MVF
FCM ;nm=

∫ ∫

∆n(x)G(x− y)∆m(y)d
3xd3y. (A.1)

One can obtain similar expressions for the other submatrices of the FCM
grand mobility matrix (Eq. (12)). This is done by first writing in terms of
the Stokeslet, G, the flows generated by the FCM force distributions corre-
sponding to the force, torque, and stresslet of particle m, then, using Eqs. (9
– 11), showing how they contribute to the velocity, angular velocity, and local
rate-of-strain of particle n. Where appropriate, integration by parts can be
used to move the partial derivatives on G onto the FCM Gaussian envelopes.
The mobility matrices, especially those related to the rate-of-strain, are most
conveniently written using index notation. We use this notation here, and in
doing so, we remove the subscript label “FCM” for clarity.

We first consider the flow generated when there is a force on particle m, see
Eq. (14). If we take this force to be of unit magnitude and in the j direction,
we find that the submatrix entry corresponding to the angular velocity of
particle n in the i direction is

MWF
n,i;m,j =

1

2

∫ ∫

ǫikl
∂Θn(x)

∂xl
Gkj(x− y)∆n(y)d

3xd3y, (A.2)

If we consider instead the ik entry of the local rate-of-strain for particle n, we
find that

MEF
n,ik;m,j =−1

2

∫ ∫ ∂Θn(x)

∂xk
Gij(x− y)∆n(y)d

3xd3y

−1

2

∫ ∫

∂Θn(x)

∂xi

Gkj(x− y)∆n(y)d
3xd3y. (A.3)

When the fluid velocity is a result of a unit torque on particle m in the j
direction, the entry of the submatrix is

MWT
n,i;m,j =

1

4

∫ ∫

ǫipq
∂Θn(x)

∂xq
Gpk(x− y)ǫklj

∂Θm(y)

∂yl
d3xd3y (A.4)

for the angular velocity of particle n in the i direction, while we have

MET
n,ik;m,j =−1

2

∫ ∫

∂Θn(x)

∂xk

Gip(x− y)ǫplj
∂Θm(y)

∂yl
d3xd3y

−1

2

∫ ∫

∂Θn(x)

∂xi

Gkp(x− y)ǫplj
∂Θm(y)

∂yl
d3xd3y (A.5)
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for the ik entry of the local rate-of-strain of particle n. It can also be shown
that MWF

n,i;m,j = MVT
m,j;n,i, which gives MWF

FCM = (MVT
FCM)T .

Finally, considering the flow generated by the kl entry of the stresslet on
particle m and the ij component of the local rate-of-strain on particle n, we
have that

MES
n,ij;m,kl=

1

4

∫ ∫

∂Θn(x)

∂xj
Gik(x− y)

∂Θm(y)

∂yl
d3xd3y

+
1

4

∫ ∫

∂Θn(x)

∂xi
Gjk(x− y)

∂Θm(y)

∂yl
d3xd3y

+
1

4

∫ ∫ ∂Θn(x)

∂xj
Gil(x− y)

∂Θm(y)

∂yk
d3xd3y

+
1

4

∫ ∫

∂Θn(x)

∂xi

Gjl(x− y)
∂Θm(y)

∂yk
d3xd3y. (A.6)

By the symmetry of the grand mobility matrix, the remaining submatrices
are related to those already determined [33]. Specifically, we have MEF

FCM =
−(MVS

FCM)T and MET
FCM = −(MWS

FCM)T .

B Flow statistics due to a fluctuating stress

Here, we establish the fluid velocity correlations when the fluid is forced by
the fluctuating stress, P. Recall that P, in index notation, has the following
statistics

〈Pjl〉=0 (B.1)

〈Pjl(x, t)Ppq(x
′, t′)〉=2kBTη (δjpδlq + δjqδlp) δ(x− x′)δ(t− t′). (B.2)

In Fourier space, the correlation relation, Eq. (B.2), will be

〈

P̂jl(k, t)P̂pq(−k, t′)
〉

=2kBTη (δjpδlq + δjqδlp) δ(t− t′). (B.3)

We can find the random fluid flow, ũ, due to P by solving the Stokes equations,
Eq. (28) in Fourier space. Working in index notation, we find that

ˆ̃uj(k, t) =
1

ηk2

(

δjm − kjkm
k2

)

iklP̂ml(k, t), (B.4)

and consequently, the correlations of the flow field will be given by
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〈

ˆ̃uj(k, t)ˆ̃up(−k, t′)
〉

=
1

η2k4

(

δjm − kjkm
k2

)

×
(

δpn −
kpkn
k2

)

klkq
〈

P̂ml(k, t)P̂nq(−k, t′)
〉

. (B.5)

Substituting Eq. (B.3) for the stress correlations, we have

〈

ˆ̃uj(k, t)ˆ̃up(−k, t′)
〉

=
2kBT

ηk4

(

δjm − kjkm
k2

)(

δpn −
kpkn
k2

)

×klkq (δmnδlq + δmqδln) δ(t− t′) (B.6)

which further becomes

〈

ˆ̃uj(k, t)ˆ̃up(−k, t′)
〉

=
2kBT

ηk4

(

δjmδpn −
kjkm
k2

δpn −
kpkn
k2

δjm +
kjkmkpkn

k4

)

×
(

δmnk
2 + kmkn

)

δ(t− t′). (B.7)

After expanding and cancelling terms, one determines

〈

ˆ̃uj(k, t)ˆ̃up(−k, t′)
〉

=
2kBT

ηk2

(

δjp −
kjkp
k2

)

δ(t− t′) (B.8)

which in real space is

〈ũj(x, t)ũp(x
′, t′)〉 = 2kBT

8πηr

(

δjp +
(x− x′)j(x− x′)p

r2

)

δ(t− t′), (B.9)

or

〈

ũ(x, t)ũT (x′, t′)
〉

= 2kBTG(x− x′)δ(t− t′). (B.10)

C Fluctuating FCM: Particle velocity correlations

In this appendix, we show that volume averaging the random flow field, ũ,
using Eqs. (9) – (11) gives the random particle velocities, angular velocities,
and local rates-of-strain with correlations proportional to the FCM grand mo-
bility matrix. This calculation was performed in Section 4.1.1 for the velocity-
velocity correlations, and here, we present the correlations for the remaining
quantities. These expressions are fundamental to establishing that fluctuating
FCM reproduces the correct statistics for the random motion of the particles.
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From Eqs. (9) – (11), the expressions for the induced velocities, angular ve-
locities, and local rates-of-strain for particle n, in index notation, are

Ṽn,i=
∫

ũi∆n(x)d
3x

Ω̃n,i =
1

2

∫

ǫijk
∂ũk

∂xj
Θn(x)d

3x

Ẽn,ij =
1

2

∫

(

∂ũi

∂xj
+

∂ũj

∂xi

)

Θn(x)d3x. (C.1)

Having already established the velocity correlations in Section 4.1.1, we now
seek the correlations between the velocity of particle n and the angular velocity
of particle m. Multiplying these quantities together, integrating by parts, and
taking the ensemble average gives us

〈Ṽn,i(t)Ω̃m,j(t
′)〉 = 1

2

∫ ∫

〈ũi(x, t)ũk(y, t
′)〉ǫklj

∂Θm

∂yl
∆n(x)d

3xd3y. (C.2)

Upon substituting Eq. (B.10) for the fluid flow correlations, we see that

〈Ṽn,i(t)Ω̃m,j(t
′)〉 = kBTδ(t− t′)

∫ ∫

Gik(x− y)ǫklj
∂Θm

∂yl
∆n(x)d

3xd3y.

(C.3)

From Eq. (A.2) and its symmetry properties, we recognise that the right hand
side may also be written as

〈Ṽn,i(t)Ω̃m,j(t
′)〉 = 2kBTδ(t− t′)MVT

m,j;n,i, (C.4)

which for all particles becomes

〈Ṽ(t)W̃T (t′)〉 = 2kBTδ(t− t′)MVT
FCM . (C.5)

Repeating the same calculation for the other possible combinations of the
quantities in Eq. (C.1), we can find the remaining correlations

〈Ω̃n,i(t)Ω̃m,j(t
′)〉= 1

4

∫ ∫

〈ũp(x, t)ũk(y, t
′)〉ǫpqiǫklj

∂Θm

∂yl

∂Θn

∂xq

d3xd3y (C.6)

〈Ṽn,i(t)Ẽm,jk(t
′)〉=−1

2

∫ ∫

∆n(x)
∂Θm

∂yk
〈ũi(x, t)ũj(y, t

′)〉d3xd3y

−1

2

∫ ∫

∆n(x)
∂Θm

∂yj
〈ũi(x, t)ũk(y, t

′)〉. (C.7)
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〈Ω̃n,i(t)Ẽm,jk(t
′)〉=−1

4

∫ ∫

ǫpqi
∂Θn

∂xq

∂Θm

∂yk
〈ũp(x, t)ũj(y, t

′)〉d3xd3y

−1

4

∫ ∫

ǫpqi
∂Θn

∂xq

∂Θm

∂yj
〈ũp(x, t)ũk(y, t

′)〉d3xd3y (C.8)

〈Ẽn,ij(t)Ẽm,kl(t
′)〉= 1

4

∫ ∫

∂Θn

∂xj

∂Θm

∂yl
〈ũi(x, t)ũk(y, t

′)〉d3xd3y

+
1

4

∫ ∫

∂Θn

∂xj

∂Θm

∂yk
〈ũi(x, t)ũl(y, t

′)〉d3xd3y

+
1

4

∫ ∫

∂Θn

∂xi

∂Θm

∂yl
〈ũj(x, t)ũk(y, t

′)〉d3xd3y

+
1

4

∫ ∫

∂Θn

∂xi

∂Θm

∂yk
〈ũj(x, t)ũl(y, t

′)〉d3xd3y. (C.9)

After substituting Eq. (B.10) for the fluid velocity correlations, we see that
these expressions are entries of the corresponding FCM grand mobility sub-
matrices multiplied by 2kBTδ(t− t′), which, for all particles, become

〈W(t)WT (t′)〉=2kBTδ(t− t′)MWT
FCM (C.10)

〈V(t)ET (t′)〉=−2kBTδ(t− t′)MVS
FCM (C.11)

〈W(t)ET (t′)〉=−2kBTδ(t− t′)MWS
FCM (C.12)

〈E(t)ET (t′)〉=−2kBTδ(t− t′)MES
FCM (C.13)
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[46] H. Löwen, G. Szamel, Long-time self-diffusion coefficient in colloidal
suspensions: theory versus simulation, Journal of Physics: Condensed Matter
5 (15) (1993) 2295.

[47] E. Verwey, J. T. G. Overbeek, Theory of the stability of lyophobic colloids,
Elsevier, 1948.

[48] W. Russel, D. Saville, W. Schowalter, Colloidal Dispersions, Cambridge
University Press, 1992.

[49] K. Zahn, J. M. Méndez-Alcaraz, G. Maret, Hydrodynamic interactions may
enhance the self-diffusion of colloidal particles, Physical review letters 79 (1)
(1997) 175–178.

[50] B. Rinn, K. Zahn, P. Maass, G. Maret, Influence of hydrodynamic interactions
on the dynamics of long-range interacting colloidal particles, EPL (Europhysics
Letters) 46 (4) (1999) 537.

[51] M. Maxey, S. Corrsin, Gravitational settling of aerosol particles in randomly
oriented cellular flow fields., Journal of Atmospheric Sciences 43 (1986) 1112–
1134.

[52] M. R. Maxey, The motion of small spherical particles in a cellular flow field,
Physics of Fluids 30 (7) (1987) 1915–1928.

[53] W. M. Durham, E. Climent, R. Stocker, Gyrotaxis in a steady vortical flow,
Phys. Rev. Lett. 106 (2011) 238102.

[54] Y.-N. Young, M. J. Shelley, Stretch-coil transition and transport of fibers in
cellular flows, Phys. Rev. Lett. 99 (2007) 058303.

[55] A. J. Majda, P. R. Kramer, Simplified models for turbulent diffusion: theory,
numerical modelling, and physical phenomena, Physics reports 314 (4) (1999)
237–574.

35



[56] R. Cortez, The method of regularized Stokeslets, SIAM J. Sci. Comput. 23 (4)
(2001) 1204–1225.

[57] R. Cortez, L. Fauci, A. Medovikov, The method of regularized stokeslets in
three dimensions: Analysis, validation, and application to helical swimming,
Physics of Fluids 17 (3) (2005) 031504.

[58] D. Saintillan, E. Darve, E. S. G. Shaqfeh, A smooth particle-mesh ewald
algorithm for stokes suspension simulations: The sedimentation of fibers,
Physics of Fluids 17 (3) (2005) 033301.

[59] J. P. Hernández-Ortiz, J. J. de Pablo, M. D. Graham, Fast computation
of many-particle hydrodynamic and electrostatic interactions in a confined
geometry, Phys. Rev. Lett. 98 (2007) 140602.

36


	1 Introduction
	2 Particle motion
	3 The force-coupling method
	4 The fluctuating force-coupling method
	4.1 Particle velocity correlations

	5 Discretisation of fluctuating FCM
	6 Convergence
	7 Time integration and Brownian drift
	8 Fluctuating FCM simulations
	8.1 Short-time self-diffusion coefficient
	8.2 Short-time self-diffusion of a random suspension
	8.3 Long-time self-diffusion of interacting particles
	8.4 Concentration profiles in an external potential
	8.5 Enhanced diffusion in cellular flows

	9 Conclusions
	A Force-coupling method mobility matrices
	B Flow statistics due to a fluctuating stress
	C Fluctuating FCM: Particle velocity correlations
	References

