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Abstract

We study a class of time evolution models that contain dissipation mech-
anisms exhibited by geophysical materials during deformation: plasticity,
viscous dissipation and fracture. We formally prove that they satisfy a
Clausius-Duhem type inequality. We describe a semi-discrete time evolu-
tion associated with these models, and report numerical 1D and 2D traction
experiments, that illustrate that several dissipation regimes can indeed take
place during the deformation. Finally, we report 2D numerical simulation of
an experiment by Peltzer and Tapponnier, who studied the indentation of a
layer of plasticine as an analogue model for geological materials.
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1. Introduction

In this paper, we study a class of models that combine several mechanisms
of dissipation: plasticity, visco-plasticity, visco-elasticity and fracture.

Our goal is to investigate whether models from solid mechanics could be
pertinent to describe geophysical materials (and particularly the lithosphere
on continental scales), as advocated by Peltzer and Tapponnier [12], while
others (see for example [6], [7]) prefer descriptions based on fluid mechanics.
The solid mechanics approach would have advantage to account for cracks in
the formation of geological faults. They illustrate their claim with analogue
experiments, where a rigid indenter deforms a layer of plasticine, to model
the action of the Indian sub-continent on the Tibetan plateau. The plasticine
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experiments seems to reproduce the geophysical scenario of creation of the
Asian faults and the extrusion of the South-Asian block (including Vietnam).

No general consensus prevails on the modeling of crack initiation and
propagation, even in homogeneous materials. The popular Griffith model,
much in use in the engineering community, suffers from various shortcom-
ings. For instance it does not account for crack nucleation, and assumes
pre-determined crack paths. In the last decade, a series of investigation
initiated by Francfort and Marigo [9] has addressed the mathematical foun-
dation of fracture mechanics, using new concepts that have emerged from
the mathematical modeling of composite materials and from the calculus of
variation. This approach postulates that crack evolution is governed by the
minimization of a total energy, among all possible crack states.

Our models of fracture are inspired by this work, though we only consider
fracture via a phase-field approximation. In other words, the geometry of pos-
sible cracks is captured by a function v with values between 0 and 1, v = 1
in the healthy parts that do not contain cracks. The length of the cracks, a
quantity that contributes to the total energy, is approximated via a function-
nal introduced by Ambrosio and Tortorelli [1] and Bourdin [3]. The numeri-
cal simulations of fracture in a purely elastic medium, using such phase-field
approximation, was carried out by Bourdin, Francfort and Marigo [2], [4],
[5]. A model combining elasticity, visco-elasticity and fracture regularized
via phase-field, is analyzed in [11], where the main point is how to define
a consistent evolution as the limit of semi-discrete approximations in time.
Our class of models extends this work to the case when plastic behavior and
viscoplastic behavior can occur.

From a thermodynamical point of view, we interpret the phase field func-
tion v, that tracks the location and propagation of cracks, not only as a vari-
able for numerical approximation, but as a global thermodynamical internal
variable. We show that our models are consistent with thermodynamics, in
the sense that they satisfy a Clausius-Duhem type inequality. We propose a
numerical scheme for a space-time discretization of the evolution, and ana-
lyze its advantages and shortcomings on 1D et 2D traction experiments and
on the experiment by Peltzer and Tapponnier [12].

The paper is organized as follows. In Section 2, we describe the proposed
models with regularized fracture and define their evolution in time. Section 3
is dedicated to showing that they satisfy a Clausius-Duhem type inequality.
In Section 4, we introduce a semi-discrete time evolution, which is the base,
in the final section, for numerical experiments in the case of 1D, 2D traction
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and 2D plasticine experiment. In particular we show that several dissipation
mechanisms can be expressed according to the choice of parameters.

2. Description of models with several dissipation mechanisms.

2.1. Notations.

Throughout the paper, Ω denotes a bounded connected open set in R2

with Lipschitz boundary ∂Ω = ∂ΩD ∪ ∂ΩN , where ∂ΩD, ∂ΩN are disjoint
measurable sets. We denote time derivatives with a dot and argminv∈V F(v)
denotes a function u that minimizes F over V .

Given Tf > 0, we denote by Lp((0, Tf ), X), W k,p((0, Tf ), X), the Lebesgue
and Sobolev spaces involving time [see [8] p. 285], where X is a Banach space.
The set of symmetric 2 × 2 matrices is denoted by M2×2

sym . For ξ, ζ ∈ M2×2
sym

we define the scalar product between matrices ζ : ξ :=
∑

ij ζijξij, and the

associated matrix norm by |ξ| :=
√
ξ : ξ. Let A be the fourth order tensor

of Lamé coefficients and B a suitable symmetric-fourth order tensor. We
assume that for some constants 0 < α1 ≤ α2 <∞, they satisfy the ellipticity
conditions

∀ e ∈M2×2
sym, α1|e|2 ≤ Ae : e ≤ α2|e|2 and α1|e|2 ≤ Be : e ≤ α2|e|2

The mechanical unknowns of our model are the displacement field u : Ω ×
[0, Tf ] → R2, the elastic strain e : Ω × [0, Tf ] → M2×2

sym, the plastic strain
p : Ω × [0, Tf ] → M2×2

sym. We assume u and ∇u remain small. So that the
relation between the deformation tensor E and the displacement field is given
by

Eu :=
1

2
(∇u+∇uT ).

We also assume that Eu decomposes as an elastic part and a plastic part

Eu = e+ p.

For w ∈ H1(0, Tf , H
1(Ω,R2)), which represents an applied boundary dis-

placement, we define for t ∈ [0, Tf ] the set of kinematically admissible fields
by

Aadm(w(t)) := {(u, e, p) ∈ H1(Ω,R2)× L2(Ω,M2×2
sym)× L2(Ω,M2×2

sym) :

Eu = e+ p a.e. in Ω, u = w(t) a.e. on ∂ΩD}.
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For f ∈ C1([0, Tf ], L
2(Ω)2), and g ∈ C1([0, Tf ], H

−1/2(Ω)2), the external
forces at time t ∈ [0, Tf ] are collected into

〈l(t), u〉 :=

∫
Ω

f(t).u dx+

∫
∂ΩN

g(t).u ds.

For a fixed constant τ > 0, we define K := {q ∈ M2×2
sym; |q| ≤ τ a.e. in Ω}.

We define H : M2×2
sym → [0,∞] the support function of K by

H(p) := sup
θ∈K

θ : p = τ |p|,

and a perturbed dissipation potential Hβ by

Hβ(p) := H(p) +
β

2
|p|2,

where β > 0 plays the role of a regularization parameter. The variational
approach to fracture [9], [5] is based on Griffith’s idea that the crack growth
and crack path are determined by the competition between the elastic energy
release, when the crack increases, and the energy dissipated to create a new
crack. We approximate the fracture (see Figure 1) by a phase field function
v : Ω× [0, Tf ]→ [0, 1] that depends on two parameters:

• ε > 0, the parameter of space regularization, relates to the width of the
generalized fracture,

• η > 0 is a parameter, that preserves the ellipticity of the elastic energy.
In [1], η scales as o(ε) as ε → 0 in the approximation of a true crack
by a phase-field function.

The nucleation and propagation of cracks, and the material deformation re-
sult from minimizing at each time a global energy, that contains several
terms:

Etotal := Eel + Ep + Eh + Eve + Evp + ES.

The elastic energy is defined as

Eel : L2(Ω,M2×2
sym)×H1(Ω,R)→ R

(e, v) 7−→ Eel(e, v) =
1

2

∫
Ω

(
v2 + η

)
Ae : e dx.
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The plastic dissipated energy is defined, by

Ep : L2(Ω,M2×2
sym)× L2(Ω,M2×2

sym)→ R

(p, p0) 7−→ Ep(p, p0) =

∫
Ω

H(p− p0) dx,

and the hardening energy by

Eh : L2(Ω,M2×2
sym)→ R

p 7−→ Eh(p) =
1

2

∫
Ω

Bp : p dx.

Given β1 > 0, β2 > 0 and h > 0, the visco-elastic energy is

Eve : H1(Ω,R2)×H1(Ω,R2)→ R

(u, u0) 7−→ Eve(u, u0) =
β1

2h

∫
Ω

(E(u)− E(u0)) : (E(u)− E(u0)) dx.

and the viscoplastic energy is defined by

Evp : L2(Ω,M2×2
sym)× L2(Ω,M2×2

sym)→ R

(p, p0) 7−→ Evp(p, p0) =
β2

2h

∫
Ω

(p− p0) : (p− p0) dx.

The Griffith surface energy is approximated by the phase-field surface energy

ES : H1(Ω,R)→ R

v 7−→ ES(v) =

∫
Ω

ε|∇v|2dx+

∫
Ω

(1− v)2

4ε
dx.

It is shown in [3] that in the elastic anti-plane case, where the displacement
reduces to a scalar and Eu reduces to ∇u, the Ambrosio-Tortorelli functional

Eε(∇u, v) = Eel(∇u, v) + ES(v),

Γ-converges, as 0 < η � ε→ 0, to the Griffith energy G, where

G(u) :=
1

2

∫
Ω

A|∇u|2 dx+HN−1(S(u)).

Here, S(u) denotes the discontinuity set of u, and HN−1 is the (N − 1)-
dimensional Hausdorff measure.

Note that in the region around an approximate crack, where v is close
to 0, the effective Lamé tensor is (v2 + η)A : the elastic material is replaced
there by a very compliant medium. We define a := v2 + η.
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1 + η

η

≈ ◦(ε)
v(x) + η

0
x

Figure 1: In the generalized crack model, a crack is replaced by a thin region of very
compliant material.

2.2. Formulation of the models.

We now propose 3 models that combine the various ingredients that we
are interested in.

• Model 1 contains: elasticity, plasticity, visco-elasticity and fracture,

• Model 2: elasticity, plasticity, visco-plasticity, fracture,

• Model 3: elasticity, plasticity, kinematic hardening, fracture.

We define a time evolution for our models to be a quadruplet of functions
(u, e, p, v) : Ω × [0, Tf ] → R2 × M2×2

sym × M2×2
sym × R satisfying the following

conditions:

(E1) Initial condition: (u(0), v(0), e(0), p(0)) = (u0, v0, e0, p0) with
(u0, e0, p0) ∈ Aadm(w(0)). We also suppose that (v2

0 + η)|Ae0| ≤ τ and
v0 = 1 in Ω (the medium at t = 0 does not contain any crack).

(E2) Kinematic compatibility: for t ∈ [0, Tf ],

(u(t), e(t), p(t)) ∈ Aadm(w(t))

(E3) Equilibrium condition: for t ∈ [0, Tf ],
−div(σ(t)) = f(t), a.e. in Ω,
σ(t).~n = g(t), on ∂ΩN ,
(u(t), v(t)) = (w(t), 1), on ∂ΩD.
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(E4) Constitutive relations: for t ∈ [0, Tf ],

– Model 1: σ(t) = (v(t)2 + η)Ae(t) + β1Eu̇(t). The first term rep-
resents the stress due to elastic deformation, while the second
represents viscous dissipation.

– Model 2 and Model 3: σ(t) = (v(t)2 + η)Ae(t). There the stress is
only related to elastic deformation. We recall the notation a(t) :=
v(t)2 + η.

(E5) Plastic flow rule: for a.e. t ∈ [0, Tf ],

– Model 1:

a(t)Ae(t) ∈ ∂H(ṗ(t)) for a.e. x ∈ Ω. (1)

– Model 2:

a(t)Ae(t) ∈ ∂Hβ2(ṗ(t)) for a.e. x ∈ Ω. (2)

– Model 3:

a(t)Ae(t)−Bp(t) ∈ ∂H(ṗ(t)) for a.e. x ∈ Ω. (3)

(E6) Crack stability condition: for t ∈ [0, Tf ],

Eel(e(t), v(t)) + ES(v(t)) = inf
v=1 sur ∂ΩD,v≤v(t)

Eel(e(t), v) + ES(v).

The crack stability condition implies that a fracture can only grow, and
cannot disappear.

(E7) Energy balance formula: for every T ∈ [0, Tf ], the energy dissipates in
the medium so as to satisfy

– Model 1:

Eel(e(T ), v(T )) + ES(v(T ))− 〈l(T ), u(T )〉
= Eel(e(0), v(0)) + ES(v(0))− 〈l(0), u(0)〉

− β1

∫ T

0

‖ Eu̇(t) ‖2
2 dt− τ

∫ T

0

∫
Ω

|ṗ|dx dt

−
∫ T

0

〈l̇, u〉 dt+

∫ T

0

∫
∂ΩD

σ(t)~n.ẇ(t) ds dt. (4)

7



– Model 2:

Eel(e(T ), v(T )) + ES(v(T ))− 〈l(T ), u(T )〉
= Eel(e(0), v(0)) + ES(v(0))− 〈l(0), u(0)〉

− β2

∫ T

0

‖ ṗ(t) ‖2
2 dt− τ

∫ T

0

∫
Ω

|ṗ|dx dt

−
∫ T

0

〈l̇, u〉 dt+

∫ T

0

∫
∂ΩD

σ(t)~n.ẇ(t) ds dt. (5)

– Model 3:

Eel(e(T ), v(T )) + ES(v(T )) + Eh(p(t))− 〈l(T ), u(T )〉
= Eel(e(0), v(0)) + ES(v(0)) + Eh(p(0))− 〈l(0), u(0)〉

− τ

∫ T

0

∫
Ω

|ṗ|dx dt−
∫ T

0

〈l̇, u〉 dt+

∫ T

0

∫
∂ΩD

σ(t)~n.ẇ(t) ds dt.

(6)

In the rest of paper, we suppose l ≡ 0.

3. Consistency of models with thermodynamics.

In this section, we show that our models can be set in a thermodynamical
framework which resembles that of the Generalized Standard Materials of
Halphen and Nguyen [10], see also Le Tallec [13]. To this end, we introduce
for t ∈ [0, T ], a free energy density w(E(t), v(t), p(t)) which depends on
E(t) := Eu(t), and on v(t), p(t), the latter considered as internal variables
(see [10]). We also introduce a free energy functional W(t)

W(E, p, v)(t) =

∫
Ω

w(E, p, v)(t) dx,

and thermodynamic forces as operators associated with the internal variables

Tp(t)p̃ := −∂w
∂p

(E, p, v)(t)p̃ and Tv(t)ṽ := −∂W
∂v

(E, p, v)(t)ṽ.

Note that in our case, the thermodynamic force associated with the phase
field is defined as a global operator H1(Ω) −→ R. We also postulate the ex-
istence of a dissipation potential φ(t) = φ(Ė(t), ṗ(t), v̇(t)) which is a convex
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function of its arguments and minimal at (Ė(t), ṗ(t), v̇(t)) = (0, 0, 0). Ac-
cording to the principle of conservation of linear momentum, we recall that
the Cauchy theorem implies the existence of symmetric stress tensor σ(t)
which satisfies under the hypothesis of small deformations the equilibrium
condition (E3). The stress tensor is split into an irreversible and a reversible
part by setting

σrev(t) :=
∂w

∂E
(E(t), p(t), v(t)) and σirrev(t) := σ(t)− σrev(t). (7)

Following the work of Halphen and Nguyen [10] and LeTallec [13], we make
the constitutive hypothesis that the thermodynamic forces are related to the
dissipation potential by

(σirrev(t), Tp(t), Tv(t)) ∈ ∂φ(Ė(t), ṗ(t), v̇(t)). (8)

Our goal is to show that our models are consistent with this thermodynamic
framework, in the sense that if one assumes (8) and if the equilibrium condi-
tion (E3) is verified, then one recovers the relations (E4)-(E7), and further, a
form of the Clausius-Duhem inequality holds. We state this result for Model
1 only. The same analysis carries on for Models 2 and 3 (see the remark
below). We also define the fracture dissipation potential by

DS(ξ) =

{
0 if ξ ≤ 0, a.e. in Ω, ξ ∈ H1

D(Ω),
∞ elsewhere,

with H1
D(Ω) := {z ∈ H1(Ω); z = 0 on ∂ΩD}.

Theorem 3.1. Suppose that (u, v, e, p) in C1(0, Tf , H
1(Ω))×C1(0, Tf , H

1(Ω))×
C1(0, Tf , L

2(Ω))×C1(0, Tf , L
2(Ω)) satisfy for all t ∈ [0, T ], (u̇(t), ė(t), ṗ(t)) ∈

Aadm(ẇ(t)), v̇(t) ≤ 0 a.e. in Ω, v̇(t) ∈ H1
D(Ω), v(t) = 1 on ∂ΩD, (E1), (E2),

(E3), and (8). Let

W1(t, Eu(t), p(t), v(t)) :=
1

2

∫
Ω

(
v(t)2 + η

)
A(Eu(t)− p(t)) : (Eu(t)− p(t)) dx

+

∫
Ω

ε|∇v(t)|2dx+

∫
Ω

(1− v(t))2

4ε
dx,

and the potential of dissipation

φ1(t, Eu̇(t), ṗ(t), v̇(t)) =
1

2
β1Eu̇(t) : Eu̇(t) + τ |ṗ(t)|+DS(v̇(t)).
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Then (u, v, e, p) satisfies (E4), (E5), (E6), (E7). Furthermore, for all t ∈
[0, Tf ],

D(t) :=

∫
Ω

σ(t) : Eu̇(t) dx− Ẇ1(t) > 0. (9)

Proof : Let t ∈ [0, Tf ]. The relations (7) and (8) lead to (E4)

σ(t) = a(t)Ae(t) + β1Eu̇(t). (10)

We also deduce from (8) that

(v(t)2 + η)Ae(t) ∈ ∂H(ṗ(t)). (11)

which prove (E5). From (8) we see that for every ξ ≤ 0 and ξ = 0 on ∂ΩD

−∂W1

∂v
(E, p, v)(t)(ξ − v̇(t))

= −
∫

Ω

v(t)A(Eu(t)− p(t)) : (Eu(t)− p(t))(ξ − v̇(t))

+ (2ε)−1(v(t)− 1)(ξ − v̇(t)) + 2ε∇v(t)∇(ξ − v̇(t)) dx ≤ 0, (12)

so that we obtain∫
Ω

v(t)A(Eu(t)− p(t)) : (Eu(t)− p(t))(v̇(t)− ξ)

+ (2ε)−1(v(t)− 1)(v̇(t)− ξ) dx+

∫
Ω

2ε∇v(t)∇(v̇(t)− ξ) dx ≤ 0. (13)

Testing (13) with ξ = v̇(t) +ϕ− v(t) where ϕ ∈ H1(Ω), ϕ ≤ v(t), and ϕ = 1
on ∂ΩD, implies that

2ε

∫
Ω

∇v(t)∇(v(t)− ϕ) dx+

∫
Ω

v(t)Ae(t) : e(t)(v(t)− ϕ) dx

+ (2ε)−1

∫
Ω

(v(t)− 1)(v(t)− ϕ) dx ≤ 0, (14)

for every ϕ ∈ H1(Ω), ϕ ≤ v(t), and ϕ = 1 on ∂ΩD. We rewrite (14) as
follows

2ε

∫
Ω

∇v(t)∇v(t) dx+

∫
Ω

v(t)Ae(t) : e(t)v(t) dx+ (2ε)−1

∫
Ω

(v(t)− 1)v(t) dx

≤ 2ε

∫
Ω

∇v(t)∇ϕdx+

∫
Ω

v(t)Ae(t) : e(t)ϕdx+ (2ε)−1

∫
Ω

(v(t)− 1)ϕdx.

(15)

10



Using the Cauchy inequality yields

2ε

∫
Ω

∇v(t)∇ϕdx ≤ ε

∫
Ω

|∇v(t)|2 dx+ ε

∫
Ω

|∇ϕ|2 dx,

∫
Ω

v(t)Ae(t) : e(t)ϕdx ≤ 1

2

∫
Ω

v2(t)Ae(t) : e(t) dx+
1

2

∫
Ω

ϕ2Ae(t) : e(t) dx.

We rewrite

(v(t)− 1)ϕ = (v(t)− 1)(ϕ− 1) + (v(t)− 1),

(v(t)− 1)v(t)− (v(t)− 1) = (v(t)− 1)2,

and it follows that

Eel(e(t), v(t)) + ES(v(t)) ≤ Eel(e(t), ϕ) + ES(ϕ) (16)

for all ϕ ∈ H1(Ω), ϕ ≤ v(t), and ϕ = 1 on ∂ΩD, which proves (E6). We now
prove the energy balance formula. First we differentiateW1(t, E(u(t)), p(t), v(t))
in time:

d

dt
W1(t, E(u(t)), p(t), v(t)) =

∫
Ω

a(t)A(Eu(t)− p(t)) : (Eu̇(t)− ṗ(t)) dx

+

∫
Ω

v(t)A(Eu(t)− p(t)) : (Eu(t)− p(t))v̇(t) + (2ε)−1(v(t)− 1)v̇(t) dx

+ 2

∫
Ω

ε∇v(t)∇v̇(t) dx. (17)

Testing inequality (12) with ξ = 0 and ξ = 2v̇(t) leads to

− ∂W1

∂v
(E, p, v)(t)v̇(t) = 0. (18)

From (17) and (18) we deduce that

d

dt
W1(t, Eu(t), p(t), v(t))

=

∫
Ω

a(t)A(Eu(t)− p(t)) : (Eu̇(t)− ṗ(t)) dx

=

∫
Ω

σ(t) : Eu̇(t) dx−
∫

Ω

β1Eu̇(t) : Eu̇(t) dx

−
∫

Ω

a(t)A(Eu(t)− p(t)) : ṗ(t) dx. (19)
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The equilibrium equation (E3) gives∫
Ω

σ(t) : Eu̇(t) dx =

∫
∂ΩD

σ(t)~n.ẇ(t) ds. (20)

By definition of the subgradient, (11) leads to a variational inequality: for
all admissible q ∈ L2(Ω,M2×2

sym) we have

τ

∫
Ω

|q| dx ≥ τ

∫
Ω

|ṗ(t)| dx+

∫
Ω

a(t)A(Eu(t)− p(t)) : (q − ṗ(t)) dx (21)

Testing (21) with q = 0 et q = 2ṗ(t) implies that∫
Ω

a(t)A(Eu(t)− p(t)) : ṗ(t) dx = τ

∫
Ω

|ṗ(t)|dx. (22)

So that we deduce from (19), (20), (22) that

d

dt
W1(t, Eu(t), p(t), v(t)) = −

∫
Ω

β1Eu̇(t) : Eu̇(t) dx− τ
∫

Ω

|ṗ(t)| dx

+

∫
∂ΩD

σ(t)~n.ẇ(t) ds. (23)

Integrating (23) over [0, T ], for every 0 ≤ T ≤ Tf shows that the balance
formula (E7) holds. Finally, from (20) and (23) we deduce that

D(t) :=

∫
Ω

σ(t) : Eu̇(t) dx− Ẇ1(t)

=

∫
Ω

β1Eu̇(t) : Eu̇(t) dx+ τ

∫
Ω

|ṗ(t)| dx > 0.

�

Remark 1. 1. The assumption (8) is stronger than (E6).
2. Theorem 3.1 also holds for Models 2 and 3 with the following choices

of free energies and dissipation potentials:

• for Model 2:

W2(t, Eu(t), p(t), v(t))

:=
1

2

∫
Ω

(
v(t)2 + η

)
A(Eu(t)− p(t)) : (Eu(t)− p(t)) dx

+

∫
Ω

ε|∇v(t)|2dx+

∫
Ω

(1− v(t))2

4ε
dx.
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and

φ2(t, Eu̇(t), ṗ(t), v̇(t)) =
1

2
β2ṗ(t) : ṗ(t) + τ |ṗ(t)|+DS(v̇(t)).

• for Model 3:

W3(t, Eu(t), p(t), v(t))

:=
1

2

∫
Ω

(
v(t)2 + η

)
A(Eu(t)− p(t)) : (Eu(t)− p(t)) dx

+
1

2

∫
Ω

Bp(t) : p(t) dx+

∫
Ω

ε|∇v(t)|2dx+

∫
Ω

(1− v(t))2

4ε
dx,

and

φ3(t, Eu̇(t), ṗ(t), v̇(t)) = τ |ṗ(t)|+DS(v̇(t)).

4. Discrete-time evolutions for Models 1-3.

We now approximate the continuous-time evolutions of the constructed
models via discrete time evolutions obtained by solving incremental vari-
ational problems. We describe the discrete-time evolution of the medium
as follows: we consider a partition of the time interval [0, Tf ] into Nf sub-
intervals of equal length h:

0 = t0h < t1h < ... < tnh < ... < t
Nf

h = Tf , with h =
Tf
Nf

= tnh − tn−1
h → 0.

We define

B(tnh) :=

(z, q, ϕ) ∈ H1(Ω)× L2(Ω)×H1(Ω);
z = wnh , on ∂ΩD,
ϕ = 1, on ∂ΩD,
ϕ ≤ vn−1

h , in Ω.

 .

Let us assume that for n > 1, the approximate evolution (un−1
h , vn−1

h , pn−1
h ) ∈

B(tn−1
h ) is known at tn−1

h . We seek (unh, v
n
h , p

n
h) at time tnh as the solution to

the following variational problem:

min
(z,q,ϕ)∈B(tnh)

Etotal(z, q, ϕ, un−1
h , vn−1

h , pn−1
h ), (24)

where, for each model, Etotal is defined as follows:
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1. Model 1: Elasto-plasticity, viscoelasticity and fracture:

E1
total(z, q, ϕ, u

n−1
h , vn−1

h , pn−1
h ) = Eel(ϕ,E(z)− q) + Ep(q, pn−1

h )

+ Eve(z, un−1
h ) + ES(ϕ).

2. Model 2: Elasto-plasticity, viscoplasticity and fracture:

E2
total(z, q, ϕ, u

n−1
h , vn−1

h , pn−1
h ) = Eel(ϕ,E(z)− q) + Ep(q, pn−1

h )

+ Evp(q, pn−1
h ) + ES(ϕ).

3. Model 3: Elasto-plasticity, linear kinematic hardening and fracture:

E3
total(z, q, ϕ, u

n−1
h , vn−1

h , pn−1
h ) = Eel(ϕ,E(z)− q) + Ep(q, pn−1

h )

+ Eh(q) + ES(ϕ).

One can easily prove that for i = 1, 2, 3 the variational problem

min
(z,q,ϕ)∈B(tnh)

E itotal(z, q, ϕ, un−1
h , vn−1

h , pn−1
h ). (25)

has at least one solution. If (zn, qn, ϕn)n is a minimizing subsequence,
that one easily checks that ‖ zn ‖H1 , ‖ pn ‖L2 , ‖ ϕn ‖H1 are uniformly
bounded, so that a subsequence converges weakly to some (z, q, ϕ). The
only difficulty in passing to the limit in Etotal comes from the term∫

Ω

ϕ2
nA(Ezn − qn) : (Ezn − qn) dx,

which can be rewritten as∫
Ω

Aϕn(Ezn − qn) : ϕn(Ezn − qn) dx,

and one can use the fact that since

Ezn ⇀ Ez weakly in L2,

ϕn ⇀ ϕ weakly in H1,

qn ⇀ q weakly in L2,

one has

ϕn(Ezn − qn) ⇀ ϕ(Ez − q) weakly in L2.

Note however that Etotal is not convex because of the no quadratic term
ϕ2(E(z)− q) : (E(z)− q) in the elastic energy. So that there might be
several solutions to (25).
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4.1. An alternate minimization algorithm and backtracking for materials with
memory

A solution (unh, v
n
h , p

n
h) of problem (25) is characterized by a system of one

equality and two variational inequalities. Such a system is not easy to solve
numerically. For this reason we propose to solve (25) at each time step tnh
using an alternate minimization algorithm. The advantage of this approach
is that the problem (25) is separately strictly convex in each variable, so that
each alternating step has a unique solution.

4.1.1. An alternate minimization algorithm

Algorithm 1 Alternate minimization algorithm

Let δ1 > 0 and δ2 > 0 be fixed tolerance parameters.

1. Let m = 0, vn(m=0) = vn−1
h

2. iterate

3. Find (un(m), p
n
(m)) := argmin(u,p)Etotal(u, p, vn(m−1))

4. Let l = 0, pn(l=0) = pn−1
h

5. iterate

6. un(l) := argminuEtotal(u, pn(l−1), v
n
(m−1))

7. pn(l) := argminpEtotal(un(l), p, vn(m−1))

8. until ‖ un(l) − un(l−1) ‖H1≤ δ1

9. We define un(m) := un(l) and pn(m) := pn(l) at convergence

10. Find vn(m) := argminvEtotal(u
n
(m), p

n
(m), v)

11. until ‖ vn(m) − vn(m−1) ‖H1≤ δ2

12. We define unh := un(m), p
n
h := pn(m) and vnh := vn(m) at convergence

In practice, it is not exactly the variational problems described in the
alternating procedure above, that one solves, but the associated first-order
optimality conditions of problems that have been discretized in space too.
This may introduce local minima, as the following example of a traction ex-
periment of a 1D bar illustrates. Assume that u, v ∈ W 1,∞(0, Tf ,Ω) represent
the displacement and phase-field marker of a 1D bar that lies in Ω = (0, L).
We consider a simple model of evolution with only elasticity and fracture
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where the total energy writes

Etotal(u, v) = Eel(v, u
′
) + ES(v)

=
1

2

∫
Ω

(v2 + η)K(u
′
)2 dx+

∫
Ω

ε(v′)2 +
(1− v)2

4ε
dx,

where K > 0 is a fixed Young modulus and where the primes denote deriva-
tives with respect to x. The bar is crack-free at t = 0 and thus v(x, 0) = 1.
It is fixed at x = 0, while a uniform traction u(L, t) = tL is applied at the
other extremity. If u′ is close to a constant at time t, say u′(x, t) ∼ t, then
the Euler-Lagrange optimality condition for minimization of the total energy
with respect to v amounts to solving

v′′ −
(

1

4ε2
+
Kt2

2ε

)
v +

1

4ε2
= 0,

the solution of which is

v(x, t) = C1e
−x

√
2
√

4Kt2ε+2
4ε + C2e

x
√
2
√

4Kt2ε+2
4ε ,

with

C1 :=
e

L
√
2
√

4Kt2ε+2
4ε − 1

(2kt2ε+ 1)

(
e−

L
√

2
√

4Kt2ε+2
4ε − e

L
√
2
√

4Kt2ε+2
4ε

) ,
and

C2 :=
e−

L
√
2
√

4Kt2ε+2
4ε − 1

(2kt2ε+ 1)

(
e−

L
√

2
√

4Kt2ε+2
4ε − e

L
√
2
√

4Kt2ε+2
4ε

) .
These profiles are indeed what one obtains in the course of the numerical
computations according to the algorithm described above, until t reaches
a sufficiently large value so that the term

∫
Ω

(v2 + η)K(u
′
)2 dx dominates∫

Ω
(1−v)2

4ε
dx in the energy, see Figures 2, 3 and 4 (we use the same parameters

as in [5] by Bourdin). Note that, due to the presence of the exponentials in
the expression of v, these profiles vary significantly near the extremities x = 0
and x = L of the beam, but are quite flat otherwise, and do not correspond
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to the picture of a generalized crack as that depicted in Figure 1. Further,
the corresponding states u, v are only local minima, as one can build states
with lower total energy, as the examples below show. We note that choosing
ε smaller does not improve the situation for that matter. This hurdle had
been noticed earlier by Bourdin [2], [3], who suggested to complement the
numerical algorithm with a supplementary step called backtracking, where
after each iteration in time, one imposes a necessary condition derived from
the definition (24) of the discrete-time evolution. We extend this idea in the
context of our models, where plasticity and viscous dissipation may occur as
well.
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Figure 2: Profile of v(t, .) during an elas-
tic evolution with fracture at time t = 4.

du(x)/dx

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 1 2 3 4 5 6 7 8 9 10

Length of beam

S
p

a
ce

 d
e

ri
v

a
ti

v
e

 o
f 

u

Figure 3: Profile of u′(t, .) during an elas-
tic evolution with fracture at time t = 4.

4.1.2. Backtracking

Because the loading is monotonous, if (unh, p
n
h, v

n
h) is a solution of (24) at

time tnh, then (
tjh
tnh
un,

tjh
tnh
pn, vnh) is admissible at time tjh. Thus, we must have

Etotal(ujh, p
j
h, v

j
h) ≤ Etotal((

tjh
tnh
un,

tjh
tnh
pn, vnh)). (26)

Numerically we check this condition for all tjh ≤ tnh. If there exists some j such
that this condition is not verified (ujh, p

j
h, v

j
h) cannot be a global minimizer for

time tjh; and we backtrack to time tjh for the alternate minimization algorithm
with initialization vj(m=0) = vnh and pj(l=0) = pj−1

h .
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Figure 4: Evolution of the total, elastic, and surface energies for the 1D traction experiment
without backtracking.

5. Dissipation phenomena appearing during deformation - 1D and
2D numerical experiments

In this section, we study some evolution problems for Models 1-3 in terms
of their mechanical parameters, to check if during evolution several dissipa-
tion phenomena can be observed.

5.1. 1D-traction numerical experiments with fracture

We consider a beam Ω = (0, L) of length L, the Young modulus K > 0. It
is clamped at x = 0. A Dirichlet boundary condition u(L, t)=tL is imposed
at its right extremity x = L. At each time step tnh we use P1-elements to
approximate u and v, and P0-elements for p.

5.1.1. Elasto-perfectly plastic case with fracture

If we take β1 = 0 in Model 1 or β2 = 0 in Model 2, these models reduce
to perfect plasticity with numerical fracture.

min
(z,q,ϕ)∈B(tnh)

Eel(ϕ,E(z)− q) + Ep(q, pn−1
h ) + ES(ϕ). (27)

In this example, we illustrate the importance of the backtracking step. We
apply the alternate minimization algorithm without backtracking with the
following parameters: L = 10, K = 4, τ = 1.5, the space discretization
mesh size 4x = 0.015, the time step h = 0.025, η = 10−6, ε = 0.094. With
this choice of parameters, we observe in Figure 5 that if the beam is elastic
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(v = 1, p = 0) at time t = 0, it remains elastic until the time t ' 0.5 when the
beam becomes plastic, then a crack appears at t ' 3. Because the loading is
monotonous, if the system is crack free at t = 0 and if p = 0, it should remain
in the elastic regime until the stress reaches the yield surface or until a crack
appears. It is easy to check that if there is no crack, the yield stress should
be reached at time tp = τ/K, while if there is no plastic deformation, a crack

should appear at time tc =
√

2/KL. With the given choice of parameters,
we obtain tp = 0.375 and tc = 0.224. When we compare with Figure 5, we
see that the beam deforms elastically until plastic deformation takes place at
time t ' 0.5, far from the predicted value. Figure 6 shows the same traction
experiment computed with the backtracking step. We see that the elastic
medium cracks at the computed time t ' 0.25 which is close to the expected
theoretical crack time tc = 0.224. Before plastic deformation takes place.
We now change the plastic parameter to τ = 0.8 so that the expected plastic
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Figure 5: Evolution of the total, elastic, plastic and surface energies for the 1D traction
experiment without backtracking, τ = 1.5.

time should be tp = 0.2. Figure 7 shows that, as expected since now tp < tc,
plastic deformation occurs first. As this model does not allow the elastic
energy to grow once plastic deformation has taken place, no crack appears
after tp. In all the following experiments, the backtracking strategy is used.
In the sequel, the same discretization parameters are used, and the Young
Modulus is chosen as in 5.1.1.
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Figure 6: Evolution of the total, elas-
tic, plastic and surface energies for the
1D traction experiment with backtrack-
ing, τ = 1.5.
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Figure 7: Evolution of the total, elas-
tic, plastic and surface energies for the
1D traction experiment with backtrack-
ing, τ = 0.8.

5.1.2. Model 1 - Elasto-plastic model with visco-elasticity and fracture.

As can be seen, Model 1 can express the various dissipation mechanisms:
elasto-plasticity only (Figure. 8), elasticity with fracture (Figure. 9), vis-
coelasticity with fracture (Figure. 10), and elasto-visco-plasticity with frac-
ture (Figure. 11).

5.1.3. Model 2 - The elasto-viscoplastic model with fracture

We cannot exclude complex regimes, however, in all our numerical exper-
iments, we only observed that after the initial elastic regime, either plastic
deformation takes place (Figure 12), or a crack may appear (Figure 13).

5.1.4. Model 3- Elasto-plastic model with linear kinematic hardening and
fracture.

We choose the hardening parameter k = 0.5. For τ = 1, the Figure 14
shows the elastic behavior with fracture. For τ = 0.7, the medium firstly
plastifies and then cracks as depicted in Figure 15. Indeed, kinematic hard-
ening allows the translation of the yield surface and thus the elastic energy
can increase after the plastification, so that cracks can appear.

5.2. 2D-traction numerical experiments-Model 3

From the numerical 1D-traction experiments of Models 1-3 we conclude
that the Models 1 and 3 are those allowing the more complex evolutions,
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Figure 8: Evolution of the total, elastic,
plastic, viscoelastic and surface energies
for the 1D traction experiment with back-
tracking, τ = 1, β1 = 0.01.
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Figure 9: Evolution of the total, elastic,
plastic, viscoelastic and surface energies
for the 1D traction experiment with back-
tracking, τ = 1.5, β1 = 0.0001.
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Figure 10: Evolution of the total, elas-
tic, plastic, viscoelastic and surface ener-
gies for the 1D traction experiment with
backtracking, τ = 5, β1 = 0.01.

Surface energy

Elast ic energy
Plast ic energy
Viscoelast ic energy

Total energy

0

1

2

3

4

5

6

7

8

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Tim e

E
n

e
rg

y

Figure 11: Evolution of the total, elas-
tic, plastic, viscoelastic and surface ener-
gies for the 1D traction experiment with
backtracking, τ = 1.5, β1 = 0.01.

21



Surface energy

Elast ic energy
Plast ic energy
Viscoplast ic energy

Total energy

0

1

2

3

4

5

6

7

8

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Tim e

E
n

e
rg

y

Figure 12: Evolution of the total, elas-
tic, plastic, viscoplastic and surface ener-
gies for the 1D traction experiment with
backtracking, τ = 1, β2 = 0.1.
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Figure 13: Evolution of the total, elas-
tic, plastic, viscoplastic and surface ener-
gies for the 1D traction experiment with
backtracking, τ = 1, β2 = 1.
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Figure 14: Evolution of the total, elas-
tic, plastic, hardening and surface ener-
gies for the 1D traction experiment with
backtracking, τ = 1.
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Figure 15: Evolution of the total, elas-
tic, plastic, hardening and surface ener-
gies for the 1D traction experiment with
backtracking, τ = 0.7.

22



as all their dissipative mechanisms can be expressed. Those two models
have the capacity to plastify the body and then crack during evolution. This
behavior strongly depends on the choice of the mechanical parameters. Here,
we illustrate the behaviour of Model 3 in 2D traction numerical experiments.

We remark that contrarily to the 1D case, the minimization with respect
to p is not explicit. We compute p with a standard gradient descent method.
We consider a beam of length L, and cross section S = 1 (so that Ω =
(0, L)× (0, 1)), which is clamped at (x, y) = (0, y) for y ∈ (0, S). The elastic
parameters are the Young modulus K and ν the Poisson coefficient. The
elastic matrix A is defined via Lamé’s coefficients associated with K and
µ. For y ∈ (0, S), we impose at time tnh a constant displacement tnhW0 =
(tnhU0, 0) with U0 > 0 at the right extremity (x, y) = (L, y) of the beam.
We consider the hardening tensor B as a diagonal matrix B = kI2 with
k > 0 a hardening parameter. We report numerical experiments with the
following parameters: h = 0.1, 4x = 0.05, ε = 0.25, K = 10, k = 100,
τ = 1, ν = 0.252, U0 = 1. The evolution of Model 3 shows that with this
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Figure 16: Evolution of the elastic, plas-
tic, hardening and surface energies for the
2D traction experiment with backtrack-
ing.

Figure 17: Profile of the v(t,.)-fracture
approximation at time t=5.

Figure 18: Profile of the matrix norm
of plastic strain |p(t, .)| at time t=5,
(|p(t, .)| = 0.008 (yellow), |p(t, .)| = 0.009
(green)).

choice of parameters the material is deformed plastically and then cracks.
We reproduce qualitatively the same behavior as that the of 1D traction
experiment of 5.1.4 (see Figure 16). In Figure 17, the yellow zone represents
the cracked zone. The magenta zone represents the crack-free zone where
v ∼ 1 (see also Figure 18 for plastic strain p).
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5.3. Numerical simulation of the Peltzer and Tapponnier plasticine experi-
ment

Using Model 3, we reproduce numerically the first stages of the plasticine
experiment, see Figure 19. This experiment is meant to model the action of
India (as an indenter) on the Tibetan Plateau.

We consider a square domain Ω = (0, 1)× (0, 1), that represents the layer
of plasticine, see Figure 20.

At time tnh, the indenter is modeled by a Dirichlet boundary condition
u = tnhU0 = (0, tnhU0) with U0 > 0 on ∂Ω3. We set u = 0 on ∂Ω6 and u.~n = 0
on ∂Ω1. We use following parameters: h = 0.05, 4x = 0.017, ε = 0.15,
K = 100, k = 100, τ = 1, ν = 0.252, U0 = 1. In Figure 21 we show the
fracture profile at t = 2, which is in good agreement with the plasticine
experiment. In Figure 22, we observe that Model 3 deforms plastically the
layer of plasticine and then cracks. Figure 23 indicates the regions of plastic
deformation at time t = 2.

6. Conclusion

In this work, we study 3 models of evolution for materials that can ex-
hibit several dissipation mechanisms: fracture, plasticity, viscous dissipation.
The evolution is defined via a time discretization: at each time step, we seek
to minimize a global energy with respect to the variables (u, p, v). We have
reported numerical experiments that show that Models 1 and 3 are most ver-
satile: in particular we can observe evolutions where such materials become
plastic and then crack

In a forthcoming work, we show that we can pass to the limit in Model 1
as time step tends to 0 and give an existence result for a continuous evolution
(E1)-(E6).
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Figure 19: Tapponnier and Peltzer’s in-
dentation experiment.

Figure 20: Domain Ω with boundary
partition.

Figure 21: Profile of the v(t,.)-fracture
approximation at time t=2.
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Figure 22: Evolution of the elastic, plas-
tic, hardening and surface energies for
the 2D plasticine experiment with back-
tracking.

Figure 23: Profile of the matrix norm
of plastic strain |p(t, .)| at time t=2.
(|p(t, .)| = 0.01 (blue), |p(t, .)| = 0.003
(green)).
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