
A STABLE NUMERICAL ALGORITHM FOR THE BRINKMAN
EQUATIONS BY WEAK GALERKIN FINITE ELEMENT METHODS

LIN MU∗, JUNPING WANG† , AND XIU YE‡

Abstract. This paper presents a stable numerical algorithm for the Brinkman equations by using
weak Galerkin (WG) finite element methods. The Brinkman equations can be viewed mathematically
as a combination of the Stokes and Darcy equations which model fluid flow in a multi-physics
environment, such as flow in complex porous media with a permeability coefficient highly varying
in the simulation domain. In such applications, the flow is dominated by Darcy in some regions
and by Stokes in others. It is well known that the usual Stokes stable elements do not work well
for Darcy flow and vise versa. The challenge of this study is on the design of numerical schemes
which are stable for both the Stokes and the Darcy equations. This paper shows that the WG finite
element method is capable of meeting this challenge by providing a numerical scheme that is stable
and accurate for both Darcy and the Stokes dominated flows. Error estimates of optimal order
are established for the corresponding WG finite element solutions. The paper also presents some
numerical experiments that demonstrate the robustness, reliability, flexibility and accuracy of the
WG method for the Brinkman equations.
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1. Introduction. This paper is concerned with the development of stable nu-
merical methods for the Brinkman equations by using weak Galerkin finite element
methods. The Brinkman equations model fluid flow in complex porous media with
a permeability coefficient highly varying so that the flow is dominated by Darcy in
some regions and by Stokes in others. In a simple form, the Brinkman model seeks
unknown functions u and p satisfying

− µ∆u +∇p+ µκ−1u = f in Ω,(1.1)

∇ · u = 0 in Ω,(1.2)

u = g, on ∂Ω,(1.3)

where µ is the fluid viscosity and κ denotes the permeability tensor of the porous
media which occupies a polygonal or polyhedral domain Ω in Rd (d = 2, 3). u and
p represent the velocity and the pressure of the fluid, and f is a momentum source
term. For simplicity, we consider (1.1) and (1.2) with g = 0 and µ = 1 (note that one
can always scale the solution with µ).

Assume that there exist two positive numbers λ1, λ2 > 0 such that

(1.4) λ1ξ
tξ ≤ ξtκ−1ξ ≤ λ2ξ

tξ, ∀ξ ∈ Rd.
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Here ξ is understood as a column vector and ξt is the transpose of ξ. We consider the
case where λ1 is of unit size and λ2 is possibly of large size.

The Brinkman equations (1.1) and (1.2) are used to model fluid motion in porous
media with fractures. The model can also be regarded as a generalization of the Stokes
equations that represent a valid approximation of the Navier-Stokes equations at low
Reynolds numbers. Modeling fluid flow in complex media with multiphysics has sig-
nificant impact for many industrial and environmental problems such as industrial
filters, open foams, or natural vuggy reservoirs. The permeability with high contrast
determines that flow velocity may vary greatly through porous media. Mathemati-
cally, the Brinkman equations can be viewed as a combination of the Stokes and the
Darcy equations, but with change of type from place to place in the computational do-
main. Due to the type change, numerical schemes for the Brinkman equations must be
carefully designed to accommodate both the Stokes and Darcy simultaneously. The
numerical experiments in [12] indicate that the convergent rate deteriorates as the
Brinkman becomes Darcy-dominating when certain stable Stokes elements are used;
such elements include the conforming P2-P0 element, the nonconforming Crouzeix-
Raviart element, and the Mini element. Similarly, the convergent rate deteriorates as
the Brinkman is Stokes-dominating when Darcy stable elements such as the lowest
order RaviartThomas element [12] are used.

The main challenge for solving Brinkman equations is in the construction of nu-
merical schemes that are stable for both the Darcy and the Stokes equations. In
literature, a great deal of effort has been made in meeting this challenge by modify-
ing either existing Stokes elements or Darcy elements to obtain new Brinkman stable
elements. For example, methods based on Stokes elements have been studied in [1]
and methods based on Darcy elements can be found in [11, 12].

Weak Galerkin (WG) is a general finite element technique for partial differential
equations in which differential operators are approximated by their weak forms as
distributions. WG methods, by design, make use of discontinuous piecewise polyno-
mials on finite element partitions with arbitrary shape of polygons and polyhedrons.
The flexibility of WG on the selection of approximating polynomials makes it an ex-
cellent candidate for providing stable numerical schemes for PDEs with multi-physics
properties. The weak Galerkin method was first introduced in [13, 14] for the second
order elliptic problem.

The goal of this paper is to develop a stable weak Galerkin finite element method
for the Brinkman equations. In Section 2, a WG finite element scheme will be intro-
duced for the Brinkman model. It demonstrates that WG offers a natural and straight-
forward framework for constructing stable numerical algorithms for the Brinkman
equations. In Section 6, an optimal order error estimate shall be established for
the velocity and pressure approximations. In Section 7, some numerical experiments
are conducted to demonstrate the reliability, flexibility and accuracy of the weak
Galerkin method for the Brinkman equations. In particular, the first example, which
has known analytical solution, is designed to demonstrate uniform convergence of the
WG method with respect to certain parameters. The rest of the examples are relevant
to practical problems for which no analytical solutions are known. In addition, flow
through different geometries are investigated in the numerical experiments. These ge-
ometries include vuggy structure, open foam and fibrous materials. Figure 1 depicts
the profile of the permeability inverse for three highly varying porous media under
the present study.
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(a) (b) (c)

Fig. 1.1. (a) vuggy medium; (b) fibrous material; (c) open foam.

2. A Weak Galerkin Finite Element Method. First, we use the standard
definition for the Sobolev space Hs(D) and their associated inner products (·, ·)s,D,
norms ‖ · ‖s,D, and seminorms | · |s,D for any s ≥ 0. We shall drop the subscript D
when D = Ω and s as s = 0 in the norm and inner product notation.

Let Th be a partition of the domain Ω consisting of polygons in two dimension or
polyhedra in three dimension satisfying a set of conditions as specified in [14]. Denote
by Eh the set of all flat faces in Th, and let E0

h = Eh\∂Ω be the set of all interior faces.
For k ≥ 1, we define two weak Galerkin finite element spaces associated with Th

as follows. For the velocity unknown, we have
(2.1)
Vh =

{
v = {v0,vb} : {v0,vb}|T ∈ [Pk(T )]d × [Pk(e)]d, e ∈ ∂T , vb = 0 on ∂Ω

}
,

and for pressure

(2.2) Wh =
{
q ∈ L2

0(Ω) : q|T ∈ Pk−1(T )
}
.

By a weak function v = {v0,vb} we mean v = v0 inside of the element T and v = vb
on the boundary of the element T . We would like to emphasize that any function
v ∈ Vh has a single value vb on each edge e ∈ Eh.

Our weak Galerkin finite element method is based on the following variational
formulation for (1.1)-(1.3): find (u, p) ∈ [H1

0 (Ω)]d × L2
0(Ω) satisfying

(∇u,∇v) + (κ−1u,v)− (∇ · v, p) = (f ,v),(2.3)

(∇ · u, q) = 0(2.4)

for all (v, q) ∈ [H1
0 (Ω)]d × L2

0(Ω).
The key in the design of WG finite element scheme is the use of weak deriva-

tives in the place of strong derivatives in the variational form for the underlying
partial differential equations. Note that the two differential operators used in (2.3)
and (2.4) are the gradient and divergence operators. Weak gradient and weak diver-
gence operators, along with their discrete analogues, have been defined in [13] and [14]
respectively. For completeness, we recall the discrete weak divergence and weak gra-
dient operators as follows. For each v = {v0,vb} ∈ Vh, the discrete weak divergence
∇w,k−1 · v ∈ Pk−1(T ) is given on each element T such that

(2.5) (∇w,k−1 · v, q)T = −(v0,∇q)T + 〈vb, qn〉∂T , ∀q ∈ Pk−1(T ).

Similarly, the discrete weak gradient ∇w,k−1v ∈ Pk−1(T )d×d is defined on each ele-
ment T by

(2.6) (∇w,k−1v, τ)T = −(v0,∇ · τ)T + 〈vb, τ · n〉∂T , ∀τ ∈ [Pk−1(T )]d×d.
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Without confusion, we will drop the subscript k − 1 and use ∇w· and ∇w to de-
note ∇w,k−1· and ∇w,k−1. We will also use (∇w · v, q) and (∇wv,∇ww) to denote∑
T∈Th(∇w · v, q)T and

∑
T∈Th(∇wv,∇ww)T respectively.

We are now in a position to describe a weak Galerkin finite element method for
the Brinkman equations (1.1)-(1.3). To this end, we introduce three bilinear forms as
follows

s(v,w) =
∑
T∈Th

h−1
T 〈v0 − vb,w0 −wb〉∂T ,

a(v,w) = (∇wv,∇ww) + (κ−1v0,w0) + s(v,w),

b(v, q) = (∇w · v, q).

Weak Galerkin Algorithm 1. Find uh = {u0,ub} ∈ Vh and ph ∈ Wh such
that

a(uh,v)− b(v, ph) = (f,v0), ∀ v = {v0,vb} ∈ Vh(2.7)

b(uh, q) = 0, ∀ q ∈Wh.(2.8)

The corresponding solution (uh; ph) is called WG finite element solution for (1.1)-
(1.3).

3. Existence and Uniqueness. The WG finite element scheme (2.7)-(2.8) is
a saddle-point problem. However, the theory of Babus̆ka [2] and Brezzi [4] is hard
to apply directly due to the large variation of the permeability tensor. But the main
ideas of Babus̆ka and Brezzi are still applicable.

For the velocity space Vh, we use a norm |||·||| induced by the symmetric an positive
bilinear form a(·, ·) defined as follows

(3.1) |||v|||2 = a(v,v) = ‖κ− 1
2v0‖2 + ‖∇wv‖2 +

∑
T∈Th

h−1
T ‖v0 − vb‖2∂T .

For convenience, we introduce another norm ‖ · ‖1,h in Vh

(3.2) ‖v‖21,h = ‖∇wv‖2 +
∑
T∈Th

h−1
T ‖v0 − vb‖2∂T .

It is not hard to see that ‖ · ‖1,h is a discrete H1 norm for Vh.
For the pressure space Wh, we use the following norm

(3.3) |q|21,h =
∑
T∈Th

‖κ 1
2∇q‖2T + h−1

∑
e∈E0h

‖[[q[]‖2e,

where [[q[] is the jump of the function q on the set of interior edges E0
h.

For simplicity of analysis, the rest of the paper assumes that the permeability
tensor κ has constant value on each element T ∈ Th. The result can be easily extended
to the case of piecewise smooth tensor κ.

The following result is straightforward by using the definition of ||| · ||| and the
usual Cauchy-Schwarz inequality.

Lemma 3.1. For any v,w ∈ Vh, we have the following boundedness and coercivity
for the bilinear form a(·, ·)

|a(v,w)| ≤ |||v||||||w|||,(3.4)

a(v,v) = |||v|||2.(3.5)
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For any ρ ∈Wh ⊂ L2
0(Ω) and v ∈ Vh, we have from the definition of the discrete

weak divergence that

b(v, ρ) =
∑
T∈Th

(∇w · v, ρ)T

=
∑
T∈Th

{〈vb, ρn〉∂T − (v0,∇ρ)T }

= −
∑
T∈Th

(v0,∇ρ)T +
∑
e∈E0h

〈vb, [[ρ[]ne〉e,

where ne is a prescribed normal direction to the edge e, and [[ρ[] stands for the jump
of the function ρ on edge e. In particular, if v = v∗ = {v∗0,v∗b} is given by

(3.6) v∗0 = −κ∇ρ, v∗b = h−1[[ρ[]ne,

then

(3.7) b(v∗, ρ) =
∑
T∈Th

(κ∇ρ,∇ρ)T + h−1
∑
e∈E0h

‖[[ρ[]‖2e = |ρ|21,h.

Thus, v∗ can be regarded as an artificial flux for the “pressure” function ρ. For
convenience, we introduce a notation for this artificial flux:

(3.8) F (ρ) := {−κ∇ρ, h−1[[ρ[]ne}.

Lemma 3.2. For any ρ ∈ Wh, let F (ρ) be the artificial flux given by (3.8). Then,
we have

(3.9) b(F (ρ), ρ) = |ρ|21,h.

Furthermore, there exists a constant C such that

(3.10) ‖F (ρ)‖1,h ≤ Ch−1|ρ|1,h.

Proof. The identity (3.9) is given by (3.7). It remains to derive the estimate
(3.10). To this end, write {v∗0,v∗b} = F (ρ). From the definition (3.2), we have

(3.11) ‖F (ρ)‖21,h = ‖∇wv∗‖2 +
∑
T∈Th

h−1
T ‖v

∗
0 − v∗b‖2∂T .

To estimate the first term ‖∇wv∗‖2, we recall from the definition of ∇wv∗ that

(∇wv∗, τ)T = −(v∗0,∇ · τ)T + 〈v∗b , τ · n〉∂T .

Using (3.8) we obtain

(∇wv∗, τ)T = (κ∇ρ,∇ · τ)T + h−1〈[[ρ[]n, τ · n〉∂T∩E0h .

The above equation, together with the usual inverse inequality for finite element
functions implies

‖∇wv∗‖T ≤ Ch−1‖κ∇ρ‖T + Ch−
3
2 ‖[[ρ[]‖∂T∩E0h .
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Thus, from the assumption (1.4) we have

‖∇wv∗‖2T ≤ Ch−2λ−1
1 ‖κ

1
2∇ρ‖2T + Ch−3‖[[ρ[]‖2∂T∩E0h .

Summing over all element T ∈ Th yields

‖∇wv∗‖2 ≤ Ch−2λ−1
1

∑
T∈Th

(κ∇ρ,∇ρ)T + h−3
∑
e∈E0h

‖[[ρ[]‖2e

≤ Ch−2|ρ|21,h,(3.12)

where we have used the assumption that λ1 is of unit size. As to the second term on
the right-hand side of (3.11), we use (3.8) and the trace inequality (5.4) to obtain

‖v∗0 − v∗b‖2∂T ≤ 2‖κ∇ρ‖2∂T + 2h−2‖[[ρ[]‖2∂T∩E0h
≤ C(h−1‖κ∇ρ‖2T + h−2‖[[ρ[]‖2∂T∩E0h).

Thus, it follows from (1.4) that∑
T∈Th

h−1
T ‖v

∗
0 − v∗b‖2∂T ≤ Ch−2λ−1

1

∑
T∈Th

‖κ 1
2∇ρ‖2T + Ch−3

∑
e∈E0h

‖[[ρ[]‖2e

≤ Ch−2|ρ|21,h.(3.13)

Here we again used the fact that λ1 is of unit size. Substituting (3.12) and (3.13) into
(3.11) yields the desired estimate (3.10). This completes the proof of the lemma.

Lemma 3.3. The weak Galerkin finite element scheme (2.7)-(2.8) has one and
only one solution.

Proof. Since the number of unknowns is the same as the number of equations,
then the solution existence is equivalent to its uniqueness. Thus, it suffices to show
that the homogeneous problem (i.e., f = 0) has only trivial solutions. To this end,
assume that f = 0 in (2.7). By letting v = uh in (2.7) and q = ph in (2.8) we obtain

a(uh,uh)− b(uh, ph) = 0, b(uh, ph) = 0.

It follows that

|||uh||| =
√
a(uh,uh) = 0,

and hence uh = 0.
To show ph = 0, we use the equation (2.7) and the face that f = 0 and uh = 0

we obtain

b(v, ph) = 0.

By letting v = F (ph) be the artificial flux of ph, we have from (3.9) that

0 = b(F (ph), ph) = |ph|1,h.

Thus, ph = 0 and the lemma is completely proved.
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4. Error Equations. Denote by Q0 the L2 projection operator from [L2(T )]d

onto [Pk(T )]d. For each edge/face e ∈ Eh, denote by Qb the L2 projection from
[L2(e)]d onto [Pk(e)]d. We shall combine Q0 with Qb by writing Qh = {Q0, Qb}. In
addition, let Qh and Qh be two local L2 projections onto Pk−1(T ) and [Pk−1(T )]d×d,
respectively.

Lemma 4.1. The projection operators Qh, Qh, and Qh satisfy the following
commutative properties

∇w(Qhv) = Qh(∇v), ∀ v ∈ [H1(Ω)]d,(4.1)

∇w · (Qhv) = Qh(∇ · v), ∀ v ∈ H(div,Ω).(4.2)

The proof of Lemma 4.1 is straightforward and can be found in [13] and [14].

The following are two useful identities:

(∇w(Qhu),∇wv)T = (∇u,∇v0)T − 〈v0 − vb,Qh(∇u) · n〉∂T .(4.3)

(v0,∇p) = −(∇w·v,Qhp) +
∑
T∈Th

〈v0 − vb, (p−Qhp)n〉∂T .(4.4)

Equations (4.3) and (4.4) can be verified easily; they were first derived in [13] and
[14], respectively.

Introduce two functionals as follows

l1(v,u) =
∑
T∈Th

〈v0 − vb,∇u · n−Qh(∇u) · n〉∂T ,(4.5)

l2(v, p) =
∑
T∈Th

〈v0 − vb, (p−Qhp)n〉∂T .(4.6)

Lemma 4.2. Let uh = {u0,ub} be the WG finite element solution arising from
the Weak Galerkin Algorithm 1. Let eh = {e0, eb} = {Q0u − u0, Qbu − ub}
and εh = Qhp − ph be the error between the WG finite element solution and the L2

projection of the exact solution. Then, the following equations are satisfied

a(eh,v)− b(v, εh) = φu,p(v),(4.7)

b(eh, q) = 0,(4.8)

for all (v; q) ∈ Vh ×Wh. Here

(4.9) φu,p(v) = l1(v,u)− l2(v, p) + s(Qhu,v).

Proof. Testing (1.1) by v0 with v = {v0, vb} ∈ Vh gives

(4.10) −(∆u,v0) + (κ−1u,v0) + (∇p,v0) = (f ,v0).

It follows from the integration by parts that

−(∆u,v0) =
∑
T∈Th

(∇u,∇v0)T −
∑
T∈Th

〈v0 − vb,∇u · n〉∂T ,

where we have used the fact that
∑
T∈Th〈vb,∇u · n〉∂T = 0. Using (4.3) and the

equation above, we obtain

− (∆u,v0) = (∇w(Qhu),∇wv)− l1(v,u).(4.11)



8

Using (4.4), (4.11) and the definition of Q0, we have

−(∆u,v0) + (κ−1u,v0) + (∇p,v0) = (∇w(Qhu),∇wv) + (κ−1u,v0)

−(∇w·v,Qhp)− l1(v,u) + l2(v, p)(4.12)

It follows from (4.10) and (4.12),

(∇w(Qhu),∇wv) + (κ−1Q0u,v0)− (∇w·v,Qhp) = (f ,v0) + l1(v,u)− l2(v, p).

Adding s(Qhu,v) to the both sides of the equation above gives

(4.13) a(Qhu,v)− b(v,Qhp) = (f ,v0) + φu,p(v).

The difference of (4.13) and (2.7) yields the following equation,

a(eh,v)− b(v, εh) = φu,p(v)(4.14)

for all v ∈ Vh. Next, testing Equation (1.2) by q ∈Wh and using (4.2) gives

(4.15) (∇ · u, q) = (∇w ·Qhu, q) = 0.

The difference of (4.15) and (2.8) yields the following equation.

b(eh, q) = 0, ∀q ∈Wh.(4.16)

Combining (4.14) and (4.16) completes the proof of the lemma.

5. Preparation for Error Estimates. In this section, we will derive some
estimates that can be used in the next section to obtain uniform convergence for
velocity and pressure approximations.

The following lemma provides some approximation properties for the projections
Qh, Qh and Qh. Observe that the underlying mesh Th is assumed to be sufficiently
general to allow polygons or polyhedra. A proof of the lemma can be found in [14].

Lemma 5.1. Let Th be a finite element partition of Ω satisfying the shape regular-
ity assumption as specified in [14] and w ∈ [Hr+1(Ω)]d and ρ ∈ Hr(Ω) with 1 ≤ r ≤ k.
Then, for 0 ≤ s ≤ 1 we have∑

T∈Th

h2s
T ‖w −Q0w‖2T,s ≤ h2(r+1)‖w‖2r+1,(5.1)

∑
T∈Th

h2s
T ‖∇w −Qh(∇w)‖2T,s ≤ Ch2r‖w‖2r+1,(5.2)

∑
T∈Th

h2s
T ‖ρ−Qhρ‖2T,s ≤ Ch2r‖ρ‖2r.(5.3)

Here C denotes a generic constant independent of the meshsize h and the functions
in the estimates.

Let T be an element with e as a face. For any function g ∈ H1(T ), the following
trace inequality has been proved to be valid for general meshes described in [14],

(5.4) ‖g‖2e ≤ C
(
h−1
T ‖g‖

2
T + hT ‖∇g‖2T

)
.

For any finite element function v ∈ Vh, we introduce the following semi-norm:

(5.5) |v|h =

(∑
T∈Th

h−1
T ‖v0 − vb‖2∂T

)1/2

.



9

Lemma 5.2. Let r ∈ [1, k]. Assume that w ∈ [Hr+1(Ω)]d and ρ ∈ Hr(Ω). Then
for any v ∈ Vh we have

|s(Qhw,v)| ≤ Chr‖w‖r+1|v|h,(5.6)

|l1(v,w)| ≤ Chr‖w‖r+1|v|h,(5.7)

|l2(v, ρ)| ≤ Chr‖ρ‖r|v|h,(5.8)

where l1(·, ·) and l2(·, ·) are defined in (4.5) and (4.6). Thus, the following estimate
holds true

(5.9) |φw,ρ(v)| ≤ Chr(‖w‖r+1 + ‖ρ‖r)|v|h.

Proof. Using the definition of Qb, (5.4) and (5.1), we have

|s(Qhw,v)| =

∣∣∣∣∣ ∑
T∈Th

h−1
T 〈Q0w −Qbw,v0 − vb〉∂T

∣∣∣∣∣
=

∣∣∣∣∣ ∑
T∈Th

h−1
T 〈Q0w −w,v0 − vb〉∂T

∣∣∣∣∣
≤

(∑
T∈Th

(h−2
T ‖Q0w −w‖2T + ‖∇(Q0w −w)‖2T )

)1/2

|v|h

≤ Chr‖w‖r+1|v|h.

Similarly, it follows from (5.4) and (5.2)

|l1(v,w)| ≡

∣∣∣∣∣ ∑
T∈Th

〈v0 − vb,∇w · n−Qh(∇w) · n〉∂T

∣∣∣∣∣
≤

(∑
T∈Th

h‖∇w · n−Qh(∇w) · n‖2∂T

)1/2

|v|h

≤ Chr‖w‖r+1|v|h.

Using (5.4) and (5.3), we have

|l2(v, ρ)| ≡

∣∣∣∣∣ ∑
T∈Th

〈v0 − vb, (ρ−Qhρ)n〉∂T

∣∣∣∣∣
≤

(∑
T∈Th

hT ‖ρ−Qhρ‖2∂T

)1/2

|v|h

≤ Chr‖ρ‖r|v|h.

This completes the proof of the lemma.

6. Error Estimates. The goal of this section is to establish some error esti-
mates for the approximate velocity uh in the triple-bar norm and for the approximate
pressure ph in the usual L2 norm. Our main result can be stated as follows.
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Theorem 6.1. Let (u; p) ∈ [H1
0 (Ω) ∩Hk+1(Ω)]d × (L2

0(Ω) ∩Hk(Ω)) with k ≥ 1
and (uh; ph) ∈ Vh ×Wh be the solutions of (1.1)-(1.3) and (2.7)-(2.8) respectively.
Then, there exists a constant C independent of the meshsize h and the spectral radius
of κ such that

|||u− uh|||+ h|p− ph|1,h ≤ Chk(‖u‖k+1 + ‖p‖k).(6.1)

In particular, we have the following weighted-L2 error estimate:

‖κ− 1
2 (u− uh)‖ ≤ Chk(‖u‖k+1 + ‖p‖k).(6.2)

Proof. Letting v = eh in (4.7) and q = εh in (4.8) and adding the two resulting
equations, we obtain

|||eh|||2 = φu,p(eh).(6.3)

Using the estimate (5.9) with r = k,w = u, and ρ = p we arrive at

(6.4) |||eh|||2 ≤ Chk(‖u‖k+1 + ‖p‖k)|eh|h.

It is trivial to see that

|eh|h ≤ C|||eh|||.

Substituting the above estimate into (6.4) yields the desired error estimate for uh.
To derive an estimate for εh, we have from (4.7) that

(6.5) b(v, εh) = a(eh,v)− φu,p(v),

for all v ∈ Vh. In particular, by letting v = F (εh) be the artificial flux of εh, we have
from Lemma 3.2 that

|εh|21,h = b(F (εh), εh)

= a(eh, F (εh))− φu,p(F (εh)).

Thus, from the definition of a(·, ·) and F (εh) we have

|εh|21,h ≤ ‖eh‖1,h ‖F (εh)‖1,h + |(κ−1e0, κ∇εh)|+ Chk(‖u‖k+1 + ‖p‖k)|F (εh)|h
≤ ‖eh‖1,h ‖F (εh)‖1,h + |(κ− 1

2 e0, κ
1
2∇εh)|+ Chk(‖u‖k+1 + ‖p‖k)‖F (εh)‖1,h

≤ Chk(‖u‖k+1 + ‖p‖k)‖F (εh)‖1,h + ‖κ− 1
2 e0‖ ‖κ

1
2∇εh‖

≤ Chk(‖u‖k+1 + ‖p‖k)h−1|εh|1,h + ‖κ− 1
2 e0‖ |εh|1,h.

Dividing h−1|εh|1,h from both sides of the above inequality leads to

h|εh|1,h ≤ Chk(‖u‖k+1 + ‖p‖k) + Ch‖κ− 1
2 e0‖.

This completes the proof of (6.1).

The rest of this section is devoted to an error estimate for the velocity approxima-
tion in the standard L2 norm by following the routine duality argument. The analysis
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is very much along the same line as for the Stokes equation [15]. More precisely, let
us consider the dual problem which seeks (ψ; ξ) satisfying

−∆ψ + κ−1ψ +∇ξ = e0 in Ω,(6.6)

∇ · ψ = 0 in Ω,(6.7)

ψ = 0 on ∂Ω.(6.8)

Assume that the dual problem has the [H2(Ω)]d ×H1(Ω)-regularity property in the
sense that the solution (ψ; ξ) ∈ [H2(Ω)]d ×H1(Ω) and the following a priori estimate
holds true:

(6.9) ‖ψ‖2 + ‖ξ‖1 ≤ C‖e0‖.

The assumption (6.9) is known to be valid when the domain Ω is convex and the
permeability tensor κ is not highly varying.

Theorem 6.2. Let (u; p) ∈ [H1
0 (Ω) ∩ Hk+1(Ω)]d × L2

0(Ω) ∩ Hk(Ω) with k ≥ 1
and (uh; ph) ∈ Vh ×Wh be the solutions of (1.1)-(1.3) and (2.7)-(2.8) respectively.
Assume that (6.9) holds true. Then one has the following estimate

(6.10) ‖u− u0‖ ≤ Chk+1(‖u‖k+1 + ‖p‖k).

Proof. Testing (6.6) by e0 gives

‖Q0u− u0‖2 = (e0, e0) = −(∆ψ, e0) + (κ−1ψ, e0) + (∇ξ, e0).

Using (4.12) with u = ψ, v0 = e0 and p = ξ, the above equation becomes

‖Q0u− u0‖2 = (∇wQhψ,∇weh) + (ψ, κ−1e0)− (∇w · eh,Qhξ)
−l1(eh, ψ) + l2(eh, ξ)

= (∇wQhψ,∇weh) + (Q0ψ, κ
−1e0)− (∇w · eh,Qhξ)

−l1(eh, ψ) + l2(eh, ξ).

Adding and subtracting s(Qhψ, eh) in the equation above yields

‖Q0u− u0‖2 = a(Qhψ, eh)− b(eh,Qhξ)− φψ,ξ(eh),

where the functional φψ,ξ is given as in (4.9). Now using the fact that b(eh,Qhξ) = 0
and b(Qhψ, εh) = 0 we obtain

‖Q0u− u0‖2 = a(eh, Qhψ)− b(Qhψ, εh)− φψ,ξ(eh).

Using the first error equation (4.7), we can rewrite the above equation as follows

‖Q0u− u0‖2 = φu,p(Qhψ)− φψ,ξ(eh).(6.11)

The right-hand side of (6.11) can be bounded by using the estimate (5.9). To this
end, using (5.9) with r = k, w = u, and ρ = p we obtain

(6.12) |φu,p(Qhψ)| ≤ Chk(‖u‖k+1 + ‖p‖k) |Qhψ|h.
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Note that from the trace inequality (5.4) and the definition of Qb we have

|Qhψ|2h =
∑
T∈Th

h−1
T ‖Q0ψ −Qbψ‖2∂T

≤
∑
T∈Th

h−1
T ‖Q0ψ − ψ‖2∂T +

∑
T∈Th

h−1
T ‖ψ −Qbψ‖

2
∂T

≤ C
∑
T∈Th

h−1
T ‖Q0ψ − ψ‖2∂T ≤ Ch2‖ψ‖22.

Substituting the above into (6.12) gives

(6.13) |φu,p(Qhψ)| ≤ Chk+1(‖u‖k+1 + ‖p‖k) ‖ψ‖2.

Next, using (5.9) with r = 1, w = ψ, and ρ = ξ we obtain

|φψ,ξ(eh)| ≤ Ch(‖ψ‖2 + ‖ξ‖1) |eh|h
≤ Ch(‖ψ‖2 + ‖ξ‖1)|||eh|||.(6.14)

Substituting (6.13) and (6.14) into (6.11) yields

‖Q0u− u0‖2 ≤ Chk+1(‖u‖k+1 + ‖p‖k) ‖ψ‖2 + Ch(‖ψ‖2 + ‖ξ‖1)|||eh|||.

Finally, we apply the regularity estimate (6.9) to the above estimate to obtain

‖Q0u− u0‖ ≤ Chk+1(‖u‖k+1 + ‖p‖k) + Ch|||eh|||,

which, together with the error estimate (6.1), completes the proof of the lemma.

7. Numerical Experiments. The goal of this section is to numerically demon-
strate the efficiency of the WG finite element algorithm (2.7)-(2.8) when the lowest
order of element (i.e., k = 1) is employed. For simplicity, we consider the Brinkman
model (1.1)-(1.3) in two dimensional domains. The error for the WG solution of
(2.7)-(2.8) is measured in three norms defined as follows:

|||v|||2 :=
∑
T∈Th

(
µ

∫
T

|∇wv|2dx+

∫
T

µκ−1v0 · v0dx+

∫
∂T

h−1
T (v0 − vb)

2ds

)
.

‖v‖2 :=
∑
T∈Th

∫
T

|v0|2dx,

‖q‖2 :=
∑
T∈Th

∫
T

|q|2dx.

Note that |||v||| is a discrete H1 norm, and the other two are the standard L2 norm in
the respective spaces. Here ∇wv ∈ [P0(T )]2×2 is computed on each element T ∈ Th
by the following equation

(∇wv, τ)T = −(v0,∇ · τ)T + 〈vb, τ · n〉∂T
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for all τ ∈ [P0(T )]2×2. Since τ is constant on the element T , the above equation can
be simplified as

(∇wv, τ)T = 〈vb, τ · n〉∂T , ∀τ ∈ [P0(T )]2×2.

For any given v = {v0,vb} ∈ Vh, the discrete weak divergence ∇w ·v ∈ P0(T ) on
each element T ∈ Th is computed by solving the following equation

(∇w · v, q)T = −(v0,∇q)T + 〈vb · n, q〉∂T , ∀q ∈ P0(T ).

Since q|T ∈ P0(T ), the above equation can be simplified as

(∇w · v, q)T = 〈vb · n, q〉∂T , ∀q ∈ P0(T ).

The numerical examples of this section have been considered in [9, 10, 16]. Ex-
amples 1, 2 and 3 are presented for studying the reliability of the WG method for
problems with high contrast of permeability such that κ−1 varies from 1 to 106. In
such geometry, large highly permeable media connect vugs surrounded by a rather
lowly permeable material. Example 1 has known analytical solution (see [16]). But
Examples 2 and 3 do not have analytical solutions to the author’s knowledge. The
profiles of κ−1 for examples 2 and 3 can be found in [9].
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Fig. 7.1. Geometry for κ−1 in Example 1 with a = 104.

7.1. Example 1. This example will test the accuracy and reliability of the
method for a giving analytical solutions and highly varying permeability κ. The
profile of κ−1 is shown in Figure 7.1. Let Ω = (0, 1) × (0, 1). The exact solution is
given by

u =

(
sin(2πx) cos(2πy)
− cos(2πx) sin(2πy)

)
and p = x2y2 − 1/9.

It is easy to check that ∇·u = 0 and
∫

Ω
p = 0. We consider the following permeability

κ−1 = a(sin(2πx) + 1.1),
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where a is a given constant. The values of κ−1 are plotted in Figure 7.1 for a = 104.
The optimal convergence rates for the corresponding WG solutions are presented

in Table 7.1-7.4 for µ = 1, 0.01, and a = 10, 104. Our numerical results demonstrate
that the WG method is accurate and robust.

Table 7.1
Example 1. Error and convergence rate for velocity in norm |||Qhu− uh||| on triangles.

a = 10, µ = 1 a = 10, µ = 0.01 a = 104, µ = 1 a = 104, µ = 0.01
h Error Rate Error Rate Error Rate Error Rate

1/16 3.08e-1 1.55e-1 1.58e-1 1.61e-1
1/24 2.00e-1 1.06 9.90e-2 1.11 1.04e-1 1.02 1.01e-1 1.16
1/32 1.49e-1 1.03 7.28e-2 1.07 7.90e-2 0.97 7.37e-2 1.10
1/40 1.18e-1 1.02 5.76e-2 1.05 6.33e-2 0.93 5.81e-2 1.06
1/48 9.84e-2 1.01 4.77e-2 1.03 5.28e-2 1.00 4.80e-2 1.05
1/56 8.43e-2 1.01 4.08e-2 1.02 4.50e-2 1.00 4.09e-2 1.03
1/64 7.36e-2 1.01 3.56e-2 1.01 3.94e-2 1.00 3.57e-2 1.03

Table 7.2
Example 1. Error and convergence rate for velocity in norm ‖Q0u− u0‖ on triangles.

a = 10, µ = 1 a = 10, µ = 0.01 a = 104, µ = 1 a = 104, µ = 0.01
h Error Rate Error Rate Error Rate Error Rate

1/16 5.01e-2 5.45e-2 5.84e-2 1.77e-2
1/24 2.24e-2 1.98 2.64e-2 1.79 2.58e-2 2.02 7.85e-3 2.01
1/32 1.26e-2 1.99 1.53e-2 1.88 1.46e-2 1.97 4.41e-3 2.00
1/40 8.09e-3 2.00 9.97e-3 1.93 9.36e-3 2.00 2.82e-3 2.00
1/48 5.62e-3 2.00 6.99e-3 1.95 6.49e-3 2.00 1.96e-3 2.00
1/56 4.13e-3 2.00 5.16e-3 1.96 4.78e-3 2.00 1.44e-3 2.00
1/64 3.16e-3 2.00 3.97e-3 1.97 3.65e-1 2.00 1.10e-3 2.00

Table 7.3
Example 1. Error and convergence rate for velocity in norm ‖u− u0‖ on triangles.

a = 10, µ = 1 a = 10, µ = 0.01 a = 104, µ = 1 a = 104, µ = 0.01
h Error Rate Error Rate Error Rate Error Rate

1/16 3.12e-2 6.70e-2 5.27e-2 6.48e-3
1/24 1.39e-2 1.99 3.22e-2 1.80 2.33e-2 2.01 2.98e-3 1.92
1/32 7.86e-3 1.99 1.87e-2 1.89 1.30e-2 2.01 1.69e-3 1.96
1/40 5.04e-3 2.00 1.21e-2 1.93 8.44e-3 1.97 1.09e-3 1.98
1/48 3.50e-3 2.00 8.50e-3 1.95 5.86e-3 2.00 7.56e-4 1.99
1/56 2.57e-3 2.00 6.28e-3 1.97 4.30e-3 2.00 5.56e-4 2.00
1/64 1.97e-3 2.00 4.82e-3 1.98 3.29e-3 2.00 4.26e-4 2.00

The rest of the test problems have the following data setting:

(7.1) Ω = (0, 1)× (0, 1), µ = 0.01, f = 0, g =

(
1
0

)
.
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Table 7.4
Example 1. Error and convergence rate for pressure in norm ‖Qhp− ph‖ on triangles.

a = 10, µ = 1 a = 10, µ = 0.01 a = 104, µ = 1 a = 104, µ = 0.01
h Error Rate Error Rate Error Rate Error Rate

1/16 1.17e-1 4.60e-2 4.97e-1 5.46e-2
1/24 7.81e-2 1.01 3.24e-2 0.86 3.30e-1 1.00 3.57e-2 1.05
1/32 5.85e-2 1.00 2.49e-2 0.92 2.47e-1 1.00 2.64e-2 1.05
1/40 4.68e-2 1.00 2.01e-2 0.95 1.98e-1 1.00 2.09e-2 1.04
1/48 3.90e-2 1.00 1.69e-2 0.97 1.66e-1 0.97 1.74e-2 1.03
1/56 3.34e-2 1.00 1.45e-2 0.98 1.42e-1 1.00 1.48e-2 1.02
1/64 2.92e-2 1.00 1.27e-2 0.98 1.24e-1 1.00 1.29e-2 1.02

(a) (b)

Fig. 7.2. Example 2: (a) Profile of κ−1 with low (blue) and high (red); (b) Pressure profile.

(a) (b)

Fig. 7.3. Example 2: (a) First component of velocity u1; (b) Second component of velocity u2.

7.2. Example 2. The Brinkman equations (1.1)-(1.3) are solved over a region
with a high contrast permeability. The profile of the permeability inverse is plotted
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in Figure 7.2 (a) with κ−1

min = 1 and κmax = 106 in the red and blue regions.

A 100 × 100 mesh is used for plotting Figure 7.2 and Figure 7.3. The pressure
profile of the WG method is presented in Figure 7.2 (b). The first and the second
components of the velocity calculated by the WG method are shown in Figure 7.3(a)
and (b) respectively.

(a) (b)

Fig. 7.4. Example 3: (a) Profile of κ−1; (b) Pressure profile.

(a) (b)

Fig. 7.5. Example 3: (a) First component of velocity u1; (b) Second component of velocity u2.

7.3. Example 3. This is another example of flow through a region with high
contrast permeability. The profile of κ−1 is plotted in Figure 7.4(a) and the data for
the modeling equation is given in (7.1).

A 100 × 100 mesh is used for plotting Figure 7.4 and Figure 7.5. The pressure
profile of the WG method is presented in Figure 7.4(b). The first and the second
components of the velocity calculated by the WG method are shown in Figure 7.5(a)
and 7.5(b) respectively.
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The rest of the examples simulate flow through porous media with different ge-
ometries without known analytical solutions. Flow through vuggy media, fibrous
materials and open foam geometries are tested and their permeability inverse profiles
can be found in different literatures such as [10, 16].

(a) (b)

Fig. 7.6. Example 4: (a) Profile of κ−1 for vuggy medium; (b) Pressure profile.

(a) (b)

Fig. 7.7. Example 4: (a) First component of velocity u1; (b) Second component of velocity u2.

7.4. Example 4. In this example, the Brinkman equations (1.1)-(1.3) are solved
over a vuggy medium with the data set in (7.1). The profile of κ−1 is plotted in Figure
7.6(a).

For this example, a 128×128 mesh is used for plotting Figure 7.6 and Figure 7.7.
The pressure profile of the WG method is presented in Figure 7.6(b). The first and
the second components of the velocity calculated by the WG method are shown in
Figure 7.7(a) and 7.7(b) respectively.
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(a) (b)

Fig. 7.8. Example 5: (a) Profile of κ−1 for fibrous structure; (b) Pressure profile.

(a) (b)

Fig. 7.9. Example 5: (a) First component of velocity u1; (b) Second component of velocity u2.

7.5. Example 5. This example is frequently used in filtration and insulation
materials. The inverse of permeability of fibrous structure is shown in Figure 7.8(a).
A 128× 128 mesh is used for plotting Figure 7.8 and Figure 7.9. The pressure profile
of the WG method is presented in Figure 7.8(b). The first and the second components
of the velocity calculated by the WG method are shown in Figure 7.9(a) and 7.9(b)
respectively.
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(a) (b)

Fig. 7.10. Example 6: (a) Profile of κ−1 for open form; (b) Pressure profile.

(a) (b)

Fig. 7.11. Example 6: (a) First component of velocity u1; (b) Second component of velocity u2.

7.6. Example 6. The geometry of this example is an open foam with a profile
of κ−1 shown in Figure 7.10(a). The rest of the modeling data is given in (7.1). Figure
7.10 and Figure 7.11 are plotted over a 128×128 grid. The profiles of the approximate
pressure and velocity are presented in Figure 7.10(b) and Figure 7.11 respectively.
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