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Abstract

We formulate and test a hybrid fluid-Monte Carlo scheme for the treatment of elastic col-
lisions in gases and plasmas. While our primary focus and demonstrations of applicability
are for moderately collisional plasmas, as described by the Landau-Fokker-Planck equa-
tion, the method is expected to be applicable also to collision processes described by the
Boltzmann equation. This scheme is similar to the previously discussed velocity-based
scheme [R. Caflisch, et. al, Multiscale Modeling & Simulation 7, 865, (2008)] and the
scattering-angle-based scheme [A.M. Dimits, et. al, Bull. APS 55, no. 15 (2010, Abstract:
XP9.00006)], but with a firmer theoretical basis and without the inherent limitation to
the Landau-Fokker-Planck case. It gives a significant performance improvement (e.g.,
error for a given computational effort) over the velocity-based scheme. These features
are achieved by assigning passive scalars to each simulated particle and tracking their
evolution through collisions. The method permits a detailed error analysis that is con-
firmed by numerical results. The tests performed are for the evolution from anisotropic
Maxwellian and a bump-on-tail distribution.
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1. Introduction

Any model equation of a system of kinetic particles necessarily contains a degree of
error. The challenge, in the applied mathematics sense, is to control this error. For
example, the Vlasov equation’s errors are bounded to the degree that collisions may be
ignored; the Euler, Navier-Stokes and Braginskii equations, to the degree that collisions
dominate; the kinetic MHD equations, to the degree the gyrofrequency exceeds other
frequencies. Each of these may be regarded as a perturbation expansion of the Boltzmann
or Landau-Fokker-Planck (henceforth LFP) equation.

Each of these expansions has the benefit of considerably simplifying the numerical
simulation of the system in question. Of obvious interest is the extension of such compu-
tational simplifications to regimes in which these expansions are not directly applicable.
In one such regime - that in which collisions are important to the dynamics but not so
dominant as to permit a fluid closure - the idea of combining Monte Carlo methods with
fluid solvers to get accurate and efficient simulations has gained popularity in the last
15 years or so [6, 12, 15, 17, 18, 20, 24, 28, 32], with applications to both plasmas and
rarefied gases. While useful in practice, the modeling considerations inherent in many of
these schemes prevent a mathematical account of the size and scaling of the associated
errors.
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In this paper, we take a step toward a scheme applicable to this regime whose errors
may be bounded in the same sense as in the perturbation expansions above. The scheme
we present is a modification of those developed in [6, 11] that is more mathematically
justified than either and more accurate than the scheme in [6]. While we treat the case
of Coulomb collisions in a plasma - that is, the method generates approximate solutions
to the LFP equation - an advantage of the present scheme over those in [6, 11] is that
the core ideas may be applied to any elastic collision process described by the Boltzmann
equation. In the present work, we treat the spatially homogeneous case, but the method
is also not limited to this scenario.

Moderately collisional plasmas appear in a variety of applications, including the toka-
mak edge plasma [21, 29], inertial confinement fusion [8], and counter-streaming astro-
physical plasmas [5]. Generically, any system characterized by large variations in temper-
ature and/or density is likely to feature a region in space where collisionality is moderate.
Moreover, even in largely collisionless systems, collisional simulation may be necessary to
model turbulence due to the small-scale structure developed [1].

Typically, simulation of the full LFP equation is required when plasma collisionality
is moderate. Particle-in-Cell (PIC) methods, in which the kinetic distribution f is repre-
sented as an average over many simulated discrete particles, are often used [3]. Because
of the complicated nature of the collision operator in the LFP equation, it is frequently
replaced with a simplified model operator (e.g. [1, 2, 16]). Takizuka and Abe [34] (hence-
forth TA) and Nanbu [27] have introduced binary collision algorithms that accelerate the
simulation and have the additional advantage of approximating the LFP collision operator
to O(∆t) [4, 6]. There have also been advances in the Langevin equation-based treat-
ment of the LFP collision operator (e.g. [25, 26]). Even so, the simulation of Coulomb
collisions frequently represents a computational bottleneck in LFP simulations. Not only
does the smallness of the collisional time scale restrict the time step size, but there may
be multiple disparate collisional time scales in a single system [6]. The necessity of cap-
turing the shortest scale makes the observation of long time scale effects - sometimes the
more important ones - very inefficient. We give an example that illustrates this point in
section 2.2.

The scheme we present here accelerates LFP collisional simulation by assigning passive
scalars to each simulated particle which are evolved throughout the simulation. The
scheme has commonalities with those presented in [13, 15, 24, 33], but the development
here is independent and less heuristic. The mathematical nature of the derivation makes
it possible to perform a detailed error analysis of the scheme.

The remainder of the paper is structured as follows: Section 2 presents background
on the LFP equation and its asymptotic limits. Section 3 summarizes previous results
on hybrid schemes of the type introduced in [6]. Section 4 motivates and outlines the
steps in our new scheme. Section 5 details our methodology for tracking the values of
the passive scalars assigned to each particle. Section 6 summarizes and presents an error
analysis of the complete algorithm. Section 7 presents numerical results for two test initial
conditions: a slightly anisotropic Maxwellian and a bump-on-tail distribution. Finally,
Section 8 presents conclusions and indicates directions for future work. Some details are
left to appendices.
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2. Background - Kinetic Description of Plasma Systems

Kinetic equations describing systems of many interacting particles take the form

∂tf + v · ∂xf + a · ∂vf = C(f, f), (1)

where f(x,v, t) is the particle number-density in position-velocity phase space at the
position space coordinate x, velocity space coordinate v, and at time t, while a is a mean
acceleration term that - in general - depends on f , and C(f, f) is a bilinear operator,
depending only on the velocity variables, that accounts for inter-particle collisions. The
method we propose is in principle applicable to any equation of this form. For simplicity,
we restrict our attention to a single particle species, but the method is easily generalizable
to multi-species systems. In this paper, we treat the special case of the LFP equation and
indicate in the conclusion how the method may be applied to other collision operators.

The LFP equation, originally derived by Landau [23], is obtained by setting

C(f, g) = CFP (f, g) ≡
e4 log Λ

8πε20m
2

∂

∂v
·
(
2
∂H

∂v
f − ∂2G

∂v∂v
· ∂f
∂v

)
, (2)

where H and G are known as the Rosenbluth potentials [31], which solve

∆vH = −4πg, ∆vG = 2H, (3)

and e is the charge of an individual particle, m its mass, ε0 the permittivity of free
space, and log Λ is the well known Coulomb logarithm, with Λ - often called the plasma
parameter - given by

Λ = 4πnλ3D. (4)

Here n is the particle number density in position space and λD the Debye length, given
by

λD =

√
ε0T

ne2
, (5)

where T is the system temperature. In a typical plasma, Λ ≫ 1.
The LFP equation is a standard kinetic model of plasma behavior when combined

with the constitutive relations for a; namely, the Lorentz force and Maxwell’s equations.
Note that the collision operator (2) has an associated time scale

tFP =

(
e4n

4πε20m
2v3t

log Λ

)
−1

, (6)

where vt is the magnitude of the typical relative velocity between two colliding particles.
Analytic solutions of the LFP equation are known in only the simplest scenarios [30],

so one is forced to seek numerical solutions for situations of physical relevance. Even this
effort is challenging due to the high dimensionality, non-linearity, and non-locality of the
equation. This paper presents an accelerated Monte Carlo method for the treatment of
the LFP collision operator (2). In describing the method, it is useful to first discuss two
asymptotic regimes in which the problem is considerably simplified.
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2.1. Asymptotic Limits

We first consider the case in which tFP is asymptotically small compared to other
time scales. Then, the system is highly collisional and permits a perturbation expansion
based on the assumption that C(f, f) dominates (1). In this case, f is a Maxwellian
distribution to leading order, given by

fm(x,v, t) =
n

(2πT/m)3/2
exp

{
−m|v − u|2

2T

}
, (7)

where n, u, and T are functions of (x, t). In what follows, we denote a Maxwellian
distribution by fm(v;n,u, T ). Note also that for a Maxwellian, we may take vt =

√
2T/m.

Integrating (1) and using this expansion, one may obtain closed systems of PDEs for
finitely many moments of f , the first few of which are defined by [7]

n(x, t) =

ˆ

R3

f dv ≡ 〈f〉, (8)

nu(x, t) =

ˆ

R3

vf dv ≡ 〈vf〉, (9)

nT (x, t) =
1

3
m

ˆ

R3

|v − u|2f dv ≡ 1

3
m〈|v− u|2f〉, (10)

where we’ve also introduced 〈·〉 as a shorthand for velocity integration. For neutral fluids,
the leading order term gives the Euler equations of fluid dynamics. Analogous equations
are obtained for plasmas. The resulting equations are more amenable to numerical solu-
tion than the LFP equation.

In many plasma systems though, the opposite scaling holds: tFP is asymptotically
large. The approximation C(f, f) = 0 is made in (1) to obtain the Vlasov equation.
Such systems are frequently called collisionless. PIC schemes are commonly used for
solution of the Vlasov equation [3].

2.2. Moderately Collisional Regime

In the moderately collisional regime we study here, neither of the previous limits is
valid. In such cases, PIC methods are frequently used with an additional step in which
the simulated particles in a given spatial cell undergo collisions with each other. However,
as already mentioned, the simulation of collisions frequently represents a computational
bottleneck. Not only does tFP restrict the time step, but the collision time may vary
within the system.

Consider, for example, a so-called ‘bump-on-tail’ distribution given by

f = fm(v;n1, 0, T1) + fm(v;n2,uB, T2) (11)

with uB ≫ maxi
√
Ti. The time scale tFP for intra-Maxwellian collisions is much shorter

than that for inter-Maxwellian collisions, so the former dominate the computational effort
but don’t change the distribution. This makes direct Monte Carlo methods very inefficient
for this and similar problems.
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3. Hybrid Fluid-Monte Carlo Schemes

Hybrid schemes of the type we consider arise from a splitting of the distribution f
into f = fM + fk, where fM is some initially Maxwellian distribution satisfying fM ≤ f .
If fM and fk satisfy

∂tfM = C(fM , fM) + C(fM , fk) + S (12)

∂tfk = C(fk, fk) + C(fk, fM)− S (13)

where S is some arbitrary function of (v, t), then the spatially homogeneous version of
(1) is satisfied by f = fM + fk.

Since we choose our splitting such that fM is initially Maxwellian, C(fM , fM) = 0
initially. If fM happens to remain close to a Maxwellian throughout the evolution, we
are justified in ignoring C(fM , fM) completely. In this way, this splitting generates a
computational savings over PIC by avoiding the necessity of simulating collisions between
particles within fM . If fM constitutes a large fraction of the system’s mass, then this
saving will be significant. The scheme also gains accuracy over a pure fluid scheme,
because such schemes treat only perturbative deviations from a Maxwellian, while the
split kinetic system (12)-(13) does not assume fk is asymptotically small.

The problem, then, becomes choosing S in such a way that fM remains - at least
approximately - a Maxwellian for all future times, while at the same time maximizing
the fraction of the system’s mass residing in fM . The closer S keeps fM to a Maxwellian,
the more accurate the scheme. The more positive S is, the faster the scheme.

Previous efforts resort to model equations for S [6, 11]. These models are more easily
summarized if we rewrite

S = fkrT − fMrD (14)

for some positive rT and rD representing distribution normalized v-dependent exchange
rates into and out of fM , respectively.

In the presence only of collisions, the system tends toward a Maxwellian distribution.
The quantity rT represents the transfer of particles from fk to fM to reflect this. Increasing
rT makes the scheme more efficient but less accurate. The movement of kinetic particles
into fM will be referred to as thermalization.

Similarly, collisions between particles in fM and fk drive fM away from its current
equilibrium state. The quantity rD represents the transfer of particles from fM to fk
to reflect this. Decreasing rD makes the scheme more efficient but less accurate. The
movement of particles from fM into fk will be referred to as dethermalization.

We shall refer to any method that prescribes rT and rD - and therefore the number
and variety of particles to be thermalized and dethermalized at each time step - as a
thermalization scheme. The derivation and testing of an improved thermalization scheme
is the subject of this paper.

We first discuss previous thermalization schemes used in hybrid methods of the type
described here. Since these methods require finite time steps, we choose to write our
statements in terms of

pT = rT∆t, pD = rD∆t, (15)

the probabilities of a given particle being thermalized or dethermalized in a given time
step of length ∆t. The variables on which pT and pD depend characterize previous
thermalization schemes.
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3.1. Velocity-based Schemes

Introduced in [6], velocity-based schemes have pT , pD dependent only on |uM − vp|,
where vp is the particle’s present velocity and uM is the mean velocity of fM . pT is a
decreasing function of this quantity, while pD is increasing.

This scheme is intuitively sensible, but has numerous drawbacks. Firstly, there are
many choices for pT and pD, and it is unclear if an optimal choice even exists. Just as
serious, we claim, is the conflation of “similar velocity” with “many collisions”. It is true
that if a particle undergoes many collisions with particles from a given Maxwellian, its
mean velocity will tend toward that of the Maxwellian. However, the converse is most
certainly false. To illustrate this, consider the following initial distribution

f = fm(v;n1, 0, T ) + fm(v;n2, 0, εT ) (16)

for ε ≪ 1 and n2 < n1. A hybrid method might divide this distribution into a Maxwellian
component (fM) given by the first Maxwellian and kinetic component (fk) given by the
second Maxwellian.

If a velocity based scheme is to be efficient for the example (16), it should immediately
thermalize every kinetic particle, because their velocities are very near the center of fM .
On the other hand, this is not possible since if a velocity based scheme is to be accurate,
pT must be relatively small, even at fM ’s mean velocity, thereby sacrificing efficiency for
other initial conditions. We conclude that the velocity of a particle alone is not enough
information to decide whether or not it should be thermalized.

3.2. Scattering Angle-based Schemes

The thermalization scheme developed by Dimits et. al [11] is such that pT depends
only on θ, the scattering angle the particle subtended in its most recent collision, and one
additional (overall multiplier) parameter. In its current form, this scheme sets pD = 0.
pT is typically an increasing function of θ.

This scheme is intuitively sensible for the case of Coulomb collisions in which small an-
gle collisions dominate the dynamics. The applicability of this scheme to other potentials,
for which small angle collisions do not dominate, is questionable.

Like velocity based schemes, scattering angle schemes use only velocity information
from the most recent time step in making decisions about thermalization. We argue that
it is desirable for a scheme to make use of additional variables, which better capture the
long-term collisional history of the kinetic particles.

4. Paradigm and Theoretical Background

As discussed in the previous section, we claim that a particle’s velocity is not enough
information to determine whether it should be thermalized, nor is any information depen-
dent on only the most recent time step. We claim that one should look at the distribution
of velocities that particle might have had, given its collisional history. This point merits
elaboration.

A Monte Carlo scheme represents f as a sum of particles with known velocities. Each
particle undergoes a sequence of random collisions throughout the simulation, so that
after any given number of time steps, the velocity of a single simulated particle may be
regarded as a random variable. Let us denote by fj(v, t) the probability density function
of the velocity v of the jth simulation particle’s velocity at time t, rescaled so that the
total mass of the fj’s matches that of f . Notice that this is initially a delta function at
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the particle’s designated velocity. In a Monte Carlo scheme, f is realized - conceptually
- as

f =
∑

j

fj, (17)

where the sum is taken over all simulated particles.
The analogous equation for the hybrid scheme is

f = fM +
∑

j

fj . (18)

Moreover, we may apply a splitting analogous to that in (12)-(13):

∂tfM = C(fM , fM) +
∑

j

C(fM , fj) +
∑

j

Sj (19)

∂tfj =
∑

i

C(fj , fi) + C(fj, fM)− Sj, (20)

where the indices j and i run over all the simulated particles. We will often write fk =∑
j fj .
In this framework, once (19)-(20) are discretized with time step ∆t, the thermalization

of the jth particle amounts to setting

fM(t +∆t) = ΠM(fM(t) + fj), (21)

where ΠM is the projection operator onto a Maxwellian - that is, ΠMf is a Maxwellian
with the same (n,u, T ) as f . The goal of the scheme we propose is to thermalize particles
in such a way as to introduce as little error as possible into the overall scheme. That is,
the decision to thermalize a particle should have little effect on the overall distribution.
This is achieved by thermalizing the jth particle only if

1

nj
‖fM + fj − ΠM(fM + fj)‖L1

v

≤ ε (22)

for some ε > 0, where nj = 〈fj〉. The choice of norm is somewhat arbitrary, but L1 will
prove convenient later. By the triangle inequality, (22) is implied by

∥∥∥f̂M − fj

∥∥∥
L1
v

+

∥∥∥∥
(
1 +

nj

nM

)
fM − ΠM(fM + fj)

∥∥∥∥
L1
v

≤ njε, (23)

where f̂M = (nj/nM)fM . The second norm is small if fj ≈ f̂M , which it must be for the
first norm to be small. It’s even smaller if nj ≪ nM , which is the case in the parameter
regimes we consider. We therefore find it sufficient to enforce

1

nj

∥∥∥f̂M − fj

∥∥∥
L1
v

≤ ε (24)

as a condition for thermalization.
We propose to thermalize the jth particle whenever (24) is satisfied and to dether-

malize it when (24) is violated. In order to implement this, we need a way of computing
the L1 norm in (24). This is not a simple task. We instead compute a quantity called
relative entropy, which bounds the L1 norm from above, and thermalize particles when
this quantity is sufficiently small and dethermalize them when it is sufficiently large. Rel-
ative entropy has the added advantage of evolving monotonically through the action of
collisions with a Maxwellian background, as we show below.
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4.1. Relative Entropy

Define the relative entropy (sometimes called the Kullback-Leibler divergence) H(f |g)
by

H(f |g) =
ˆ

R3

log

(
f

g

)
f dv. (25)

for any two non-negative functions f , g depending on v. This quantity has its origins
in information theory, where it is used in the context of coding information sources [9].
Here, we need only cite four properties: for any non-negative f and g satisfying 〈f〉 = 〈g〉,

H(f |g) ≥ 0 (26)

H(f |g) = 0 iff f ≡ g (27)

‖f − g‖2L1 ≤ 2〈f〉2H(f̄ |ḡ) (28)
ˆ

R3

C(f, fm) log

(
f

f̂m

)
dv ≤ 0 (29)

where fm is a Maxwellian, f̂m = (〈f〉/〈fm〉)fm, f̄ = f/〈f〉 and similarly for ḡ.
The first two properties are standard (e.g. [9]). The third is a straightforward gener-

alization of the CKP inequality [10, 22] to distributions with non-unit mass. The fourth
is a modification of Boltzmann’s H-theorem whose proof we present in appendix A.

The inequality (28) allows us to impose (24) by bounding H(f̄j |f̄M), since (28) implies

H(f̄j |f̄M) ≤ ε2

2
=⇒ 1

nj

∥∥∥f̂M − fj

∥∥∥
L1
v

≤ ε. (30)

The result (29) states that the role of the term C(fj, fM) in (19) is to drive fj irreversibly

toward f̂M . Moreover, (29) shows that collisions between f and fM tighten the L1

bound monotonically in time. We have not shown that C(fj, fM) drives fj toward f̂M
at any particular rate. However, numerical experiments in section 7 suggest the rate is
comparable to t−1

FP . The final thermalization criterion is

H(f̄j|f̄M) ≤ Hc, (31)

where Hc is a parameter of the scheme. We specify the scale of this parameter in section
6.1.

4.2. Idea for Thermalization Scheme

This leads us to a more precise formulation of the thermalization scheme previously
proposed: To the jth kinetic particle fj, assign a passive scalar representing its relative
entropy, H(f̄j |f̄M). Whenever it undergoes a collision in a given time-step with a particle
whose distribution is given by fi, we evolve this passive scalar in a way that is consistent
with (20). If at the end of any time step the particle’s relative entropy has dipped below
the threshold Hc, we thermalize it.

Similarly, whenever a particle’s velocity must be sampled from the Maxwellian compo-
nent in order to perform a collision, we assign it a relative entropy of zero (corresponding
to fj ≡ f̂M), and evolve it one time step according to the same kinetic equation. If at
the end of the time step, the particle’s relative entropy exceeds Hc, we dethermalize it,
and it carries with it this relative entropy value.

It remains to specify the details of evolving the relative entropy of fj according to
collisional terms in (20). The following section is devoted to doing this for the case of
Coulomb interactions.
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5. Approximating Relative Entropy

Toward evaluatingH(f̄j |f̄M), we note from (19) that its rate of change due to collisions
with fM during a single time step is

(∂tH)M =

ˆ

R3

log

(
fj

f̂M

)
C(f̄j, fM) dv, (32)

where the subscript M indicates that we’re only treating collisions with fM . In 5.3, we
show how to extend this treatment to the other terms in (20).

The right hand side of (32) is, in general, difficult to evaluate. In particular, evaluating
the right side exactly requires knowledge of the full distribution fj for each kinetic particle,
which is not computationally feasible. We approximate the integral by approximating fj
by a finite-moment truncation of a tensor expansion [19]. The more moments we keep,
the better the approximation of fj, but the more quantities we have to evolve at each
time step for each kinetic particle. We make the compromise of keeping the standard five
moments defined in (8)-(10), corresponding to the assumption that fj is a Maxwellian.
This is justified both early in the simulation - when fj ≈ δ3(v − uj) - and late - when

fj ≈ f̂M .
We will say that fM has temperature TM and mean velocity uM , while fj has mean

velocity uj and temperature Tj . Algebraic manipulation of (25) reveals that

H(f̄j |f̄M) =
3

2

(
Tj − TM
TM

+ log

(
TM
Tj

))
+
mu2jM
2TM

, (33)

where m is the common mass of all the particles under consideration and ujM = uj−uM .
To specify the relative entropy in this case, it is thus enough to specify uj and Tj , so
instead of having to compute the integral in (32), we can work with the comparatively
simple collisional rates of change of mean velocity and temperature:

(∂tuj)M =

ˆ

R3

vCFP (f̄j , fM) dv, (34)

(∂tTj)M =
1

3
m

ˆ

R3

|v− uj |2CFP (f̄j, fM) dv. (35)

This approach has the additional advantage of avoiding the direct approximation of ∂tH,
which can be arbitrarily large, as indeed can H itself (consider Tj → 0 in (33)). Deriva-
tives of uj and Tj are much more well behaved.

Some results on the integrals in (34) and (35) are derived in [14], and some others are
attributed to Decoster in [20, 24]. Here, we make use of both results as well as deriving
some that are new to the best knowledge of the authors. Because the derivations are
lengthy and the results partially known, we leave the details to appendix B and present
only the results here.

Define FjM as the right hand side of (34), and 2WjM/3 the right side of (35). When
Tj ≪ TM , we show in appendix B that

FjM ≈ Fδ
jM ≡ 4γnM

m2v2tM

UjM

U3
jM

[
UjM

d erf(UjM)

dx
− erf(UjM)

]
, (36)

WjM ≈ W δ
jM ≡ 2γnM

mvtM

erf(UjM)

UjM

. (37)
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where UjM = ujM/vtM , with vtM =
√

2TM/m denoting the thermal velocity of fM . For
the definition of the constant γ, see (B.3). Equation (36) is equivalent to the analogous
result in [20, 24].

When ujM ≪ vtj , with vtj denoting the thermal velocity of fj , we show in appendix
B that

FjM ≈ Fm
jM ≡ − 1

τjM
ujM , (38)

WjM ≈Wm
jM ≡ 1

τjM

[
3

2

(
1−

u2jM
v2tj

)
(TM − Tj) +mu2jM

]
, (39)

where

τjM =
3
√
πm2

16

(
v2tj + v2tM

)3/2

γnM
. (40)

Note that (38) is equivalent to the analogous result in [14], while (39) is a generalization
of the analogous result in same.

5.1. Toward a uniformly valid approximation of relative entropy

While the above asymptotic expressions are interesting in their own right, we require
expressions that are uniformly valid throughout parameter space. The integrals in (34)
and (35) can be calculated numerically, but the inline evaluation of multi-dimensional in-
tegrals is computationally prohibitive in this context. It is possible to reduce the problem
to one dimensional integrals dependent on only two non-dimensional parameters (see ap-
pendix C), from which a look-up table can be generated. However, numerical experiments
presented in section 7.1 show that the majority of the error in our relative entropy estima-
tion comes from the assumption that fj is Maxwellian, rather than from the asymptotic
assumptions used to derive (36)-(39). We will therefore find it satisfactory to set

(∂tuj)M =

{
Fδ

jM : ujM ≥ αvtj
Fm

jM : ujM < αvtj
(41)

(∂tTj)M =
2

3
·
{
W δ

jM : ujM ≥ αvtj
Wm

jM : ujM < αvtj
(42)

where α ∈ (0, 1). This clearly recovers the correct behavior when ujM ≪ vtj . To see
the recovery of the other limit, we rely on numerical experiments to confirm that when
ujM ≫ vtj , it is also the case that Tj ≪ TM , making (36)-(37) valid. All tests indicate
that the properties of the scheme are not sensitive to the choice of α. In all results that
follow, we use α = 0.9.

5.2. Monte Carlo Implementation

Thus far, we have discussed the role of the term C(fj , fM) in (19)-(20) in the evolution
of Tj and uj . There are two other collisional effects that must be taken into account.

Firstly, we must also evolve Tj and uj through collisions with other kinetic particles.
That is, we must account for the term

∑
i C(fj , fi). This is done by retaining our assump-

tion that each of the particle distributions is a Maxwellian. Then, the difference between
treating collisions with fM and with fi is merely a matter of changing parameters, since
both satisfy the assumptions in previous subsections. For instance, if we were to rewrite
(39) to give the rate of change of Tj due to collisions with the ith particle, we would have

Wji ≈Wm
ji ≡ 1

τji

[
3

2

(
1−

u2ji
v2tj

)
(Ti − Tj) +mu2ji

]
, (43)
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where uji = uj − ui, and

τji =
3
√
πm2

16

(
v2tj + v2ti

)3/2

γni

. (44)

The expression (43) is then valid when uji ≪ vtj . Analogous changes are made to (36)-
(38), and when the jth kinetic particle collides with the ith kinetic particle, we evolve uj

and Tj according to

(∂tuj)i =

{
Fδ

ji : ujM ≥ αvtj
Fm

ji : ujM < αvtj
(45)

(∂tTj)i =
2

3
·
{
W δ

ji : ujM ≥ αvtj
Wm

ji : ujM < αvtj
(46)

where the i subscript denotes change due to ith particle.
Secondly, we have so far only looked at the rate of change in uj and Tj for one of the

two collision partners. The collision also affects the moments of the other distribution.
These effects are captured by recalling that collisions conserve momentum and energy.
That is,

〈v [C(f, g) + C(g, f)]〉 = 0, (47)〈
v2 [C(f, g) + C(g, f)]

〉
= 0, (48)

for any f and g. Therefore, we have

Fji ≡ 〈vCFP (f̄j , fi)〉 = −〈vCFP (f̄i, fj)〉 ≡ −Fij , (49)

and

2m−1Wji = 2m−1Wij − 2uji · Fij . (50)

In this way, our treatment of the terms C(fj, fM) and C(fj, fi) implicitly generates the
analogous formulas for C(fM , fj) and C(fi, fj).

6. Algorithm Summary and Error Scalings

Denote the number of simulated particles constituting fk by Nk, and that constituting
fM by Nm. To generate a numerical solution of the spatially homogeneous LFP equation,
at each time step the following substeps are taken.

1. Determine the number of collisions of each type to perform. In the algorithms
of Nanbu and TA, each particle undergoes exactly one collision with a randomly
selected partner:

(a) Nkk = N2
k/2(Nk+Nm) is the number of collisions between two kinetic particles.

(b) Nmk = NmNk/(Nm +Nk) is the number of collisions between a kinetic and a
Maxwellian particle.

(c) Collisions between Maxwellian particles do not affect the distribution and are
thus not simulated.

2. Perform collisions:

(a) Randomly select Nkk kinetic particles, and assign each a partner from among
those not already selected. Perform collisions between each pair by altering
their actual velocities according to the collision algorithm as well as their mean
velocities and temperatures according to (45) and (46), respectively.

11



(b) For each kinetic particle unused in (a), generate a particle with velocity sam-
pled from fM , and with mean velocity and temperature equal to those of fM .
Perform a collision between this and the kinetic particle as in (a), but evolve
the mean velocity and temperature of each particle according to (41) and (42),
respectively.

3. Thermalization/Dethermalization:

(a) For each kinetic particle, compute H(f̄j |f̄M) from uj , Tj using (33). If this
quantity is less than Hc, remove the particle from the kinetic component,
increment Nm and decrement Nk.

(b) For each particle sampled from fM , computeH(f̄j|f̄M) as in (a). If this number
exceeds Hc, add the particle to the kinetic component, decrement Nm and
increment Nk.

4. Enforce conservation:

(a) Adjust uM so that the total momentum in the system is the same as before
the collisions.

(b) Adjust TM so that the total energy in the system is the same as before the
collisions.

If there exists spatial dependence in the problem, fluid equations which adjust nM , uM ,
and TM must also be evolved.

6.1. Choice of Hc

The algorithm outlined above has one free parameter: Hc, the value of relative entropy
below which a particle is thermalized and above which it is dethermalized. We now present
an argument that specifies the scale of this quantity, although not its precise value.

Notice that, unlike the thermalization process, the dethermalization process occurs
over a single time step. That is, if the scheme doesn’t dethermalize a given particle,
that particle is inserted back into the Maxwellian and its interaction with the kinetic
component of the scheme is forgotten. Accuracy demands that this does not happen to
every particle sampled from the Maxwellian, so that some particles get dethermalized.
Thus, Hc should not be much larger than the change in relative entropy experienced by
a Maxwellian particle in a single time step.

Similarly, efficiency demands that not every sampled particle be dethermalized. There-
fore, Hc should not be much smaller than the aforementioned change in relative entropy.
We conclude that Hc should be comparable to the typical change in relative entropy
experienced by a particle sampled from the Maxwellian. It remains only to specify this
scale.

Denote the change in temperature a Maxwellian particle undergoes during a collision
with a kinetic particle by ∆T and the change in u by ∆u. If we assume ∆T/TM ≪ 1,
then to leading order in (33), the change in relative entropy is

∆H ≈ 3

4

(
∆T

TM

)2

+

(
∆u

vtM

)2

. (51)

From (39) and (50), we can estimate ∆T .

∆T ≈ 8√
π

γ

m2v3tM
TM∆t. (52)
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Similarly, by using (38), we can estimate

∆u ≈ 3

4
√
π

γ

m2v3tM
u∆t (53)

By rewriting the above in terms of tFP using (6) and (B.3), then plugging into (51),
we have

Hc ≈ ∆H ≈ 12

π

(
1 +

3

256

(
u

vtM

)2
)(

∆t

tFP

)2

≈ 3.8

(
∆t

tFP

)2

. (54)

In the last approximation, we’ve assumed that u is not so large as to make the second
term significant, which is valid so long as u . 9vtM . In general, we set

Hc = c

(
∆t

tFP

)2

(55)

for some c we choose. Unless otherwise specified, we use c = 12.9 henceforth. This choice
makes the errors more visible, although the fidelity of the results is not sensitive to this
choice.

This scaling for Hc implies that the (de-)thermalization error scales like ∆t, since by
(30) we have

H(f̄j|f̄M) ≤ O

(
∆t2

t2FP

)
=⇒ 1

nj

∥∥∥fj − f̂M

∥∥∥
L1
v

≤ O

(
∆t

tFP

)
. (56)

In numerical experiments to follow, we find that the accuracy and efficiency of the
scheme are each insensitive to changes in Hc within a factor of 10 to 100 around the value
in (54).

6.2. Error Analysis

For a spatially homogeneous PIC scheme using the collision algorithm of TA or Nanbu,
we have

‖ftrue − fPIC‖L1
v

= O(∆t/tFP ) +O(N−1/2), (57)

where ftrue is the analytic solution and fPIC its approximation by PIC with N particles
and time step ∆t.

A hybrid method which never thermalizes particles and dethermalizes every particle
sampled from the Maxwellian component reproduces the result of the PIC scheme in
expectation. Moreover, because each simulated particle carries equal weight, we have
nj = n/N . Thus, each thermalization or failed dethermalization event introduces an
O(∆t/tFPN) error by (56). There are O(N) failed dethermalizations at each time step,
and O(1/∆t) total time steps, so there are O(N/∆t) failed dethermalizations over the
course of the simulation.

Contrast this with the scaling of the number of thermalization events. This number
may be said to be F(Hc)O(N), where F is the fraction of the simulated particles that
are thermalized during a simulation, which is clearly an increasing function of Hc. Since,
in addition, Hc is an increasing function of ∆t, we may say that F = O(∆tβ) for some
β > 0. This gives the overall scaling

‖fPIC − fhybrid‖L1
v

= O

(
∆t

tFPN

)(
O

(
N

∆t

)
+O

(
N∆tβ

))
= O

(
t−1

FP

)
+O

(
∆t1+β

tFP

)
.

(58)
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Combining (57) and (58) gives the error scaling for the hybrid scheme proposed here:

‖ftrue − fhybrid‖L1
v

= O

(
∆t

tFP

)
+O

(
N−1/2

)
+O

(
t−1

FP

)
+O

(
∆t1+β

tFP

)
, (59)

where the first term is the finite time step error, the second the sampling error, the third
the (failed) dethermalization error, and the fourth the thermalization error.

The derivation of (59) has the following weakness: it assumes that we know the actual
value of the relative entropy for each fj , when in fact we only have an estimate of it based
on the assumption that fj is Maxwellian. The derivation of (59) remains unchanged if
we have

Htrue ≤ kHest (60)

for some k > 0, where the superscript true indicates the actual relative entropy for a
given particle, and est indicates our estimate of that quantity.

However, for any Hest computed using a finite moment truncation of fj , there exist
pathological cases in which Hest = 0 while Htrue is strictly positive, so (60) cannot
hold in general. However, for many problems these pathological conditions may not be
achieved, giving hope that (59) may be realized. Indeed, results in the following section
are consistent with the scaling relations presented here.

6.3. Dethermalization Error

Since failed dethermalizations are shown in (59) to be the dominant error source, it
warrants more discussion. In particular, having seen that this error doesn’t scale with
∆t or N , we seek to understand what sets the size of this error.

By (28) and (54), we have a bound on the error incurred by each failed dethermaliza-
tion event, which we denote by εe:

εe ≤
√
2c
n

N

∆t

tFP
(61)

for some constant c. The growth rate of this error, denoted by εt, is thus given by

εt = εeR, (62)

where R is the number of failed dethermalization events per unit time, which may be
written as

R =
nk

n

N

∆t
(63)

when nk/n is small. Combining (61)-(63), we have

εt
n

≤
√
2c

tFP

nk

n
, (64)

where we divide through by n so that the right side may be thought of as a fractional
error.

The tFP above is the characteristic time for collisions between fM and fk, which will
change throughout the simulation. We find it instructive to express the same statement
in terms of the characteristic time for collisions within fM , denoted by tMFP .

εt
n

≤
√
2c

tMFP

nk

n

(
vtM
ukM

)3

, (65)
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where ukM is the characteristic relative velocity between a particle sampled from fk and
one from fM .

The inequality (65) highlights two ways in which the dethermalization error can be
made small: the kinetic component can be small - i.e. nk ≪ n - and/or the kinetic
component can have velocity very different from the maxwellian component - ukM ≫ vtM .
Moreover, the case in which neither of these conditions is realized is short lived, as a
kinetic component with ukM . vtM will be rapidly thermalized.

We compare results from numerical tests to the predictions of (65) in the following
section.

7. Numerical Results

We perform two types of numerical test. First, we check that the approximations (33),
(41), and (42) capture the actual evolution of relative entropy through collisions with a
Maxwellian background. Second, we test the entire algorithm’s accuracy and efficiency
against pure PIC simulations in two test cases: the relaxation of a slightly anisotropic
Maxwellian and a bump-on-tail distribution.

7.1. Testing Relative Entropy Approximations

We are interested in the following problem: given a distribution f(v, t) solving

∂tf = CFP (f, fm), f(v, 0) = δ(v − v0), (66)

where fm is Maxwellian and constant in time, what is the time evolution of H(f |fm)?
We attack the problem in three different ways. First, we represent f by a single test

particle with initial velocity v0, and evolve its velocity according to the algorithm of TA,
where each collision partner has velocity sampled from fm. The test particle’s velocity is
then a random variable vp(t) whose distribution is given by f(v, t). By simulating the
evolution of vp repeatedly, we may generate - at each t - a histogram that, by definition,
approximates f at that time. We then evaluate H(f |fm) by direct numerical integration
of (25). This will be thought of as the true value of the relative entropy, as it is subject
only to the errors in the Monte Carlo scheme and the numerical integration, each of which
can be made arbitrarily small. Results from this method are plotted in solid blue in fig.
1.

Second, we evolve the mean velocity and temperature of f according to the collisional
moments F and W under the assumption that f is a Maxwellian. F and W are numeri-
cally integrated (refer to (C.5) and (C.11) in appendix C) to find the rates of change of
u and T , which are then evolved by forward Euler and plugged into (33) to find H. This
method is designed to test the validity of the assumption that f is Maxwellian, since this
is the only assumption made here that was not used in the direct simulation of collisions
outlined above. Results from this method are plotted in dash-dot black in fig. 1.

Third, we evolve u and T according to the numerical solution of the ODEs (41) and
(42), then evaluate H using (33). This tests the validity of our asymptotic expressions,
since this is the only assumption used here but not in the previous method. Results from
this method are plotted in dashed red in fig. 1.

Fig. 1 shows the values of u, T , and H(f̄j |f̄M) computed from each of the three meth-
ods above for three different values of v0. From this, we conclude that the approximations
(33), (41), (42) are a satisfactory framework for the approximation of relative entropy
evolution. In particular, the approximation captures the monotonicity and overall rate
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Figure 1: Comparison of scaled temperature (T), mean velocity (u), and relative entropy (H)
of the distribution of a test particle in a Maxwellian background computed by three different
methods: direct Monte Carlo collision simulation (solid blue), evolution via numerical inte-
gration of F and W (dash-dot black), and evolution according to the asymptotic expressions
(41) and (42) (dashed red). The left-most column has v0 = 0, the middle v0 = vtM , and the
right-most v0 = 2vtM

of relative entropy decay, and is especially accurate when the relative entropy is small,
which is of particular importance for our application.

Increased accuracy in the evolution of T and u may be obtained through numerical
integration of (B.5), (B.14), which may be of independent interest, but this does little
to improve the relative entropy approximation, and in fact even degrades the quality
of the approximation in some regimes (see bottom right plot in fig. 1). The numerical
evaluation also greatly increases the complexity of the scheme in practice, so we use the
asymptotic approximations (33), (41), and (42) in all numerical tests that follow.

7.2. Full Numerical Tests

We now present numerical results for the full algorithm outlined in section 6 when
applied to two test problems: a slightly anisotropic Maxwellian, and a bump-on-tail
distribution.

As the goal of this algorithm is to accelerate the simulation of collisions, a discussion of
computational cost is warranted. To leading order, the computational cost of collisional
simulation is proportional to the number of collisions simulated during the scheme, which
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is proportional to the number of simulated particles, averaged over the full run. Therefore,
a hybrid scheme of the type we discuss is faster than a pure PIC scheme by a factor of
roughly

S =

〈
N

Nk

〉
=

〈
Nm +Nk

Nk

〉
, (67)

where the angle brackets now represent an average over all time steps. This is the measure
of efficiency we use when testing schemes of the types outlined in sections 3.1 and 3.2.

However, the entropy based scheme proposed here incurs an additional computational
load for each collision due to the passive scalars that must be evolved. The cost of the
simulation of any given collision is roughly proportional to the number of scalar quantities
that must be evolved. This implies that the analogous efficiency measure for the entropy
based scheme is

SH =
3

4 + du

〈
Nm +Nk

Nk

〉
, (68)

where du is the number of components of u that we track, which will be problem de-
pendent. In most cases, du is the number of spatial dimensions in the problem since
velocities in other dimensions are assumed to vanish on average. However, in problems
with no spatial dependence but non-Maxwellian initial data, we will require du 6= 0. In
the bump-on-tail problem in 7.2.2, for instance, we set du = 1.

All of the following results were performed in a dimensionless formulation with m = 1,
tMFP = 5.348275, T = 0.05065776, and n = 0.1 (consistent with parameters in [6]).

7.2.1. Two-temperature Maxwellian Relaxation

We first test the fidelity of our implementation in a scenario with a known analytic
solution. Consider the initial distribution

f =
nm3/2

(2π)3/2T
√
T + δT

exp

(
−
m(v2x + v2y)

2T

)
exp

(
− mv2z
2(T + δT )

)
(69)

with δT ≪ T . In [35], Trubnikov showed that the temperature difference δT - to leading
order - decays exponentially in time:

δT (t) = δT (0)e−t/τ , (70)

with τ given in Gaussian units by

τ =
5

8
√
π

√
mT 3/2

ne4 log Λ
. (71)

In fig. 2, we compare this exact solution to the method of TA and the entropy-
based hybrid method proposed here. We use δT (0)/T = 1/10, ∆t = tMFP/20, and N =
1.024 × 106 with the other parameters as described above. We find agreement between
all three solutions up to the level of statistical fluctuations in the numerical solutions.

7.2.2. Accuracy and Efficiency Tests

The bump-on-tail initial distribution we treat is given by

f(t = 0) = fm(v; βn, 0, T ) + fm(v; (1− β)n,uk, Tk) (72)
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Figure 2: The temperature anisotropy in a two temperature Maxwellian as a function of time.
Computation compares the linearized analytic result (solid black), pure PIC using Takizuka-Abe
(dash-dot red), and the hybrid scheme proposed herein (dashed blue).

with β ∈ (0, 1) corresponding to the fraction of the total mass in each Maxwellian. We
set the initial fM equal to the first Maxwellian term and fk equal to the second, and
display plots for β = 0.9, uk = 2.83vtM x̂, and Tk = 10−4.

In fig. 3, we plot a time series of the hybrid solution compared to the Takizuka-Abe
solution using ∆t = tMFP/20 and N = 256, 000 total particles. The plots show excellent
qualitative agreement between the PIC solution and the hybrid solution with SH ≈ 10.

In fig. 4, we compare the efficiency and accuracy of the entropy-based scheme proposed
here to the scattering angle-based scheme outlined in section 3.2. Analogous results for
the velocity-based scheme described in section 3.1 may be found in [6], showing inferior
performance compared to both schemes tested here. For each scheme, the accuracy is
measured by

Γacc =
1

tmaxn

ˆ tmax

0

‖fPIC(t)− fhybrid(t)‖L1
v

dt, (73)

the same measure used in [6]. We set tmax = 11tFP to capture most of the progress
toward equilibrium shown in fig. 3, although the results we present are not sensitive to
this choice.

For the scattering angle-based scheme, we set

pT = min

{
k sin

θ

2
, 1

}
, (74)

where θ is the scattering angle in the two-particle center of mass frame, and vary k to
change the efficiency - S - of the scheme. For the entropy based scheme, we vary the
efficiency SH by varying Hc about the value prescribed in (54).
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Figure 3: Six time snapshots of the velocity distribution in the x dimension for the bump-on-tail
problem. PIC solution: solid red; hybrid solution: black “x”.

We test each scheme in two cases. In the first, no particle is ever dethermalized. In the
second, we dethermalize particles according to pD = pT/2 for the scattering angle based
scheme and as described in section 6 for the entropy based scheme. This is intended to
test whether collisionally driven dethermalization plays a significant role in the evolution
of the distribution and how efficiently each scheme handles the dethermalization process.
Results for ∆t = tMFP/20 and N = 256, 000 are shown in fig. 4. The sampling error is
estimated at 0.015 by comparing multiple independent PIC simulations.

We see immediately the improved accuracy effected by the entropy-based scheme for
a fixed number of simulated collisions by comparing the green and red curves. However,
the additional computational load incurred by the entropy scheme effectively cancels
this gain in the absence of dethermalization, as seen by comparing the blue and red
curves. However, in the presence of dethermalization the advantage is restored - seen by
comparing magenta and black.

Moreover, we notice that adding dethermalization has no effect on the efficiency of
the entropy scheme (compare blue and magenta curves in fig. 4), while it degrades
that of the scattering angle scheme (compare red and black curves). Dethermalization
slows the scattering-angle scheme because dethermalized particles are slow to be re-
thermalized. In the entropy scheme, on the other hand, recently dethermalized particles
are re-thermalized quickly because they have particle temperature and mean velocity very
close to those of the Maxwellian. We discuss the consequences of these observations in
more detail in section 8.

7.2.3. Convergence Study

In fig. 5 we present a numerical convergence study comparing the various sources of
error in (59), again using the bump-on-tail initial distribution. In an effort to isolate the
systematic errors, we increase the number of simulated particles to N = 2.5398 × 106.
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Figure 4: A comparison of accuracy Γacc and efficiency S, SH for four different realizations of a
hybrid scheme: the entropy based and scattering angle-based schemes, each with and without
dethermalization. The entropy scheme is plotted against both S (green ‘+’) and SH (blue and
magenta dots). The scattering angle scheme is plotted both with thermalization (dashed black)
and without (solid red). Comparing the green ‘+’ curve to the solid red and dashed black
compares the entropy and scattering angle schemes when the number of simulated particles is
equal. Comparing the dotted blue to the solid red compares the two schemes when the total
computational load is equal and when there is no dethermalization. Comparing the dotted
magenta to the dashed black compares the two schemes for equal computational load when
thermalization is present. A sixth possible curve - Entropy scheme without dethermalization
vs. S - is not plotted, because it falls directly on top of the green ’+’ curve.

We use time steps ∆t = tMFP2
−k for k = 2, ..., 7. The sampling error is of course not

completely eliminated, and is thus subtracted from each curve in fig 5. For each curve,
the sampling error is estimated by comparing multiple independent simulations.

The red, unmarked curve in fig. 5 shows the errors between PIC schemes at the
various time steps and the PIC scheme at the finest time. It is consistent with the
expected O(∆t) convergence. The black, x-marked curve shows errors for the entropy-
based hybrid scheme with no thermalization (we simply skip step 3a in section 6), i.e. it
shows the dethermalization error. As expected, this curve is asymptotically constant, and
begins to show the time-stepping error only to the right of the plot when time-stepping
error becomes comparable to the dethermalization error.

The blue, square-marked curve shows errors for the entropy based hybrid scheme
exactly as summarized in section 6. The difference between the blue and black curves
is the thermalization error, shown in the green, triangle-marked curve, and is found to
scale like o(∆t), as predicted in (59). All hybrid simulations presented in the plot have
SH ≥ 5.9, with the full hybrid simulations (blue) having efficiency as high as SH ≈ 8.6.
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Figure 5: A comparison of the errors incurred by PIC and hybrid schemes.

We notice that the time stepping error appears to be smaller by a constant factor
for the hybrid scheme as compared to the PIC simulations - i.e. at the right edge of
fig. 5, the blue, square marked curve lies slightly below the red, unmarked curve. We
hypothesize that this is because only a small portion of the distribution is subject to the
time stepping error in the hybrid scheme, while the whole of the distribution is subject
to it for PIC schemes.

7.2.4. Dethermalization Error Study

Lastly, we test some of the predictions of (65) using the bump-on-tail distribution. We
investigate the rate of error generation by plotting the L1 difference between the hybrid
and PIC solutions as a function of time, using only dethermalization. We vary uk in (72),
which is analogous to ukM in (65), and display the results in fig. 6.

Notice that, as expected, increasing uk decreases the error generation rate, while de-
creasing uk shortens the time to equilibration. Moreover, the scale of the error generation
rate is correctly predicted by (65). For instance, with uk = 2.83vtM , (65) sets an upper
bound on the error generation near two percent per tMFP , while the plot shows a maximum
rate of approximately one percent per tMFP .

8. Discussion and Conclusions

A hybrid algorithm for the accelerated simulation of Coulomb collisions has been
presented. The algorithm is derived directly from the LFP equation without appealing
to the ad hoc modeling used in other hybrid particle methods [6, 15, 24], permitting
quantification of error sources and scalings. The accuracy and efficiency of the method
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Figure 6: The systematic L
1 dethermalization error as a function of time for three different

initial conditions.

is confirmed by the results of numerical simulations. Moreover, for this method the
number of kinetic particles tends to zero as equilibrium is approached, thus recovering
the efficiency of a fluid scheme for Maxwellian distributions, which is not a feature of the
scheme in [6].

It is an unfortunate - but not unexpected - consequence of the approximations used
to accelerate the algorithm that the hybrid scheme does not converge as ∆t → 0. It
bears noting that one could make the hybrid scheme presented here convergent by tak-
ing the relative entropy cutoff Hc = O(∆tk) for any k > 2. However, such a scheme
inevitably has the property that the speed-up factor S → 1 as ∆t → 0, thus recovering
the computational efficiency of a PIC scheme in the limit. The choice of k = 2 made
in the preceding results is the unique choice that bounds the computational gain from
below and the error from above. Moreover, we demonstrate in sections 6.3 and 7.2.4 the
ability to predict the scale of the dominant error and find it to be small for the intended
applications.

For a given number of simulated particles, the entropy based scheme has been shown
to be more accurate than the particle- and scattering angle-based schemes. However, the
additional computational load incurred by the tracking of the passive scalars assigned to
each particle is seen to effectively cancel this gain in the case of a spatially homogeneous
relaxation process. However, in the application of the hybrid scheme to problems with
other potentially destabilizing agents - e.g. spatial inhomogeneity or electromagnetic
fields - we expect that the dethermalization error will become more significant, and it
is reasonable to expect the entropy scheme’s improved treatment of dethermalization to
yield dividends.

There are a number of directions in which the present work could be extended. The
first is the treatment of spatially inhomogeneous problems, which is of obvious impor-
tance for application to real world scenarios, and may reveal more benefits of the entropy
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scheme, as just mentioned. A second is the extension to other collision operators, which
only requires modification of the expressions for W and F. Thirdly, one might incor-
porate unequal weighting of the simulated particles [18], potentially including negative
weights as in [17]. A fourth is to use the numerical evaluation of the expressions in ap-
pendix C to evolve the relevant passive scalars, which may yield a more robust scheme.
Other directions include the potential for adaptively choosing the number of moments
used to approximate the particle distributions and the possibility of fusing multiple ki-
netic particles when the relative entropy between them is small so as to further reduce
computational cost, an approach similar to [15, 24]. Each of these is a topic of current
research of the authors.
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Appendix A. Proof of Relative Entropy Theorem

In 4.1, we state a theorem about decay of relative entropy:

ˆ

R3

C(f, fm) log

(
f

f̂m

)
dv ≤ 0. (A.1)

Here, we provide a proof for the case of the Boltzmann collision operator, given by

C(f, g) =

ˆ

R3

ˆ

S2

(
dσ

dΩ

)
|v − v∗|(f ′g′

∗
− fg∗) dΩ dv∗, (A.2)

where dσ/dΩ is the differential cross section of the inter-particle force mediating the
collisions, the pre-collision velocities are v, v∗, the post-collision velocities v′, v′

∗
obey

particle momentum and energy conservation, f ′ = f(v′), and similarly for the other
evaluations of f and g.

Because it adds little in the way of complication here, we treat the general case of
species with distinct mass. This does require some additional notation: let the two
species have distributions f and g, with fM and gM being Maxwellian distributions for
each respective species having identical mean velocity and temperature.

We initially proceed as in the proof of the H-theorem. Let ϕ(v) be an arbitrary
function of v. Writing out C(f, g),

ˆ

R3

C(f, gM)ϕ(v) dv =

ˆ

B(θ, |v − v∗|)(f ′g′M∗
− fgM∗)ϕ(v) dΩdv∗dv, (A.3)

where B = |v − v∗|dσ/dΩ. Conservation implies

mfv +mgv∗ = mfv
′ +mgv

′

∗
, (A.4)
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mfv
2 +mgv

2

∗
= mfv

′2 +mgv
′2

∗
. (A.5)

We see that the operator in (A.3) features one of the two symmetries exploited in proving
the H-theorem: It is anti-symmetric with respect to exchange of the primed and un-
primed velocities. Thus, we can write
ˆ

R3

C(f, gM)ϕ(v) dv =
1

2

ˆ

B(θ, |v− v∗|)(f ′g′M∗
− fgM∗)(ϕ− ϕ′) dΩdv∗dv. (A.6)

Straightforward algebraic manipulation can be used to show that |v−v∗| = |v′−v′

∗
|, even

when mf 6= mg. A shorter argument can be made by appealing to the time symmetry of
binary collisions.

Now set ϕ = log(f/fM), so that

ϕ− ϕ′ = log(f/f ′)− log(fM/f
′

M). (A.7)

Now, note that a simple calculation and observation of (A.4) and (A.5) implies that

log(fM) + log(gM∗) = log(f ′

M) + log(g′M∗
). (A.8)

This arises because each side is a linear combination of quantities that are invariant under
collisions (total momentum, energy, and mass). As a result, we have log(fM/f

′

M) =
log(g′M∗

/gM∗). Plugging this into the formula for ϕ− ϕ′, and then putting that in (A.6),
we have
ˆ

R3

log

(
f

fM

)
C(f, gM) dv =

1

2

ˆ

(f ′g′M∗
− fgM∗)B log

(
fgM∗

f ′g′M∗

)
dΩdv∗dv, (A.9)

where we’ve now omitted the arguments on B. Now, since B is non-negative, it doesn’t
affect the sign of the integrand, and the rest is of the form (x − y)log(y/x), which is
non-positive and zero just in case x = y. Thus, the entire integral is at most zero.

It just remains to show when equality is achieved. As already noted, (x− y)log(y/x)
is zero just in case x = y, so the right side of (A.9) vanishes if and only if fgM∗ = f ′g′M∗

.
Taking the logarithm of both sides gives

log(f) + log(gM∗) = log(f ′) + log(g′M∗
). (A.10)

By (A.8), f = fM satisfies this equation. If we write h = f/fM , (A.10) reduces to h = h′.
Fixing v, we can pick v∗ and v′

∗
such that v′ has any value we like. Thus, the only

solution to h = h′ is h = c(x), independent of velocity. Since we assume 〈f〉 = 〈fM〉, we
must have c = 1.

Appendix B. Results on Collisional Moments

To compute the integrals in (34) and (35), we begin by adopting the notation of [14]
for the LFP collision operator. We write

CFP (fj, fM) = − ∂

∂v
·
(
fj
m
R−D · ∂fj

∂v

)
, (B.1)

where

R =
2γ

m

∂H

∂v
, D =

γ

m2

∂2G

∂v∂v
, (B.2)
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and

γ =
e4 log Λ

8πε20
. (B.3)

We’ve assumed all the particles under consideration have common mass m and charge
e. All subsequent results can be straightforwardly generalized to the case where these
quantities differ between species.

Moreover, both here and in appendix C, we find it convenient to work in the rest
frame of fM , so that uM = 0 and ujM = uj .

Appendix B.1. Approximating uj

We define

FjM ≡
ˆ

R3

vCFP (f̄j, fM) dv, (B.4)

so that (∂tuj)M = FjM . Using (B.1), we may integrate by parts and use properties
relating R and D (see [14] for more detail) to find

FjM =
2

m

ˆ

R3

f̄jR dv. (B.5)

Then, using (B.2) and (3), we can write an explicit expression for R.

R =
2γnM

m

v

v3

[
x
d erf(x)

dx
− erf(x)

]
, (B.6)

where nM is the number density associated fM , and x = v/vtM . Under the assumption
that fj is Maxwellian, the integral in (B.5) can now be evaluated numerically in general,
and analytically in two important limits.

Firstly, as mentioned earlier, near the beginning of a hybrid simulation, fj is well
approximated by a δ-function at the particle’s actual velocity, which now coincides with
its mean velocity uj. Making this approximation, we easily find that

FjM ≈ 4γnM

m2v2tM

UjM

U3
jM

[
UjM

d erf(UjM)

dx
− erf(UjM)

]
, (B.7)

where UjM = ujM/vtM . We’ll refer to this expression for FjM as Fδ
jM , which is valid

when vtj ≪ vtM (i.e. Tj ≪ TM).
Secondly, at late times in the simulation, we expect that ujM ≪ vtj , so that we may

approximate f̄j = fm(v; 1,uj, Tj) by

f̄j ≈ fm (v; 1, 0, Tj)

(
1 +

2v · ujM

v2tj

)
. (B.8)

Plugging this approximation into (B.5) gives (see [14] for more detail)

FjM ≈ − 1

τjM
ujM , (B.9)

where

τjM =
3
√
πm2

16

(
v2tj + v2tM

)3/2

γnM
. (B.10)

This expression for FjM will be called Fm
jM and is valid when ujM ≪ vtj .
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Appendix B.2. Approximating T

We define

WjM ≡ 1

2
m

ˆ

R3

|v − uj|2CFP (f̄j , fM) dv, (B.11)

so that (∂tTj)M = 2WjM/3. By expanding the squared term in WjM , we find

WjM =
1

2
m

ˆ

R3

v2CFP (f̄j, fM) dv−muj · FjM . (B.12)

Having already computed expressions for F, it suffices to compute what we’ll call W ′,
defined by

W ′

jM ≡ 1

2
m

ˆ

R3

v2CFP (f̄j , fM) dv. (B.13)

Again, by plugging in the definition of CFP into (B.13) and integrating by parts - twice
this time - then using the definitions of R and D, we find

W ′

jM = κ

ˆ

R3

[
2
d erf(x)

dx
− erf(x)

x

]
f̄j dv, (B.14)

where

κ =
2γnM

mvtM
(B.15)

and x = v/vtM . Again, the integral in (B.14) can be evaluated numerically for a general
Maxwellian f , and analytically in two important limits.

We again treat the case in which vtj ≪ vtM . As before, we approximate fj by
δ3(v−uj). The integral for W

′

jM is now easily evaluated, and when combined with (B.7)
and (B.12) gives

WjM = κ
erf(UjM)

UjM
=

2γnM

mvtM

erf(UjM)

UjM
. (B.16)

In analogue to the previous subsection, this expression for WjM will be referred to as
W δ

jM and is valid when vtj ≪ vtM .
Finally, we consider the ujM ≪ vtj limit, just as we did when approximating FjM . As

before, we approximate f̄j by a Taylor series expansion, this time keeping

f̄j ≈ fm (v; 1, 0, Tj)

(
1 +

2v · ujM

v2tj
−
u2jM
v2tj

)
(B.17)

(we ignored the last term before because it gave no contribution to the previous integral).
Using this expression for f in (B.14) and integrating gives

WjM =
1

τjM

[
3

2

(
1−

u2jM
v2tj

)
(TM − Tj) +mu2jM

]
. (B.18)

Again in analogue to the previous subsection, we will denote this expression for WjM by
Wm

jM and it is valid when ujM ≪ vtj .
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Appendix C. Numerical Integration of Collisional Moments

Because of the length of the expressions in this appendix, we abbreviate our notation
by dropping the subscripts j and M wherever possible, and again work in coordinates
where uM vanishes. That is, we let fj → f , vtj → vt, ujM = uj → u, FjM → F, and
WjM →W .

In appendix B, we derived integral expressions for F and W ′, the collisional rates of
change of the first and second moments of f , respectively:

F =
2

m

ˆ

R3

f̄R dv (C.1)

W ′ = κ

ˆ

R3

[
2
d erf(x)

dx
− erf(x)

x

]
f̄ dv, (C.2)

where expressions for R and κ are given in (B.6) and (B.15), respectively, and x is as
defined in appendix B. We then derived asymptotically valid analytic expressions for
the case when f is Maxwellian with either vt ≪ vtM or u ≪ vt. In this appendix, we
further demonstrate that the above expressions for F and W ′ can expressed in terms
of easily computable, one dimensional integrals depending on only two non-dimensional
parameters and physical constants for a general Maxwellian f .

Appendix C.1. Simplifying W ′

Let us work in spherical coordinates with the z-axis aligned with u, the mean velocity
of f . Then, a Maxwellian f̄ may be written as

f̄ =
1

π3/2v3t
exp

(
−|v − u|2

v2t

)
=

1

π3/2v3t
exp

(
−v

2 + u2

v2t

)
exp

(
2uv cosϕ

v2t

)
. (C.3)

We observe that every term in (C.2) is spherically symmetric except for the right-most
term in (C.3). The angular integration is thus easily performed, giving

ˆ 2π

0

ˆ π

0

exp

(
2uv cosϕ

v2t

)
sinϕdϕ dθ =

2πv2t
uv

sinh

(
2uv

v2t

)
. (C.4)

Next, we define Γ = vtM/vt, so that v/vt = Γx and u/vt = ΓU , with U as defined in
appendix B. We can now rewrite

W ′ =
κ√
π

Γ

U

ˆ

∞

0

xG(x; U,Γ)

[
2
derf(x)

dx
− erf(x)

x

]
dx, (C.5)

where
G(x; U,Γ) ≡ exp

(
−Γ2(x− U)2

)
− exp

(
−Γ2(x+ U)2

)
. (C.6)

The expression forW ′ in (C.5) is now a one dimensional integral that is straightforward
to evaluate numerically.

Appendix C.2. Simplifying F

We work in the same coordinates, and the expression (C.3) for f̄ still applies. However,
the vector R contributes to the angular integrals. We write R = (v/v)R(x), where

R(x) =
2γnM

mv2tM

1

x2

[
x
d erf(x)

dx
− erf(x)

]
. (C.7)
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The angular portion of the integral for F now reads
ˆ 2π

0

ˆ π

0

(v
v

)
exp

(
2uv cosϕ

v2t

)
sinϕdϕ dθ. (C.8)

All the components of this vector vanish except for that aligned with u, because the
integration against θ yields zero in the other cases. The component along u may be
evaluated, giving
ˆ 2π

0

ˆ π

0

(v
v

)
exp

(
2uv cosϕ

v2t

)
sinϕdϕ dθ =

2πU

Γ2U2x

(
cosh(ψ)− sinh(ψ)

ψ

)
, (C.9)

where
ψ ≡ 2Γ2Ux. (C.10)

We then write F as

F =
4√
πm

Γ

U

(
U

U

)
ˆ

∞

0

xR(x)exp
(
−Γ2

(
x2 + U2

))(
cosh(ψ)− sinh(ψ)

ψ

)
dx. (C.11)

Again, this integral is now easily evaluated numerically.
The expressions (C.5) and (C.11) are used to generate the black curves in fig. 1 and

may in theory be used to generate two dimensional (Γ, U) lookup tables which can then
govern the evolution of the particle temperatures and mean velocities.
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