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Abstract

Optimal control for cardiac electrophysiology based on the bidomain equations in
conjunction with the Fenton-Karma ionic model is considered. This generic ventricular
model approximates well the restitution properties and spiral wave behavior of more
complex ionic models of cardiac action potentials. However, it is challenging due to the
appearance of state-dependent discontinuities in the source terms. A computational
framework for the numerical realization of optimal control problems is presented.
Essential ingredients are a shape calculus based treatment of the sensitivities of the
discontinuous source terms and a marching cubes algorithm to track iso-surface of
excitation wave fronts. Numerical results exhibit successful defibrillation by applying
an optimally controlled extracellular stimulus.

Keywords: bidomain model, Fenton-Karma ionic model, defibrillation, Neumann bound-
ary stimulation, optimal control, state dependent discontinuities.

1 Introduction

While the electrical activation of the heart is highly organized in healthy situations, in
the diseased case disturbances in the formation and/or propagation of electrical impulses
may induce arrhythmias which precipitate its rhythm significantly. Such fast rhythms
may evolve to highly disorganized activation patterns. Their termination can be achieved
by applying a strong electrical shock, a process called defibrillation. The link between the
high shock strengths required and adverse effects provides the motivation for posing the
defibrillation process as an optimization problem where one aims to achieve defibrillation
with minimal energy.

The optimal control approach to defibrillation is to determine an applied electrical
field in such a way that it optimizes a given design objective, which is, in our case, the
restoration of a tissue state in which fibrillating propagation cannot be maintained. This
can be achieved by driving the whole tissue to a resting state, or alternatively, to an excited
state from where the system reaches the equilibrium without further stimuli. In both cases
the goal consists in diminishing the main ingredients for maintaining fibrillation, namely
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the presence of both propagating wavefronts and a sufficient mass of excitable tissue at
rest, in which these wavefronts can travel.

Achieving these objectives is challenging since, on biophysical grounds, shock-induced
changes in polarization of both polarities are always present during shock delivery [28, 26].

In previous work we addressed this problem for the phenomenological FitzHugh-
Nagumo and the physiological Luo Rudy models, with control action modeled either as
a distributed controller acting on a small tissue patch or as an inhomogeneous Neumann
boundary condition. Here the focus lies on understanding the more complex phenomeno-
logical Fenton Karma model [17] in the context of numerical optimal control. It can be
considered as a simplification of the Luo-Rudy 1 model of the cardiac membrane that re-
produces quantitatively much of the behavior of the full model. This model contains three
currents, loosely corresponding to sodium, calcium, and potassium. It preserves impor-
tant properties of cardiac tissue including action potential rate of rise, different time scales
for depolarization and repolarization, action potential duration and conduction velocity
restitution curves, and nonzero minimum diastolic interval. Compared to the FitzHugh-
Nagumo model it does not have a Maxwell point, and thus its dynamics are comparable to
complex ionic models as they have a well-defined minimum diastolic interval and minimum
action potential duration.

From the numerical and optimal control points of view the model is challenging due
to the appearance of a state-dependent Heaviside function. The effect of the discontinu-
ous source functions appearing in the ionic model equations can be increased by virtual
electrodes [28]. This may lead to complex evolutions of the interfaces and constitutes a
serious numerical challenge. In the cardiac electrophysiological modeling these difficulties
arise not only for the Fenton Karma model but for other models like the Mitchel Schäffer,
van Capelle-Durrer or the ten Tusscher model as well, see e.g. [21, 34, 33]. Concerning the
bidomain model equations themselves there are several survey articles from among which
we quote [18, 27, 32].

We shall meet these difficulties by applying an extended marching cubes algorithm
to track the moving interfaces [16, 3] and by using methods from shape optimization to
formally derive the sensitivity and adjoint equations for optimal control. The extended
marching-cubes algorithm allows the efficient computation of the interface, with additional
topological guarantees. To evaluate integrals over the interfaces we impose a piecewise lin-
ear reconstruction of the level sets, which is sufficient for first-order representations of the
state variable. Using the dune-mc library [16] we compute this polygonal reconstruction
of the linearized iso-surface on each cell. The code supports computations in 2D and 3D,
thus the current 2D simulations can directly be extended to the 3D case.

The organization of the paper is as follows: The model equations describing the dy-
namical behavior in terms of the extracellular potential, the transmembrane voltage, and
the gating variables based on the Fenton Karma ionic model are presented in the following
section. The optimal control formulation and the derivation of the optimality system are
given in Section 3. It requires to take variations of switching functions with respect to
the transmembrane voltage, which is the state variable of the parabolic equation. This is
addressed in Section 4 where we make use of the speed method, which is well known in
the theory of shape optimization. The spatial and temporal discretizations of the state
equations as well as the complete optimality system are presented in Section 5. Numerical
results for the termination of reentry waves by using the approximation of the deriva-
tives of Heaviside source functions, which arise in the dual equations due to the specific
Fenton-Karma ionic model, are shown in Section 6.
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2 Governing equations

Let Ω ⊂ Rd, d ∈ {2, 3}, denote a bounded connected domain with Lipschitz continuous
boundary ∂Ω. The space-time domain and its lateral boundary are denoted by Q = Ω×
(0, T ] and Σ = ∂Ω×(0, T ], respectively. The well known and complete mathematical model
for describing the electrical activity of the heart are the bidomain equations [18, 27, 32].
Mathematically, they consist of a linear elliptic partial differential equation and a non-
linear parabolic differential equation of reaction-diffusion type, where the reaction term is
described by a set of ordinary differential equations. The dimension of the ODE system
is determined by the ionic model.

Here we use the Fenton-Karma model [17] to describe the membrane ionic activity. It is
derived based on two well known physiological models, the Luo-Rudy [20] and the Beeler-
Reuter [5] models. The Fenton-Karma model consists of three ionic currents, Ifi(v, f),
Isi(v, s) and Iso(v) which represent the flows of sodium, calcium and potassium. They
are accurate enough to produce the membrane recovery processes that give rise to generic
restitution curves. The fast inward current Ifi(v, f) is responsible for depolarization of the
membrane. This depends on transmembrane voltage and on one inactivation-reactivation
gate f . The main activity of this gating variable is for inactivation of the current after
depolarization of the cardiac tissue and also its reactivation after repolarization. The slow
outward current Iso(v) which is responsible for repolarization of the membrane depends
only on the transmembrane voltage. The slow inward current Isi(v, s) balances the slow
outward current during the plateau phase of the action potential. It mainly depends on
the transmembrane voltage and one gating variable s which is responsible for inactivation
and reactivation of the current. The complete bidomain equations together with the ODE
system are expressed as follows.

0 = ∇ · (σ̄i + σ̄e)∇u+∇ · σ̄i∇v in Q (1)

∂v

∂t
= ∇ · σ̄i∇v +∇ · σ̄i∇u− (Ifi(v, f) + Isi(v, s) + Iso(v)− Istim) in Q (2)

Ifi = −fg(v)(v − vc)(1− v)/τfi in Q (3)

∂f

∂t
= (1− g(v))

(1− f)

τ−f (v)
− g(v)f

τ+
f

in Q , (4)

Isi = −s(1 + tanh(κ(v − vsic )))/(2τsi) in Q (5)

∂s

∂t
= (1− g(v))

(1− s)
τ−s

− g(v)s

τ+
s

in Q , (6)

Iso = v(1− g(v))/τ0 + g(v)/τr in Q , (7)

where u : Q → R is the extracellular potential, v : Q → R is the transmembrane voltage,
f and s : Q → R represent the ionic current variables, σ̄e, σ̄i : Ω → Rd×d are respectively
the extra and intracellular conductivity tensors, Ifi is the fast inward current, Isi is the
slow inward current and Iso is the slow (ungated) outward current. Eq. (2) is a parabolic
equation and Eq. (4-6) are a set of ordinary differential equations with time and space
dependent state variables f and s.

Most importantly, the complete behavior of the gating variables and the dynamics of
transmembrane voltage is characterized by the step function

g(v) =

{
1 if v ≥ vc
0 if v < vc,

(8)

where vc is the critical value of transmembrane voltage. The function τ−f in the fast gating
equation is defined by

τ−f (v) = (1− g(v))τ−f1 + g(v)τ−f2 .
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The appearance of g in the physiological model poses analytical as well as numerical
challenges. For the optimal control approach we require the sensitivity equations and
hence the first order variations of g with respect to v. The numerical realization of the
wave fronts will be accomplished by the aforementioned marching cube algorithm.

The distribution of conductivity tensors considered of paramount importance and can
lead to suprathreshold depolarization during a defibrillation shock [29, 1]. It may lead to
the establishment of regions of membrane depolarization and hyperpolarization and even-
tually lead to a successful defibrillation. In general the conductivity tensor is symmetric
positive definite. In our computations, the conductivity tensors are of the following form,

σc =

(
σcl 0
0 σct

)
, where c = i, e , (9)

and σcl and σct are the longitudinal and transverse fiber conductivities, respectively. In
our work the heterogeneity is drawn from the histological image of the cardiac tissue as
will be explained in Section 6.

The initial and boundary conditions are prescribed by

n · (σi∇v + σi∇u) = 0 on Σ (10)

n · σe∇u = Ie on ∂Ω12 × (0, T ] (11)

n · σe∇u = 0 on ∂Ω3 × (0, T ] (12)

v(x, 0) = v0 , f(x, 0) = f0 , and s(x, 0) = s0 on Ω , (13)

where n denotes the outwards normal to the boundary of Ω. Here Ie is the extracellular
current density stimulus which acts as control along the boundary ∂Ω12 = ∂Ω1 ∪ ∂Ω2,
where ∂Ωi, i = 1, 2, 3 are mutually disjoint and satisfy ∂Ω1 ∪ ∂Ω2 ∪ ∂Ω3 = ∂Ω. For
compatibility reasons it is assumed throughout that∫

∂Ω
Ie(t, ·) d s = 0 (14)

for almost every t ∈ (0, T ). In the numerical experiments Ie will be only temporally
dependent and will be of the form

Ie = Îe(t)(χ∂Ω1 − χ∂Ω2) ,

where χ∂Ωi is the characteristic function of the set ∂Ωi, i = 1, 2. Then condition (14) is
satisfied if |∂Ω1| = |∂Ω2|. The support regions ∂Ω1 and ∂Ω2 can be considered to represent
a cathode and an anode, respectively.

3 Optimal control formulation

We describe the optimal control formulation for defibrillation of undesired arrhythmias.
It involves tracking to a desired state vα which is known to lead to defibrillation, as well
as a penalization of the extracellular current stimulus Ie which serves as a control and in
practice has an averse effect on the tissue. The optimal control problem then is of the
form  min J(v, Ie) =

1

2

∫ T

0

(
α1

∫
Ωobs

|v − vd|2 dx+ α2

∫
∂Ω12

Ie(t)
2 ds

)
dt

subject to (1)-(6),(10)-(13) and Ie ∈ U,
(15)

where α1 > 0, α2 > 0 are the regularization parameters Ωobs ⊂ Ω is the observation
domain, vd ∈ L2(0, T ;L2(Ωobs)) and

U = {Ie −
1

|∂Ω12|

∫
∂Ω12

Ie ds : Ie ∈ L2(0, T ;L2(∂Ω12)), |Ie(t, x)| ≤ R (16)

for a.e. (t, x) ∈ (0, T )× ∂Ω12}. (17)
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Here we proceed formally and assume the well posedness of problem (15). At a solution
I?e the first order necessary condition must be satisfied. To establish this condition we
introduce the Lagrangian in the following form:

L(u, v, f, s, Ie, p, q, r, o) = J(v, Ie)

+

∫ T

0

∫
Ω

(∇ · (σ̄i + σ̄e)∇u+∇ · σ̄i∇v) p dΩ dt

+

∫ T

0

∫
Ω

(
∇ · σ̄i∇v +∇ · σ̄i∇u−

∂v

∂t
− (Ifi + Isi + Iso)

)
q dΩ dt

+

∫ T

0

∫
Ω

(
(1− g)(1− f)

τ−f (v)
− gf

τ+
f

− ∂f

∂t

)
r dΩ dt

+

∫ T

0

∫
Ω

(
(1− g)(1− s)

τ−s
− gs

τ+
s
− ∂s

∂t

)
o dΩ dt

+

∫ T

0

∫
∂Ω12

(σ̄eu− Ie) pN dΩ dt, (18)

where the initial and boundary conditions are kept as explicit constraints. The first order
optimality system is obtained by formally setting the partial derivatives of L equal to 0.
Taking the derivative of L w.r.t. the state variables u, v, f and s gives the following adjoint
equations for the adjoint state variables p, q, r and o respectively.

Adjoint equations

0 = ∇ · (σ̄i + σ̄e)∇p+∇ · σ̄i∇q in Q (19)

∂q

∂t
= −∇ · σ̄i∇p−∇ · σ̄i∇q + Iv(v, f, s)q + Fv(v, f)r + Sv(v, s)o in Q (20)

∂r

∂t
= −Ff (v, f)r + If (v, f, s)q in Q , (21)

∂o

∂t
= −Ss(v, s)o+ Is(v, f, s)q in Q , (22)

where the subscripts v, f, s denote the partial derivatives w.r.t. these variables and F (v, f)
and S(v, s) are the right hand side of (4) and (6) respectively. The expressions for the
partial derivatives are provided below. First, the derivative of the ionic current w.r.t. the
transmembrane voltage is given by the following expressions

Iv(v, f, s) = (Ifi)v + (Isi)v + (Iso)v, where

(Ifi)v = − fg
τfi

[−(v − vc) + (1− v)]− f(v − vc)(1− v)

τfi
dg(v)

(Isi)v = − s

2τsi
[(1− tanh2(κ(v − vsic )) · κ]

(Iso)v =
1− g
τ0

+

(
−v
τ0

+
1

τr

)
dg(v)

and for the fast and slow gating variables we obtain:

(Ifi)f = −g(v − vc)(1− v)

τfi
, (Isi)s = −

[
1 + tanh

(
κ(v − vsic )

)]
/(2τsi) .
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The partial derivative of the right hand side of the gating variables are:

F (v, f) =
(1− g)(1− f)

τ−f (v)
− gf

τ+
f

, S(v, s) =
(1− g)(1− s)

τ−s
− gs

τ+
s

Ff (v, f) = − 1− g
τ−f (v)

− g

τ+
f

, Ss(v, f) = −1− g
τ−s

− g

τ+
s

Fv(v, f) =
−τ−f (v)[(1− f)dg(v)]− [1− g(v)](1− f)(τ−f (v))v

[τ−f (v)]2
− dg(v)

τ+
f

Sv(v, s) = −(1− s)dg(v)

τ−s
− sdg(v)

τ+
s

, (τ−f (v))v = −dg(v)τ−v1
+ dg(v)τ−v2

Here we need to evaluate the variation of v → g(v) to obtain dg(v). The evaluation of
such derivatives is addressed in the following section.

The terminal conditions of the dual equations are defined as follows

q(T ) = 0, r(T ) = 0, o(T ) = 0

and the boundary conditions for the adjoint states are

n · (σ̄i∇q + σ̄i∇p) = 0 on Σ,

n · σ̄e∇p = 0 on Σ,

and
∫

Ω p(t) d x = 0, for a.e. t ∈ (0, T ).
Moreover, for any optimal control I∗e the following variational inequality must be sat-

isfied: ∫ T

0

∫
∂Ω12

(αI∗e +Qp)(Ie − I∗e ) ds dt ≥ 0, for all Ie ∈ U, (23)

(24)

where (Qp)(t) = p(t)− 1
|∂Ω12|

∫
∂Ω12

p(t, s) ds on ∂Ω12.

4 Approximation of derivatives of discontinuous source func-
tions

In this section we describe our approach to approximate the derivative of discontinuous
source functions. To compute the gradient of the Lagrangian L with respect to v we need
to evaluate the gradient of functionals of the form

j(v) =

∫
Ω
g(v(x))f(x) dx,

where g(v(x)) = 1 if v(x) > vc and g = 0 otherwise. The lack of differentiability of g would
suggest the use of level set techniques or regularization procedures, see e.g. [30, 15]. For
the latter the choice of a proper regularization parameter is crucial and, as pointed out
in [15], standard delta discretizations can diminish convergence. Here we proceed along a
different route and take advantage of shape analysis techniques.

For this purpose let h(x) be a function defined on Ω and consider the derivative of
d
dv j(v) in direction of h(x) as

lim
t→0+

1

t
(j(v + th)− j(v)) = lim

t→0+

1

t

(∫
Ω(t)

v(x)f(x) dx−
∫

Ω(0)
v(x)f(x) dx

)
,
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where
Ω(t) = {x : v(x) + th(x)− vc > 0}.

This suggests to use the speed method from shape optimization, see e.g. [13], to compute
the shape derivative of j. We obtain the following result.

Proposition 4.1. The shape derivative of j at v in direction h can be expressed as

dj(v;h) =

∫
Γ0

h(x)

|∇v(x) · n|
f(x) dx, (25)

where n denotes the outer unit normal to the set {x : v(x) ≥ vc} and we assume that
∇v(x) 6= 0 in a neighborhood of Γ0 = {x : v(x) = vc}.

The evolution of the boundaries Γ(t) = {x : v(x) + th(x)− vc = 0} of Ω(t) can be seen
to satisfy

∇v(x(t)) · ẋ(t) + h(x(t)) + t∇h(x(t)) · ẋ(t) = 0. (26)

For the speed method we assume that t → x(t) is a flow determined by a dynamical
system of the form ẋ(t) = Ṽ (x(t)). In the particular case of a flow along the normal

direction, which we follow here, we take Ṽ (x) = −V (x) ∇v(x)
|∇v(x)| , for a scalar-valued function

V determined from (26). We find

−V (x(t))|∇v(x(t))|+ h(x(t))− tV (x(t))
∇v(x(t)) · ∇h(x(t))

|∇v(x(t))|
= 0

or

V (x(t)) =
h(x(t))

|∇v(x(t))|+ t∇(x(t)) ∇v(x(t))
|∇v(x(t))|

.

The shape derivative of j(v) at v in direction h is therefore given by see [13], pg. 348,

dj(v;h) =

∫
Γ0

Ṽ (x)
−∇v(x)

|∇v(x)|
f(x) =

∫
Γ0

h(x)

|∇v(x)|
f(x) dx, (27)

where we use that v(x(t)) = v(x) on Γ0 for t = 0. Since the tangential component of v on
Γ0 is zero the shape derivative can equivalently be expressed in the form (25), as claimed
above.

We illustrate this result with an example. We consider the one-dimensional domain
Ω = (−1, 1) ⊂ R1, with vc = 0, and h = 1, so that the boundary Γ results in those points in
(0, 1), where g(v(x)) = 0. The results for the analogue of the one-dimensional modification
to (26) for different choices of v(x) and f(x), with h = 1 are given in the third column of
Table 4. These results are compared to those obtained by numerical differentiation:

Iε =
1

2ε

(∫
Ω
g(v(x) + ε) · f(x)dx−

∫
Ω
g(v(x)− ε) · fdx

)
· (28)

in columns 4-6 of the same table. We can observe the expected convergence.
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shape derivative numerical differentiation
v f formulation ε = 0.1 ε = 0.01 ε = 0.001

cos(xπ) x+ 1 2
π ≈ 0.63661 0.63768 0.63663 0.63662

cos(xπ) x2 + x+ 3 13
2π ≈ 2.06901 2.08286 2.07006 2.06911

cos(x2π) x+ 1
√

2
π ≈ 0.45015 0.44394 0.44945 0.45008

cos(x2π) x2 + x+ 3 7
√

2
2π ≈ 1.57555 1.56084 1.57379 1.57537

Table 1: Verification of the shape derivative formula (27). Different test cases of v(x) and
f(x) are evaluated and compared to the numerical differentiation with different choices of
ε.

x

10.50-0.5-1

3

2

1

0

-1

-2

-3

(a) v1 = cos(xπ)

4

2

0

-2

-4

x
10,50-0,5-1

(b) v2 = cos2(xπ)

0.00110
-4

0.001

0.0008

0.0006

ε

0.0004

0.0002

0.1

0

0.01

(c) |dj − Iε| for ε→ 0

Figure 1: (a), (b): illustration of the different choices of v(x) (red), the heaviside function
(blue) and the derivative v′(x) (green). (c): convergence of the finite difference solution
to our formulation, for the test case v(x) = cos(xπ) and f(x) = x+ 1

5 Discretization

5.1 Semi-discretization in space

The primal and adjoint problems are solved by the finite element method. Thus, the weak
solution triple (u, v, f, s) satisfies for a.e. t ∈ (0, T ) and for all ϕ ∈ H1(Ω)

0 = 〈∇ · (σi + σe)∇u+∇ · σi∇v, ϕ〉 , (29)〈
∂v

∂t
, ϕ

〉
= 〈∇ · σi∇v +∇ · σi∇u− (Ifi + Iso + Isi) + Itr, ϕ〉 , (30)〈

∂f

∂t
, ϕ

〉
= 〈F (v, f), ϕ〉 , (31)〈

∂s

∂t
, ϕ

〉
= 〈S(v, s), ϕ〉 , (32)

(33)

together with initial and boundary conditions (10)-(13). Let Vh ⊂ H1(Ω) be the finite
dimensional subspace of piecewise linear basis functions with respect to the spatial grid.
The approximate solutions u,v, f and s are expressed in the form u(t) =

∑N
i=1 u i(t)ωi,

v(t) =
∑N

i=1 v i(t)ωi, f(t) =
∑N

i=1 f i(t)ωi and s(t) =
∑N

i=1 s i(t)ωi, respectively, where
{ωi}Ni=1 denote the basis functions. The semi-discretization of primal equations in space
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results in the differential algebraic system of the form:

Aieu + Aiv = Ie , (34)

M
∂v

∂t
= −Aiv −Aiu− (Ifi + Isi + Iso) + Itr , (35)

∂f

∂t
= F(v, f), (36)

∂s

∂t
= S(v, s), (37)

together with initial conditions for v, f and s, where Aie = {〈(σi + σe)∇ωi,∇ωj〉}Ni,j=1

and Ai = {〈σi∇ωi,∇ωj〉}Ni,j=1 are the stiffness matrices, M = {〈ωi, ωj〉}Ni,j=1 is the mass

matrix, and the vectors Ie, Iitr are defined by Ie = {〈(χ∂Ω1Ie − χ∂Ω2Ie) , ωj〉}
N∂Ω
j=1 and

Itr = {〈Itr, ωj〉}Nj=1, respectively. The expressions for Ifi(v, f), Isi(v, s) and Iso(v) are
defined by

Ifi(v, f) = (Ifi)

(
N∑
i=0

v iωi,
N∑
i=0

f iωi

)
,

Isi(v, s) = (Isi)

(
N∑
i=0

v iωi,

N∑
i=0

s iωi

)
, and

Iso(v) = (Iso)

(
N∑
i=0

v iωi

)
respectively.

Remark 5.1. Specifically, u0 has zero mean throughout the optimization. Moreover, the
iterative linear solver to obtain the current solution for (34) is initialized by the solution of
the previous time-level. In this way, the compatibility condition for the singular algebraic
system Eq. (34) is satisfied at each iteration level, i.e.

cT (−Aiv − Ie) = −(cTAi)v − cT Ie = 0,

where c = (1, . . . , 1)T is a constant vector. Analogously, the zero mean property is satisfied
at every time-level of the iterative procedure for solving the dual elliptic equation.

5.2 Time discretization

The semi-discretization of the Eq. (35) and of the adjoint equation (20) after space dis-
cretization can be expressed in the following general form,

M
∂x

∂t
= F(x), x(t0) = x0. (38)

To solve (38), we introduce discrete steps:

0 = t0, t1, . . . , tn = T ,

which are not necessarily equidistant. For the time discretization we employ the linearly
implicit Rosenbrock method to solve the Eq. (38). This belongs to a large class of methods
which avoid the nonlinear system and replace it by a sequence of linear ones. Here we
applied a third order Rosenbrock method called ROS3PL [19]. For details we refer to [9,
Section 3.2].
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5.3 Solution procedure

We describe the solution procedure to solve the primal system by decoupling the system
as follows.

Step 1: Use the available solution vi at time ti, solve the ODE equations (36), (37) for f i+1

and si+1 at time ti+1 by using the explicit Euler method.

Step 2: Use the solution vi at time ti, solve the discretized elliptic system (34) for ui+1at
time ti+1 by using a stabilized saddle point approach.

Step 3: Finally, by utilizing the computed solutions ui+1, f i+1 and si+1, solve the discretized
parabolic equation (35) for vi+1 at time ti+1 by applying the linearly implicit Runge-
Kutta method.

To solve the gating equations, we use the explicit Euler method which is cheaper in
terms of CPU time compared to implicit methods. The solutions of the singular linear
systems which arise after the full discretization of Eqs (1) and (19) are defined up to
an additive constant. We mentioned earlier that we impose a zero mean condition to
fix this constant. For the numerical realization of this condition we adopted a stabilized
saddle point formulation from the work of Bochev and Lehoucq [7]. The discussion and
implementation details of this technique for the current problem we refer to [9, 10]. To
solve the linear system we employed a BiCGSTAB [35] method with AMG preconditioner
[6], which is developed using a greedy heuristic algorithm for the aggregation based on a
strength of connection criterion. After the full discretization of (35) we obtain a system of
linear algebraic equations. To solve this linear system we employed a BiCGSTAB method
with Jacobi preconditioning.

The complete optimality system is solved by the non-linear conjugate gradient (NCG)
[23] combined with the Hager-Zhang variant update. It is well known that gradient based
algorithms exhibit slow convergence. In spite of that, due to their simple implementation
they are the method of choice to numerically verify that the proposed optimal control
approach is feasible. A line search procedure based on the Armijo rule with backtracking
is used to determine the updates during the optimization iterations.

5.4 Parallel implementation

In the context of optimal control of the bidomain equations the necessity of repeatedly
solving the coupled forward-backwards systems of primal and adjoint equations for possibly
very different inputs representing the controls, calls for using a parallel implementation,
which in our case is combined with a nonlinear conjugate gradient algorithm for solving
the optimal control problem. Recent research work on parallel tools and high performance
computing for the bidomain equations is devoted simulation of fine scale spatio-temporal
simulations with sufficient efficiency, see e.g. [25, 36, 24, 22, 31].

In our simulations we used the software package DUNE [2], especially the dune-pdelab
[4] discretization module, which is a C++ template based programming environment for
solving a general class of PDE’s. The internal parallel Cartesian (called Yasp) grid in
DUNE is used for parallel grid constructions. For the domain decomposition technique
the original domain is partitioned into sub domains and each sub domain is assigned to a
single processor. In our computations, we used a non overlapping domain decomposition
to solve the primal and adjoint equations.

5.5 Integrals along iso surfaces

As described in Section 4 it is necessary to evaluate integrals along the iso surface of the
control variable. This is achieved via a polygonal reconstruction of the iso surface and is
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Êt

TÊt
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Figure 2: Mesh cell E, its reference element Ê and the local triangulation used for the
interface reconstruction, with the reference line γ̂, or the reference triangle Êt. Integration
along the edge γ ⊂ Γ0 is constructed by concatenation of the transformations TE from the
reference element to global coordinates and Tγ̂ from the reference line to E.

exact for piecewise linear functions. For the integration we use the dune-mc library [16],
which provides a local reconstruction of the interface. The library implements an extended
marching cubes 33 algorithm [11], which constructs a local triangulation of the interface,
the two adjacent domains and the local connectivity graph. The reconstruction of the
local interface yields a set of geometric entities γ, for which standard Gauss quadrature
rules can be employed.

On each cell of the global mesh we consider vertex values vi = v(xi). We generate a
lookup-key by assigning (vi ≥ vc) to the i-th bit of an integer

k =
∑
i

(vi ≥ vc) · 2i .

Look up tables store for each key a unique reconstruction or a particular rule to disam-
biguate this situation, which then points to the disambiguated reconstruction. From the
lookup the library computes a set of lines (in 2D) or triangles (in 3D) and the position
of their vertices ξi. The library guarantees different topological consistencies, which are
necessary for numerical algorithms

1. The connectivity pattern of the cell vertices are preserved within each sub-entity of
the mesh cell. In particular this means that vertices connected along an edge, face
or volume, are still connected via the same sub-entity after the construction.

2. The exact interface Γ0 = {x : v(x) = vc} partitions each grid cell into patches be-
longing to two sub domains Ω|g=0 or Ω|g=1. In particular this means that the number
of patches and their domain association is the same for the polygonal reconstruction.

3. The vertices of the reconstructed interface lie on the exact interface, i.e. for each
vertex ξi the property vh(ξi) ≡ vc holds.

Using a co-dimension 1 Gauss quadrature rule (q, ω) (e.g. a 1D rule in 2D), with
quadrature points q and weights ω, the integral along the interface is evaluated as∫

Γ0,h

1

|∇v(x)|
f(x) dx =

∑
γ

∑
(q,ω)

ω
√

det(JEJγ̂J
T
γ̂ J

T
E )

1

|J−1
E

∑
j vj∇φj(q)|

f(q) ,

where JE denotes the Jacobin of the transformation TE and Jγ̂ that of Tγ̂ . The integration

volume is given as
√

det(JEJγ̂J
T
γ̂ J

T
E ), based on the concatenation of the transformations
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Tγ̂ and TE . The gradient of v(x) is evaluated in local coordinates of the reference element
E and transformed into global coordinated by multiplying with the inverse of the Jacobin.
The different transformations are depicted in Figure 2.

Assembling the local stiffness matrix requires the evaluation of integrals restricted to
a mesh cell. In addition to the standard term for the volume integrals we also evaluate
the integral along the interface segment γ, this is approximated in the following way:∫

γ

(Ifi)v + (Iso)v
|∇v|

φiφjdx =

∑
(q,ω)

ω
√

det(JEJγ̂J
T
γ̂ J

T
E )

(Ifi)v + (Iso)v

|J−1
E

∑
k vk∇φj(q)|

φi(q)φj(q) .

This procedure takes place on each individual element of the global mesh during the
assembly of the matrices. In parallel computations, the assembly of such terms is carried
out without requiring any further communication, as the construction is purely local.

6 Numerical Results

The computational domain is Ω = (0, 5)×(0, 5) ⊂ R2 of size 5×5 cm2 and a 256×256 uni-
form quadrilateral spatial grid is used which consists of 65,536 elements and 66,049 nodes.
Thus the computation involved 264,196 dofs for one PDE solve. In our computations, the
stopping criteria for the optimization algorithm is based on the following conditions.∥∥∥∇J(Ike)

∥∥∥
L2
≤ 10−5 ·

∣∣∣J(Ike)
∣∣∣ or

∣∣∣J(Ike)− J(Ik−1
e )

∣∣∣ ≤ 10−4. (39)

If these conditions are not satisfied within a prescribed number of 200 iterations, the
algorithm is terminated.

First numerical results based on boundary control of the bidomain equations are pre-
sented where the control acts on the left and right boundary of the computational domain,
as shown in Figure 3.

Ω

Anode

Cathode∂Ω1 ∂Ω2

∂Ω3

∂Ω3

Figure 3: The computational domain setup with stimulation boundaries.

In pathological states, structural discontinuous in the cardiac tissue play a crucial
role and can interfere with the spread of cardiac activation and contribute to initiation of
spiral waves and wave break [12, 14]. In our study, the structural heterogeneity is generated
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based on the histological image, see left panel of Figure 4. First we convert the histological
image to gray scale image, right panel of Figure 4. Then 0’s and 1’s are generated based
on this gray scale image. The generated 0’s and 1’s information is projected onto the
computational mesh. Subsequently, the conductivity tensor values are reduced by 10% in
all finite element cells marked by 1’s. The resulting conduction velocities are 0.54 and 0.39
in the longitudinal and transverse direction, respectively. The action potential duration
was 98 ms using the given parameters in Table 2.

Figure 4: Histological image of the cardiac tissue in the left panel [8]. The selected region
in the histological image converted to a gray scale image in the right panel.

Concerning initialization, a standard S1 − S2 stimulation protocol was applied to
induce a reentrant activation pattern. An initial S1 stimulus of Itr = 100 µA/cm3 and
5 msec duration was applied at time t = 0 msec along the bottom edge of the tissue sheet.
At time t = 183 msec, when the critical recovery isoline crossed the center of the sheet,
a second S2 stimulus of Itr = 100 µA/cm3 and 5 msec duration was applied in a small
region of 0.3 cm radius at the center of the domain. This S2 stimulus generated two phase
singularities at the intersections between critical recovery isoline and the boundary of the
S2 stimulus region, leading to a so-called Figure of Eight reentrant pattern. The solution
at t = 435 msec was then chosen as the initial state for simulating the delivery of electrical
shocks and the post-shock evolution following at the end of the shock.

The three temporal horizons are illustrated in Figure 5. The solution for the transmem-
brane voltage v in absence of any control is shown in Figure 10 at different time instances
to demonstrate that the reentry is sustained. While during the shock, which constitutes
the time period within which optimization takes place, the size of the time step was kept
constant at ∆t = 0.04 msec, adaptive time stepping of the ROS3PL method was used in
the pre- and post-shock phases.

|
induce reentry

|| shock

optimization
||

post shock
|

t = 0 msec 435 441 590

Figure 5: The time horizons.

6.1 Termination of reentrant waves

The desired trajectory of the transmembrane potential (vd) in (15) plays a crucial role
for successful defibrillation. In our computations, this is done by solving once the primal
problem using a prescribed time course of a stimulation current, Ie(t) = 0.2 mA/cm3. The
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optimal control procedure then determines a stimulus which still leads to defibrillation but
with less energy.

Figure 6: Interface tracking of the controlled transmembrane voltage solution during the
shock period at time t = 435 msec at left, t = 437 msec at middle and t = 441 msec at
right respectively. White lines represents the interface of function g(v), α1 = 0.05 and
α2 = 10.

In Figure 6 we depict the optimally controlled transmembrane voltage during the
shock period. We can see clearly a large number of virtual electrodes appear shortly after
delivering the suitable stimulus strength. Primarily, they appear along the fiber direction
on the computational domain, see in middle and right of Figure 6. The reconstructed
iso-surface at the critical value is depicted with white lines on the cardiac tissue. Here we
observed that the marching cube algorithm implementation library [16] detected all those
large number of electrodes.

The gradient value of the cost functional and associated values of the cost for α1 = 0.05
and different values for α2 are given on the left of Figure 7, as a function of the NCG
iterations. As expected, the values of the cost do not tend to zero. First, there is a
negligible control cost and, secondly, we certainly do not expect v to follow vd exactly.
Optimal controls for different values of α2 are depicted on the right of Figure 7. Successful
defibrillation is achieved for α2 ≤ 40, with smaller stimulus strength than that used for
generating vd which is 0.2 mA/cm3. The subsequent results are obtained with α2 = 10.

Figure 7: The minimum value of the cost functional and the optimal controls on the left
and right respectively with α1 = 0.05 and varying α2 = 10.

The optimally controlled state variables are presented in Figure 8 by plotting the
solution at the horizontal line extending from (0,3) to (5,3), for different time instances.
The first panel depicts the optimal extracellular potential which is small towards the end
of the control interval. The corresponding transmembrane potential value is plotted in
second panel of Figure 8, where one can see depolarization and hyperpolarization effects.
We observe that virtual electrodes appear randomly and the polarization value increases
with time. At the end of the shock period depolarization and hyperpolarization sustain for
a while before they also tend to zero. The virtual electrodes which have a big impact on
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the fast and slow gating variables, are depicted in the third and fourth panels of Figure 8
respectively. The difference between the maximum and minimum value of the fast gating
variable is large compared to the effect in the slow gating variable.

Figure 8: Optimal states versus time.

The post shock simulation results of the state variables are shown in Figure 9 as a
function of x1 at y1 = 3.0. The extracellular potential decays rapidly due to absence of
control input for the source function. The transmembrane voltage simulation takes a while
to disappear due to virtual electrodes. Since most of the computational domain is excited
at the end of shock period further excitation of the wave propagation is blocked and v
goes to rest at the end of the simulation. Similarly, the gating variables also take a while
to smoothing out before going to the resting state, see third and forth panels of Figure 9.

Figure 9: Optimal states during post shock period.

We can now compare the spatial representation of the uncontrolled solution u in Fig-
ure 10 to the controlled solution in the post shock phase in Figure 11. Clearly, the wave
propagation almost disappears at 539 msec of simulation time. It disappears completely
after 547 msec.

Figure 10: Uncontrolled solution of transmembrane voltage at times t = 443, 453, 481 and
539 msec respectively.

6.2 Numerical test with mesh dependency

We discuss the robustness of the optimization algorithm with respect to spatial grid re-
finement. Uniform Cartesian grids of size 128 × 128, 256 × 256, 512 × 512 as well as
1024 × 1024 were considered. First, the reentrant solution which is used as the initial
solution for optimization is generated on the 128 × 128 grid and, to eliminate possible
later effects on robustness the solution on finer grids is obtained by linear interpolation.
The conductivity tensors are generated directly form the histological mesh and the desired
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Figure 11: Controlled solution of transmembrane voltage during the post shock simulations
at times t = 443, 453, 481 and 539 msec respectively.

trajectory of the transmembrane voltage is constructed, each on different grid resolutions.
The optimal controls for these different mesh sizes are depicted in Figure 12. Apparently,
the optimal controls converge as the grid is refined.

The total value of the current
∫ T

0 Ie(t) dt is 2.5262 (mA ms)/cm3, 2.8352 (mA ms)/cm3,
2.8794 (mA ms)/cm3 and 2.9020 (mA ms)/cm3 for these four mesh sizes respectively, which
is clearly less than that used to generate vd. Still, the desired defibrillation is achieved in
all cases.

0 1 2 3 4 5 6
0

0.02

0.04

0.06

0.08

0.1

time [msec]

128x128
256x256
512x512
1024x1024

I  
(t)

e

Figure 12: Optimal control for different mesh sizes.

6.3 Parallel efficiency

The computational cost in an optimal control problem mainly depends on the PDE solves
for the primal and dual systems. Here we demonstrate the strong scalability of of the
PDE solve as well as the complete optimization problem. To assess the strong scaling
properties of the solvers used in this study benchmark simulations were performed using
a sufficiently fine resolution of a square 2D domain of size 5 × 5 cm which consisted of
262,144 elements and 263,169 nodes (512× 512 grid). The optimization computation was
restricted to 10 optimization iterations for better comparison of the computational time
over the different number of processors.

The parallel efficiency was measured by

e =
1

N

T1

TN

where TN is the total CPU time of a reference simulation on a single core and N and TN
are the number of cores and the total CPU time in the scalability experiments.

The parallel efficiency of this benchmark was demonstrated for different components of
the solver as well as for the complete optimization. Here we present the parallel efficiency in
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the left panel of Figure 13 for the finite element method assembly of the left hand side of the
matrix in the Rosenbrock time stepping method which needs to be computed in each time
step, and for the solution of elliptic, parabolic and ode problems. For these components,
an average time on total processors was measured to compute the parallel efficiency. We
can observe that solving the ODE scales very well up to 64 processors, since almost
no communication for this task is required. Only the solution of the elliptic solve scales
poorly on 64 processors. This can be attributed to the unfavorable surface-to-volume ratio
of local domains. With increasing N , the relation between local compute work performed
on inner nodes of the domain and the data communication which are proportional to the
size of shared domain interfaces, deteriorates, thus impeding any further efficient scaling.
The domain sizes with 32 and 64 cores in terms of nodes were 8385 and 4225 only. The
parabolic solver scales better than the elliptic solver. The CPU times on a single core
for assembling the matrix is 198.29 seconds, the solution of the ODE takes 0.55 seconds,
the parabolic solve needs 364.51 seconds, the elliptic solve uses 1302.50 seconds, and the
complete primal solve requires 2126.8 seconds. The dual problem requires 1876.87 seconds,
the complete optimization algorithm needs 47741.5 seconds and the post shock simulation
takes 12813.2 seconds. We observed that the elliptic solver requires 61.2% of the overall
computational time in the primal solve.

The BiCGSTAB with Jacobi preconditioner takes an average of 13 iterations at each
time step of the primal solve for the solution of parabolic problem for 1 up to 64 cores.
Also the parabolic part in the dual solve took an average of 13 iterations. For the solution
of the elliptic part in the primal problem, the BiCGSTAB with AMG preconditioning
required 13 iterations on 1 core and on 64 cores it needed 25 iterations. For the elliptic
equation in the dual problem, an average of 12 iterations on 1 core and an average of 22
iterations on 64 cores were required.

Furthermore, the efficiency for one primal and one dual solve, for the optimization
algorithm as well as for the post simulation are depicted in the right panel of the Figure 13.
Here we can observe that these components scale well up to 32 cores and poorly on 64
cores.

Figure 13: Parallel efficiency for the PDE solve and optimization computation.

7 Conclusion

We presented an optimal control technique for achieving successful defibrillation of reen-
trant activation patterns in a 2D sheet of cardiac tissue by taking into account their
dynamical systems behavior for proper choice of a cost functional. The conductivity ten-
sor distribution was based on the histological images. The Fenton-Karma model presents
a particular challenge due to a Heaviside side function which appears in the source term.
It describes a switching behavior of the gating variable depending on the transmembrane
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voltage. The main steps to overcome the resulting difficulties consisted in using shape
calculus techniques to derive the sensitivity equations and an extended marching cube
algorithm [16] for efficient numerical treatment of the interfaces, including iso-isosurface
integrations during the finite element assembly of matrices in the computational domain.
We also discussed parallel efficiency for the complete optimization as well as individual
components. These techniques are applicable for a wider class of phenomenological mod-
els describing the ionic behavior on electro-physiological heart models, where switching
structure play an essential role.
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A Appendix

The simulation parameters which are used in our computations are given in the following
table.

σel 3e−3 vc 0.13 τ−f1 19.6 τ−s 11.0

σet 1.9e−3 vsic 0.85 τ−f2 1000.0 τ+
s 667.0

σil 3e−3 κ 10.0 τ+
f 3.33 τ0 8.3

σit 3.6e−4 τfi 0.36 τsi 45.0 τr 50.0

Table 2: Simulation parameters
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