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Abstract

Fourier extensions have been shown to be an effective means for the approximation of smooth,
nonperiodic functions on bounded intervals given their values on an equispaced, or in general,
scattered grid. Related to this method are two parameters. These are the extension parameter T
(the ratio of the size of the extended domain to the physical domain) and the oversampling ratio
η (the number of sampling nodes per Fourier mode). The purpose of this paper is to investigate
how the choice of these parameters affects the accuracy and stability of the approximation.
Our main contribution is to document the following interesting phenomenon: namely, if the
desired condition number of the algorithm is fixed in advance, then the particular choice of such
parameters makes little difference to the algorithm’s accuracy. As a result, one is free to choose
T without concern that it is suboptimal. In particular, one may use the value T = 2 – which
corresponds to the case where the extended domain is precisely twice the size of the physical
domain – for which there is known to be a fast algorithm for computing the approximation. In
addition, we also determine the resolution power (points-per-wavelength) of the approximation
to be equal to Tη, and address the trade-off between resolution power and stability.

1 Introduction

In many problems, one is faced with the task of recovering a smooth function f : [−1, 1] → C

to high accuracy from its pointwise samples on an equispaced, or in general, scattered grid. This
problem is challenging, unless the grid points have a specific distribution, since it is difficult to
simultaneously ensure both rapid convergence and numerical stability. In particular, for equispaced
data a result of Trefethen, Platte & Kuijlaars states that no stable method can converge faster
than root-exponentially in the number of data points [13], and that any method with more rapid
convergence must necessarily be unstable.

Nevertheless, it has been widely reported that so-called Fourier extensions (also known as
Fourier continuations) lead to effective methods in practice for reconstructions from equispaced
or scattered data [4, 5, 6, 7, 9, 10]. This was confirmed recently in [4] wherein it was shown that
Fourier extensions (henceforth abbreviated to FEs) circumvent the stability barrier of [13] in a
certain sense. Specifically, they converge down to a finite, but user-controlled, maximal accuracy.

In the method of FEs a function f : [−1, 1] → C is approximated by a Fourier series of degree
N defined on a larger domain [−T, T ], where T > 1 is a user-controlled parameter. Suppose now
that the number of equispaced data points is equal to 2M + 1 for some M ≥ N . As shown in
[4, 10], if M = ηN for some fixed oversampling ratio η ≥ 1, then one may compute an accurate and
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stable FE approximation of f from this data by a simple least-squares fit (see also §2 for details).
Moreover, when the extension parameter T is equal to 2 – that is, the extended domain [−T, T ] is
precisely twice the size of the physical domain [−1, 1] – an algorithm developed by M. Lyon allows
for the computation of the FE approximation in only O

(

M(logM)2
)

operations [11]. Note that
this fast algorithm relies on the particular symmetries of FEs when T = 2.

From a practical standpoint, it is vitally important to understand how to choose the parameters
T and η. The purpose of this paper is to address this issue. In particular, we seek to determine how
choices of these parameters affect both the stability and the accuracy of the FE approximation.
Note that, due to the aforementioned fast algorithm, there is a seeming advantage to using the
value T = 2. However, is choice optimal vis-a-vis the other properties of the algorithm, namely,
convergence and stability? Or does another choice (albeit lacking a fast algorithm) give better
numerical performance in these respects? We shall provide answers to these questions.

It is known that different choices of T affect the intrinsic approximation properties of the FE
approximation system, i.e. the space of trigonometric polynomials of degree N on the extended
domain [−T, T ] [3, 4, 5]. For example, when T is close to 1, the FE approximation system possesses
better resolution power for oscillatory functions [3]. However, it is perhaps not surprising that such
choices also require larger oversampling parameters η to maintain the algorithm’s stability. When
M is fixed, a larger η means a smaller parameter N , and therefore the best approximation error in
the above subspace, which is determined by the size of N , is correspondingly larger.

From this argument, it is apparent that a balance must be struck between T and η so as
to preserve accuracy and stability. The main result we obtain in this paper through numerical
experiment is that these two effects precisely counteract each other. Specifically, if the desired
condition number of the algorithm is fixed in advance, then, provided T is not too large, the precise
choice of T makes no substantial difference to the accuracy of the Fourier extension algorithm.
Smaller T is exactly offset by the requirement of a larger value of η to preserve stability.

From this result, we are able to draw two main conclusions. First, any attempt to optimize
T will only bring limited, and most likely highly function-dependent, success. Second, since the
choice of T makes little difference, one may safely use T = 2, and the resulting fast algorithm,
without worrying that this choice may be suboptimal. We remark in passing that some previous
insight into the effect of the parameters was given by Bruno et al. in [7]. However, this was largely
carried out for specific functions.

On the face of it, the conclusion we draw may appear surprising, or at the very least, a pe-
culiar phenomenon isolated to the particular choice of equispaced data. After further numerical
experiments, we conclude that this phenomenon is actually quite widespread. Specifically, we show
exactly the same results for both scattered nonequispaced data, as well as Fourier data. Hence we
conclude that unless the data is chosen specifically to favour a particular choice of T (see §5 for an
example of such data), the value of T makes little difference to the algorithm. We note here that,
much as in the case of equispaced data, a fast Fourier extension algorithm for scattered data has
also been developed in the case T = 2 [12].

In some applications, including the numerical solution of PDEs, an important question about
an approximation algorithm is that of resolution power. Specifically, how many measurements (e.g.
equispaced function samples) are required to recover an oscillation of frequency ω. This topic was
first investigated rigorously by Gottlieb & Orszag [8], who popularized the concept of points-per-
wavelength. Through our experiments we establish that this quantity for FE approximations is
given by the product of T and η. We give theoretical arguments as to why this should be the case,
and in the case T = 2 (and therefore, by the above discussion, all values of T ) provide numerical
results assessing the tradeoff between resolution power and numerical stability.

As the reader will have noticed, our aim in this paper is to investigate FEs through numerical
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experiment. The main conclusion we draw is based solely on the result of these experiments.
Although we do present some mathematical insight as to why it should hold, this is a ways short
of a proof. We leave this as a topic for future work. As we explain in §6, this will likely require an
intricate analysis of the singular values and singular vectors of a certain matrix related to Slepian’s
prolate matrix [14, 17], which is beyond the scope of this paper. Nevertheless, we feel the conclusion
we draw, albeit without a proof, is of substantial independent interest for anyone seeking to use
FEs in practice.

2 Fourier extensions

Our concern in this paper is the approximation of functions defined on compact intervals, which
without loss of generality we take to be [−1, 1]. The method of Fourier extensions (FEs) is based
on approximating such functions using a Fourier series defined on an extended interval [−T, T ],
where T > 1 is the so-called extension parameter. In other words, given N ∈ N we compute an
approximation to f from the subspace

G(T )
N := span {φn : |n| ≤ N} , φn(x) = ei

nπ
T

x.

2.1 Approximation properties of the subspace G(T )
N

We now present several results concerning the intrinsic approximation properties of the subspace

G(T )
N . We use the notation Hk(−1, 1) for the standard Sobolev space on an interval (−1, 1), where

k ≥ 0. We denote the corresponding norm by ‖·‖Hk(−1,1).

Theorem 2.1 ([3]). Let T0 > 1 and suppose that f ∈ Hk(−1, 1) for some k ≥ 0. Then, for each

N ∈ N and T ≥ T0, there exists a φ ∈ G(T )
N such that

‖f − φ‖L2(−1,1) ≤ C(k, T0)

(

Nπ

T

)−k

‖f‖Hk(−1,1), ‖φ‖L2(−T,T ) ≤ C(k, T0)‖f‖Hk(−1,1),

for some constant C(k, T0) depending on k and T0 only.

This theorem asserts algebraic convergence of the best approximations in G(T )
N when f has k

derivatives, and superalgebraic convergence whenever f is smooth. Note that it also implies the

existence of a function φ ∈ G(T )
N which gives such convergence rates, and which cannot grow too

large on the extended domain [−T, T ]. This will be of significance in §2.3.
Our next result confirms geometric convergence of best approximations in G(T )

N in the case that
f is analytic. To state this result, we first recall the definition of a Bernstein ellipse:

B(ρ) =
{

1
2

(

ρ−1eiθ + ρe−iθ
)

: θ ∈ [−π, π]
}

⊆ C, ρ > 1.

As discussed in [4, 9], Fourier extensions can be viewed as polynomial approximations in the mapped
variable z = m(x), where

m(x) = 2
cos π

T x− cos π
T

1− cos π
T

− 1. (2.1)

Note that m maps [0, 1] to [−1, 1] bijectively. Since the convergence of polynomial approximations
of analytic functions is determined by Bernstein ellipses, it makes sense to introduce the new regions

D(ρ) = m−1(B(ρ)), ρ > 1,

We now have the the following theorem:
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Theorem 2.2 ([9]). Let T > 1 be given and suppose that f is analytic in D(ρ′) for some ρ′ > 1

and continuous on its boundary. Then, for each N ∈ N, there exists a φ ∈ G(T )
N such that

‖f − φ‖L∞(−1,1) ≤
cf (T )

1− ρ
ρ−N , (2.2)

where cf (T ) > 0 is proportional to maxz∈D(ρ) |f(z)|,

ρ = min
{

ρ′, E(T )
}

,

and E(T ) = cot2
(

π
4T

)

. Moreover, φ satisfies

‖φ‖L∞(−T,T ) ≤ cf (T ) (E(T )/ρ)N . (2.3)

This theorem establishes geometric convergence of best approximations in G(T )
N . However, (2.3)

suggests that in order to obtain such a convergence rate, one may have to allow for exponential
growth of the corresponding φ in the extended domain [−T, T ] whenever ρ < E(T ). We shall return
to this observation in §2.3.

We remark also that Theorem 2.2 asserts that the maximal rate of geometric convergence is
limited to E(T ), even if f is entire. This is due to the mapping m−1 which introduces a square-root
type singularity and thereby limits the overall rate of convergence. See [4, 9] for a discussion.

2.2 Fourier extensions from equispaced data

The concern of the majority of this paper is the approximation of a function f from its values

f(m/M), m = −M, . . . ,M,

on an equispaced grid of 2M + 1 points. For convenience, let us define the operator

SM : L∞(−1, 1) → C
2M+1, f 7→ 1√

M
(f(m/M))Mm=−M .

We refer to SM as the sampling operator. Given the vector SM(f) of samples of f , we construct
its FE approximation in the standard way via a least-squares data fit [4, 5, 7, 9, 10]. Let N ≤ M
be given. Then we define the FE approximation as follows:

F
(T )
N,M (f) := argmin

φ∈G(T )
N

∑

|m|≤M

|f(m/M)− φ(m/M)|2 , (2.4)

or more succinctly,

F
(T )
N,M (f) := argmin

φ∈G(T )
N

|SM(f − φ)| ,

where | · | denotes the usual Euclidean norm on C
2M+1. Note that FN,M is an operator with domain

L∞(−1, 1) and range G(T )
N . Moreover, if we denote

F
(T )
N,M (f) =

∑

|n|≤N

ane
inπ
T

x,

then the vector a = (an)
N
n=−N of FE coefficients is the solution of the least squares problem

a = argmin
c∈C2N+1

∣

∣

∣A(T )c− SM(f)
∣

∣

∣ , (2.5)
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where A(T ) ∈ C
(2M+1)×(2N+1) has entries

(A(T ))m,n =
1√
M

ei
nmπ
T , |m| ≤ M, |n| ≤ N.

Note that the normalization 1/
√
M in both SM and A(T ) means that the entries of the normal

matrix (A(T ))∗A(T ) are Riemann sum approximations to the Gram matrix of the functions φn(x).
This ensures that the singular values of A(T ) lie between 0 and 1 for large M , which, since we
typically consider truncated SVDs with a fixed truncation parameter (see later), ensures that there
is no linear drift in the error for large M .

For convenience, let us now introduce some additional notation. Let

L
(T )
N,M : C2M+1 → C

2N+1,

be defined by

L
(T )
N,M (b) = argmin

c∈C2N+1

∣

∣

∣
A(T )c− b

∣

∣

∣
, (2.6)

and let
R

(T )
N : C2N+1 → G(T )

N , a = (an)
N
n=−N 7→

∑

|n|≤N

ane
inπ
T

x.

Note that F
(T )
N,M = R

(T )
N ◦ L(T )

N,M ◦ SM .
As discussed in [4], the algebraic least-squares problem to be solved in (2.6) is highly ill-

conditioned. When applied to (2.6), different numerical algorithms may consequently give some-
what different results. For this reason, it is important to specify the solver used. In the majority
of this paper, as has been previously considered in [4, 5, 10], we solve (2.6) by using truncated
singular value decompositions (SVDs). If UΣV ∗ denotes the SVD of A(T ), where Σ is the diagonal
matrix of singular values σ1 ≥ σ2 ≥ . . ., then we correspondingly define

L
(T,ǫ)
N,M(b) = V Σ(ǫ)U∗b,

where Σ(ǫ) is the diagonal matrix with nth entry 1/σn if σn > ǫ and 0 otherwise. Here ǫ > 0 is
the truncation parameter, which we take to be 10−13 unless specified otherwise. We denote the

corresponding FE by F
(T,ǫ)
N,M (f).

Having said this, we note that the quantities introduced below for studying equispaced FEs –
namely, the condition number and numerical defect constant – are not specific to the SVD algorithm.
In particular, one can compute such quantities for each different numerical solver and thereby
directly compare the effectiveness of an equispaced FE resulting from an SVD with an equispaced
FE computed usingMatlab’s \ orMathematica’s LeastSquares commands, for example. We return
to this briefly in §3.3.

Remark 2.3 Regardless of the solver used, it is important that the least-squares (2.6) is regularized
when solved numerically. This is done by the parameter ǫ with the SVD approach, or automatically
when using an blackbox least-squares solver such as Matlab’s \ or Mathematica’s LeastSquares.

As shown in [4], the ‘exact’ FE mapping f 7→ F
(T )
N,M (f), i.e. that obtained by solving (2.6) in

infinite precision, is ill-conditioned and suffers from a Runge phenomenon unless the number of
equispaced points M scales quadratically with N . Such severe scaling is undesirable, and is due
solely to the behaviour of the Fourier series corresponding to singular vectors with small singular

values. Fortunately, when the system (2.6) is regularized and F
(T,ǫ)
N,M is computed, this scaling drops
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to linear in N . Moreover, the Fourier series of the excluded singular values are precisely those
which are small on the domain [−1, 1] but large on [−T, T ]\[−1, 1]. Thus, their exclusion has little
effect on the approximation of f . Note that a similar behaviour is also witnessed when different
solvers are used for (2.6), such as those listed above.

2.3 Condition number and error bounds for equispaced FE approximations

We now provide estimates for the accuracy and stability of F
(T )
N,M (f). The key point is that these

formulae involve constants which can be computed numerically. This will be discussed in the next
section. First, however, we require the following assumption:

Assumption. The operator L
(T )
N,M defined by solving (2.6) with a standard numerical solver (e.g.

truncated SVDs) is approximately a linear operator.

Note that the exact, i.e. infinite precision, version of L
(T )
N,M is of course a linear operator. Hence

it is not unreasonable that its finite precision counterpart acts in the same way. Observe also that

this assumption implies that the overall numerical FE operator F
(T )
N,M is also linear.

With this in hand, we can now define the condition number in the usual way:

Definition 2.4 (Condition number). The (absolute) condition number of the equisapced FE ap-

proximation F
(T )
N,M is given by

κ
(T )
N,M = max

b∈C2M+1

b6=0







‖R(T )
N ◦ L(T )

N,M(b)‖∞
|b|∞







. (2.7)

Here ‖g‖∞ = supx∈[−1,1] |g(x)| is the uniform norm on [−1, 1] for g ∈ L∞(−1, 1) and |b|∞ =

max|m|≤M |bm| for b = (bm)|m|≤M ∈ C
2M+1.

We remark that κ
(T )
N,M is the absolute condition number, as opposed to the more standard

relative condition number [15]. It measures the absolute sensitivity of the FE to perturbations in
the samples of f , and transpires to be substantially easier to compute in practice. Note also that

the definition implicitly assumes linearity of the mapping L
(T )
N,M .

We now consider the approximation error. For this we require the following definition:

Definition 2.5 (Numerical defect constant). The numerical defect constant of the equispaced FE
is given by

λ
(T )
N,M = max

a∈C2N+1

a 6=0







∥

∥

∥R
(T )
N

(

a− L
(T )
N,M ◦ SM ◦R(T )

N (a)
)∥

∥

∥

∞
|a|∞







. (2.8)

Before showing the relevance of this constant to error bounds, let us first consider its meaning.

Recall that each vector a corresponds uniquely to a function φ ∈ G(T )
N given by φ = R

(T )
N a. Thus

the numerator in (2.8) reads
∥

∥

∥
φ− F

(T )
N,M (φ)

∥

∥

∥

∞
.

In infinite precision, the FE operator F
(T )
N,M satisfies F

(T )
N,M (φ) = φ for φ ∈ G(T )

N . In other words, it
is a projection. Hence the numerical defect constant measures how close the numerical, i.e. finite
precision, FE operator is to possessing this property.

We are now able to provide an error bound for F
(T )
N,M (f):
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Lemma 2.6. Let f ∈ L∞(−1, 1) and suppose that F
(T )
N,M (f) is given by (2.4). Then

‖f − F
(T )
N,M (f)‖∞ ≤ inf

a∈C2N+1

{(

1 + κ
(T )
N,M

)

‖f −R
(T )
N (a)‖∞ + λ

(T )
N,M |a|∞

}

, (2.9)

where λ
(T )
N,M is as in (2.8).

Proof. Let a ∈ C
2N+1 be arbitrary and write φ = R

(T )
N (a) ∈ G(T )

N . Then, using linearity of F
(T )
N,M

(Assumption 1), we obtain

‖f − F
(T )
N,M (f)‖∞ ≤ ‖f − φ‖∞ + ‖F (T )

N,M (f − φ)‖∞ + ‖φ− F
(T )
N,M (φ)‖∞.

We consider the latter two terms separately. For the first, note that

‖F (T )
N,M (f − φ)‖∞ = ‖R(T )

N ◦ L(T )
N,M ◦ SM(f − φ)‖∞ ≤ κ

(T )
N,M |SM (f − φ)|∞ ≤ κ

(T )
N,M‖f − φ‖∞.

This gives the corresponding second term in (2.9). We now consider the other term. We have
∥

∥

∥
φ− F

(T )
N,M (φ)

∥

∥

∥

∞
=
∥

∥

∥
R

(T )
N

(

a− L
(T )
N,M ◦ SM ◦R(T )

M (a)
)∥

∥

∥

∞
≤ λ

(T )
N,M |a|∞,

as required.

Let us now interpret this error bound. In §2.4 we shall observe numerically that

κ
(T )
M/η,M ∼ κ̃T,η logM, λ

(T )
M/η,M ∼ λ̃T,ηM, M → ∞, (2.10)

where κ̃T,η and λ̃T,η are independent of M . Furthermore, the ratio µ = λ̃T,η/κ̃T,η is roughly 10−13

in magnitude, regardless of the choice of T or η. Hence, one has the estimate

‖f − F
(T )
N,M (f)‖∞ ≤ κ̃η,TM inf

a∈C2N+1

{

‖f −R
(T )
N (a)‖∞ + µ|a|∞

}

, N = M/η. (2.11)

The key aspect of this bound is that it separates the error into two component. The first, namely,
κ̃η,T , is determined by the parameters η = M/N and T , and is independent of the function f .
Moreover, as we see next, it can be computed numerically. The second, i.e. the term

EN (f) := inf
a∈C2N+1

{

‖f −R
(T )
N (a)‖∞ + µ|a|∞

}

, (2.12)

is crucially independent of η and depends only on the intrinsic approximation properties of the

subspace G(T )
N and the smoothness of f . In particular, combining Lemma 2.6 with Theorems 2.1

and 2.2, we immediately obtain the following:

Corollary 2.7. Let EN (f) be given by (2.12). If f ∈ Hk(−1, 1) then

EN (f) ≤ min
0≤l≤k

{

C(l, T0)‖f‖Hl(−1,1)

(

(

Nπ

T

)−l

+ µ

)}

, (2.13)

for each T ≥ T0, where T0 and C(l, T0) are as in Theorem 2.1. Moreover if f is analytic in D(ρ)
and continuous on its boundary, then one has

EN (f) ≤ cf (T )ρ
−N
(

1 + µE(T )N
)

, (2.14)

where cf (T ) is as in Theorem 2.2.
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Figure 1: Best approximation error (left) and coefficient norm (right) for the function f(x) = 1
40−39x in finite

precision (thicker line) and infinite precision (thinner line). The latter was computed in Mathematica using
additional precision.

This corollary explains the behaviour of EN (f) in both finite and infinite precision. In infinite
precision, where µ = 0, the bound (2.14) shows geometric decay of EN (f) for all N at a rate
equal to ρ. In finite precision, however, the small, but nonzero constant µ dramatically alters
the convergence. Geometric decay still occurs for small N , when the term µE(T )N in (2.14) is
small, but once N ≥ N0 = − log µ/ logE(T ) the right-hand side of (2.14) begins to increase. For
N ≥ N0, EN (f) no longer decays geometrically. Instead, its decay is described by the bound (2.13).
Specifically, algebraic decay in N occurs down to a maximal achievable accuracy on the order of µ.
Note that the constant term C(l, T )‖f‖Hl(−1,1) usually grows with l, thus as EN (f) approaches µ
the effective rate of decay usually lessens.

This behaviour is illustrated in Figure 1. As we see, geometric convergence in infinite precision
requires geometric growth of the coefficient vector a. Conversely, in finite precision, such conver-
gence is sacrificed for algebraic convergence whilst maintaining a bounded coefficient norm. We
refer to [4] for a more detailed discussion.

2.4 Computing the condition number and numerical defect constant

Whilst Corollary 2.7 explains the decay of EN (f), in order to understand the error of the equispaced

FE F
(T )
N,M (f) we need to determine the magnitudes of κ

(T )
N,M and λ

(T )
N,M . The former also determines

the stability of F
(T )
N,M . As we discuss further in §6, it is as of yet unknown how to do this analytically,

hence we now resort to numerical investigations. For this we need a means of computing κ
(T )
N,M and

λ
(T )
N,M . This follows from the next two lemmas:

Lemma 2.8. Let em, |m| ≤ M , be the canonical basis for C
2M+1. Then

κ
(T )
N,M = sup

x∈[−1,1]

∑

|m|≤M

∣

∣

∣
R

(T )
N ◦ L(T )

N,M(em)(x)
∣

∣

∣
.

Proof. If b = (bm)|m|≤M ∈ C
2M+1, we may write b =

∑

|m|≤M bmem. By linearity

R
(T )
N ◦ L(T )

N,M (b) =
∑

|m|≤M

bmR
(T )
N ◦ L(T )

N,M (em),

and therefore
κ
(T )
N,M ≤ sup

x∈[−1,1]

∑

|m|≤M

|R(T )
N ◦ L(T )

N,M(em)|.
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Conversely,

κ
(T )
N,M = sup

x∈[−1,1]
max

b∈C2M+1

b6=0

∣

∣

∣

∑

|m|≤M bmR
(T )
N ◦ L(T )

N,M (em)(x)
∣

∣

∣

|b|∞
.

We now set bm equal to the complex sign of R
(T )
N ◦ L(T )

N,M(em)(x) to deduce the lower bound.

This lemma allows for approximate computation of κ
(T )
N,M . Let K ∈ N be given and define

xk =
T (k − 1)

K
− 1, k = 1, . . . ,KT ,

where

KT =

⌊

2K

T
+ 1

⌋

.

Note that {xk}KT

k=1 is a set of KT equispaced nodes in [−1, 1]. Therefore

κ
(T )
N,M = lim

K→∞
κ
(T )
N,M,K ,

where
κ
(T )
N,M,K = max

k=1,...,KT

∑

|m|≤M

∣

∣

∣R
(T )
N ◦ L(T )

N,M (em)(xk)
∣

∣

∣ ,

is a computable quantity. We remark also κ
(T )
N,M,K can be computed efficiently using Fast Fourier

Transforms (FFTs), since the functions R
(T )
N ◦ L

(T )
N,M (em)(x) are Fourier series and {xk}KT

k=1 are
appropriately constructed equispaced nodes. Throughout this paper we shall consistently use the
value K = 215 in our numerical experiments.

We use a similar approach in order to compute the numerical defect constant. Analogously to
Lemma 2.8, we have the following:

Lemma 2.9. Let en, |n| ≤ N , be the canonical basis for C
2N+1. Then

λ
(T )
N,M = sup

x∈[−1,1]

∑

|n|≤N

∣

∣

∣W
(T )
N,M(en)(x)

∣

∣

∣ ,

where W
(T )
N,M = R

(T )
N −R

(T )
N ◦ L(T )

N,M ◦ SM ◦R(T )
N .

Much as before, we may now write

λ
(T )
N,M = lim

K→∞
λ
(T )
N,M,K , λ

(T )
N,M,K = max

k=1,...,KT

∑

|n|≤N

∣

∣

∣W
(T )
N,M(en)(xk)

∣

∣

∣ .

where the latter can once more be computed efficiently using FFTs.

Having demonstrated how to compute κ
(T )
N,M and λ

(T )
N,M , in Figures 2 and 3 we present the result

of such computations for the case where the FE is computed using an SVD with tolerance ǫ = 10−13.
The results confirm the scaling (2.10) for these quantities. Moreover, these results also show that
the quantity

µ
(T )
M/η,M =





λ
(T )
M/η,M

κ
(T )
M/η,M





(

logM

M

)

≤ µ, ∀M ≫ 1, (2.15)
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Figure 2: Top row: the quantities κ
(T,ǫ)
M/η,M (left), λ

(T,ǫ)
M/η,M (middle) and µ

(T,ǫ)
M/η,M := λ

(T )
M/η,M/κ

(T )
M/η,M (right)

against M for η = 1, 1.125, 1.25, 1.5, 2, 2.5, 3, 4, 5 (thickest to thinnest), ǫ = 10−13 and T = 2. Bottom row:
the same quantities scaled by logM , M and M/ logM respectively.
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Figure 3: Top row: the quantities κ
(T,ǫ)
M/η,M (left), λ

(T,ǫ)
M/η,M (middle) and λ

(T )
M/η,M/κ

(T )
M/η,M (right) against M

for η = 1, 1.125, 1.25, 1.5, 2, 2.5, 3, 4, 5 (thickest to thinnest), ǫ = 10−13 and T = 1.25. Bottom row: the same
quantities scaled by logM , M and M/ logM respectively.
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Figure 4: Contour plot of κ
(T,ǫ)
N,ηN against 1 < T ≤ 6 (horizontal axis) and 1 ≤ η ≤ 6 (vertical axis) for

N = 250 and ǫ = 10−13.

where µ is roughly 10−13 in magnitude, regardless of the choice of T and η.

Note that in both cases a larger oversampling ratio η leads to a smaller condition number κ
(T,ǫ)
M/η,M

and numerical defect constant λ
(T,ǫ)
M/η,M . Moreover, the larger value of T , in this case, T = 2, has a

smaller condition number for the same oversampling value than the smaller value T = 1.25. The
purpose of the next section is to investigate the exact nature of these relative scalings.

Remark 2.10 Several previous papers have investigated quantities similar to κ
(T )
N,M and λ

(T )
N,M .

In [4] and [10], quantities based on the exact singular values and vectors of the matrix A(T ) were
investigated using high-precision numerical computations. The approach we take above differs from

these studies in two aspects. First, κ
(T )
N,M and λ

(T )
N,M can be formulated for any numerical solver,

not just truncated SVDs. Second, when truncated SVDs are used, they incorporate the numerical
errors in the calculation of the singular values and vectors. Since the matrix A(T ) is ill-conditioned,
these errors cannot be assumed to be insignificant.

3 Numerical investigation

We now suppose that the FE is computed using an SVD as described in §2.2. Our aim is to examine

the behaviour of κ
(T,ǫ)
N,M , and later λ

(T,ǫ)
N,M , with respect to T and the oversampling ratio η = M/N ,

and how this affects the accuracy of the corresponding FE approximation.

In Figure 4 we give a contour plot of κ
(T,ǫ)
N,ηN as function of T and η. As is evident, increasing

either η or T leads to a smaller condition number. This suggests that in practice, a balance must be
struck between η and T so as to get a good condition number whilst retaining a good approximation
properties (recall that larger values of T possess worse resolution power [4], whereas larger values
of η yield worse approximations for a fixed budget of M equispaced data points).
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Before investigating this interplay further, let us briefly explain why the condition number
behaves in this way. Clearly, increasing η results in a smaller value of N = M/η, and therefore

an approximation space G(T )
N of smaller dimension. The condition number, the maximum taken

over this space, therefore decreases. Conversely, when T is decreased, this means that the Fourier

basis is defined over a smaller domain. But the Fourier series φ = R
(T )
N ◦ L

(T )
N,M (b) must fit the

nonperiodic data b in a least-squares sense on the original domain [−1, 1] and must be periodic on
the extended domain. To do this, φ will be required to take increasingly larger values between data
points as T → 1+, giving it a bigger uniform norm in comparison to the data norm |b|∞.

3.1 Setup

In order to make a comparison, for each different value of T used we shall choose the ratio η = M/N
in such a way that the condition number is the same. Specifically, let κ∗ > 1 be fixed. Then for
each T and each M in some specified range, we numerically compute the maximum N such that
the condition number is no more than κ∗ logM . In other words, we compute the function

Θ(T )(M ;κ∗) = max
{

N : κ
(T )
N,M ≤ κ∗ logM

}

, M ∈ N. (3.1)

Note that we allow logM factor here since κ
(T )
M/η,M grows like logM as M → ∞. With this scaling,

Θ(T )(M ;κ∗) will be linear in M (see later).
The function (3.1) can be computed numerically for each M . This follows from the fact that

κ
(T )
N,M can be computed (see §2.4). Note also that Θ(T )(M ;κ∗) can be computed for any particular

numerical solver used to solve the least squares (2.6), and thus allows a comparison between different
methods. We consider this further in §3.3.

Having computed (3.1) for each value of T = T1, . . . , Tr and some range of M , we next use these
values to compare approximation properties of the corresponding equispaced FEs

F
(Tj)
N,M (·), where N = Θ(Tj)(M ;κ∗), j = 1, . . . , r.

When doing this, we shall consider a suite of different test functions, described further below.
Observe that (3.1) determines the largest value of N for which the condition number is at most

κ∗ logM . Thus, setting N = Θ(T )(M ;κ∗) when computing the FE F
(T )
N,M (f) ensures the best

approximation properties for each value of T (since N is maximal) whilst retaining the same
condition number for the different choices T = T1, . . . , Tr. Thus a comparison between these
different values of T can be made, using the condition number as the common fixed point.

We now require appropriate test functions. Our first three functions are as follows:

f1(x) = e230
√
2iπx f2(x) = sin(400x2) f3(x) = Ai(−66− 70x)

These functions all exhibit oscillations, which make them challenging to approximate from equis-
paced data. Plots of f2 and f3 are given in Figure 5. Our next collection of test functions feature
singularities in the complex plane near [−1, 1], again making them difficult to approximate:

f4(x) =
1

1 + 1500x2
f5(x) =

1

60− 59x
f6(x) =

1

1 + 25 sin2 8x
.

A plot of f6 is shown in Figure 5. Our final collection of functions, also displayed in Figure 5, is

f7(x) = esin(21.6πx−10.8π)−cos 8πx f8(x) = e−1/(8x)2 f9(x) = s(x).

12
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Figure 5: Top row: the functions f2, f3 and f6. Bottom row: the functions f7, f8 and f9.

T 1.125 1.25 1.5 2.0 2.5 3.0 4.0 5.0 6.0

κ∗ = 10 0.21 0.23 0.28 0.37 0.46 0.55 0.73 0.91 1.00

κ∗ = 25 0.25 0.28 0.33 0.45 0.55 0.66 0.89 1.00 1.00

κ∗ = 100 0.31 0.35 0.42 0.55 0.69 0.82 1.00 1.00 1.00

Table 1: The approximate linear scaling of Θ(T )(M ;κ∗) with M . Values were computed using linear regres-
sion on the data obtained in Figure 6.

Note that f7 is often used in testing algorithms for recovering functions to high accuracy from
equispaced data, and f8 is made challenging by its lack of analyticity and the flat region near
x = 0. The function f9 is similar to that introduced in [16]. It is obtained by the following
iteration:

• s(x) = sinπx, f(x) = s(x)
• For j = 1, 2, . . . , 10, s(x) = 3/4(1 − 2s(x)4), f(x) = f(x) + s(x).

3.2 Numerical results

In Figure 6 we plot the function Θ(T )(M ;κ∗) against M for various values of T and κ∗. Note that
this function is approximately linear in M . Moreover, its gradient is larger for bigger values of T , as
expected from the results given in Figure 4. The approximate linear rate of growth of Θ(T )(M ;κ∗)
is shown in Table 1.

Next, in Figure 7 we consider the approximation of the functions f1, . . . , f9 using the derived
values for Θ(T )(M ;κ∗). These results point towards a surprising phenomenon. Besides the choices
T = 5.0 and T = 6.0, all values of T used lead to near-identical approximation errors, regardless
of the function considered. Thus, seemingly the value of T , unless taken to be either 5.0 or 6.0 in
this case, makes little or no difference to the FE approximation.

Let us explain why the two values T = 5.0 and T = 6.0 lead to worse approximations. This is
due to a phenomenon we refer to as saturation:
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Figure 6: Plots of Θ(T,ǫ)(M ;κ∗) (top) and Θ(T,ǫ)(M ;κ∗)/M (bottom) against M for κ∗ = 10 (left), κ∗ = 25
(middle) and κ∗ = 100 (right) using ǫ = 10−13. The values of T used (in order of increasing thickness) were
T = 1.125, 1.25, 1.5, 2, 2.5, 3.0, 4.0, 5.0, 6.0. Note that in the middle plots the T = 5.0 line is identical to the
T = 6.0 line, and for the right plots the T = 4.0, T = 5.0 and T = 6.0 lines are identical.
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Figure 7: Approximation errors for the functions fi, i = 1, . . . , 9 using the values Θ(T,ǫ)(M ;κ∗) computed in
Figure 6 for κ∗ = 25 and ǫ = 10−13.

14



500 1000 1500 2000

10-10

10-7

10-4

0.1 500 1000 1500 2000

10-10

10-7

10-4

0.1 500 1000 1500 2000

10-10

10-7

10-4

0.1

100

Figure 8: Approximation errors for the function f1 using the values Θ(T )(M ;κ∗) computed in Figure 6 for
κ∗ = 10 (left), κ∗ = 25 (middle) and κ∗ = 100 (right).

Definition 3.1. For a given T > 1 and κ∗ > 1, saturation occurs if

lim sup
M→∞

κ
(T )
M,M/ logM < κ∗.

Saturation means that the corresponding FE is too stable to take advantage of the allowed
condition number κ∗. In other words, the maximal value of N permitted is limited by the fact that

N ≤ M in the FE approximation, and not by the condition number constraint κ
(T )
N,M ≤ κ∗. When

saturation occurs, the resulting FE approximation performs worse in terms of approximation than
that corresponding to a value of T for which saturation does not occur. Figure 6 illustrates that
the two values of T which give worse approximations in Figure 7, i.e. T = 5.0 and T = 6.0, do
indeed saturate. This is further demonstrated in Figure 8, where we consider the approximation
of the function f1 using different values of κ∗. Figure 6 shows that for κ∗ = 10 only T = 6.0
saturates, whereas T = 5.0 and T = 6.0 both saturate for κ∗ = 25, and for κ∗ = 100 the values
T = 4.0, T = 5.0 and T = 6.0 all saturate. In Figure 8 the FE approximations with these values
of T perform worse than the FEs corresponding to values of T which do not saturate. Note that

when κ∗ = 10 the effect of the saturation for T = 6.0 has less impact, since κ
(6,ǫ)
M,M/ logM ≈ 5 is

reasonably close to κ∗ in this case. Hence saturation occurs, but to a lesser extent. Similarly, since

κ
(6)
M,M < κ

(5)
M,M < κ

(4)
M,M the effect of the saturation on the FE approximation when κ∗ = 100 is less

for T = 4.0 than it is for T = 5.0 and T = 6.0.
With this in hand, we are now able to state the main empirical conclusion of this section: unless

saturation occurs, the choice of T makes little difference to the FE approximation. In particular,
one may use the value T = 2 provided it does not saturate for given value of κ∗. We note in passing
that this phenomenon is of course asymptotic in M , and relies on the fact that the functions under
consideration require large numbers of equispaced points to be approximated to any accuracy. For
smooth function lacking unpleasant features such as close singularities or oscillations, i.e. functions
that can be resolved with small M , there will be slight discrepancies for different values of T .

Let us give some explanation for why this conclusion should hold. Figure 6 shows that the
function Θ(T )(M ;κ∗) is approximately linear in M , i.e. Θ(T )(M ;κ∗) ≈ ν(T )(κ∗)M for large M
for some constant ν(T )(κ∗) > 0. Explicit values of the quantity ν(T )(κ∗) are given in Table 1,
and these are plotted against T in Figure 9. As is evident from this figure, for each each fixed
κ∗, the quantity ν(T )(κ∗) is approximately linear in T up to the point at which saturation occurs.

Write ν(T )(κ∗) ≈ τ(κ∗)T for some τ(κ∗) > 0 and now consider the FE approximation F
(T )
N,M where

N = τ(κ∗)TM . By (2.11) and (2.12), we see that the error is determined up to a mildly growing
factor in M by the quantity EN (f) = Eτ(κ∗)TM (f). However, the error bound (2.13) depends on
the ratio N/T , which in this case is equal to τ(κ∗)M regardless of the choice of T . Hence the bound
(2.13) is independent of T in the nonsaturating case for this choice of N , and therefore we expect
the same T -independence of the FE approximation whenever N is taken according to Θ(T )(M ;κ∗).
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Figure 9: The approximate values ν(T )(κ∗) from the Table 1 plotted against T . The solid curve is the line
with slope τ(κ∗), where τ(κ∗) is computed using linear regression on the data {T, ν(T )(κ∗)} corresponding
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Figure 10: The quantity κ
(T,ǫ)
M,M/ logM against 1 < T ≤ 6 for M = 500 and ǫ = 10−13.

This explanation aside, it is also of interest to numerically determine the so-called saturation
point : that is to say, the maximal value of T (for a given κ∗) above which saturation occurs. This

is shown in Figure 10, where we plot the quantity κ
(T )
M,M against T for M = 500. Note that this

quantity is decreasing in T (recall Figure 4). Using this figure, we make the following observation.
For the case T = 2, saturation occurs when the κ∗ ≈ 5e4 or greater. Hence, we now conclude
the following: if one implements the equispaced FE with T = 2, ǫ = 10−13 and N = Θ(2,ǫ)(M ;κ∗)
chosen such that the κ∗ is less than ≈ 5e4, then no other value of T will asymptotically give a better
approximation. This establishes one of the main aims of this paper: namely, determining when the
value T = 2, and hence the associated fast algorithm, can be used without concern that another
value gives better accuracy. Note that this conclusion is very reasonable. In practice, we usually
want the condition number to be much smaller than 104 in magnitude.

Having now ascertained that one may use T = 2 without worry in most cases, we end this

subsection by providing numerical values for the constants κ
(2,ǫ)
M/η,M and λ

(2,ǫ)
M/η,M . These are shown

in Figure 11. As we see, the choices η = 1.5 or η = 2.0 seem reasonable in practice. Increasing η
beyond this point brings only marginal benefits in stability.

3.3 Other solvers

The phenomenon described above also occurs when a different numerical solver is used. We illustrate
this in Figure 12 for Matlab’s \ and Mathematica’s LeastSquares. Interestingly, the effect is much
more pronounced for the latter than for the former, although we believe it would become more
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η/M 250 500 750 1000

1.00 2.51e5 2.86e5 2.65e5 3.14e5

1.25 1.01e4 1.25e4 1.72e4 1.99e4

1.50 2.16e3 2.39e3 2.41e3 2.84e3

2.00 1.88e2 2.25e2 2.89e2 3.27e2

3.00 2.70e1 3.29e1 3.94e1 3.94e1

4.00 1.18e1 1.53e1 1.67e1 1.84e1

η/M 250 500 750 1000

1.00 6.16e-7 1.48e-6 2.76e-6 3.49e-6

1.25 3.86e-8 8.82e-8 9.98e-8 1.33e-7

1.50 3.04e-9 7.36e-9 1.56e-8 1.82e-8

2.00 4.26e-10 1.02e-9 1.00e-9 1.23e-9

3.00 2.97e-11 8.20e-11 8.37e-11 1.97e-10

4.00 1.71e-11 1.51e-11 3.59e-11 5.24e-11

Figure 11: Values of κ
(T,ǫ)
M/η,M (left) and λ

(T,ǫ)
M//η,M (right) for T = 2 and ǫ = 10−13.
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Figure 12: Approximation errors for the functions f1(x), f5(x) and f8(x) (left to right) using Matlab’s \
(top row) and Mathematica’s LeastSquares (bottom row). For each solver, the values Θ(T )(M ;κ∗) were
computed for κ∗ = 25.

apparent in the former for larger M (recall that this phenomenon is asymptotic in M). The
discrepencies in the results are likely due to the different algorithms having somewhat different
default tolerances for solving ill-conditioned least-squares problems.

3.4 Influence of the SVD tolerance ǫ

Let us now return to the SVD algorithm. Thus far, we have taken the tolerance ǫ to be equal to
10−13. However, other values are possible, and it is of interest to determine how this affects the
approximation. Note that some previous insight in this problem was given in [5], where the effect
of ǫ was considered for specific functions.

In Figure 13 we plot Θ(T,ǫ)(M ;κ∗) for different values of ǫ using T = 2.0. As is evident,
Θ(T,ǫ)(M ;κ∗) grows more rapidly for increasing ǫ. This should come as no surprise, since it is the
small singular vectors that cause ill-conditioning. However, the main purpose of this figure is to
show the specific improvement that is possible by changing ǫ. For example, when ǫ = 10−13 the
function Θ(T,ǫ)(M ;κ∗) is approximately 0.4M . Conversely, for ǫ = 10−6 it is approximately 0.8M ,
i.e. it scales roughly twice as quickly. If δ is some finite tolerance greater than 10−6, this means
that the FE approximation with ǫ = 10−6 will approximate a given function to accuracy δ using
roughly half the number of equispaced points as is required when ǫ = 10−13. This fact is also
confirmed in the right panel of Figure 13, where the oscillatory function f(x) = exp(250

√
2πix) is

approximated using different values of ǫ. Resolving this function using ǫ = 10−13 requires roughly
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Figure 13: Left and Middle: the functions Θ(T,ǫ)(M ;κ∗) and Θ(T,ǫ)(M ;κ∗)/M against M for T = 2, κ∗ = 10
and ǫ = 10−2, 10−3, . . . , 10−16 (thickest to thinnest). Note that the graphs for ǫ = 10−2, 10−3, 10−4 are the
same. Right: approximation of f(x) = exp(250

√
2πix) using these values.

3700 equispaced data points, whereas when ǫ = 10−6 this value drops to around 1700.
Of course, the downside of a larger ǫ is that the minimal error is limited to approximately ǫ, as

can be seen in Figure 13. Nonetheless, the conclusion we draw from this section is that if accuracy
close to machine precision is not required – as is typically the case in practice, where three to six
digits is often acceptable – then a viable way to increase the performance of the FE approximation
whilst maintaining the condition number is to use a larger value of ǫ.

4 Resolution power

In many applications, it is important to have an approximation algorithm with good resolution
power. Loosely speaking, this means that oscillatory functions are recovered using using a number
of measurements that scales linearly with the frequency of oscillation with a constant that is as small
as possible. Formally, let {FM}M∈N be a sequence of approximations such that FM (f) depends
only on the values of f on an equispaced grid of 2M + 1 points. Let

R(ω, δ) = min
{

M ∈ N : ‖eiπω· − FM (eiπω·)‖∞ < δ
}

, ω > 0, 0 < δ < 1,

then we say that FM has resolution constant 0 < r < ∞ if

R(ω, δ) ∼ rω, ω → ∞, (4.1)

for any fixed δ. The approximation FM has good resolution power if r is small, and bad resolution
power if r is large.

For periodic oscillations, the Fourier series approximation on [−1, 1] of degree M has optimal
resolution constant r = 1. Since the number equispaced points is 2M + 1, this corresponds to
two points-per-wavelength. Of course, Fourier series do not converge uniformly for nonperiodic
oscillations, which is why we resort to alternative algorithms such as FEs. Naturally, though, it is
desirable that the FE resolution constant be as close to the optimal value r = 1 as possible.

In Figure 14 we numerically determine the resolution constant for the FE approximation F
(T,ǫ)
M/η,M

by computing the function
R(ω, δ) = R(ω, δ;T, η).

These results suggest that the resolution constant

r ≈ Tη, (4.2)

is approximately the product of the extension parameter T and the oversampling ratio η.
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Figure 14: The quantity R(ω, δ;T, η)/ω against ω for T = 3.0, 2.5, 2.0, 1.5, 1.25, 1.125 and δ = 10−3. The
solid lines indicate the values Tη.

We shall discuss the consequences of this observation in a moment, but we first wish to explain
why r should be at most Tη. Recall from (2.11) that the error of the FE approximation is determined
(up to a small linear constant in M) by the decay of the factor EN (f), given by (2.12), where
N = M/η. Now let

R0(ω, δ) = min
{

N ∈ N : EN (eiπω·) < δ
}

, ω > 0,
√
2Tµ < δ < 1. (4.3)

Then to show that r = Tη, it suffices to prove that

R0(ω, δ) ∼ Tω, ω → ∞.

We now note the following:

Lemma 4.1. Let R0(ω, δ) be as in (4.3). Then

lim sup
ω→∞

R0(ω, δ)/ω ≤ T.

Proof. Let f(x) = eiπωx and write ω = P/T + z where 0 ≤ z < 1/T and P ∈ N. Then

f(x) = ei
Pπ
T

xg(x), g(x) = ei
zπ
T

x.

Let K ∈ N and let φ ∈ G(T )
P+K be given by φ(x) = ei

Pπ
T

xφ̃(x), where φ̃ ∈ G(T )
K is arbitrary. Define

N = P +K, and let a be the vector of coefficients of φ. Then by definition,

EN (f) ≤ ‖f − φ‖∞ + µ|a|∞ = ‖g − φ̃‖∞ + µ|ã|∞,

where ã is the vector of coefficients of φ̃. Since φ̃ is arbitrary, we deduce that EN (f) ≤ EK(g). Thus
EN (f) ≤ δ provided EK(g) ≤ δ. Using Corollary 2.7, we see that EK(g) ≤ δ provided K ≥ K0(δ),
where K0(δ) is independent of ω. Thus, EN (f) ≤ δ whenever N = P +K0(δ) = (ω − z)T +K0(δ).
Since K0(δ) is independent of ω, we obtain the result.

From this, we deduce that R0(ω, δ) ≤ Tω+O (1) for large ω and hence r ≤ Tω. Unfortunately,
we have no proof of the lower bound, although it is supported by the results in Figure 14.

Let us now discuss the consequences of (4.2). Suppose we return to the earlier experiment where
κ∗ is fixed and N is chosen according to N = Θ(T )(M ;κ∗). For large M , Figure 6 shows that

Θ(T )(M ;κ∗) ≈ M/η(T ), η(T ) = η(T )(κ∗), (4.4)
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κ∗ 10 25 100 500 1000 5000 10000

r 5.41 4.44 3.64 2.98 2.77 2.38 2.25

Table 2: The resolution constant r = η(T )T for T = 2, where η(T ) = η(T )(κ∗) is given by (4.4).

for some fixed η(T ) depending on T and κ∗. In our previous observation, it was found that the
resulting FE approximation was independent of T . In particular, this holds for the oscillatory
exponential exp(iπωx). But since the resolution constant r, which describes the point after which
the approximation error begins to decay, is equal to ηT , we therefore deduce the following:

η(T )T = η(T
′)T ′,

for any T and T ′ that do not saturate. This implies that the level curves of the condition number

κ = κ
(T )
M/η,M are approximately given by Tη = constant, for sufficiently large M and non-saturating

T , which is in good agreement with the contour plot given in Figure 4.
In addition to this, another important implication of (4.2) is that to get better resolution

power one must necessarily worsen the stability of the algorithm. In other words, there is a direct
relationship between κ∗ and r, regardless of the choice of T made. In Table 2 we give numerical
results for the resolution constant when T = 2 (and therefore all nonsaturating T ) for different
values of κ∗. As we see, by allowing κ∗ to increase to roughly 500 we get a marked improvement
over when κ∗ = 10. Beyond this point, further increases give only marginal gains at the expense of
much larger condition numbers.

5 Other data

In this final section, we illustrate that the main phenomena observed for equispaced data are also
witnessed for numerous other types of data. To this end, we consider the following four examples:

• Jittered pointwise data. Here the measurements of f are pointwise samples at the jittered
locations

f(xm), xm =
m

M
+ zm,

where zm ∈ (−δ/M, δ/M) and 0 < δ < 1. This is a typical example of a nonuniform sampling
pattern for scattered data approximation. We shall choose the zm’s as follows:

zm =
δ

M
sin(M2/m), m 6= 0, z0 = 0. (5.1)

• Logarithmic pointwise data. Here we again sample f pointwise at nodes xm, but in this case
the nodes are logarithmically distributed:

xm = −x−m = 10(
m−1
M−1

−1) log10(cM), x0 = 0, (5.2)

where c > 0 is a fixed, user-controlled parameter (we take c = 2 in our results). This sampling
pattern corresponds to a nonuniform sampling scenario where data is collected more densely
at the origin.
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Figure 15: Plots of Θ(T )(M ;κ∗) (top row) and Θ(T )(M ;κ∗)/S(M) (bottom row) against M for jittered (5.1)
(left), logarithmic (5.2) (middle) and Fourier (5.3) (right) data. Here S(M) = M/ log(M) for the logarithmic
data and S(M) = M otherwise, and κ∗ = 25 (jittered, logarithmic) or κ∗ = 10 (Fourier).

• Fourier data. In some applications, rather than pointwise samples, we may wish to reconstruct
f from its Fourier coefficients:

f̂(m) =

∫ 1

−1
f(x)e−iπmx dx, |m| ≤ M. (5.3)

As discussed in [1], this can be seen as a continuous analogue of the equispaced data recovery
problem. In particular, there is a completely analogous result result to that of Platte, Tre-
fethen & Kuijlaars regarding stability and convergence [2]. Note that for this data we replace

the uniform norms used in the error estimates and the definitions of κ
(T )
N,M and λ

(T )
N,M by the

L2 and ℓ2 norms. This is natural in view of Parseval’s identity for Fourier coefficients.

• Optimal pointwise data. Finally, in order to show that the phenomenon is not witnessed for
all data, we consider pointwise samples taken at the so-called mapped symmetric Chebyshev
nodes (see [3]):

xm = −x−m−1 = m−1

(

cos
(2m+ 1)π

2M + 2

)

, m = 0, . . . ,M, (5.4)

where m is given by (2.1). These nodes are derived from the observation that FE approxima-
tions correspond to algebraic polynomial approximations in the mapped co-ordinate z = m(x)
[4]. Chebyshev nodes provide optimal nodes for polynomial interpolation. Therefore, under
the inverse mapping m−1, they provide the optimal nodes (5.4) for FE approximations. Note
that since the nodes arise in this way, no oversampling is required in the FE approximation,
i.e. we let η = 1 in this case.

In Figure 15 we give plots of the function Θ(T )(M ;κ∗) for the first three data types. For jittered
and Fourier data the scaling is linear, whereas for the logarithmic data Θ(T ) scales like M/ logM .
This scaling is proportional to the reciprocal of the maximal spacing between nodes in the case,
and hence is completely expected. Note also that no values of T saturate for the logarithmic data,
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Figure 16: Approximation errors for jittered data (5.1) using the values Θ(T )(M ;κ∗) from Figure 15.
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Figure 17: Approximation errors for logarithmic data (5.2) using the values Θ(T )(M ;κ∗) from Figure 15.

whereas values T = 5.0 and T = 6.0 saturate for the jittered data, and for the Fourier data the
values T = 3.0, T = 4.0, T = 5.0 and T = 6.0 all saturate. The lower saturation point for the
latter is due to the fact that the condition number is measured in the weaker L2 norm.

Next, in Figures 16–18 we compare approximation errors using these values. For the jittered and
Fourier data we see exactly the same phenomenon as before: namely, the approximation errors are
roughly independent of T . A similar phenomenon is witnessed for the logarithmic data, although
it is slightly weaker: T = 1.125 gives somewhat better errors than the other values. This is due
to the much more severe scaling of Θ(T )(M ;κ∗) with M in this case, which means the asymptotic
regime takes longer to set in.

Finally, in Figure 19 we display approximation errors for the optimal pointwise data (5.4). As
is evident, the phenomenon does not occur in this case. The reason for this is due to the choice
of the data, which means that no oversampling is required. Thus the FE approximation error is
proportional to EN (f), where N = M , multiplied by a mildly growing factor. Figure 19 therefore
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Figure 18: Approximation errors for Fourier data (5.3) using the values Θ(T )(M ;κ∗) from Figure 15.
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Figure 19: Approximation errors for the optimal pointwise data (5.4) using M = N .

serves as a reminder that smaller values of T are intrinsically better than larger values, provided
one has freedom to pick ideal data. On the other hand, for nonideal data – such as equispaced,
jittered, logarithmic or Fourier data – this effect is nullified by a worse scaling of Θ(T )(M ;κ∗).

6 Conclusions and open problems

The purpose of this paper was to document an interesting phenomenon in FE approximations from
equispaced data. Namely, when the desired condition number is fixed, the choice of the extension
parameter T has no substantial effect on the approximation. This is on the proviso that saturation
does not occur, which we have shown to be the case for moderate values of T and κ∗. In particular,
one may use T = 2, and the associated fast algorithm, without concern that it is suboptimal.

The main open problem is to provide mathematical analysis for the empirical conclusions drawn.
We believe this is possible, although not straightforward. One possible approach towards this is to
conduct an asymptotic analysis of the singular values and vectors of the matrix A(T ). Recall that
the normal form (A(T ))∗A(T ) is a Riemann sum approximation to the Gram matrix G of the FE
basis functions φn(x) = ei

nπ
T

x. As discussed in [4], the matrix G is precisely the prolate matrix.
The eigenvalues and eigenvectors of this matrix were analyzed in detail by Slepian [14] (see also
[17]). It may be possible to do the same for the discretized version (A(T ))∗A(T ), and this is an
important topic for future work.

Another question raised by this work is that of whether it might be possible to vary T with
M to achieve better results; in particular, improved resolution power. We believe this may be the
case, the caveat being that there is currently no fast algorithm for T 6= 2. Some potential choices
for varying T with M were considered previously in [3, 4]. But it may also be possible using the
approach of this paper to numerically compute an optimal (in some sense) value of T for each M .
We leave this for future work.
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Symbols

Symbol Description

T Extension parameter

N Number of Fourier modes

M Number of equispaced nodes

η The ratio M/N of nodes to modes

φn(x) The exponential 1√
2T

ei
nπ

T
x

G(T )
N The space span{φn : |n| ≤ N}
SM The sampling operator f 7→ 1√

M
(f(m/M))Mm=−M

F
(T )
N,M (f) The FE approximation (2.4)

a = (an)
N
n=−N Coefficients of the FE approximation

A(T ) Matrix of the FE approximation

L
(T )
N,M Solution of the least-squares (2.6)

R
(T )
N The mapping from coefficients to Fourier series

ǫ SVD truncation parameter

κ
(T )
N,M Condition number

λ
(T )
N,M Numerical defect constant

EN (f) Approximation error (2.12)

κ∗ Maximum allowed condition number

Θ(T )(M ;κ∗) The modes to nodes ratio (3.1)

ν(T )(κ∗) The approximate linear scaling of Θ(T )(M ;κ∗) with M

τ(κ∗) The approximate linear scaling of ν(T )(κ∗) with T

r The resolution constant
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