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Abstract

In this article we present a method to extend high order finite volume schemes
to networks of hyperbolic conservation laws with algebraic coupling condi-
tions. This method is based on an ADER approach in time to solve the
generalized Riemann problem at the junction. Additionally to the high or-
der accuracy, this approach maintains an exact conservation of quantities if
stated by the coupling conditions. Several numerical examples confirm the
benefits of a high order coupling procedure for high order accuracy and stable
shock capturing.
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1. Introduction

Networks of hyperbolic conservation laws occur in many applications such
as the human circulatory system [1, 2, 3, 4], gas pipelines [5, 6, 7], water
[8, 9, 10, 11] and road networks [12, 13]. For all these applications accurate
and stable numerical methods are needed.

In the past decades high order accurate numerical methods for hyper-
bolic conservation laws have been developed, such as WENO- [14, 15, 16] or
ADER-schemes [17, 18, 19, 20]. These methods have proven their efficiency
in many challenging applications [21, 22].
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For networks of hyperbolic conservation laws the flow across the edges can
be dealt with by any appropriate numerical method for standard conservation
laws [18]. Special attention has to be given to the coupling conditions. The
direct solving of the coupling conditions only provides first order information,
which can either be used directly by applying a Godunov scheme [6, 23] or
to fill corresponding ghost cells [9, 24] at the boundary. A second order
approach is studied in [25].

In this article we present an approach to incorporate the coupling con-
ditions numerically up to an arbitrary order of accuracy. This includes the
computation of the flux across the outer boundary as well as the reconstruc-
tion of ghost cell values for numerical methods of higher order. Therefore
we apply an ADER approach in time to the algebraic coupling conditions.
This can be used to solve the generalized Riemann problems at the junctions
providing time dependent data at the junction. These can be reformulated
as spatial data by the inverse Cauchy-Kowalewski procedure to fill the ghost
cells for the numerical method along the edges.

This paper is organized as follows. First, the first order Godunov solver
at the junction is recalled. Second, the generalized Riemann Problem at
the junction is discussed. These two ingedients can be used for high order
spatial reconstruction at the nodes, which leads to a high order numerical
method for the complete network. For this approach we prove that the
quantities conserved by the algebraic coupling conditions are also conserved
by the numerical method. Further we show that for a simple 1 to 1 coupling
the presented method coincides with a classical ADER scheme on a single
continuous line. In the numerical examples we study the order accuracy for
test cases with smooth data and show the need of a high order coupling
procedure. Finally we investigate the stability in case of shock waves and
the applicability for large networks of conservation laws.

2. High order coupling procedure

2.1. Notations

A network N = (E ,V) consists of a set of edges E and a set of connecting
vertices V ,

E = {E1, . . . , Eñ} , V = {V1, . . . , Vm̃} .
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On each edge Ei, i = 1, . . . , ñ, we consider the quantities ui(x, t) ∈ Rdi ,
which are governed by a hyperbolic conservation law

∂tu
i + ∂xf

i(ui) = 0 , (1)

with the flux function f i : Rdi → Rdi , the time t ∈ R+ and location x ∈ [0, Li].
At every vertex vj, the functions ui are coupled via cj algebraic coupling

conditions given by Φj :
⊗n

i=1 Rdi → Rcj for n connected edges. In order to
ease the notation in the following we consider only a single junction without
index and assume that all n = ñ connected edges are oriented outwards.
Thus the coupling point in each edge is located at x = 0 allowing us to drop
the spatial variable in the context of the coupling conditions

Φ(u1(t), . . . , un(t)) = 0 , ui(t) = ui(0, t) . (2)

Following the results of [26, 9], the number of coupling conditions c has
to coincide with the number of characteristics running out of the vertex. In
order to maintain a fixed number of coupling conditions over time, we require
for each edge i the eigenvalues λij, j = 1, . . . , di, of the Jacobian ∇F i to be
bounded away from zero by some constant ε̃ > 0

λi1 ≤ . . . ≤ λidi , |λij| > ε̃ ∀j = 1, . . . , di . (3)

Finally the following condition guarantees that to each outgoing character-
istic exactly one value can be assigned and thus the well-posedness of the
coupling conditions is given by

det
(
Du1Φ(u1

g, . . . , u
n
g )R1| . . . |DunΦ(u1

g, . . . , u
n
g )Rn

)
6= 0 , (4)

where Ri =
[
ridi−ci+1| . . . |ridi

]
is the collection of all eigenvectors associated

with positive eigenvalues of ∇f i. ci is the number of positive eigenvalues in
the edge i and

∑n
i=1 ci = c holds.

2.1.1. Examples

Throughout this paper we will consider the isentropic Euler equations as
example

∂tρ+ ∂xq = 0

∂tq + ∂x

(
q2

ρ
+ p(ρ)

)
= 0 ,

(5)
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with the density ρ, density flux q and a pressure law p : R+ → R+. Commonly
used coupling conditions in this context for subsonic flow, q

ρ
<
√
∂ρp(ρ), are

the following two variants.

Definition 1. Pressure coupling [6, 24] :

n∑
i=1

qi = 0

p1(ρ1)− pi(ρi) = 0 2 ≤ i ≤ n .

(6)

In case of an identical pressure law in all connected edges, the last n − 1
equations reduce to ρ1 − ρi = 0 2 ≤ i ≤ n.

Definition 2. Impluse-flux coupling [27, 28]:

n∑
i=1

qi = 0

q2
1

ρ1

+ p1(ρ1)− q2
i

ρi
− pi(ρi) = 0 2 ≤ i ≤ n .

(7)

In both cases the first coupling condition ensures the conservation of mass
across the junction. In case of a 2-junction, i.e. n = 2, these conditions
ensure the continuity of the states across the junction, i.e. u1(0, t) = u2(0, t).

2.2. The classical Riemann problem at the junction

The Riemann problem at a junction is defined by (1) and (2) with given
constant initial data on the edges

ui(x, 0) = uir i = 1, . . . , n .

In case of a 2-junction and for suitable coupling conditions, e.g. (6) or (7), a
classical Riemann problem is obtained. A detailed analysis of the Riemann
problem at a junction of p-systems can be found in [29]. In the following
we consider this approach in the context of general systems of hyperbolic
conservation laws. For the solution at the junction the Godunov states of the
Riemann problems at the interfaces play a key role. All subsonic Godunov
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Figure 1: Riemann problems at a 3-way junction.

states, which can be connected by waves going into the edge, lie on the
concatenation of the Lax-curves corresponding to the positive eigenvalues,

Lig(ξ
i
1, . . . , ξ

i
ci
, uir) = Ldi−ci+1(ξi1, ·) ◦ . . . ◦ Lidi(ξici , uir) ,

where ci = #{λij|λij > 0}. Here ◦ denotes the concatenation in the last
variable, i.e for two functions g and h

g(ξ1, . . . , ξl, ·) ◦ h(ξl+1, . . . , ξm, x) = g(ξ1, . . . , ξl, h(ξl+1, . . . , ξm, x)) .

The Lax-curves describe all reachable subsonic states, thus we can use the
coupling conditions to determine the unique states at the junction, i.e. we
solve the following system of nonlinear equations

Φ
(
L1
g(ξ

1, u1
r), L

2
g(ξ

2, u2
r), . . . , L

n
g (ξn, unr )

)
= 0 (8)

for the unknowns ξi = (ξi1, . . . , ξ
i
ci

). The local solvability of this system is
assured by condition (4). Once the parameters ξi are known, the Godunov
states at the interfaces can be determined by evaluating the concatenated
Lax-curves

uig = Lig(ξ
i, uir) .

This construction guarantees that the states at the junction are reached only
by waves traveling into the edges and no information is lost due to waves
exiting the domain.
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2.3. The generalized Riemann problem at the junction

Analogously to the classical generalized Riemann problem, we formulate
the generalized Riemann problem at the junction. Consider the equations
(1) and (2) equipped with polynomial initial data on each edge

ui(x, 0) =
kmax∑
k=0

∂kxu
i
r

k!
xk i = 1, . . . , n ,

for a fixed kmax ∈ N. Again, this reverts to the classical generalized Riemann
problem for n = 2 and a suitable choice of coupling conditions. In order to
solve the generalized Riemann problem at the junction, we use an ADER
approach [18]. Therefore we split the problem into several subproblems, one
for each degree of the polynomials chosen as initial data. For the terms of
order zero we solve a classical Riemann problem at the junction with the
initial data

ui(x, 0) = ∂0
xu

i
r .

The corresponding Godunov states uig are computed following the construc-
tion of section 2.2. For the higher order terms we obtain the governing
equations by differentiating (1) w.r.t. t repeatedly

∂t(∂
k
t u

i) +∇f i(uig)∂x(∂kt ui) + ’sources’ = 0 k = 1, . . . , kmax . (9)

The term ’sources’ contains all contributions of derivatives with degree less
than k. These can be dropped, since only the first instant interaction is
relevant for the solution of a Riemann problem [18]. The governing equations
for the temporal derivatives are linear and therefore the corresponding Lax
curves are linear as well. The concatenated Lax curves have the short form

Lig(ξ
i, ur) = ur +Riξi , Ri =

[
ridi−ci+1| . . . |ridi

]
, (10)

where rij denotes the eigenvector corresponding to the j-th eigenvalue λij of
∇f i(uig). Note that (3) still holds as the Jacobian is the same as in the
Riemann problem of order zero.

As the states in the junction may vary in time, they have to fulfill the
coupling conditions at all times. Therefore all temporal derivatives of the
coupling conditions at t = 0 have to vanish. The first order derivative of Φ
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reads

Φ(u1, . . . , un) = 0

⇒ ∂tΦ(u1, . . . , un) = 0

⇒
n∑
l=1

DulΦ(u1, . . . , un)∂tu
l = 0 ,

where all quantities are evaluated at t = 0 and x = 0. Here and in the
following we assume Φ to be sufficiently differentiable, otherwise we consider
the usage of high order schemes not appropriate. For the derivatives of orders
k ≥ 2 additional terms arise, but it is easy to see that these only depend on
derivatives of lower order,

DΦ(u1
g, . . . , u

n
g )∂kt u+ Ψk(ug, ∂tug, . . . , ∂

k−1
t ug) = 0 . (11)

Note that these lower order terms Ψk can not be dropped as in (9), but
all the information needed is available from previous steps. Therefore the
resulting linear systems have to be solved successively in increasing order of
the derivatives. As in the zeroth order case, we now insert the concatenated
linear Lax-curves (10)

n∑
i=1

DuiΦ(u1
g, . . . , u

n
g )
(
Riξik + ∂kt u

i
r

)
+ Ψk = 0

⇒
n∑
i=1

DuiΦ(u1
g, . . . , u

n
g )Riξik +

n∑
i=1

DuiΦ(u1
g, . . . , u

n
g )∂kt u

i
r + Ψk = 0 .

By introducing the notations

ai = DuiΦ(u1
g, . . . , u

n
g )Ri , A = (a1|a2| . . . |an) ,

ξk =
(
ξ1
k ξ2

k . . . ξnk
)T

, ∂kt ur =
(
∂kt u

1
r ∂kt u

2
r . . . ∂kt u

n
r

)T
,

this linear system can be written in the form

Aξ +DΦ(u1
g, . . . , u

n
g )∂kt ur + Ψk = 0 .

The matrix A is exactly the one in (4) considered for the well-posedness
of the coupling conditions. Since we have detA 6= 0, we can solve for the
unknowns ξk

ξk = A−1
(
−DΦ(u1

g, . . . , u
n
g )∂kt ur −Ψk

)
.
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In order to evaluate this expression, the temporal derivatives of the states
within the edges ∂kt ur are needed. These can be obtained from the given
spatial derivatives ∂kxur using the Cauchy-Kowalewski or Lax-Wendroff pro-
cedure [18, 30]. Note that it is important that the Cauchy-Kowalewski pro-
cedure is carried out on the basis of the zeroth order Godunov state, which
can be obtained from the classical Riemann Problem at the junction. Here
we use the following modified Cauchy Kowalewski procedure

∂kt u
i
r = CK

(
CK−1

(
uig, ∂tu

i
g, . . . , ∂

k−1
t uig

)
, ∂kxu

i
r

)
, (12)

where CK denotes the classical Cauchy Kowalewski procedure translating
spatial derivatives into temporal ones and CK−1 its inverse performing the
backward transformation. This modified procedure requires a successive solv-
ing of the coupling conditions increasing in the order of the derivatives, i.e.
for the order k all the temporal derivatives of the Godunov states uig of order
less than k have to be known. Alternatively the approach in [31] seems to
be suitable as well.

2.4. Spatial reconstruction at the junction

In this section we address the spatial reconstruction at the node. In
fact we have to consider two separate problems, the reconstruction for the
numerical scheme within the edges and the reconstruction for the generalized
Riemann problem at the junction.

2.4.1. Reconstruction for the numerical scheme

Assume we want to update the solutions within the edges from time step
tl to tl+1. Further we assume that we have sufficient initial data given for
the generalized Riemann problem at the junction. Then we can compute the
temporal evolution of the states at the junction according to section 2.3, i.e.
we obtain for each connected edge i = 1, . . . , n a polynomial in τ

ui,lg (tl + τ) =
kmax∑
j=0

∂jtug(tl)

j!
τ j. (13)

Each of these polynomials provide sufficient information for a numerical
scheme along the corresponding edge. Firstly it can be used to evaluate
the flux across the interface at the junction. Therefore we directly compute
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the flux across the interface with the formula of the ADER approach [18]

F1/2 =
1

∆t

∫ ∆t

0

kmax∑
k=0

τ k

k!

[
∂kt f

i(uig(τ))
] ∣∣∣∣
τ=0

dτ . (14)

For this expression Taylor approximation of f should be used. An approxi-
mation via a quadrature formula can violate the exact conservation property
at the junction, see section 2.6.

Secondly the polynomial (13) can be used to fill the ghost cells at the
junction, as the cell interfaces in the wider neighborhood of the junction still
require spatial information. This can be achieved via the inverse Cauchy-
Kowalewski procedure, which converts the temporal polynomial into a spatial
one. From this spatial polynomial the data for the ghost cells is simply
obtained by integration.

2.4.2. Reconstruction for the generalized Riemann problem at the junction

For the generalized Riemann problem at the junction we need spatial
polynomials at the first interface of each edge as input data. These polyno-
mials are obtained via classical WENO reconstruction [14], which is allowed
to access values in the ghost cells at the junction. In the following we describe
how to fill these ghost cells with appropriate data.

We assume that the numerical scheme already has performed the update
from tl to tl+1. If there have been no computations before we fill the ghost
cells with data obtained by a one sided reconstruction presented in [30].
If the computations from time step tl are available, we can simply use the
polynomial (13). In the previous update it was used to describe the Godunov
state at the junction during the period [tl, tl+1]. Now we use it to fill the ghost
cells at the time level tl+1. For that purpose, we transform the polynomial

ui,lg (tl + ∆t+ τ) =
kmax∑
j=0

∂jtug(tl)

j!
(∆t+ τ)j (15)

via inverse Cauchy Kowalewski procedure into a spatial polynomial and com-
pute the cell averages. A schematic illustration is given in figure 2. In formula
(15) it seems that ui,lg is used over its livetime tl+1 given by the CFL condition,
but it is only used to construct spatial data at tl+1.
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Figure 2: Illustration of the Boundary reconstruction.

2.5. Numerical procedure

In the following we summarize how to apply the above techniques to
obtain a high order accurate numerical scheme at a junction. The following
list provides an overview of the procedure.

1. Fill the ghost cells at the junction according to section 2.4.2.

2. Solve the zeroth order Riemann problem at the junction, as described
in section 2.2, to obtain the Godunov states at the junction.

3. Solve the generalized Riemann problem at the junction, as described in
section 2.3, to obtain the temporal derivatives of the Godunov states
at the junction.

4. Compute the fluxes across cell interfaces at the junction from the Go-
dunov states and their derivatives by formula (14).

5. Fill the ghost cells at the junction according to section 2.4.1.

6. Run a high order finite volume scheme e.g. ADER to compute the
fluxes across interior cell interfaces.

In this procedure the ghost cells are filled twice, the first time for the purpose
of reconstruction at the boundary to obtain Riemann data at the junction,
the second time for the scheme along the edges.
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2.6. Conservation at the junction

Many coupling conditions state the conservation of certain quantities,
e.g. in most cases a total mass is conserved as in (6) or (7). Therefore
it is desirable, that the coupling procedure maintains this property for the
numerical scheme. Note that a quantity is conserved across the junction, if
and only if the sum over the fluxes of this quantity vanishes at the node.

Theorem 1. If the conservation of a quantity uq is part of the coupling
conditions, i.e.

Φj(u
1, . . . , um) =

m∑
i=1

fq(u
i) = 0

for some j, then the coupling technique of section 2.5 does conserve that
quantity.

Proof. Consider a single time step of the numerical procedure, i.e. the time
interval [0,∆t]. For the sum of the fluxes across the junction the following
computation holds

n∑
i=1

∫ ∆t

0

f iq(u
i
g(τ))dτ =

n∑
i=1

∫ ∆t

0

kmax∑
k=0

τ k

k!

[
∂kt f

i
q(u

i
g(τ))

] ∣∣∣∣
τ=0

dτ

=
kmax∑
k=0

∫ ∆t

0

τ k

k!
dτ

n∑
i=1

∂kt f
i
q(u

i
g(τ))

∣∣∣∣
τ=0

=
kmax∑
k=0

∫ ∆t

0

τ k

k!
dτ
[
∂kt Φj(u

1
g(τ), . . . , ung (τ))

] ∣∣∣∣
τ=0︸ ︷︷ ︸

=0 by construction

= 0 .

For a numerical method to be conservative across the node, the flux across
the boundary (14) has to correspond exactly to the one in the coupling
procedure. In the update formula of the ADER approach (14) no quadrature
rule must be used, but the derivatives ∂kt f

i
q(u

i
g(τ)) should be computed in

the same way as in (11). Otherwise the conservation is only given up to an
error of the quadrature rule. Some small numerical errors might still arise,
depending on the accuracy of the solver for the nonlinear system (8). �
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2.7. Consistency of the 2-junction

For suitable coupling conditions, such as (6) or (7), the exact solution of
a 2-junction with two identical edges coincides with the solution of one edge
of combined length. In this special case we want to restore the solution of
the classical ADER approach [18].

For this particular situation, we consider the two edges oriented in the
same direction, such that the coupling conditions can be transformed into

Φ(u1, u2) = u1 − u2 = 0 . (16)

In this case the generalized Riemann problem at such a 2-junction coincides
with the classical generalized Riemann problem.

Theorem 2. The solution of the generalized Riemann problem at a 2-junction
with the coupling conditions (16) obtained by the procedure of section 2.5 co-
incides with the solution of a classical generalized Riemann problem.

To prove this theorem we need some definitions and an auxiliary lemma.

Definition 3. For an expression P = F (∂̃α
1
u, ∂̃α

2
u, . . . , ∂̃α

k
u) depending on

partial derivatives of u, with

u = u(x1, x2, . . . , xn) , ∂̃ = (∂x1 , ∂x2 , . . . , ∂xn)T ,

and the multi index αi = (αi1, α
i
2, . . . , α

i
n)
T
, the derivative order of P is

defined as

Od(P ) = max
1≤i≤k

|αi|

i.e. the order of the highest order derivative in P .

The following simple estimates hold

Od(P1 ± P2) ≤ max(Od(P1),Od(P2)) , Od(P1P2) ≤ max(Od(P1),Od(P2))

Od(
P1

P2

) ≤ max(Od(P1),Od(P2)) , Od(∂xiP ) ≤ Od(P ) + 1 . (17)

Lemma 1. The result of the Cauchy-Kowalewski procedure can be written
as

∂kt u = CK(u, ∂xu, ..., ∂
k
xu) = (−DF (u))k∂kxu+R(u, ∂xu, . . . , ∂

k−1
x u) , (18)

with Od(R) ≤ k − 1.
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Proof. The proof is by induction. The cases k = 0 and k = 1 with u = u
and ut = −∇f(u)ux are obvious. Assume that (18) hold for a given k.
Differentiating (18) w.r.t. time

∂k+1
t u = (−∇f(u))k∂kx∂tu+ ∂t[(−∇f(u))k]∂kxu+ ∂tR

⇒ ∂k+1
t u = (−∇f(u))k+1∂k+1

x u+ (−∇f(u))kR1︸ ︷︷ ︸
Od≤k

+ ∂tR︸︷︷︸
Od≤k

,

and applying the estimates (17) concludes the proof of the lemma. �

Proof (proof of Theorem 2). The proof is by induction over k.
Denote the solution of the classical generalized Riemann problem by ug and
that of the generalized Riemann problem at the 2-junction by ũg = u1

g = u2
g.

In the case k = 1, ug = ũg holds due to the coupling conditions (16). For the
step k − 1 → k we first look at the generalized Riemann problem at the 2-
junction. The Riemann data is computed by the modified CK procedure (12)
from the first k derivatives of the Godunov state known from the previous
k − 1 steps and ∂kxul/r respectively

∂kt Ul = C̃K
(
ũg, ∂tũg, . . . , ∂

k−1
t ũg, ∂

k
xul
)

Lemma1
= (−∇f(ug))

k∂kxul +R
(
ũg, ∂xũg, . . . , ∂

k−1
x ũg

)
∂kt Ur = C̃K

(
ũg, ∂tũg, . . . , ∂

k−1
t ũg, ∂

k
xur
)

Lemma1
= (−∇f(ug))

k∂kxur +R
(
ũg, ∂xũg . . . , ∂

k−1
x ũg

)︸ ︷︷ ︸
=B

.

(19)

These are the Riemann data for the linear governing equation

(∂kt u)t +∇f(ug)(∂
k
t u)x = 0 .

For its solution let λ1, . . . , λd denote the eigenvalues corresponding to the
eigenvectors r1, . . . , rd of ∇f(ug). If we represent ∂kxul and ∂kxur as

∂kxul =
d∑
i=1

αiri , ∂kxur =
d∑
i=1

βiri
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we obtain by (19) the Riemann data

∂kt ul = (−∇f(ug))
k

d∑
i=1

αiri +B =
d∑
i=1

αi(−λi)kri +B ,

∂kt ur = (−∇f(ug))
k

d∑
i=1

βiri +B =
d∑
i=1

βi(−λi)kri +B .

The solution of the Riemann problem can be written as

∂kt ũg =
∑
λi<0

βi(−λi)kri +
∑
λi>0

αi(−λi)kri +B .

On the other hand, for the classical Riemann problem, the initial data to the
equation

(∂kxu)t +∇f(ug)(∂
k
xu)x = 0

∂kxul and ∂kxur directly stem from the spatial reconstruction. Its solution is

∂kxug =
∑
λi<0

βiri +
∑
λi>0

αiri . (20)

This can be transformed by CK into the temporal derivative

∂kt ug = CK(ug, ∂xug, . . . , ∂
k
xug)

Lemma 1
= (−∇f(ug))

k∂kxug +R(ug, ∂xug, . . . , ∂
k−1
x ug) .

Note that the data from the previous steps up to l = k − 1 coincide due to
the induction hypothesis, i.e. ∂lxug = ∂lxũg, and thus

∂kt ug = (−∇f(ug))
k∂kxug +R

(
ũg, ∂xũg, . . . , ∂

k−1
x ũg

)
= (−∇f(ug))

k∂kxug +B

holds. Due to ri being an eigenvector of ∇f(ug) we know that

(−∇f(ug))
kri = (−λi)kri. (21)
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Inserting (20) and using (21) concludes the proof.

∂kt ug = (−∇f(ug))
k

(∑
λi<0

βiri +
∑
λi>0

αiri

)
+B

=
∑
λi<0

βi(−λi)kri +
∑
λi>0

αi(−λi)kri +B

= ∂kt ũg .

�

3. Numerical examples

In this section we study several numerical examples elucidating the per-
formance of the presented method. As model we use the shallow water equa-
tions, i.e. (5) with the choice

p(ρ) =
9.81

2
ρ2,

thus ρ denotes the depth of water and q is the flow. The length of the edges
is L = 1 and as coupling conditions we use the equal height conditions (6).

As numerical method on the edges we use the ADER scheme as described
in [18]. For the WENO reconstruction therein we use the classical approach
[14], but for the nonlinear smoothness indicators

αr =
dr

(βr + ε)2

we choose ε = 10−14 in order to correctly capture small shocks. All com-
putations are done with a spatial resolution of nx = 100 cells per edge and
an adaptive time step according to a CFL number of 0.95. The nonlinear
system at the junction (8) is solved with a Newton type method.

3.1. Rates of convergence

In the first numerical example we want to check if the expected high or-
der of convergence can be observed numerically. Therefore we consider the
simplest possible network, three edges and two nodes connected as depicted
in Figure 4. As coupling conditions we use the impulse-flux coupling (7). For
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the initial data we need smooth functions along the edges, which simultane-
ously simultaneously fulfill all the coupling conditions at the junctions and
all its temporal derivatives (11)

ρi(x, 0) =
1

2
cos(2πx) + 1 i = 1, 2, 3 ,

q1(x, 0) = −(
1

4
cos(2πx)− 1/4) ,

qi(x, 0) = −(
1

8
cos(2πx)− 1/8) i = 2, 3 .

We compute the solution up to t = 0.05, such that all functions remain
sufficiently smooth. The solution and the evaluation of the convergence in
the L1-norm is shown in Figure 3. We can see that up to order five the
expected order of convergence is fully reached, whereas for even higher orders
only smaller improvements can be observed. This can be explained with the
the poor condition number of the inverse Cauchy Kowalevski procedure for
big input data, e.g. data obtained from a CK transformation. At least in
our implementation the condition number increases notably when considering
orders higher than five.
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Figure 3: Initial values and error in the L1 norm at t = 0.05 on E1.

16



3.2. High order schemes and low order coupling

In this example we want to highlight the importance of treating the cou-
pling conditions accurately. Therefore we again consider the simple network
depicted in Figure 4 with constant initial data on the two parallel edges and
a smooth profile on the first edge E1

ρ1(x, 0) = p̃(x) , ρ2,3(x, 0) =
1

2
, qi(x, 0) = 0 ∀i = 1, . . . , 3 ,

with p̃ being the polynomial of degree 16 defined by

p̃(0.5) = 1 , ∂kx p̃(0) = ∂kx p̃(1) = 0 ∀k = 1, . . . , 8 .

For this data we compare a scheme of order k = 6 with high order coupling,
kc = 6, to the same scheme where the ghost cells are only filled by constant
data, corresponding to a first order coupling procedure, i.e. kc = 1. As
reference solutions we consider a completely first order scheme and the 6th
order scheme with high order coupling with a spatial resolution of nx = 500
grid cells per edge. In Figure 5 the values of ρ at t = 5 on edge E1 are
plotted.
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1
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ρ1 at t = 0
ρ2, ρ3 at t = 0
q1, q2, q3 at t = 0

Figure 4: Split circle network and initial values.

All schemes accurately capture two shocks, but the solution also incorpo-
rates many additional waves emerging from many wave-junction interactions
during t = 0 and t = 5.
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We can clearly see that the solution of the high order scheme with the
low order coupling deviates from the two reference solutions, whereas the the
scheme with the high order coupling procedure has a very good agreement
with the solutions on the fine grid. Furthermore we can observe that the
high resolution scheme on the coarse grid is able to capture more waves than
the first order scheme on the fine grid.

3.3. Shock-propagation on a big network

In these last test cases we want to show that the high order coupling
procedure is stable if shock waves are passing the junction and fast enough
to be applied on large networks. Therefore we consider a closed network of
128 edges and 96 nodes as depicted in Figure 6. As initial data we adapt the
benchmark of [32], such that

ρ1(x, 0) =

{
1 + o x < 3

4

1 x ≥ 3
4

ρ2(x, 0) = 1 + o

ρi(x, 0) = 1 ∀i = 3, . . . , 128 qi(x, 0) = 0 ∀i = 1, . . . , 128 ,

with the free parameter o. In Figure 7 we compare the solutions of schemes
of orders k = 1, k = 4 and k = 6 for a large initial jump o = 1 at time
t = 3.1 on edge E127. We can see two shock waves, the first arising from
the initial Riemann problem, whereas the upper shock wave results from a
later interaction with a junction. We can clearly see that the higher order
methods accurately capture both shocks, while for the first order method
the second shock suffers from strong numerical diffusion. It is important
to note that this first shock wave arises from the initial shock wave of the
Riemann problem on E1, which is split into many much smaller shocks and
builds up by several shock-shock interactions at the merging junctions. We
can not report any notable numerical oscillations arising from the coupling
procedure.

Similar results we obtain for a test with a much smaller shock of o =
0.001. Figure 8 shows the solutions for ρ on E127 at t = 3.4. The shock is
resolved sharply by the higher order schemes, whereas the first order solution
is smeared over one third of the edge. Again, the shock builds up from many
even smaller shocks by several simultaneous shock-shock interactions at the
merging junctions. This shows that the higher order coupling procedure is
capable to accurately resolve very fine structures within the solution.

18



4. Concluding remarks

We have presented a numerical procedure for high order accurate treat-
ment of coupled hyperbolic conservation laws. Several numerical examples
show that this coupling technique can be used to build accurate, fast and
stable numerical methods for networks of conservation laws. Future devel-
opments are aiming to extend this approach to the coupling of conservation
laws with ordinary differential equations at the boundary.
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Figure 5: Numerical solutions for different orders at t = 5.
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Figure 6: Split and join network of depth 6.
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Figure 7: Large shock: ρ on E127 at t = 3.1.
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Figure 8: Small shock: ρ on E127 at t = 3.4.
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