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Abstract

This paper presents a topology optimization method for fluid dynamics problems, based on the level set method
and using the lattice Boltzmann method (LBM). In this optimization method, the optimization problems are for-
mulated based on the original Boltzmann equation, and the design sensitivities are precisely obtained without the
time-consuming numerical operations encountered when dealing with a large-scale asymmetric matrix, in contrast to
previous research in which the LBM uses the lattice Boltzmann equation (LBE) for the formulations of optimization
problems and the derivation of their adjoint equations. That is, we newly derive sensitivity formulations from the
original Boltzmann equation, not the LBE that can be said to be an approximated equation, and these formulations
yield strictly correct sensitivities that are error free. Based on the above formulations, we construct a level set-based
topology optimization method incorporating a fictitious interface energy for the design of a fluid channel that mini-
mizes flow friction. Furthermore, two- and three-dimensional numerical examples are provided to confirm the validity
and utility of the presented method.

Keywords: Topology Optimization, Level Set Method, Phase Field Method, Lattice Boltzmann Method, Boltzmann
Equation, Adjoint Variable Method

1. Introduction

This paper presents a new topology optimization method for fluid dynamics problems, based on the level set
method and using the lattice Boltzmann method (LBM). The novel aspect of the presented method is the sensitivity
formulations that are formulated based on the original Boltzmann equation, so that the design sensitivities can be
precisely derived without the use of matrix operations.

Structural optimization is a methodology to obtain an optimal solution using a physical numerical model based
on mathematical optimization theory. Since this methodology can obtain high performance structures using structural
optimization techniques, it is very attractive, even in the field of fluid mechanics. In 1973, Pironneau [1] pioneered a
structural optimization method for fluid dynamics problems, and obtained minimum drag wing profiles under Stokes
flow. Considerable research has been carried out since then and a number of structural optimization methods applica-
ble to fluid dynamics problems have been proposed [2–11]. However, since the above research was based on shape
optimization, the feasible design modifications only consisted in the adjustment of the boundaries of selected parts to
the fluid domain.

In contrast to shape optimization, where only the boundary of the design domain is optimized, topology optimiza-
tion allows the creation of new holes and alteration of the connectivity of the design domain during the optimization
process. Topology optimization has been extensively applied to a variety of structural optimization problems such
as stiffness maximization problems [12, 13], eigenfrequency problems [14–16], thermal problems [17, 18], and fluid
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dynamics problems [19, 20], after Bendsøe and Kikuchi first proposed the so-called homogenization design method
[12]. The basic concepts of topology optimization consist of (1) the extension of a design domain to a fixed design
domain, and (2) replacement of the optimization problem with a material distribution problem, using the characteris-
tic function originally presented in the papers of Murat and Tartar [21]. A homogenization method is utilized to deal
with the extreme discontinuity of the material distribution in the design domain, and to provide the material proper-
ties viewed in a global sense as homogenized properties. This homogenization design method has been applied to a
variety of design problems, and the density approach [22] is another currently used topology optimization method.
The basic idea of the density approach is the use of a fictitious isotropic material whose elasticity tensor is assumed to
be a function of penalized material density, expressed as an exponent parameter. In addition, topology optimization
based on level set [23–25], phase field [26–28], and evolutionary [29] approaches have been proposed, and these
methodologies are precisely categorized in a review paper [30].

Based on the density approach, Borrvall and Petersson [19] first proposed a topology optimization method for
minimum power dissipation in a Stokes flow problem, where the material distribution in the fixed design domain is
expressed as either the presence of fluid or an impermeable solid domain. Since the feasible design modifications
pertain to adjustments of the material porosity in the fixed design domain, the no-slip boundary condition along the
fluid-solid interface can be implicitly satisfied. In research based on this methodology, Aage et al. [31] proposed
a topology optimization method for large-scale Stokes flow problems. Olesen et al. [20] proposed a topology op-
timization method using the steady-state Navier-Stokes (NS) equations for incompressible fluids, and introduced a
numerical implementation scheme using commercial software. Deng et al. [32], and Kreissl et al. [33], proposed a
topology optimization method using the unsteady NS equations for incompressible fluids. On the other hand, Kon-
doh et al. [34] obtained optimal body shapes in NS flows for drag minimization and lift maximization problems by
introducing a new types of objective function. Furthermore, using Borrvall and Petersson’s methodology as a basis,
considerable research has been carried out to develop engineering applications for fluidic devices [35–37]. In addition,
multiphysics topology optimization methods have been proposed to deal with fluid-structure [38], fluid-electric [39],
fluid-thermal [40, 41], and electro-fluid-thermal-compliant [42] problems.

However, all of the above-mentioned research encounters the problem of so-called grayscales, regions of inter-
mediate density that are allowed to exist in the optimal configurations. In such cases, the no-slip boundary condition
is incompletely satisfied, since a specific boundary along the solid-fluid interface does not exist in grayscale regions.
Guest and Prévost [43] employed their nodal design variable method, a kind of penalization scheme, to eliminate
grayscales in topology optimization for minimum power dissipation problems under Stokes flow, but such filtering
schemes crucially depend on artificial parameters that lack rational guidelines for determining appropriate a priori
parameter values.

A different approach is used in level set-based structural optimization methods that have been proposed as a new
type of structural optimization method [23–25, 44–47]. Such methods implicitly represent target structural configu-
rations using the iso-surface of the level set function [48, 49], which is a scalar function, and the outlines of target
structures are changed by updating the level set function during the optimization process. In level set-based structural
optimization methods, the obtained optimal configurations are free from grayscales, since the structural boundaries
are represented by the iso-surface of the level set function. Challis and Guest [50] proposed a level set-based struc-
tural optimization method for minimum power dissipation problems under Stokes flow, and examined the same design
problems as those treated in previous research using the density approach [19, 43]. Duan et al. [51], Zhou et al. [52],
and Duan et al. [53] proposed a level set-based structural optimization method for steady-state NS flow problems,
and Deng et al. [54] extended it to unsteady NS flow optimization problems. However, since these level set-based
structural optimization methods are essentially based on shape optimization methods that obtain optimal configura-
tions by moving structural boundaries, they do not allow topological changes such as the creation of new holes during
optimization procedure. Allaire et al. [55] introduced the bubble method [56] to a level set-based shape optimization
method using topological derivatives [57, 58] in order to provide for the possibility of topological changes. However,
the setting of parameter values to facilitate the introduction of holes during the optimization process was difficult, and
the obtained optimal configurations often showed dependency on initial parameter values. As a radical way of solving
the above problem, Yamada et al. [59] proposed a new level set-based approach, based on the concept of the phase
field method and the use of a reaction-diffusion equation for updating the level set function, which allows topological
changes during optimization procedure and exhibits minimal dependency on initial configuration or mesh size. This
level set-based approach has been applied to a range of physical problems: stiffness maximization problems [59, 60],
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eigenfrequency problems [59], thermal problems [61, 62], electromagnetic problems [63–66], and acoustic problems
[67]. In addition, Talischi and Glaucio [68] have recently proposed a method similar to Yamada et al’s approach, for
stiffness maximization problems.

In structural optimization methods for fluid dynamics problems, reduction of flow field computational cost is
a major factor when seeking to maintain practical total optimization times, since most numerical schemes for ob-
taining solutions to NS equations for incompressible fluids include an iterative computation of a massive system of
linear equations, which is related to the integration of the Poisson equation for the pressure field. That is, structural
optimization methods for large-scale flow problems typically incur great computational cost to obtain optimal con-
figurations. Similarly, since most previous research on structural optimization methods for fluid dynamics problems
employ the finite element method (FEM) to obtain solutions of the incompressible NS equations, the scale of feasible
computational space has been very limited. Consequently, most numerical examples in previous research deal with
two-dimensional cases, and those that do address three-dimensional cases have a relatively small number of finite el-
ements, such as the 47,151 elements used for the design of a flow channel in Aage et al. [31]. To deal with large-scale
flow problems in structural optimization problems, these computational obstacles must be overcome.

On the other hand, the lattice Boltzmann method (LBM) [69–74] has attracted attention as an alternative and
promising numerical scheme for obtaining solutions to the NS equations for incompressible fluids, without dealing
with the Poisson equation for the pressure field. In the LBM, the velocity distribution functions and a set of discrete
fictitious particle velocities are explicitly computed, using the so-called lattice Boltzmann equation (LBE) that tracks
the time evolution of the velocity distribution functions. The macroscopic variables such as the velocity and pressure
are obtained by the moments of the velocity distribution functions, and satisfy the fluid dynamics conservation laws
for mass, momentum, and energy. Considerable research has dealt with the construction of a mathematical theory
that incorporates the above laws, such as the Chapman-Enskog expansion [72], the S-expansion of asymptotic theory
[75, 76], and others [77, 78]. Because the LBM guarantees the conservation of mass, momentum, and energy, it can
be applied to multiphase flows [79–82] and the interface can be represented clearly, without any special treatments.
Thus, with the LBM, the interface does not have to be explicitly tracked during the numerical computation. In
addition, taking advantage of the fact that the algorithm is simple, computationally efficient, as well as highly scalable
for parallel processing, many researchers have investigated complex and large-scale flows such as porous flows [83–
86] and turbulent flows [87–91], and an immersed boundary method based on the LBM [92–95] has recently attracted
attention in moving body problems.

The LBM is therefore extremely useful when working with complex and large-scale flow problems and can be
successfully applied to structural optimization problems. In a pioneering study by Pingen et al. [96], a topology
optimization methodology using the LBM was proposed and optimal configurations similar to those of a previous ap-
proach [19] proposed by Borrvall and Petersson using the FEM were obtained. Based on this pioneering study using
the LBM, Pingen et al. [97] and Kreissl et al. [98] proposed a level-set based structural optimization method using the
LBM for a flow channel design problem. Pingen and Maute [99] dealt with non-Newtonian flows to represent the vis-
cosity of blood in their design model of a flow channel. Kreissl et al. [100] proposed a topology optimization method
for a fluid-structure interaction problem for micro-channel devices. In addition, Makhija et al. [101] proposed a
topology optimization method using the LBM for a mixture efficiency maximization problem under multi-component
flow.

However, in the above-mentioned methodologies that employ the LBM, the design sensitivities cannot be treated
precisely, since the LBE, which can be said to be an approximated equation, is used for the formulations of the
optimization problems and the derivation of their adjoint equation. Furthermore, a large-scale asymmetric matrix
must be dealt with to obtain the design sensitivities in each iteration of the optimization process [102]. Thus, time-
consuming numerical operations are required, and the advantages of the LBM, such as its algorithmic simplicity and
computational efficiency, cannot be applied to the process of solving the adjoint equation.

In this paper, we construct a topology optimization method based on level set boundary expressions [59] using
the LBM, in which the optimization problems are formulated based on the Boltzmann equation, not the LBE, and
these formulations yield strictly correct sensitivities without errors. Furthermore, the adjoint equation we use has an
advantage, namely that a novel discretization strategy similar to the LBM can lead to algorithms that are as efficient
as those of the LBE, due to similar locality properties. That is, the design sensitivities can be obtained during the
optimization process without the use of matrix operations. This novel strategy of sensitivity formulation was first
proposed by Krause et al. [103], and has not yet been applied to structural optimization problems. Therefore, we
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must confirm that it is appropriate for use in a topology optimization method that employs the LBM. Based on the
above formulation, we construct a level set-based topology optimization method for fluid dynamics problems that
incorporates the fictitious interface energy proposed by Yamada et al. [59].

In the following sections, the Boltzmann equation and the LBE are first discussed as core concepts of the LBM.
Next, the proposed level set-based topology optimization method is described and the optimization problem is for-
mulated using the Boltzmann equation. The numerical implementation and optimization algorithm are then described
and, finally, we introduce two- and three-dimensional numerical examples to validate the utility of the topology opti-
mization method.

2. Governing equation

The LBM [71–74] is a new numerical scheme in computational fluid dynamics for simulating fluid flows and
modeling physics in fluids. The basic concept of the LBM is to construct kinetic models that incorporate the essential
physics of microscopic processes so that the macroscopic properties are correctly modeled in the mesoscopic equa-
tions. The LBM expresses the fluid regime via an aggregation of fictitious particles, and makes it possible to obtain
macroscopic values such as the fluid density and the fluid velocity from the moments of the velocity distribution
functions that express the distribution state of the particles.

In this section, we discuss the concept of the LBM, which is applied to an incompressible viscous fluid in an
isothermal field. Hereafter, as shown in Appendix A, we use non-dimensional variables defined by a characteristic
length L, a characteristic particle speed c, a characteristic time-scale t̃ = L/U where U is a characteristic flow speed,
a reference order parameter f0, a reference density ρ0, and a reference temperature T0.

2.1. Boltzmann equation
The Boltzmann equation is a type of kinetic equation, and is often used for analyzing transport phenomena such

as thermal conduction and diffusion, based on the kinetic theory of gases. The LBM is a numerical scheme using
a discretized Boltzmann equation, the so-called lattice Boltzmann equation (LBE), that can represent macroscopic
quantities such as fluid velocity and pressure by incorporating velocity distribution functions. In this study, the Boltz-
mann equation is used in the formulation of the optimization problems so that the design sensitivities can be efficiently
derived. Based on these concepts, we now discuss the Boltzmann equation, which can be represented as follows, using
the velocity distribution function f = f (x, t,ξ):

Sh
∂ f
∂ t

+ξ ·∇ f = Q( f ) in I×Ω×Ξ, (1)

where Sh = L/(t̃c) is a non-dimensional parameter (the Strouhal number), t ∈ I[t0, t1) ⊆ R>0 represents the time,
x ∈ Ω ⊂ Rd and ξ ∈ Ξ (= Rd) represent the gas particle position and velocity, respectively, and Q, a so-called
a collision operator, expresses the effect of collision between the fictitious particles. Superscript d in the above
represents the number of spatial dimensions, which is either 2 or 3. For the sake of simplicity and without losing
generality, we use the Bhatnagar-Gross-Krook (BGK) collision model [104] as follows:

Q( f ) =− 1
τB

( f − f eq), (2)

where τB is the dimensionless relaxation time that expresses the average time until the next collision. f eq is a Maxwell
distribution as a local equilibrium solution of the Boltzmann equation,

f eq =
ρ

T d/2 exp
(
−|ξ−u|2

T

)
, (3)

where ρ and u represent the fluid density and velocity, respectively. Here, T is the temperature that assumes a constant
value in the isothermal condition. Based on kinetic theory, the macroscopic variables in the flow field, i.e., the density
ρ , and the fluid velocity u can be derived by the moments of the velocity distribution function f with respect to the
velocity field Ξ:

ρ =
∫

Ξ

f dξ, u =
1
ρ

∫
Ξ

ξ f dξ. (4)
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Figure 1: Particle velocity vectors ci of (a) nine-velocity model and (b) fifteen-velocity model

2.2. Lattice Boltzmann equation
Based on the Boltzmann equation (1), we now discuss the lattice Boltzmann equation that is used in the LBM.

The basic idea of the LBM is the introduction of a finite number of particle velocities that replaces the infinite set
of particle velocities ξ in Eq. (1) This allows macroscopic quantities such as flow velocity and pressure, derived by
the moments of a finite number of velocity distribution functions, to be obtained as solutions of the Navier-Stokes
equations.

Consider a modeled gas composed of identical particles whose velocities are restricted to a finite set of q vectors,
c1, c2, · · · , cq ∈ Ξh, while the above mentioned Boltzmann equation (1) treats the infinite set of ξ. That is, the Boltz-
mann equation using the BGK model, where the particle velocities belong to the discrete space Ξh, is given as the
following discrete Boltzmann equation [105] for the velocity distribution functions fi(x, t) = f (x, t, ci):

Sh
∂ fi

∂ t
+ ci ·∇ fi =−

1
τB

( fi− f eq
i ) in I×Ω×Ξ

h. (5)

The value of q is defined differently in various lattice gas models [73]. In the two-dimensional case, we employ the
nine-velocity (2D9V) model, which has the following velocity vectors:

[c1, c2, c3, c4, c5, c6, c7, c8, c9]

=

[
0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

]
. (6)

In the three-dimensional case, we employ the fifteen-velocity (3D15V) model, which has the following velocity
vectors:

[c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15]

=

 0 1 0 −1 0 0 0 1 −1 −1 1 1 −1 −1 1
0 0 1 0 −1 0 0 1 1 −1 −1 1 1 −1 −1
0 0 0 0 0 1 −1 1 1 1 1 −1 −1 −1 −1

 . (7)

These velocity models are shown in Fig. 1. In Eq. (5), discrete local equilibrium distribution function f eq
i is obtained

by the Maxwell distribution (3), which can be approximated as a Taylor expansion if the velocity is small or has a
very low Mach number, which implies that the characteristic speed U is much smaller than the speed of sound. Thus,
the discrete equilibrium distribution function f eq

i up to O(U2) is represented as follows [72]:

f eq
i = wiρ

{
1+3ci ·u+

9
2
(ci ·u)2− 3

2
u ·u

}
. (8)
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For the 2D9V model, the weight wi is defined so that w1 = 4/9, w2 =w3 =w4 =w5 = 1/9, w6 =w7 =w8 =w9 = 1/36,
and for the 3D15V model, the weight wi is defined so that w1 = 2/9, w2 =w3 = · · ·=w7 = 1/9, w8 =w9 = · · ·=w15 =
1/72. The density ρ , and the fluid velocity u are obtained from the following moments of the velocity distribution
functions:

ρ =
q

∑
i=1

fi, u =
1
ρ

q

∑
i=1

ci fi. (9)

In using the 2D9V or 3D15V models, the pressure p is represented as follows:

p =
ρ

3
. (10)

In the LBM, physical space is divided into a square or cubic lattice with spacing ∆x ∈ Ωh ⊂ R>0, and time steps
∆t ∈ Ih, where the discrete time interval Ih := {t ∈ I : t = t0 + k∆t,k ∈ N} is employed when formulating the LBE.
Using ∆x and ∆t, the discrete Boltzmann equation (5) for three-dimensional cases, in which the particle velocities are
defined as ci = [cix, ciy, ciz], can be discretized as follows:

fi(x,y,z, t +∆t)− fi(x,y,z, t)
∆t

+
cix

Sh
fi(x+ cix∆x,y+ ciy∆x,z+ ciz∆x, t +∆t)− fi(x,y+ ciy∆x,z+ ciz∆x, t +∆t)

cix∆x

+
ciy

Sh
fi(x,y+ ciy∆x,z+ ciz∆x, t +∆t)− fi(x,y,z+ ciz∆x, t +∆t)

ciy∆x

+
ciz

Sh
fi(x,y,z+ ciz∆x, t +∆t)− fi(x,y,z, t +∆t)

ciz∆x

=− 1
τBSh

{
fi(x,y,z, t)− f eq

i (x,y,z, t)
}
. (11)

Here, we choose ∆t = Sh∆x so that particles at any lattice node can propagate to any immediately neighboring
lattice node during each time step. This is possible because ∆t = Sh∆x in non-dimensional form leads to ∆t̄/t̃ =
L/(t̃c) · (∆x̄/L), i.e., ∆t̄ = ∆x̄/c in dimensional form. In addition, we note that the above discretization technique is
different from that usually used, in which the first-order upwind scheme is applied to obtain the LBE from the original
Boltzmann equation. The use of the different notation scheme allows very similar presentations of the discretization
for both the adjoint equation in Eq. (48), discussed in section 4.2, and the Boltzmann equation.

Consequently, we obtain the following LBE:

fi(x+ ci∆x, t +∆t) = fi(x, t)− 1
τB
{ fi(x, t)− f eq

i (x, t)}, in Ih×Ω
h×Ξ

h. (12)

We note that Eq. (12) can also be formulated for two-dimensional cases if particle velocities ci = [cix, ciy] are used.

3. Optimization problem

In this section, using the LBM, we formulate the topology optimization problem incorporating level set boundary
expressions for the design problem dealing with the isothermal viscous fluid. To derive the design sensitivities, we
use the adjoint variable method [106] and employ the Boltzmann equation to obtain an adjoint equation that can be
discretized so that the formulation resembles that of the LBE. Since the adjoint equation is also computed explicitly, as
with the LBE, simple computation algorithms for the state and adjoint problems can be constructed. In the following,
we formulate the optimization problem using the Boltzmann equation in order to exploit this advantage.
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3.1. Topology optimization method

Consider a structural optimization problem that determines the the boundary of the design domain Ω by mini-
mizing or maximizing objective functions. The key idea of the topology optimization method is the introduction of a
fixed design domain D that includes the original design domain Ω, and the utilization of the following characteristic
function, χΩ, described in the papers of Murat and Tartar [21], Belyschko et al. [107], and Norato et al. [108]:

χΩ(x) =

{
1 if x ∈Ω,

0 if x ∈ D\Ω,
(13)

where x represents a position in the fixed design domain D. Using this characteristic function, the original structural
optimization problem is replaced with a material distribution problem in the fixed design domain D. Since this
characteristic function can be highly discontinuous, i.e. resides in L∞(D), some regularization or smoothing technique
such as the homogenization method [109] must be introduced for the numerical treatment.

In such regularization techniques, the existence of grayscales is allowed in the optimal configurations. Although
grayscales can be interpreted as being micro-porous in a physical sense, they are problematic in an engineering sense
since such optimal configurations are difficult to interpret as practical designs that can be manufactured.

3.2. Level set boundary expressions

A different approach is used in level set-based structural optimization methods that have been proposed as a new
type of structural optimization method [23–25, 44–47]. Such methods implicitly represent target structural configura-
tions using the iso-surface of the level set function, which is a scalar function, and the outlines of target structures are
changed by updating the level set function during the optimization process. In level set-based structural optimization
methods, the obtained optimal configurations are free from grayscales, since the structural boundaries are represented
as the iso-surface of the level set function. Using the level set method to represent the boundaries of the flow field,
an optimal configuration that has clear boundaries between fluid and solid domains can be derived. Here, the level
set function φ represents fluid and solid domains, so that an optimization problem formulated for a fluid dynamics
problem can be considered, while the boundaries between these domains, ∂Ω, are represented by the iso-surface of
the level set function, as follows: 

0 < φ(x)6 1 if x ∈Ω\∂Ω,

φ(x) = 0 if x ∈ ∂Ω,

−1 6 φ(x)< 0 if x ∈ D\Ω,

(14)

where Ω represents the fluid domain, and D\Ω represents the solid domain. As shown in Fig. 2, the fluid and solid
domains are defined as the level set function assumes positive and negative values, respectively. Based on the previous
study [59], we assume that the distribution of the level set function φ have the same property of distribution as the
phase field variable in the phase field method. Therefore, the level set function is constrained to values lying between
−1 and 1 in Eq. (14).

3.3. Expression of fluid and solid domains using the level set function

Topology optimization for a fluid problem deals with fluid and solid domains in the fixed design domain. In
previous studies (e.g. [19, 43, 110]) using the FEM, the fixed design domain is expressed as either containing fluid
or an impermeable solid. Since the feasible design modifications involve adjusting the material porosity in the fixed
design domain, the no-slip boundary condition along the fluid-solid interface can be implicitly satisfied. Unfortunately,
this assumption requires the use of a fictitious external force, based on a theoretical description of porosity, expressed
as an additional term in the NS equation, and an appropriate parameter value for the porosity must be set by trial and
error.

In this study, we utilize the characteristic of the Boltzmann equation to introduce a simple expression for the fluid
and solid domains, using the above level set method. That is, the Maxwell distribution f eq in Eq. (3) is replaced with
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Figure 2: Fixed design domain D and level set function φ

the following extended Maxwell distribution f̂ eq in order to extend the fluid domain Ω to the fixed design domain D,
as follows:

f̂ eq(ρ,u,χφ ) =
ρ

T d/2 exp
(
−
|ξ−χφ u|2

T

)
, (15)

where χφ is a characteristic function that depends on the value of the level set function φ , and represents the existence
of the fluid domain Ω according to the following definition:

χφ =

{
1 if φ(x)> 0,
0 if φ(x)< 0.

(16)

Since the Boltzmann equation is made dependent on the characteristic function χφ , the solid domain can be represented
as the zero velocity field by using Eq. (15). Consequently, the space of the Boltzmann equation in Eq. (1) can be
considered as f ∈ I×D×Ξ, which allows the flow regime to be represented in the fixed design domain D. Therefore,
an optimal configuration can be obtained by controlling χφ , governed by the level set function φ as a design variable
in the optimization problem.

3.4. Extended Boltzmann equation and initial and boundary conditions
Using the Boltzmann equation incorporating the extended Maxwell distribution f̂ eq in Eq. (15), we formulate a

topology optimization problem for the flow channel design problem, which requires the setting of appropriate initial
and boundary conditions. Here, we consider the following formulation of the Boltzmann equation, and initial and
boundary conditions:

Sh
∂ f
∂ t

+ξ ·∇ f =− 1
τB
{ f − f̂ eq(ρ[ f ],u[ f ],χφ )} in I×D×Ξ, (17)

f |t=t0 = f 0 in D×Ξ, (18)
f (ξ) = f (−ξ) in I×Γw×Ξn·ξ<0, (19)
f = f eq(ρ[ f ],uin) in I×Γin×Ξ, (20)
f = f eq(ρout,u[ f ]) in I×Γout×Ξ, (21)

where Eq. (18) represents the initial condition of the expanded Boltzmann equation (17), and f 0 ∈ R>0 is an initial
value of the velocity distribution function. Equations (19)–(21) represent the boundary conditions. Eq. (19) is the
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Figure 3: Design specifications for flow field governed by the Boltzmann equation

non-slip boundary on the wall, Γw, called a bounce-back boundary condition [73] that is defined in the velocity space
Ξn·ξ<0 (where n is a normal vector on the boundary of the fixed design domain directed outward). Equations (20) and
(21) represent the inlet and outlet boundary conditions, respectively, using a prescribed velocity uin ∈Rd on inlet Γin,
and density ρout ∈ R>0 on outlet Γout. The schematic of the flow channel problem based on the above formulation is
shown in Fig. 3.

3.5. Formulation of optimization problem

Here, using the Boltzmann equation, an optimization problem is formulated with respect to a general form of
objective functional J, which evaluates the performance of the flow channel optimization problem in the fixed design
domain D and its boundary Γin ∪Γout . However, we must note that, since the LBM is an explicit time evolution
scheme for computing transient flows that requires sufficient computing time to represent a practical flow field, the
objective functional J should be evaluated only after a certain practical time interval has passed from the initial time
step, t0. Thus, we define the practical time interval as a steady-state flow condition where the appropriate time at
which the objective functional can be evaluated is represented as t1, and the new objective functional is represented
as J = J|t=t1 . We use macroscopic variables (i.e., density ρ and velocity u), and formulate the optimization problem
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using the Boltzmann equation with respect to the objective functional J|t=t1 by integrating A and a, as follows:

inf
φ

J|t=t1 =
∫

D
A(ρ[ f ],u[ f ])dΩ+

∫
Γin∪Γout

a(ρ[ f ],u[ f ])dΓ, (22)

s.t. V =
∫

D
χφ dΩ−Vmax 6 0, (23)

G =
∫

I

∫
D

∫
Ξ

g
{

Sh
∂ f
∂ t

+ξ ·∇ f +
1
τB

( f − f̂ eq)

}
dξdΩdt = 0, (24)

I =
∫

D

∫
Ξ

g
(

f |t=t0 − f 0)dξdΩdt = 0, (25)

B1 =
∫

I

∫
Γw

∫
Ξ

g{ f (ξ)− f (−ξ)}dξdΓdt = 0, (26)

B2 =
∫

I

∫
Γin

∫
Ξ

g{ f − f eq(ρ[ f ],uin)}dξdΓdt = 0, (27)

B3 =
∫

I

∫
Γout

∫
Ξ

g{ f − f eq(ρout,u[ f ])}dξdΓdt = 0, (28)

where V is a volume constraint that prescribes the limit quantity Vmax ∈ R>0 of the fluid domain, and G, I, and Bn
(n = 1,2,3) are respectively the weak forms of Eqs. (17)–(21) using the test function g ∈H1(I×D×Ξ). In the above
optimization problem, since the objective functional J|t=t1 is evaluated under the steady-state condition, we define
t1 as the iteration time that satisfies the criterion of the steady-state flow condition. The specific definition of this
criterion is described in the following section.

Since the characteristic function χφ allows discontinuity in infinitesimal intervals throughout the fixed design
domain D, the above optimization problem formulation is ill-posed. To regularize the optimization problem, an
extended objective functional JR is defined as follows, based on the Tikhonov regularization scheme [111]:

JR := J+Rτ , (29)

where the regularization term Rτ is defined as follows, using a regularization coefficient, τ ∈ R>0:

Rτ :=
∫

D

1
2

τ|∇φ |2dΩ. (30)

Consequently, the regularized optimization problem is formulated as

inf
φ

JR = J+Rτ , (31)

s.t. V 6 0, (32)
G = 0, I = 0, Bn = 0. (33)

The above regularized optimization problem is now replaced by an unconstrained problem, using Lagrange’s
method of undetermined multipliers.

inf
φ

J̄R = JR +λV +G+ I +Bn, (34)

where J̄R is the regularized Lagrangian, and λ ∈ R is the Lagrange multiplier. Based on the above formulation, the
KKT (Karush-Kuhn-Tucker) conditions of this optimization problem are formulated as follows:

δφ J̄R = 0, G = 0, I = 0, Bn = 0, λV = 0, λ > 0, V 6 0, (35)

where the notation δφ J̄R := 〈J̄′R,δφ〉 represents the first variation of the regularized Lagrangian J̄R, using the Gâteaux
derivative of J̄R with respect to φ in the direction of δφ . Level set functions that satisfy the above KKT conditions are
candidate solutions of the level set function that describe optimal configurations. However, it is not easy to directly
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obtain these optimal solutions, so the optimization problem is replaced by the following time evolution problem of
the level set function φ = φ(ς , x) by introducing a fictitious time, ς ∈Ψ[ς0,ς1)⊆ R>0, as follows:

∂φ

∂ς
=−KJ̄′R =−K(J̄′− τ∇

2
φ) in Ψ×D, (36)

φ = φ
0 in D, (37)

∂φ

∂ n
= 0 in Ψ× (Γin∪Γout), (38)

φ =−1 in Ψ×Γw, (39)

where K ∈ R>0 is a constant of proportionality, and φ 0 ∈ R is the initial value of the level set function. Equations
(37), and (38) and (39), respectively represent the initial and boundary conditions of Eq. (36). The results of the time
evolution formulation are assumed to be proportional to the gradient of Lagrangian J̄R with respect to the level set
function φ . The optimal configuration can be obtained by solving the above time evolution problem.

3.6. Sensitivity analysis

A key component of topology optimization method using the LBM is the use of the adjoint variable method [106]
for derivation of the design sensitivities. Here, we discuss the sensitivity analysis based on the adjoint variable method,
which is used in the topology optimization that employs the LBM. To clarify the difference between a conventional
approach and our newly proposed method, we briefly introduce the method proposed by Pingen et al. [96, 112] for
the formulation of the design sensitivities in an optimization problem using the LBE. We then discuss our approach
in which the optimization problem is formulated using the original Boltzmann equation.

3.6.1. Conventional sensitivity formulation using the LBE
In previous research by Pingen et al. [96, 112], the optimization problem was formulated under a steady-state flow

condition. Since the standard LBM is an explicit time evolution scheme for computing time-dependent flows, the flow
needs to be advanced in time until convergence to a steady-state condition is satisfied. Thus, the LBE for steady-state
flow can be represented as follows:

R(f,p) = M(f,p)− f = 0, (40)

where R represents the residual vector, and f and p represent the vectors of the velocity distribution functions and
design variables, respectively. The operator M performs one collision and one propagation step according to the LBE
in Eq. (12). Here, the collision and propagation steps respectively represent collision operator C and propagation
operator P, and we define M = P(C) : ft → ft+1, where index t represents the time step of the LBE.

Objective function F = F (f,p) is now introduced in the optimization problem, and the design sensitivities that
are the derivative of objective function F with respect to design variables p can be described as follows:

dF

dp
=

∂F

∂p
+

∂F T

∂ f
df
dp

, (41)

where f is the velocity distribution function at the steady-state governed by the steady-state LBE in Eq. (40). Due to
the large number of design variables, it would be computationally extravagant to compute the design sensitivities using
the direct method by computing df/dp for every design variable. In this case, the gradients of F can be efficiently
computed using the adjoint variable method.

First, we differentiate the residual R in Eq. (40) with respect to the design variables p,

∂R
∂p

+
∂R
∂ f

df
dp

= 0. (42)

Thus, the gradients of f are given by,
df
dp

=−∂R
∂ f

−1
∂R
∂p

. (43)
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Substituting Eq. (43) into (41), the sensitivity formulation based on the adjoint variable method is obtained as follows:

JTa =
∂F

∂ f
, (44)

dF

dp
=

∂F

∂p
−aT dR

dp
, (45)

where J = ∂R/∂ f is the Jacobian, and a represents the adjoint variables.
Based on the above sensitivity formulations, we can obtain the design sensitivities without computing dF/dp that

incurs massive computational costs. However, in the above sensitivity formulations, the design sensitivities cannot be
treated precisely, since the LBE, a so-called approximated equation, is used for the formulation of the optimization
problems, and the derivation of their adjoint equation. Furthermore, even for the 2D9V model, the Jacobian J is a
sparse asymmetric square matrix of size (N× 9)2 where N is the number of lattice nodes. That is, time-consuming
numerical operations are required to compute the Jacobian J, and the advantages of the LBM, such as its algorithmic
simplicity and computational efficiency, cannot be exploited in the adjoint equation.

3.6.2. Proposed sensitivity formulation using the Boltzmann equation
In this study, we construct a level set-based topology optimization method using the LBM, in which the optimiza-

tion problems are formulated based on the original Boltzmann equation, in contrast to the formulation in a previous
study [96] that is based on the LBE. The critical advantage obtained by using the Boltzmann equation is that the
adjoint equation can be formulated as a continuous equation, in a manner similar to that used when formulating the
Boltzmann equation. That is, both the adjoint equation and the LBE can be discretized in the same way, and the
adjoint variable can be explicitly computed using a time evolution equation, rather than a matrix operation, during the
optimization process.

First, we consider the variation of objective functional J̄, which can be abstractly described as follows:

δφ J̄ = δ f J[ f ]+λδφV [φ ]+δ f E[ f ,g,φ ]+δgE[ f ,g,φ ]+δφ E[ f ,g,φ ], (46)

where the equilibrium equation E is defined as E = G+ I +Bn. In the above equation, the variation of E with respect
to the test function g is equal to the original equilibrium equation, and can be eliminated since E = 0. Arranging the
above equation in order to eliminate the variation terms δ f J[ f ] and δ f E[ f ,g,φ ], we have the following:

δ f J[ f ]+δ f E[ f ,g,φ ] = 0, (47)

where g that satisfies the above formulation is called the adjoint variable, and Eq. (47) is the adjoint equation.
The above adjoint equation is then used to derive the following adjoint equations, following procedures detailed in
Appendix B, as below:

−∂g
∂ t
−ξ ·∇g =− 1

τB
(g−geq) in I×D×Ξ, (48)

g|t=t1 =−A′ in D×Ξ, (49)

g|t=t1 = geq
in +a′ in Γin×Ξ, (50)

g|t=t1 = geq
out +a′ in Γout×Ξ, (51)

g(ξ) = g(−ξ) in I×Γw×Ξn·ξ>0, (52)

g = geq
in in I×Γin×Ξ, (53)

g = geq
out in I×Γout×Ξ, (54)
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where

geq =
∫

Ξ

g(ξ̂)
T +(χφ u−ξ) · (χφ u− ξ̂)

ρT
f̂ eq(ξ̂)dξ̂, (55)

geq
in =

∫
Ξ

g(ξ̂)
1
ρ

f eq(ξ̂)dξ̂, (56)

geq
out =

∫
Ξ

g(ξ̂)
(χφ u−ξ) · (χφ u− ξ̂)

ρoutT
f eq(ξ̂)dξ̂, (57)

A′ =
1
ρ

{
∂A
∂ρ

ρ +
∂A
∂u
· (ξ−u)

}
, (58)

a′ =
1
ρ

{
∂a
∂ρ

ρ +
∂a
∂u
· (ξ−u)

}
. (59)

Although the basic characteristics of the above adjoint formulation were introduced in Krause et al.’s approach [113],
the inlet and outlet boundary conditions were not treated. To deal with these condition in our formulation, it can
be used to formulate various optimization problems for the design of fluid channels. In addition, we note that the
objective functional under a steady-state condition contributes to the initial condition of the adjoint equation in Eqs.
(49), (50) and (51).

Since the level set function φ only depends on the equilibrium distribution function f eq, the design sensitivity of
Eq. (46) is obtained as the following equation, using the adjoint variable g,

δφ J̄ = δφ E[ f ,g,φ ]+λδφV [φ ]

=
∫

T

∫
D

∫
Ξ

1
τB

∂ f̂ eq

∂φ
gδφdξdΩdt +λ

∫
D

δφdΩ

=
∫

D

{∫
T

∫
Ξ

(ξ−χφ u) ·u
τBT

f̂ eqgdξdt +λ

}
δφdΩ. (60)

We note that the proposed sensitivity formulations yield strictly correct sensitivities that are error free.

4. Numerical implementation

In this section, we first describe optimization algorithm used in this research. Then, we discuss a method for judg-
ing the steady-state flow condition, and the techniques to discretize the adjoint equation and the design sensitivities.

4.1. Optimization algorithm
The optimization algorithm of the proposed method is as follows:

(1) The initial level set function is set in the fixed design domain D.

(2) The LBE is calculated until a steady-state condition is obtained.

(3) If the criteria of objective functional and volume constraint are satisfied, an optimal configuration is obtained
and the optimization is finished, otherwise, the adjoint equation is calculated.

(4) The design sensitivities are calculated using the current velocity values, density values, and adjoint variables.
The level set function is then updated based on Eq. (71), after which the optimization procedure returns to the
second step of the iterative loop.

The updating of the level set function via the FEM employs the methodology used in previous research [59]. These
procedures are iterated until the following criterion for the value of objective functional is met:∣∣∣∣Jς − Jς−∆ς

Jς

∣∣∣∣< εOPT, (61)
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where subscript ς represents the number of iterations carried out during the optimization process and ∆ς represents
a single iteration. We set the value of this criterion so that εOPT = 1.0× 10−4. Concerning the calculation of the
Lagrange multiplier λ at each optimization iteration, when the volume constraint in Eq. (24) is active, the following
equation is satisfied:

δφ G = 0. (62)

Substituting Eq. (36) into (62), the Lagrange multiplier λ is obtained as follows:

λ =−
∫

D(J
′+ τ∇2φ)dΩ∫

D dΩ
. (63)

Here, the Lagrange multiplier λ is updated using the following equation, to improve the convergence of the optimiza-
tion calculation, in which the volume constraint G is imposed:

λ̄ = λ expG . (64)

We note that since the exponential function expG can be expanded, using a Taylor expansion around G = 0, as expG =
1+G+1/2G2 + · · · , the above equation for λ̄ is based on the augmented Lagrangian method [114], in which the λ

is updated using λ̄ = λ + cG, where c ∈ R>0 is a penalty parameter. When the volume constraint G is inactive, the
Lagrange multiplier automatically assumes a value of λ ≈ 0 due to the use of the exponential function in Eq. (64).

4.2. Judgment of steady-state condition
Since the LBM is an explicit time evolution scheme for computing transient flows, in order to evaluate the objective

functional J in a steady-state condition, we employ the following criterion,∥∥∥∥uς −uς−∆ς

uς

∥∥∥∥
L2(D)

< εLBM, (65)

We use εLBM = 1.0×10−4 as a criterion to judge the steady-state condition in this research.

4.3. Discretization of the adjoint equation and design sensitivities
Due to the similar configuration of the Boltzmann equation (48) and the adjoint equation (17), the discrete adjoint

equation can be formulated as follows, as was done to obtain the discrete Boltzmann equation (5), for the adjoint
variable gi(x, t) = g(x, t, ci).

−Sh
∂gi

∂ t
− ci ·∇gi =−

1
τB

(gi−geq
i ) in I×Ω×Ξ

h. (66)

Applying a Gauss-Hermite quadrature to geq in Eq. (66), geq
i is obtained as

geq
i =

q

∑
j=1

gi(c j)
1+(χφ u− ci) · (χφ u− c j)

ρ
f̂ eq

j , (67)

in which we assume that the temperature is T = 1 that means the dimensional temperature T̄ , which is assumed the
isothermal condition, is equal to the reference temperature T0.

Now, applying the discretization strategy used in Eq. (11), the above equation (66) is discretized as follows:

gi(x,y,z, t−∆t)−gi(x,y,z, t)
∆t

+
cix

Sh
gi(x− cix∆x,y− ciy∆x,z− ciz∆x, t−∆t)−gi(x,y− ciy∆x,z− ciz∆x, t−∆t)

cix∆x

+
ciy

Sh
gi(x,y− ciy∆x,z− ciz∆x, t−∆t)−gi(x,y,z− ciz∆x, t−∆t)

ciy∆x

+
ciz

Sh
gi(x,y,z− ciz∆x, t−∆t)−gi(x,y,z, t−∆t)

ciz∆x

=− 1
τBSh

{
gi(x,y,z, t)−geq

i (x,y,z, t)
}
. (68)
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Since the time step is expressed as ∆t = Sh∆x in the LBE, we now obtain the following discretized adjoint equation:

gi(x− ci∆x, t−∆t) = gi(x, t)− 1
τB
{gi(x, t)−geq

i (x, t)} in Ih×Dh×Ξ
h. (69)

Similarly, using the particle velocities ci and the discretized variables f̂ eq
i and gi, the design sensitivities in Eq.

(60) can be represented as follows:

δφ J̄ =
∫

D

{
1
τB

q

∑
i=1

f̂ eq
i gi

{
ci−χφ u

}
·u+λ

}
δφdΩ. (70)

Therefore, the time evolutionary equation (36) of the optimization problems using the Boltzmann equation is

∂φ

∂ς
=−K

{
1
τB

q

∑
i=1

f̂ eq
i gi

{
ci−χφ u

}
·u+λ − τ∇

2
φ

}
. (71)

We note that the discretized adjoint equation, (69), allows us to avoid having to deal with matrix operations to
obtain the design sensitivities during the optimization process.

5. Numerical examples

In this section, two- and three-dimensional numerical examples are provided. All numerical examples use the same
parameters for the optimization: τ = 5.0×10−3, K = 1, ∆ς = 0.25, and φ 0 = 1 , which sets the initial configuration
so that the fixed design domain D is filled with fluid. In addition, since all numerical examples are treated as internal
channel flow problems, the boundaries of D are set to a non-slip condition where u = 0.

5.1. Comparison of LBM and FEM results
First, we confirm the applicability of our methodology by comparing an obtained result with that obtained using a

previous FEM-based approach [115]. In this case, we use the following objective functional,

J1|t=t1 =
∫

D

1
2Re

{
∇u+(∇u)T} :

{
∇u+(∇u)T}dΩ, (72)

which represents the dissipation energy of the flow, with Re representing the Reynolds number in the flow field. The
terms in the adjoint equations (58) and (59) are derived as follows:

A′ =
1

Reρ

{
∇u+(∇u)T} :

{
∇u+(∇u)T} , (73)

a′ = 0. (74)

The design settings for the two-dimensional channel flow problem are shown in Fig. 4(a). The fluid velocity at the
two left inlets is defined as uI = (U0,0)T using the inlet velocity U0 = 1.2× 10−2, and the pressure at the two left
outlets is set as p0 = 0.33. The volume constraint Vmax = (1/3)V0 (where V0 is the volume of the fixed design domain
D), and the relaxation time τB = 0.8, which is a physically appropriate value used to represent the fluid properties as
a continuum. The kinematic viscosity of the fluid is then obtained as ν = (τB−1/2)∆x/3 = 2.0×10−3. Hence, the
Reynolds number is represented as Re =U0L0/ν = 1, where we define the characteristic length L0 as the width of the
inlet.

Figure 5 shows the velocity field and the adjoint velocity field that is defined as ũ = ∑
q
i=1 cig in the first step of the

iterated optimization procedure for the flow channel design problem shown in Fig. 4(a). We note that the direction
of the adjoint velocity ũ is opposite that of the velocity u. This relationship mirrors that between the directions of
particle velocities ci in Eq. (66), which are opposite those of the particle velocities in the Boltzmann equation. In
Navier-Stokes flow problems, Katamine et al. [4] and Zhou and Li [52] have shown that in flow friction minimization
problems, the adjoint variable and the fluid velocity have the same characteristics, namely that their vectors are
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Figure 4: Comparison of LBM and FEM results
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Figure 5: Velocity and adjoint velocity fields in the first step of optimization iteration of flow channel design problem in Fig. 4(a). The definition
of the adjoint velocity is ũ = ∑

q
i=1 cig.
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Figure 6: Convergence history of objective functional J1 values and volume fraction. σ = J1/J0
1 represents the ratio of the values of current

objective functionals J1 to the value of the initial objective functional J0
1 . γ = V/V0 represents the volume ratio of the current volume of the fluid

domain V to the initial volume V0.

opposite in direction. Thus, ũ can be considered as corresponding to the adjoint variable in optimization problems
that incorporate the Navier-Stokes equations.

Figures 4(b) and (c) show the optimal configurations based on the LBM (b) and FEM (c) approaches for the flow
channel problem. The general similarity of the configurations confirms that the proposed LBM can obtain appropriate
results. In the LBM-based method, the expanded Maxwell distribution in Eq. (15) is used to express the solid
boundaries. On the other hand, the FEM-based method uses an artificial force based on Darcy’s law [116]. Thus,
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Figure 7: Optimization histories and optimal configurations for three initial configurations

we note that the difference between the LBM and FEM optimal configurations may be a consequence of the different
definitions used in the treatment of the solid domain.

Figure 6 shows the convergence history of the value of the objective functional J1 and the volume fraction. We
can confirm that both are smoothly converged and that the optimal configuration is a valid solution.

5.2. Dependency of optimal configurations on initial configurations

Next, we examine the dependency of the optimal configurations with respect to the initial configurations, using
the design model shown in Fig. 4(a). In conventional approaches based on the level set method, dependency on
initial configurations is considered to be a fatal disadvantage from the standpoint of obtaining optimal configurations
[25]. The main reason why this problem occurs is that the Hamilton-Jacobi equation is used for updating the level set
function. Due to the characteristics of this equation, conventional approaches are essentially shape optimizations; that
is, topological changes, such as the generation of a new hole (in the fluid or solid domains), are disallowed during the
optimization process. On the other hand, since we use a reaction-diffusion equation (36) when updating the level set
function, topological changes as well as changes in structural boundaries are allowed during the optimization process.
Here, we treat three cases, each using a different initial configuration, using a grid size of ∆x = 2.0× 10−2 and the
same Reynolds number condition as that applied in the previous problem described in section 5.2.

Figure 7 shows the three different initial settings and configurations at selected iterations prior to obtaining optimal
configurations. Although each initial configuration has a different topology, the obtained optimal configurations have
the same topology and a similar configuration. The similarity of the optimal configurations shown in Fig. 7 indicates
that dependency with respect to the initial configuration is low.

5.3. Dependency of optimal configurations on grid size

Next, we examine the dependency of the optimal configurations with respect to the grid size, using the design
model shown in Fig. 8(a). Here, two cases are treated, using grid sizes of ∆x = 2.0×10−2 and ∆x = 1.0×10−2 under
the same volume constraint condition, with Vmax = (2/5)V0.
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Figure 9: Design settings and optimal configurations for pipe bend problem

Here, the Reynolds number is set as Re = 10 in order to ensure that the Reynolds number condition is the same in
both cases that use different grid sizes.

The similarity of the optimal configurations in Fig. 8(b) and (c) indicates that dependency with respect to grid size
is low.

5.4. Objective functional for pressure drop between inlet and outlet

To address a second problem, minimization of the pressure drop between inlet and outlet, we use the following
objective functional that expresses the pressure drop between inlet Γin and outlet Γout:

J2|t=t1 =
∫

Γin

pdΓ−
∫

Γout
pdΓ. (75)

Using J2, this optimization problem is equivalent to a problem to minimize dissipation J1, from a physical standpoint.
However, we note that the objective functional J2 can only be used in slow velocity regimes, where |u| � 1, since the
dynamic pressure ρ|u|2/2 is neglected. The terms in the adjoint equations (58) and (59) are derived as follows:

A′ = 0, (76)

a′ =

{
1
3 on Γin,

− 1
3 on Γout.

(77)

Figure 9 shows the design settings and optimal configurations for a pipe bend problem to examine the difference
in the obtained results when the goal is to minimize the dissipation energy or the pressure drop, using objective
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Figure 10: Dependency of optimal configurations on Reynolds number in pipe bend problem
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Figure 11: Dependency of optimal configurations on Reynolds number in switching pipe problem

functionals J1 and J2, respectively. Identical flow properties and grid size ∆x = 2.0× 10−2, with Reynolds number
Re = 5, were used in both cases. The volume constraint in both cases was set to the same value, Vmax = (1/4)V0.
The close similarity of the optimal configurations in Fig. 9(b) and (c) indicates that the minimization problem for the
flow friction in our topology optimization method can be formulated using the pressure drop that is formulated as a
boundary integration, without using the derivative term.

5.5. Dependency of optimal configurations on Reynolds number

Here, we examine the dependency of the optimal configurations with respect to different Reynolds numbers, using
the objective functional J1 in Eq. (74).

Figure 10 shows the optimal configurations obtained for two different Reynolds numbers in the pipe bend problem:
(a) Re = 5; and (b) Re = 150. The differences in the optimal configurations indicate that the value of the Reynolds
number affects the channel’s configuration; the radius of curvature is decreased as the Reynolds number is increased.

Next, we treat the pipe flow problem shown in Fig. 11, where (a), (b), and (c) are the design model, the optimal
configuration under Re = 1, and the optimal configuration under Re = 50, respectively. In this problem, the volume
constraint is set with Vmax = (2/5)V0. In the low Reynolds number case, the optimal channel configuration is an arc
shape connecting the inlet to the outlet of the left side boundary. On the other hand, in the high Reynolds number
case, the optimal channel configuration is an essentially straight shape connecting the inlet with the outlet at the right
side boundary.

5.6. Three-dimensional channel flow problems

Finally, the previous two-dimensional cases are extended to three-dimensional channel flow problems. Here, we
consider two design problems, using objective functional J2 in Eq. (75).

19



Inlet

Outlet

1

1

1/5

1/5

1/2

(a) Design settings (b) Optimal configuration

Figure 12: Optimal configuration in three-dimensional pipe bend problem

Figure 13: Optimal configuration in three-dimensional multi-outlet problem

First, we consider the three-dimensional pipe bend problem shown in Fig. 12(a), in which the volume constraint
Vmax = (1/3)V0, and cubic grid size ∆x = 1.25×10−3. Since the reference length in this problem is the diameter of the
inlet, the Reynolds number is set as Re = 20. Figure 12(b) shows the optimal configuration for the three-dimensional
pipe bend problem.

In the second numerical example for a three-dimensional case, we consider a problem with a single inlet and four
outlets, as shown in Fig. 13(a). In this problem, the volume constraint, cubic grid size, and Reynolds number are
respectively set as Vmax = (2/5)V0, ∆x = 1.25×10−3, and Re = 20. Figure 13(b) shows the optimal configuration for
the three-dimensional multi-outlet problem.

These optimal configurations indicate that the proposed method can derive a valid optimal structure in a three-
dimensional case.

6. Conclusion

This paper presented a new level set-based topology optimization method for fluid dynamics problems using the
LBM. The presented method was applied to flow friction minimization problems for incompressible viscous flow. We
achieved the following:

(1) A topology optimization method was formulated, incorporating level set boundary expressions, where the sen-
sitivity formulations, based on the original Boltzmann equation, enable the design sensitivities to be precisely
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derived without matrix operations, in contrast to previous research in which the use of the LBM required large-
scale matrix operations.

(2) Based on the formulation of the optimization problem, an optimization algorithm was constructed. Due to the
similar configuration of the Boltzmann and adjoint equations, the adjoint equation was discretized as an explicit
time evolutional equation, using the discretization strategy applied to the LBE. The time evolution equation for
updating the level set function was solved using the FEM.

(3) Several numerical examples for both two- and three-dimensional problems were provided to confirm the va-
lidity and utility of the presented method, for dissipation energy minimization and pressure drop minimization
problems. Based on the obtained results, we confirmed that the presented method obtains smooth and clear
optimal configurations that show minimal dependency upon the initial configurations and mesh size. We also
demonstrated that the presented method obtains an optimal configuration similar to that when using an FEM-
based method. In addition, we confirmed that optimal configurations obtained by the presented method show
dependency with respect to Reynolds number settings.
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Appendix A. Definition of non-dimensional variables

We use the following non-dimensional variables defined by a characteristic length L, a characteristic particle speed
c, a characteristic time t̃ = L/U where U is a characteristic flow speed, a reference order parameter f0, a reference
density ρ0, and a reference temperature T0, as follows:

x =
x̄
L
, ξ =

ξ̄

c
, t =

t̄
t̃
, f =

f̄
f0
, ρ =

ρ̄

ρ0
, T =

T̄
T0

, u =
ū
c
, p =

p̄
ρ0c2 , ν =

ν̄

cL
, (A.1)

where, x̄, ξ̄, t̄, f̄ , ρ̄ , T̄ , ū, p̄, ν̄ represent dimensional quantities for each variable. In this study, the characteristic
particle speed is set to c =

√
2RT0, where R represents the specific gas constant and c is a parameter of the same order

as that of the speed of sound in the specific gas at temperature T0. Based on the dimensional Maxwell distribution
with u = 0, the reference order parameter f0 is defined as follows:

f0 =
ρ0

(2πRT0)d/2 exp
(
− c2

2RT0

)
. (A.2)

Appendix B. Derivation of the adjoint equation

Here, we discuss the details concerning the derivation of the adjoint equation in Eq. (48), and the initial and
boundary conditions expressed in Eqs. (49), (52), (53), and (54). We consider the specific formulation of each term
in the left side of Eq. (47).

First, we derive the specific formulation of δ f J[ f ], which is represented as the following variation of the objective
functional:

δ f J[ f ] = lim
ε→0

J[ f + εη ]− J[ f ]
ε

for ∀η ∈U , (B.1)

where U represents the function space of arbitrary function η , and Eq. (B.1) is based on the Gâtaux derivative. To
ensure a precise derivation, we define function space U as follows:

U = {η |η ∈ H1(I×D×Ξ) with η(ξ) = η(−ξ) on Γw}. (B.2)

21



In addition, the objective functional is divided, with J := JD + JΓ. These two functionals are then defined as follows:
JD =

∫
D A(ρ,u)dΩ, and JΓ =

∫
Γin∪Γout

a(ρ,u)dΓ. Based on Eq. (B.1), JD[ f + εη ] is derived as follows:

JD[ f + εη ] = JD[A(ρ[ f + εη ],u[ f + εη ])] = JD[A{ρ[ f + εη ],u(ρ[ f + εη ],v[ f + εη ])}], (B.3)

and we define u as

u =
v
ρ
, (B.4)

v =
∫

Ξ

ξ f dξ. (B.5)

Since ρ and v are linear functionals, the integrand A in Eq. (B.3) can be rewritten as

A{ρ[ f + εη ],u(ρ[ f + εη ],v[ f + εη ])}= A{ρ[ f ]+ ερ[η ],u(ρ[ f ]+ ερ[η ],v[ f ]+ εv[η ])}, (B.6)

where u(ρ[ f ]+ ερ[η ],v[ f ]+ εv[η ]) is expanded as follows, using the Taylor expansion:

u(ρ[ f ]+ ερ[η ],v[ f ]+ εv[η ]) = u(ρ[ f ],v[ f ])+ ε

{
∂u
∂ρ

ρ[η ]+
∂u
∂v

v[η ]

}
+o(ε). (B.7)

Furthermore, using Eq. (B.7), Eq. (B.6) can also be expanded as follows, using the Taylor expansion:

A{ρ[ f ]+ερ[η ],u(ρ[ f ]+ ερ[η ],v[ f ]+ εv[η ])} (B.8)

= A{ρ[ f ],u(ρ[ f ],v[ f ])}+ ε

{
∂A
∂ρ

ρ[η ]+
∂A
∂v
·
(

∂u
∂ρ

ρ[η ]+
∂u
∂v

v[η ]

)}
+o(ε), (B.9)

where

∂u
∂ρ

=− v
ρ2 , (B.10)

∂u
∂v

=
1
ρ
. (B.11)

Hence, based on Eq. (B.1), the variation δ f JD is obtained as follows:

δ f JD = lim
ε→0

JD[ f + εη ]− JD[ f ]
ε

=
∫

D

{
∂A
∂ρ

ρ[η ]+
∂A
∂v
·
(

∂u(ρ[ f ],v[ f ])
∂ρ

ρ[η ]+
∂u(ρ[ f ],v[ f ])

∂v
v[η ]

)}
dΩ

=
∫

D

{
∂A
∂ρ

ρ[η ]+
∂A
∂v
·
(
− v[ f ]
(ρ[ f ])2 ρ[η ]+

1
ρ[ f ]

v[η ]

)}
dΩ

=
∫

D

{
∂A
∂ρ

ρ[η ]+
∂A
∂v
·
(
−u(ρ[ f ],v[ f ])

ρ[ f ]
ρ[η ]+

u(ρ[η ],v[η ])

ρ[ f ]
ρ[η ]

)}
dΩ

=
∫

D

1
ρ[ f ]

{
∂A
∂ρ

ρ[ f ]+
∂A
∂v
· {u(ρ[η ],v[η ])−u(ρ[ f ],v[ f ])}

}
ρ[η ]dΩ

=
∫

D

∫
Ξ

1
ρ[ f ]

{
∂A
∂ρ

ρ[ f ]+
∂A
∂v
· {ξ−u(ρ[ f ],v[ f ])}

}
ηdξdΩ, (B.12)

with the following functional used with respect to the arbitrary function η :

ρ[η ] =
∫

Ξ

ηdξ, (B.13)

u(ρ[η ],v[η ]) =
1

ρ[η ]

∫
Ξ

ξηdξ. (B.14)
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Similarly, δ f JΓ can be derived as follows:

δ f JΓ = lim
ε→0

JΓ[ f + εη ]− JΓ[ f ]
ε

=
∫

Γin∪Γout

∫
Ξ

1
ρ[ f ]

{
∂a
∂ρ

ρ[ f ]+
∂a
∂v
· {ξ−u(ρ[ f ],v[ f ])}

}
ηdξdΓ. (B.15)

Consequently, we obtain the following variation, δ f J = δ f JD +δ f JΓ, as

δ f J =
∫

D

∫
Ξ

1
ρ[ f ]

{
∂A
∂ρ

ρ[ f ]+
∂A
∂v
· {ξ−u(ρ[ f ],v[ f ])}

}
ηdξdΩ

+
∫

Γin∪Γout

∫
Ξ

1
ρ[ f ]

{
∂a
∂ρ

ρ[ f ]+
∂a
∂v
· {ξ−u(ρ[ f ],v[ f ])}

}
ηdξdΓ. (B.16)

Next, we consider the derivation of δ f E[ f ,g,φ ] in Eq. (47). We now consider the variation of δ f G, δ f I, and δ f Bn
individually, since E = G+ I +Bn. Therefore, using the above derivation of δ f J as a basis, we obtain the following
variations:

δ f G =

[∫
D

∫
Ξ

gηdξdΩ

]t1

t0

−
∫

I

∫
D

∫
Ξ

∂g
∂ t

ηdξdΩdt +
∫

I

∫
Γ

∫
Ξ

gξ · nηdξdΓdt

−
∫

I

∫
D

∫
Ξ

ξ ·∇gηdξdΩdt +
∫

I

∫
D

∫
Ξ

1
τB

(g−geq)ηdξdΩdt, (B.17)

δ f I =
∫

D

∫
Ξ

g|t=t0ηdξdΩ, (B.18)

δ f B1 =
∫

I

∫
Γw

∫
Ξn·ξ<0

g{η(ξ)−η(−ξ)}dξdΓdt, (B.19)

δ f B2 =
∫

I

∫
Γin

∫
Ξ

(
g−geq

in

)
ηdξdΓdt, (B.20)

δ f B3 =
∫

I

∫
Γout

∫
Ξ

(
g−geq

out
)

ηdξdΓdt, (B.21)

where geq is the variation of
∫

I
∫

D
∫

Ξ
f eqgdξdΩdt with respect to f , and can be obtained as follows:∫

I

∫
D

∫
Ξ

f eq[ f + εη ]gdξdΩdt

=
∫

I

∫
D

∫
Ξ

f eq{ρ[ f + εη ],u(ρ[ f + εη ],v[ f + εη ])}gdξdΩdt

=
∫

I

∫
D

∫
Ξ

f eq{ρ[ f ]+ ερ[η ],u(ρ[ f ]+ ερ[η ],v[ f ]+ εv[η ])}gdξdΩdt

=
∫

I

∫
D

∫
Ξ

f eq{ρ[ f ]+ ερ[η ],u(ρ[ f ],v[ f ])+ ε
∂u
∂ρ

ρ[η ]+ ε
∂u
∂v

v[η ]}gdξdΩdt +o(ε)

=
∫

I

∫
D

∫
Ξ

{ f eq{ρ[ f ],u(ρ[ f ],v[ f ])}

+ε
∂ f eq

∂ρ
ρ[η ]+

∂ f eq

∂u
·
(

ε
∂u
∂ρ

ρ[η ]+ ε
∂u
∂v

v[η ]

)}
gdξdΩdt +o(ε), (B.22)
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thus, ∫
I

∫
D

∫
Ξ

geq
ηdξdΩdt =

∫
I

∫
D

∫
Ξ

{
∂ f eq

∂ρ
ρ[η ]+

∂ f eq

∂u
·
(

∂u
∂ρ

ρ[η ]+
∂u
∂v

v[η ]

)}
gdξ̂dξdΩdt

=
∫

I

∫
D

∫
Ξ

∫
Ξ

{
∂ f eq

∂ρ
+

∂ f eq

∂u
·
(

∂u
∂ρ

+
∂u
∂v
ξ̂

)}
gη(ξ̂)dξ̂dξdΩdt

=
∫

I

∫
D

∫
Ξ

∫
Ξ

{
1
ρ

f eq +
ξ−u

T
f eq ·

(
− v

ρ2 +
1
ρ
ξ̂

)}
gη(ξ̂)dξ̂dξdΩdt

=
∫

I

∫
D

∫
Ξ

∫
Ξ

g f eq

ρT

{
T +(ξ−u) · (ξ̂−u)

}
η(ξ̂)dξ̂dξdΩdt. (B.23)

In addition, geq
in and geq

out can be also obtained using the above formulation. Thus, we have

geq =
∫

Ξ

g(ξ̂) f eq

ρT

{
T +(ξ̂−u) · (ξ−u)

}
dξ̂, (B.24)

geq
in =

∫
Ξ

g(ξ̂) f eq

ρ
dξ̂, (B.25)

geq
out =

∫
Ξ

g(ξ̂) f eq

ρT
(ξ̂−u) · (ξ−u)dξ̂. (B.26)

We now derive the adjoint equation and its boundary and initial conditions, using the Eqs. (B.16)–(B.21). First,
the adjoint equation is obtained from Eq. (B.17), ignoring first and third terms, as∫

I

∫
D

∫
Ξ

{
−∂g

∂ t
−ξ ·∇g+

1
τB

(g−geq)

}
ηdξdΩdt = 0. (B.27)

Since η represents any function, the adjoint equation is defined as the integrand of Eq. (B.27):

−∂g
∂ t
−ξ ·∇g+

1
τB

(g−geq) = 0 in I×D×Ξ. (B.28)

Next, we consider the initial condition of the adjoint equation. From Eqs. (B.16), (B.17) and (B.18), we obtain
the following equation:∫

D

∫
Ξ

A′η(t1)dξdΩ+
∫

Γin∪Γout

∫
Ξ

a′η(t1)dξdΩ

+
∫

D

∫
Ξ

{g(t1)η(t1)−g(t0)η(t0)}dξdΩ+
∫

D

∫
Ξ

g(t0)η(t0)dξdΩ = 0, (B.29)

where

A′ =
1
ρ

{
∂A
∂ρ

ρ +
∂A
∂u
· (ξ−u)

}
, (B.30)

a′ =
1
ρ

{
∂a
∂ρ

ρ +
∂a
∂u
· (ξ−u)

}
. (B.31)

Therefore, the initial condition of the adjoint equation is the following,

g(t1)+A′ = 0 in D×Ξ. (B.32)

We note that the second term of Eq. (B.29) affects the initial boundary conditions shown in Eqs. (50) and (51).
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Finally, we consider the boundary conditions of the adjoint equation. From the third term of Eq. (B.16), and Eqs.
(B.19)–(B.21), we obtain the following:∫

I

∫
Γ

∫
Ξ

gξ · nηdξdΓdt +
∫

I

∫
Γw

∫
Ξn·ξ<0

g{η(ξ)−η(−ξ)}dξdΓdt

+
∫

I

∫
Γin

∫
Ξ

(
g−geq

in

)
ηdξdΓdt +

∫
I

∫
Γout

∫
Ξ

(
g−geq

out
)

ηdξdΓdt = 0. (B.33)

Using the assumption of η in (B.2), the second term of the above equation can be eliminated. Therefore, the above
equation is rewritten as∫

I

∫
Γw

∫
Ξ

gξ · nηdξdΓdt +
∫

I

∫
Γin

∫
Ξ

gξ · nηdξdΓdt +
∫

I

∫
Γout

∫
Ξ

gξ · nηdξdΓdt

+
∫

I

∫
Γin

∫
Ξ

(
g−geq

in

)
ηdξdΓdt +

∫
I

∫
Γout

∫
Ξ

(
g−geq

out
)

ηdξdΓdt = 0. (B.34)

Here, using the first term of the above equation, the boundary condition of Γw is obtained as follows:∫
I

∫
Γw

∫
Ξ

gξ · nηdξdΓdt =
∫

I

∫
Γw

∫
Ξn·ξ>0

g(ξ)ξ · nηdξdΓdt +
∫

I

∫
Γw

∫
Ξn·ξ<0

g(ξ)ξ · nηdξdΓdt

=
∫

I

∫
Γw

∫
Ξn·ξ>0

g(ξ)ξ · nηdξdΓdt−
∫

I

∫
Γw

∫
Ξn·ξ>0

g(−ξ)ξ · nηdξdΓdt

=
∫

I

∫
Γw

∫
Ξn·ξ>0

ξ · n{g(ξ)−g(−ξ)}ηdξdΓdt

=
∫

I

∫
Γw

∫
Ξn·ξ>0

ξ · n{g(ξ)−g(−ξ)}ηdξdΓdt, (B.35)

where Ξn·ξ>0 is the velocity space of ξ that satisfies n · ξ > 0. We note that the boundary condition of Γw for the
adjoint equation has to be set in n · ξ > 0, while the boundary condition of Boltzmann equation has to be set so that
n · ξ < 0. The reason why different settings are required for the Boltzmann equation and the adjoint equation is that
both the propagation and time evolution directions of adjoint equation are opposite those of the Boltzmann equation.
Consequently, from the above equation, we obtain the following boundary condition:

g(ξ)−g(−ξ) = 0 in I×Γw×Ξn·ξ>0. (B.36)

Similarly, the boundary conditions for Γin and Γout can be described as follows:

g−geq
in = 0 in I×Γin×Ξ, (B.37)

g−geq
out = 0 in I×Γout×Ξ. (B.38)

References

[1] O. Pironneau, On optimum profiles in Stokes flow, Journal of Fluid Mechanics 59 (1) (1973) 117–128.
[2] O. Pironneau, On optimum design in fluid mechanics, Journal of Fluid Mechanics 64 (1) (1974) 97–110.
[3] B. Mohammadi, O. Pironneau, Applied shape optimization for fluid, Oxford University Press, Oxford, 2001.
[4] E. Katamine, T. Tsubata, H. Azegami, Solution to shape optimization problem of viscous flow fields considering convection term, Inverse

Problems in Engineering Mechanics 4 (2003) 401–408.
[5] B. Mohammadi, O. Pironneau, Shape optimization in fluid mechanics, Annual Review of Fluid Mechanics 36 (2004) 255–279.
[6] A. Wang, Y. Ma, Z. Gao, Shape optimization of a body in the Oseen flow, Numerical Methods for Partial Differential Equations 26 (6)

(2009) 1642–1659.
[7] Y. Iwata, H. Azegami, T. Aoyama, E. Katamine, Numerical solution to shape optimization problems for non-stationary Navier-Stokes

problems, JSIAM Letters 2 (2010) 733–740.
[8] L. Wang, Y. Fan, L. Luo, Heuristic optimality criterion algorithm for shape design of fluid flow, Journal of Computational Physics 229 (20)

(2010) 8031–8044.
[9] D. N. Srinath, S. Mittal, An adjoint method for shape optimization in unsteady viscous flows, Journal of Computational Physics 229 (6)

(2010) 1994–2008.

25



[10] A. S. Zymaris, D. I. Papadimitriou, K. C. Giannakoglou, C. Othmer, Adjoint wall functions: A new concept for use in aerodynamic shape
optimization, Journal of Computational Physics 229 (13) (2010) 5228–5245.

[11] M. Zabarankin, A. Molyboha, 3D shape optimization in viscous incompressible fluid under Oseen approximation, SIAM Journal on Control
and Optimization 49 (3) (2011) 1358–1382.

[12] M. P. Bendsøe, N. Kikuchi, Generating optimal topologies in structural design using a homogenization method, Computer Methods in
Applied Mechanics and Engineering 71 (2) (1988) 197–224.

[13] K. Suzuki, N. Kikuchi, A homogenization method for shape and topology optimization, Computer Methods in Applied Mechanics and
Engineering 93 (3) (1991) 291–318.

[14] A. R. Diaz, N. Kikuchi, Solutions to shape and topology eigenvalue optimization problems using a homogenization method, International
Journal for Numerical Methods in Engineering 35 (7) (1992) 1487–1502.

[15] Z.-D. Ma, N. Kikuchi, H.-C. Cheng, Topological design for vibrating structures, Computer Methods in Applied Mechanics and Engineering
121 (1) (1995) 259–280.

[16] N. L. Pedersen, Maximization of eigenvalues using topology optimization, Structural and Multidisciplinary Optimization 20 (1) (2000)
2–11.

[17] Q. Li, G. P. Steven, O. M. Querin, Y. Xie, Shape and topology design for heat conduction by evolutionary structural optimization, Interna-
tional Journal of Heat and Mass Transfer 42 (17) (1999) 3361–3371.

[18] A. Iga, S. Nishiwaki, K. Izui, M. Yoshimura, Topology optimization for thermal conductors considering design-dependent effects, including
heat conduction and convection, International Journal of Heat and Mass Transfer 52 (11) (2009) 2721–2732.

[19] T. Borrvall, J. Petersson, Topology optimization of fluids in Stokes flow, International Journal for Numerical Methods in Fluids 41 (1) (2003)
77–107.

[20] L. H. Olesen, F. Okkels, H. Bruus, A high-level programming-language implementation of topology optimization applied to steady-state
Navier-Stokes flow, International Journal for Numerical Methods in Engineering 65 (7) (2006) 975–1001.

[21] F. Murat, L. Tartar, Optimality conditions and homogenization, Research Notes in Mathematics 127 (1985) 1–8.
[22] M. P. Bendsøe, O. Sigmund, Topology optimization: theory, methods and applications, Springer, New York, 2003.
[23] G. Allaire, F. Jouve, A.-M. Toader, A level-set method for shape optimization, Comptes Rendus Mathematique 334 (12) (2002) 1125–1130.
[24] M. Y. Wang, X. Wang, D. Guo, A level set method for structural topology optimization, Computer Methods in Applied Mechanics and

Engineering 192 (1) (2003) 227–246.
[25] G. Allaire, F. Jouve, A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method, Journal of Computational

Physics 194 (1) (2004) 363–393.
[26] B. Bourdin, A. Chambolle, Topology optimization approaches, ESAIM: Control, Optimisation and Calculus of Variations 9 (2003) 1948.
[27] A. Takezawa, S. Nishiwaki, M. Kitamura, Shape and topology optimization based on the phase field method and sensitivity analysis, Journal

of Computational Physics 229 (7) (2010) 2697–2718.
[28] A. Takezawa, M. Kitamura, Phase field method to optimize dielectric devices for electromagnetic wave propagation, Journal of Computa-

tional Physics 257 (2014) 216–240.
[29] Y. Xie, G. P. Steven, A simple evolutionary procedure for structural optimization, Computers and structures 49 (5) (1993) 885–896.
[30] O. Sigmund, K. Maute, Topology optimization approaches, Structural and Multidisciplinary Optimization 48 (6) (2013) 1031–1055.
[31] N. Aage, T. H. Poulsen, A. Gersborg-Hansen, O. Sigmund, Topology optimization of large scale Stokes flow problems, Structural and

Multidisciplinary Optimization 35 (2) (2008) 175–180.
[32] Y. Deng, Z. Liu, P. Zhang, Y. Liu, Y. Wu, Topology optimization of unsteady incompressible Navier-Stokes flows, Journal of Computational

Physics 230 (17) (2011) 6688–6708.
[33] S. Kreissl, K. Maute, Levelset based fluid topology optimization using the extended finite element method, Structural and Multidisciplinary

Optimization 46 (3) (2012) 311–326.
[34] T. Kondoh, T. Matsumori, A. Kawamoto, Drag minimization and lift maximization in laminar flows via topology optimization employing

simple objective function expressions based on body force integration, Structural and Multidisciplinary Optimization 45 (5) (2011) 693–701.
[35] A. Gersborg-Hansen, O. Sigmund, R. B. Haber, Topology optimization of channel flow problems, Structural and Multidisciplinary Opti-

mization 30 (3) (2005) 181–192.
[36] C. S. Andreasen, A. R. Gersborg, O. Sigmund, Topology optimization of microfluidic mixers, International Journal for Numerical Methods

in Fluids 61 (5) (2009) 498–513.
[37] Z. Liu, Q. Gao, P. Zhang, M. Xuan, Y. Wu, Topology optimization of fluid channels with flow rate equality constraints, Structural and

Multidisciplinary Optimization 44 (1) (2010) 31–37.
[38] G. H. Yoon, Topology optimization for stationary fluid-structure interaction problems using a new monolithic formulation, International

Journal for Numerical Methods in Engineering 82 (5) (2010) 591–616.
[39] M. M. Gregersen, F. Okkels, M. Z. Bazant, H. Bruus, Topology and shape optimization of induced-charge electro-osmotic micropumps,

New Journal of Physics 11 (7) (2009) 075019.
[40] E. Papoutsis-Kiachagias, E. Kontoleontos, A. Zymaris, D. Papadimitriou, K. Giannakoglou, Constrained topology optimization for laminar

and turbulent flows, including heat transfer, CIRA, editor, EUROGEN, Evolutionary and Deterministic Methods for Design, Optimization
and Control, Capua, Italy, 2011.

[41] T. Matsumori, T. Kondoh, A. Kawamoto, T. Nomura, Topology optimization for fluid-thermal interaction problems under constant input
power, Structural and Multidisciplinary Optimization 47 (4) (2013) 571–581.

[42] G. H. Yoon, Topological layout design of electro-fluid-thermal-compliant actuator, Computer Methods in Applied Mechanics and Engineer-
ing 209-212 (2012) 28–44.

[43] J. K. Guest, J. H. Prévost, Topology optimization of creeping fluid flows using a Darcy-Stokes finite element, International Journal for
Numerical Methods in Engineering 66 (3) (2006) 461–484.

[44] J. A. Sethian, A. Wiegmann, Structural boundary design via level set and immersed interface methods, Journal of Computational Physics
163 (2) (2000) 489–528.

26



[45] S. J. Osher, F. Santosa, Level set methods for optimization problems involving geometry and constraints, Journal of Computational Physics
171 (1) (2001) 272–288.

[46] A. Leitao, O. scherzer, On the relation between constraint regularization, level sets and shape optimization, Inverse Problems 19 (1) (2003)
L1–L11.
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