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This paper is concerned with the P1 finite element approximation of the eigenvalue prob-

lem of second-order elliptic operators subject to the Dirichlet boundary condition. The

focus is on the preservation of basic properties of the principal eigenvalue and eigenfunc-

tions of continuous problems. It is shown that when the stiffness matrix is an irreducible

M -matrix, the algebraic eigenvalue problem maintains those properties such as the small-

est eigenvalue being real and simple and the corresponding eigenfunctions being either

positive or negative inside the physical domain. Mesh conditions leading to such a stiff-

ness matrix are also studied. A sufficient condition is that the mesh is simplicial, acute

when measured in the metric specified by the inverse of the diffusion matrix, and interi-

orly connected. The acute requirement can be replaced by the Delaunay condition in two

dimensions. Numerical results are presented to verify the theoretical findings.
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1 Introduction

We are concerned with the P1 finite element approximation of the eigenvalue problem of a general

second-order elliptic operator{
Lu ≡ −∇ · (D∇u) + b · ∇u+ c u = λu, in Ω

u = 0, on ∂Ω
(1)

where Ω ⊂ Rd (d ≥ 1) is a polyhedron and D = D(x) : Ω → Rd×d, b = b(x) : Ω → Rd, and

c = c(x) : Ω → R are given, sufficiently smooth functions. We assume that D is symmetric and
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strictly positive definite on Ω and the functions b and c satisfy

c(x)− 1

2
∇ · b(x) ≥ 0, ∀x ∈ Ω. (2)

Note that the condition (2) is not essential. We can always make them satisfied by adding a large posi-

tive number to the function c(x). The original and shifted problems will have the same eigenfunctions

and the eigenvalues of the former can be obtained by shifting the eigenvalues of the latter.

The eigenvalue problem (1) is not self-adjoint in general. Nevertheless, it is known (e.g., see

Lemma 3.1 below or Evans [27, Theorem 2 on Page 336 and Theorem 3 on page 340]) that the

principal eigenvalue (that is, the smallest eigenvalue in modulus) is real and simple and the principal

eigenfunctions (that is, the eigenfunctions corresponding to the principal eigenvalue) are either posi-

tive or negative in Ω. Since the principal eigenvalues typically represent the ground state of a physical

system or correspond to the most unstable mode in stability or sensitivity analysis, it is of practical

and theoretical importance to study when a numerical approximation preserves these properties of

the principal eigenvalue and eigenfunctions and especially the sign of the principal eigenfunctions.

The objective of this paper is to investigate when a P1 finite element approximation of (1) on a

simplicial mesh preserves the basic properties of the principal eigenvalue and eigenfunctions of the

continuous problem. We shall show that most of the basic properties of the principal eigenvalue and

eigenfunctions are preserved in the P1 finite element approximation provided that the resulting stiff-

ness matrix is an irreducible M -matrix (cf. Theorem 3.1). Particularly, the principal eigenvalue of

the discrete system is real and algebraically and geometrically simple and the corresponding eigen-

functions are either positive or negative (sign-preserving) in the physical domain. Several sufficient

mesh conditions are proposed (Theorem 4.1) for the stiffness matrix to be an irreducible M -matrix.

We point out that there is a vast literature on the finite element approximation of differential

eigenvalue problems and most of it is on convergence analysis; e.g., see Babuška and Osborn [2], Boffi

[8], and Boffi et al. [9], and references therein. Early work includes Birkhoff et al. [7], Fix [28], and

Babuška and Osborn [3]. We also point out some interesting recent work [20, 21, 35, 51, 52, 54, 62,

65, 66].

An outline of the paper is as follows. The P1 finite element approximation of (1) is presented in

§2 and the preservation of the basic properties of the principal eigenvalue and eigenfunctions in the

P1 finite element approximation is studied in §3. §4 is devoted to the study of mesh conditions under

which the stiffness matrix is ensured to be an irreducible M -matrix, followed by numerical examples

in §5. The conclusions are drawn in §6.

2 P1 finite element formulation

The weak formulation of the eigenvalue problem (1) is to find λ ∈ C and nonzero (and possibly

complex) function u ∈ H1
0 (Ω) such that

(D∇u,∇v) + (b · ∇u, v) + (c u, v) = λ(u, v), ∀v ∈ H1
0 (Ω) (3)

where (·, ·) denotes the L2 inner product. For the P1 finite element approximation, we assume that

an affine family of simplicial mesh {Th} is given for Ω. Denote by V h ⊂ H1
0 (Ω) the standard P1
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finite element space associated with a mesh Th. A P1 finite element approximation to the eigenvalue

problem (3) is to find λh ∈ C and nonzero (and possibly complex) function uh ∈ V h such that

(D∇uh,∇vh) + (b · ∇uh, vh) + (c uh, vh) = λh(uh, vh), ∀ vh ∈ V h. (4)

Scheme (4) can be expressed in a matrix form. Denote the numbers of the elements and the interior

vertices of Th by N and Nv, respectively. Assume that the vertices are ordered in such a way that the

first Nv vertices are the interior ones. Then, V h and uh can be expressed as

V h = span{φ1, · · · , φNv}, uh =

Nv∑
k=1

ukφk,

where φk denotes the P1 basis function associated with the kth vertex. Substituting the above ex-

pression into (4) and taking vh = φj (j = 1, ..., Nv), we obtain the algebraic eigenvalue problem

Au = λhBu, (5)

where u = (u1, ..., uNv)T , the stiffness matrix A and the mass matrix B are given by

Ajk =
∑
K∈Th

∫
K
dx
(

(∇φj)T DK ∇φk + φj (b · ∇φk) + c φj φk

)
, j, k = 1, ..., Nv (6)

Bjk =
∑
K∈Th

∫
K
φjφkdx, j, k = 1, ..., Nv (7)

and DK is the average of D over K, i.e.,

DK =
1

|K|

∫
K
D(x) dx. (8)

The convergence of finite element approximation of (3) has been extensively studied (e.g., see [8]).

We can expect that the principal eigenvalue of (4) converges to that of the continuous problem (3)

at O(N−
2
d ) (second order) as N → ∞. On the other hand, the preservation of the basic properties

of the principal eigenvalue and eigenfunctions by the discrete system has not been studied so far (to

our best knowledge). Our goal is to establish conditions (on the stiffness matrix and the mesh) under

which the discrete eigenvalue problem (5) preserves those properties.

3 Preservation of basic properties of the principal eigenvalue and

eigenfunctions

In this section we describe basic properties of the principal eigenvalue and eigenfunctions of the

continuous problem (3) (Lemma 3.1) and show (Theorem 3.1) that those properties are preserved by

the discrete eigenvalue problem (4) provided that the stiffness matrix A is an irreducible M -matrix.

The mesh conditions to ensure an irreducible M -matrix stiffness matrix for the P1 finite element

approximation will be studied in the next section.

Lemma 3.1. The principal eigenvalue λ1 and the corresponding eigenfunctions of the eigenvalue

problem (3) have the following properties.
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(a) λ1 is real;

(b) There is an eigenfunction u1 ∈ H1
0 (Ω) associated with λ1 with u1(x) > 0 for all x ∈ Ω;

(c) λ1 is simple, that is, if u is an eigenfunction associated with λ1, then u is a multiple of u1;

(d) λ1 = F (u1) > 0, where F (·) is defined as

F (v) =
(D∇v,∇v) + ((c− 1

2∇ · b)v, v)

(v, v)
; (9)

(e) Re(λ) ≥ λ1 for every eigenvalue λ;

(f) For the symmetric situation (with b = 0), there holds the variational principle

λ1 = min
v∈H1

0 (Ω)
v 6≡0, real

F (v). (10)

Proof. (a), (b), (c), (e), and (f) are the standard results for second-order elliptic operators; e.g,

see [27, Theorem 2 on Page 336 and Theorem 3 on page 340]. (d) follows from equation (3) (with

u = v = u1), integration by parts, the assumption (2), Poincaré’s inequality, and the fact that λ1 and

u1 are real.

Theorem 3.1. For the finite element eigenvalue problem (4), if the stiffness matrix A is an

irreducible M -matrix, then the principal eigenvalue λh1 and the corresponding eigenfunctions have the

following properties.

(a) λh1 is real;

(b) There is an eigenfunction uh1 ∈ V h associated with λh1 with uh1(x) > 0 for all x ∈ Ω;

(c) λh1 is algebraically (and geometrically) simple, that is, if uh is an eigenfunction associated with

λh1 , then uh is a multiple of uh1 ;

(d) λh1 = F (uh1) > 0, where F (·) is defined in (9);

(e) Re(λh) > 0 and |λh| ≥ λ1 for every eigenvalue λh;

(f) For the symmetric situation (with b = 0), there holds the variational principle

λh1 = min
vh∈V h

vh 6≡0, real

F (vh). (11)

Proof. The finite element eigenvalue problem (4) or (5) is mathematically equivalent to

A−1Bu =
1

λh
u. (12)

Since A is an irreducible M -matrix, A−1 is positive, i.e., A−1 > 0 (in the elementwise sense). From

(7), it is obvious that each column of B has at least one non-zero entry. Thus, we have A−1B > 0.

4



We also notice that uh(x) =
∑Nv

j=1 ujφj(x) > 0 for all x ∈ Ω if and only if u = (u1, ..., uNv)T > 0.

Then, (a), (b), and (c) follow from Perron’s Theorem (for positive matrices; e.g., see [34, 8.2.11]).

(d) follows from the equation (4) (with uh = vh = uh1), integration by parts, the assumption (2),

Poincaré’s inequality, and the fact that λh1 and uh1 are real. For (e), the property Re(λh) > 0 is a

consequence of the fact that A is an M -matrix and B is a symmetric and positive definite matrix.

The other property follows from Perron’s Theorem.

Next, we show that (f) holds. For this case, A is symmetric. From Perron’s Theorem, the eigenvalues

of (5) can be ordered as

0 < λh1 < λh2 ≤ · · · ≤ λhNv
.

Denote the corresponding normalized eigenvectors by uhj (or uj in vector form) (j = 1, ..., Nv). Notice

that they satisfy uT
j Buk = δjk. Then, any function vh ∈ V h can be expressed into

vh =

Nv∑
j=1

dju
h
j or v =

Nv∑
j=1

djuj .

From the orthogonality of the eigenfunctions, we have

F (vh) =
vTAv

vTBv
=

∑
j d

2
jλ

h
j∑

j d
2
j

≥ λh1 .

Combining this with (d) gives (11).

Remark 3.1. We note that the properties in Theorem 3.1(e) are different from the stronger property

Re(λh) ≥ λh1 (cf. Lemma 3.1(e)). There are two cases we can show that the discrete system has the

latter property when A is an irreducible M -matrix. The first case is the symmetric case. In this case,

Re(λh) = λh, and Re(λh) > 0 and |λh| ≥ λ1 imply Re(λh) ≥ λh1 . The other case is to use the lumped

mass matrix (denoted by B̃) instead of the full mass matrix B. Since B̃ is diagonal, B̃−1A is also an

irreducible M -matrix, which implies Re(λh) ≥ λh1 (e.g., see Elhashash and Szyld [25, Theorem 3.1]).

For the general nonsymmetric situation, we are unable to show that the discrete system has the

property Re(λh) ≥ λh1 for every eigenvalue λh although our limited numerical experiment shows that

the system does satisfy the property (cf. Fig. 5).

Theorem 3.1 states that if A is an irreducible M -matrix, then the P1 finite element approximation

(4) essentially retains most of the properties listed in Lemma 3.1 for the principal eigenvalue and

eigenfunctions. In the next section we study the mesh conditions to ensure that the P1 finite element

stiffness matrix be an irreducible M -matrix.

4 Mesh conditions for irreducible M-matrix stiffness matrix

We first study mesh conditions to ensure A to be an M -matrix. This issue is closely related to the

preservation of the maximum principle for boundary value problems. The latter has been studied

extensively in the past; for example, see [13, 15, 17, 19, 40, 41, 43, 45, 59, 60, 61, 63] for isotropic

diffusion problems (D = α(x)I with α(x) being a scalar function) and [24, 30, 31, 38, 42, 44, 46, 47,

48, 49, 50, 53, 57, 58, 67, 68] for anisotropic diffusion problems.
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In the following we quote a result from Lu et al. [50]. We first introduce some notation. For any

simplicial element K, we denote the inner normal to face SK
j (the face not containing the jth vertex of

K) by qKj . The dihedral angle in the metric D−1 between faces SK
j and SK

k (j 6= k) can be computed

as

αK
jk,D−1 = −

(qKj )TDKqKk√
(qKj )TDKqKj · (qKk )TDKqKk

. (13)

The maximum dihedral angle in the metric D−1 for K is defined as

αK
max,D−1 = max

j,k=1,...,d+1,j 6=k
αK
jk,D−1 . (14)

The diameter (i.e., the largest edge length in the Euclidean metric) of K is denoted by hK .

Lemma 4.1. If the mesh satisfies

0 < αK
max,D−1 ≤ arccos

(
hK

λmin(DK)
·
‖b‖L∞(K)

(d+ 1)
+

h2
K

λmin(DK)
·
‖c‖L∞(K)

(d+ 1)(d+ 2)

)
, ∀K ∈ Th (15)

then, the stiffness matrix A is an M -matrix.

In 2D, the above condition can be replaced by a Delaunay-type condition

0 <
1

2

[
αK
jk,D−1 + αK′

jk,D−1

+ arccot

(√
det(DK′)

det(DK)
cot(αK′

jk,D−1)− 2 Θ(K,K ′)√
det(DK)

)

+ arccot

(√
det(DK)

det(DK′)
cot(αK

jk,D−1)− 2 Θ(K,K ′)√
det(DK′)

) ]
≤ π (16)

for every internal edge ejk connecting the jth and kth vertices. Here, K and K ′ are the elements

sharing the common edge ejk, αK
jk,D−1 and αK′

jk,D−1 are the angles in K and K ′ that face the edge, and

Θ(K,K ′) =
hK ‖b‖L∞(K)

(d+ 1)
+

h2
K ‖c‖L∞(K)

(d+ 1)(d+ 2)
+
hK′ ‖b‖L∞(K)

(d+ 1)
+

h2
K′ ‖c‖L∞(K)

(d+ 1)(d+ 2)
. (17)

Proof. This result was proven in Lu et al. [50, Theorems 1 and 2]. For completeness, we give a proof

here. The proof is also useful in the study of irreducibility of the stiffness matrix, see Theorem 4.1.

We first show that A is a Z-matrix; i.e.,

ajk ≤ 0, ∀ j 6= k, j, k = 1, ..., Nv

ajj ≥ 0, j = 1, ..., Nv.

Recall from Ciarlet [18, Page 201] that∫
K∈ωj

φjdx =
|K|
d+ 1

,

∫
K∈ωj∩ωk

φjφkdx =
|K|

(d+ 1)(d+ 2)
, j 6= k (18)
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where ωj and ωk are the element patches associated with the jth and kth vertices, respectively. For

j 6= k, from (6) we have

ajk =
∑

K∈ωj∩ωk

(
|K| (∇φj)T DK ∇φk +

∫
K
φj (b · ∇φk)dx +

∫
K
c φj φkdx

)
.

From [50, Lemmas 1 and 3],

∇φj |K = − 1

hKj

qKj√
(qKj )TqKj

, (∇φj)T DK ∇φk
∣∣
K

= −
cos(αK

jk,D−1)

hK
j,D−1h

K
k,D−1

,

where hKj and hKj,D−1 are the jth altitude of K in the Euclidean metric and the metric specified by

D−1, respectively. They are related by

hKj√
λmax(DK)

≤ hKj,D−1 ≤
hKj√

λmin(DK)
.

Combining the above results, we have

ajk ≤
∑

K∈ωj∩ωk

(
− |K|
hK
j,D−1h

K
k,D−1

cos(αK
jk,D−1) +

‖b‖L∞(K)

hKk

∫
K
φjdx + ‖c‖L∞(K)

∫
K
φj φk dx

)

=
∑

K∈ωj∩ωk

(
− |K|
hK
j,D−1h

K
k,D−1

cos(αK
jk,D−1) +

|K| ‖b‖L∞(K)

(d+ 1)hKk
+
|K| ‖c‖L∞(K)

(d+ 1)(d+ 2)

)

=
∑

K∈ωj∩ωk

|K|
hK
j,D−1h

K
k,D−1

(
− cos(αK

jk,D−1) +
hKj,D−1h

K
k,D−1‖b‖L∞(K)

(d+ 1)hKk
+
hKj,D−1h

K
k,D−1‖c‖L∞(K)

(d+ 1)(d+ 2)

)

≤
∑

K∈ωj∩ωk

|K|
hK
j,D−1h

K
k,D−1

(
− cos(αK

max,D−1) +
hK‖b‖L∞(K)

(d+ 1)λmin(DK)
+

h2
K‖c‖L∞(K)

(d+ 1)(d+ 2)λmin(DK)

)
. (19)

Thus, aj,k ≤ 0 when (15) is satisfied.

In two dimensions, notice that there are only two elements in ωj ∩ωk which share the common edge

ejk. Denote these elements by K and K ′. Similarly, we can get

ajk ≤ −
det(DK)

1
2

2
cot(αK

jk,D−1)− det(DK′)
1
2

2
cot(αK′

jk,D−1)

+
hK ‖b‖L∞(K)

(d+ 1)
+

h2
K ‖c‖L∞(K)

(d+ 1)(d+ 2)
+
hK′ ‖b‖L∞(K′)

(d+ 1)
+
h2
K′ ‖c‖L∞(K′)

(d+ 1)(d+ 2)
. (20)

It can be shown (e.g., see [38]) that ajk ≤ 0 when (16) is satisfied.

For the diagonal entries, we have

ajj =
∑
K∈Th

|K| (∇φi)T DK ∇φi +

∫
Ω
φi (b · ∇φi)dx +

∫
Ω
c φ2

i dx

≥
∫

Ω
φi(b · ∇φi)dx +

∫
Ω
c φ2

i dx =

∫
Ω

(c− 1

2
∇ · b)φ2

i dx ≥ 0.
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Thus, A is a Z-matrix.

We now show that A is an M-matrix by showing that A is positive definite. For any vector v =

(v1, v2, ..., vNv)T , we define vh =
∑Nv

i=1 viφi ∈ V h. Notice that ∇vh is constant on K. As in the proof

for ajj ≥ 0, from (6) we have

vTAv =
∑
K∈Th

|K| (∇vh)T DK ∇vh +

∫
Ω
vh (b · ∇vh)dx +

∫
Ω
c (vh)2dx

=

∫
Ω

(∇vh)T D ∇vhdx +

∫
Ω

(c− 1

2
∇ · b)(vh)2dx ≥ 0.

Moreover, from the above inequality it is easy to see that vTAv = 0 implies∫
Ω

(∇vh)T D ∇vhdx = 0.

We thus have ∇vh = 0 or vh = constant, which in turn implies vh = 0 due to the fact that vh vanishes

on ∂Ω. Hence, A is positive definite.

Remark 4.1. Loosely speaking, the mesh conditions (15) and (16) can be written as

0 <αK
max,D−1 ≤

π

2
− C1‖b‖L∞(Ω)h− C2‖c‖L∞(Ω)h

2, ∀K ∈ Th (21)

0 <
1

2

[
αK
jk,D−1 + αK′

jk,D−1 + arccot

(√
det(DK′)

det(DK)
cot(αK′

jk,D−1)

)

+ arccot

(√
det(DK)

det(DK′)
cot(αK

jk,D−1)

) ]
≤ π − C3‖b‖L∞(Ω)h− C4‖c‖L∞(Ω)h

2, ∀ interior edge ejk (22)

for some positive constants C1, C2, C3, and C4. When D = I and b ≡ 0 and c ≡ 0, (22) becomes the

Delaunay condition, i.e., 0 < αK
jk + αK′

jk ≤ π.

Remark 4.2. The conditions (15) and (16) have several existing mesh conditions as special exam-

ples. They reduce to the mesh conditions of Ciarlet and Raviart [19] (the nonobtuse angle condition)

for isotropic diffusion problems, Strang and Fix [60] (the Delaunay condition) for 2D isotropic diffusion

problems, Wang and Zhang [61] for isotropic diffusion problems with convection and reaction terms,

Li and Huang [46] (the anisotropic nonobtuse angle condition) for anisotropic diffusion problems, and

Huang [38] (a Delaunay-type condition) for 2D anisotropic diffusion problems.

We now study the irreducibility of the stiffness matrix A using the notion of directed graphs (e.g.,

see Berman and Plemmons [4]). The directed graph (denoted by G(A)) of A is defined as a graph

consisting of Nv vertices P1, ..., PNv , where an edge leads from Pj to Pk if and only if ajk 6= 0. G(A) is

said to be strongly connected if for any ordered pair (Pj , Pk) of vertices of G(A), there is a sequence

of edges which leads from Pj to Pk. Note that in the current situation, the vertices in G(A) have a

one-to-one correspondence to the interior vertices of the mesh.
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Definition 4.1. A mesh is called to be interiorly connected if any two interior vertices of the mesh

are connected by a sequence of interior edges.

Theorem 4.1. The stiffness matrix for the P1 finite element approximation of (3) is an irreducible

M -matrix if the mesh is interiorly connected and satisfies

0 < αK
max,D−1 < arccos

(
hK

λmin(DK)
·
‖b‖L∞(K)

(d+ 1)
+

h2
K

λmin(DK)
·
‖c‖L∞(K)

(d+ 1)(d+ 2)

)
, ∀K ∈ Th. (23)

In 2D, the condition (23) can be replaced by a Delaunay-type condition

0 <
1

2

[
αK
jk,D−1 + αK′

jk,D−1

+ arccot

(√
det(DK′)

det(DK)
cot(αK′

jk,D−1)− 2 Θ(K,K ′)√
det(DK)

)

+ arccot

(√
det(DK)

det(DK′)
cot(αK

jk,D−1)− 2 Θ(K,K ′)√
det(DK′)

) ]
< π (24)

for every internal edge ejk connecting the jth and kth vertices, where K and K ′ are the elements

sharing the common edge ejk, αK
jk,D−1 and αK′

jk,D−1 are the angles in K and K ′ that face the edge, and

Θ(K,K ′) is defined in (17).

Proof. For any pair (j, k) of neighboring mesh vertices, ωj ∩ ωk 6= ∅. From (19), we can see that

if (15) holds strictly (i.e., (23) holds), then ajk < 0 and akj < 0, that is, Pj and Pk are connected in

both directions. Consequently, if any two vertices of the mesh are connected by a sequence of interior

edges, then G(A) is strongly connected, which in turn implies that A is irreducible (e.g., see Berman

and Plemmons [4, Theorem (2.7)]). Combining this and Lemma 4.1, we have proven that A is an

irreducible M -matrix.

We now comment on how to generate meshes satisfying (23) or (24). Since meshes satisfying these

conditions are O(h‖b‖L∞(Ω) +h2‖c‖L∞(Ω)) perturbations of acute meshes (or Delaunay meshes in 2D)

in the metric D−1 (cf. Remark 4.1), we focus our discussion on the generation of the latter.

When D−1 = I, acute or Delaunay meshes in the metric D−1 are simply acute or Delaunay meshes

in the Euclidean metric. Delaunay meshes in 2D can be generated using many algorithms, e.g., see de

Berg et al. [22]. Moreover, 2D polygonal and 3D polyhedral domains can be partitioned into simplices

with acute angles; e.g., see [5, 6, 14, 26].

On the other hand, it is theoretically unknown whether or not acute or Delaunay meshes in a given

metric D−1 6= I can be generated for general polygonal or polyhedral domains. Nevertheless, their

approximations can be obtained in practice using the notion of (simplicial) M -uniform meshes or

uniform meshes in the metric tensor specified by a tensor M = M(x). (M = D−1 for the current

situation.) It is known [37, 39] that an M -uniform mesh satisfies the so-called equidistribution and

alignment conditions

|K|det(MK)
1
2 =

σh
N
, ∀K ∈ Th (25)

1

d
tr((F ′K)TMKF

′
K) = det((F ′K)TMKF

′
K)

1
d , ∀K ∈ Th (26)

9



where d is the dimension of the domain Ω, MK is the average of M over K, FK is the affine mapping

from the reference element K̂ to element K, F ′K denotes the Jacobian matrix of FK , and σh =∑
K∈Th |K|det(MK)

1
2 . Condition (25) requires the elements to have the same size in the metric M

while condition (26) requires that they be equilateral in the metric. For a given metric tensor, various

mesh strategies can be used to generate meshes approximately satisfying (25) and (26), including the

variational approach [36, 39], Delaunay-type triangulation [10, 11, 16, 55], advancing front [29], bubble

meshing [64], and combination of refinement, local modification, and smoothing or node movement

[1, 12, 23, 32, 56].

5 Numerical examples

In this section we present five two-dimensional examples to verify the theoretical analysis in the

previous two sections. Since the non-obtuse angle condition (23) is stronger than the Delaunay-type

condition (24) in 2D, we shall focus on the latter in this section. For convenience, we define

αmax,D−1 = max
K∈Th

αK
max,D−1 , (27)

αsum,D−1 = max
ej,k∈Th

1

2

[
αK
jk,D−1 + αK′

jk,D−1 + arccot

(√
det(DK′)

det(DK)
cot(αK′

jk,D−1)

)

+ arccot

(√
det(DK)

det(DK′)
cot(αK

jk,D−1)

) ]
. (28)

In our computation, principal eigenfunctions are normalized such that they have the maximum value

one. It is noted that analytical expressions for the principal eigenvalue and eigenfunctions are not

available for all of the examples. For convergence plot, we use a numerical principal eigenvalue

obtained on a much finer mesh as the reference value. We take Ω = (0, 1)× (0, 1) in all but Example

5.5 where Ω = (0, 1)× (0, 1)\(4
9 ,

5
9)× (4

9 ,
5
9).

Example 5.1. The first example is in the form of (1) with

D =

[
10 9

9 10

]
, b = 0, c = 0. (29)

Two types of mesh are used in the computation, Mesh135 and Mesh45. They are obtained by cutting

each square of a rectangular mesh into two right triangles along the northwest or northeast diagonal

line; see Fig 1. For Mesh135, we have αmax,D−1 = 0.86π, αsum,D−1 = 1.71π and for Mesh45, αmax,D−1 =

0.43π, αsum,D−1 = 0.86π. Thus, Mesh45 satisfies both (23) and (24) whereas Mesh135 does not satisfy

any of them.

Fig. 2 shows the contours of the numerical approximations of the principal eigenfunction obtained

with Mesh135 and Mesh45. It can be seen that the eigenfunction obtained with Mesh135 has some

negative values (undershoot) near the southeast and northwest corners whereas the one with Mesh45

has no undershoot or overshoot. The magnitude of the undershoot is plotted in Fig. 3(a) as the mesh is

refined. The figure shows that the undershoot decreases at a rate much faster than the approximation

order (i.e., the second order for P1 linear finite elements) but never disappears even for a fine mesh.
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Fig. 3(b) shows the second order convergence for the principal eigenvalue for both types of mesh

although the result with Mesh45 is a magnitude more accurate than that with Mesh135.

(a) Mesh135, αsum,D−1 = 1.71π
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(b) Mesh45, αsum,D−1 = 0.86π
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Figure 1: Typical Mesh45 and Mesh135 meshes used in the computation for Example 5.1.

(a) with Mesh135
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35
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(b) with Mesh45

Figure 2: Example 5.1. Contours of the numerical eigenfunctions obtained with J = 81, where J is

the number of mesh points in the x (or y) axis.

Example 5.2. The second example is in the form of (1) with

D =

[
10 9

9 10

]
, b =

[
50

−50

]
, c = 1. (30)

Notice that this example is similar to the previous one except that this example contains both the

convection and reaction terms and is nonsymmetric. Both Mesh135 and Mesh45 in Fig. 1 are used in

the computation.

Recall that Mesh135 does not satisfy the mesh condition (24). The distribution of the first twenty

smallest (in modulus) eigenvalues obtained with Mesh135 (J = 41 and J = 81) is shown in Fig. 4.

One can see that the smallest eigenvalues are actually complex. On the other hand, Mesh45 satisfies

(24) when it is sufficiently fine. The distribution of the first twenty smallest eigenvalues obtained with

Mesh45 (J = 41 and 81) is shown in Fig. 5. It can be seen that the smallest eigenvalue of the discrete

problem (4) is real for both cases with J = 41 and 81. Moreover, the figure shows that Re(λh) ≥ λ1

at least for the first twenty smallest eigenvalues.
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(a) Undershoot with Mesh135
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(b) Error in λ1 with Mesh45 and Mesh135
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Figure 3: Example 5.1. The magnitude of the undershoot in the computed principal eigenfunction

and the error in the computed principal eigenvalue are plotted as function of J . In (b), the

reference value is λ1 ≈ 150.288 which is obtained with a Mesh45 of J = 641.

Fig. 6(a) shows the contours of the numerical eigenfunction obtained with Mesh45 J = 81 and

Fig. 6(b) shows the error in the computed principal eigenvalue as function of J .

(a) with Mesh135 of J = 41
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(b) with Mesh135 of J = 81
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Figure 4: Example 5.2. The distribution of the first twenty smallest (in modulus) eigenvalues for the

discrete eigenvalue problem (4) with Mesh135.

Example 5.3. The next example is in the form of (1) with

D = I + 0.05

[
cos(πx) 0

0 sin(πy)

]
, b =

[
20(y − 0.5)

−20(x− 0.5)

]
, c = 1. (31)

Notice that the diffusion matrix and the convection vector are functions of x and y. The diffusion

matrix is chosen as a small perturbation of the identity matrix so that the acute mesh (in the Euclidean

sense) shown in Fig. 7 is also acute in the metric specified by D−1. As a consequence, the mesh

condition (23) (and therefore (24)) can be satisfied when the mesh is sufficiently fine.

The contours of a computed principal eigenfunction (with J = 81) is shown in Fig. 8(a). No

undershoot is observed in the solution. The error in λ1 is plotted in Fig. 8(b) as a function of J . The

convergence rate is second order.
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(a) with Mesh45 of J = 41

1400 1600 1800 2000 2200 2400 2600 2800 3000 3200
−1500

−1000

−500

0

500

1000

1500

(b) with Mesh45 of J = 81
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Figure 5: Example 5.2. The distribution of the first twenty smallest (in modulus) eigenvalues for the

discrete eigenvalue problem (4) with Mesh45.

(a) Principal eigenfunction (b) Error in λ1 (with the reference value 1401.39)
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Figure 6: Example 5.2. (a) The contours of the numerical eigenfunction obtained with Mesh45 J = 81

and (b) the error in the computed principal eigenvalue plotted as function of J .

Example 5.4. We have so far considered examples with constant or almost constant diffusion

matrices. In this and next examples, we consider the situation with variable diagonal and full diffusion

matrices, respectively.

This example is in the form of (1) with

D =

[
100(1− 0.5 sin(xyπ)) 0

0 (1 + 0.5 cos(xyπ))

]
, b = 0, c = 0. (32)

Since D changes with location, it is impossible in general to predefine a mesh satisfying the mesh

condition (23) or (24). We use here the BAMG (bidimensional anisotropic mesh generator) code

developed by Hecht [33] to generate approximate M -uniform meshes for the metric tensor M = D−1

(cf. the discussion right after Theorem 4.1). BAMG is a Delaunay-type mesh generator [16] and

allows the user to supply a metric tensor defined on a background mesh. It is used in our computation

in an iterative fashion: Starting from a coarse mesh, the metric tensor M = D−1 is computed and

used in BAMG to generate a new mesh. The process is repeated ten times.
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Figure 7: An example (J = 11) of the mesh used in the computation for Example 5.3 is shown, with

αmax,D−1 = 0.49π.

(a) Contours of computed eigenfunction (b) Error in λ1 (with the reference value 21.0714)
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Figure 8: Example 5.3. (a) The contours of the computed principal eigenfunction with J = 81 and

(b) the error in λ1 plotted as function of J .

It is noted that D defined in (32) is diagonal but very anisotropic, with the maximum ratio of

the two eigenvalues being over 100. Numerical results show that BAMG is able to generate meshes

satisfying (24). Fig. 9(a) shows such a mesh with αsum,D−1 = 0.99π. No undershoot is observed

in the computed principal eigenfunctions, as shown in Fig. 10. A second order convergence rate in

approximating λ1 is observed in Fig. 9(b).

Example 5.5. In this final example we consider a full diffusion matrix,

D =

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
·

[
k(1− 0.5 sin(x) sin(y)) 0

0 (1 + 0.5 cos(x) cos(y))

]

·

[
cos(θ) sin(θ)

− sin(θ) cos(θ)

]
, (33)

where k is a positive parameter and θ = π sin(x) sin(y). We take b = 0 and c = 0 in (1).

We first take k = 10. BAMG is able to generate meshes satisfying (24) for this case. A mesh and

corresponding principal eigenfunction are shown in Fig. 11. Once again, no undershoot is observed.

The error in the computed λ1 is shown in Fig. 13.
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(a) Mesh, N = 1129, αsum,D−1 = 0.99π
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(b) Error in λ1 (with the reference value 687.666)
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Figure 9: Example 5.4. A typical mesh used in the computation and the convergence history in

approximating λ1.

(a) contour plot (b) surface plot
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Figure 10: Example 5.4. Contour and surface plots for a computed principal eigenfunction obtained

with N = 8925.

Next, we consider a more anisotropic case with k = 100. For this case, BAMG is not able to

produce a mesh satisfying the mesh condition (24). A generated mesh and corresponding principal

eigenfunction are plotted in Fig. 12. Interestingly, no undershoot is observed in this case although

the stiffness matrix is not an M -matrix. This indicates that the M -matrix requirement (which is a

sufficient requirement in Theorem 3.1) can be replaced with a weaker condition. The error in the

computed λ1 is shown in Fig. 13 to have a second order convergence rate.

6 Conclusions and further comments

In the previous sections we have studied the P1 finite element approximation of the eigenvalue problem

of second-order elliptic differential operators subject to the Dirichlet boundary condition. The focus

is on the preservation of some basic properties of the principal eigenvalue and eigenfunctions. It

has been shown in Theorem 3.1 that if the stiffness matrix is an irreducible M -matrix, the algebraic

eigenvalue problem resulting from the P1 finite element discretization preserves most basic properties

15



(a) Mesh with N = 2260, αsum,D−1 = 0.99π
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(b) Principal eigenfunction

Figure 11: Example 5.5. A typical mesh generated with BAMG for metric tensor M = D−1 (k = 10)

and the corresponding computed principal eigenfunction.

(a) Mesh with N = 2373, αsum,D−1 = 1.23π
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(b) Principal eigenfunction

Figure 12: Example 5.5. A typical mesh generated with BAMG for metric tensor M = D−1 (k = 100)

and the corresponding computed principal eigenfunction.

of the principal eigenvalue and eigenfunctions of the continuous problem. These properties include the

principal eigenvalue being real and simple and the corresponding eigenfunctions being either positive

or negative inside the physical domain. The mesh conditions leading to such a stiffness matrix have

been investigated and the main result is stated in Theorem 4.1. Roughly speaking, the theorem states

that if the mesh is simplicial, acute (in 2D this condition can be replaced by the Delaunay condition)

when measured in the metric specified by the inverse of the diffusion matrix, and interiorly connected,

then the stiffness matrix is an irreducible M -matrix.

Numerical examples have been presented to verify the theoretical findings. They also show that

when the stiffness matrix is not an M -matrix, there is no guarantee that the resulting algebraic

eigenvalue problem preserve the basic properties of the principal eigenvalue and eigenfunctions. Par-

ticularly, the eigenfunctions corresponding to the smallest eigenvalue may change sign and even more,

the smallest eigenvalue (in modulus) may not necessarily be real for nonsymmetric operators. Fur-

thermore, numerical results show that those basic properties can be preserved for some non-M -matrix

situations. This indicates that the M -matrix requirement may be weakened. A possibility is to use
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Figure 13: Example 5.5. The error in λ1 is plotted as function of
√
N , where N is the number of mesh

elements. The reference values for λ1 are 170.422 for k = 10 and 1020.15 for k = 100.

generalized M -matrices [25] although it is not obvious how conditions for generalized M -matrices can

directly result in mesh conditions that can be used in practical computation. Finally, Example 5.5

shows that it is challenging to generate meshes satisfying the conditions in Theorem 4.1 for a general

diffusion matrix. How to generate such meshes deserves more investigations in the future.
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