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SUMMARY 

 

This paper presents a new volume-of-fluid scheme (M-CICSAM), capable of 

capturing abrupt interfaces on meshes of arbitrary topology, which is a modification 

to the Compressive Interface Capturing Scheme for Arbitrary Meshes (CICSAM) 

proposed in the recent literature. Without resort to any explicit interface 

reconstruction, M-CICSAM is able to precisely model the complex free surface 

deformation, such as interface rupture and coalescence. By theoretical analysis, it is 

shown that the modified CICSAM overcomes three inherent drawbacks of the 

original CICSAM, concerning the basic differencing schemes, the switching strategy 

between the compressive downwind and diffusive high-resolution schemes, and the 

far-upwind reconstruction technique on arbitrary unstructured meshes. To evaluate 

the performance of the newly proposed scheme, several classic interface capturing 

methods developed in the past decades are compared with M-CICSAM. The 

numerical results clearly demonstrate that M-CICSAM produces more accurate 

predictions on arbitrary meshes, especially at high Courant numbers, by reducing the 

numerical diffusion and preserving the interface shape.  
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1. INTRODUCTION 

 

Numerical simulation of immiscible multi-fluid flows has been an active area of 

research over the past decades, due to the common presence of such flows in nature 

and their importance to many practical applications [1-3]. An effective numerical 

scheme should be able to handle a number of distinct flow features properly, such as 

high density ratios, large pressure differences at fluid-fluid interfaces, and the 

evolution of the free surface. Various numerical approaches for computing 

immiscible multi-fluid flows have been proposed in the literature, which can be 

grouped into three broad categories: interface/surface fitting methods, interface/ 

surface tracking methods and interface/surface capturing methods [4-6].  

Interface/surface fitting methods [7-11] are associated with boundary-fitted 

moving grids, where the grid points are attached to the fluid particles and move with 

them in a Lagrangian manner. Generally, these methods solve for the flow only 

within a single fluid region and treat the free surface as a free-floating boundary. The 

advantage of these methods is that they allow a precise representation of the 

interfacial jump conditions and thus maintain a sharp interface, whose exact position 

is known throughout the calculation. However, large interface deformations will 

result in highly distorted meshes. Therefore, special procedures need to be designed 

in order to prevent both grid singularities and extremely skewed grid point 

distributions, which impose restrictions on their applications. Both interface tracking 

and interface capturing methods adopt fixed Eulerian meshes and are particularly 

well-suited for dealing with large interface deformations [12-13].  

In interface/surface tracking methods, such as mark and cell (MAC) schemes and 

geometric-type VOF schemes, the interface is explicitly approximated either by 

massless marker particles or by an indicator function. In the MAC methods, the free- 

surface location is determined by introducing massless marker particles that move 

with the instantaneous velocity field. In general, such methods are non-conservative 

and computationally expensive [14-16]. In the geometric-type VOF methods, the 

interface is explicitly reconstructed by volume fraction values, which is also used in 

designing the scalar advection scheme. Different researchers have proposed various 

algorithms of this kind, such as the Simple Line Interface Calculation (SLIC) method 

and the Piecewise Linear Interface Calculation (PLIC) method [17-21]. These 

methods are capable of maintaining a very sharp interface while at the same time 

ensuring mass conservation. However, the processes of reconstructing and tracking 
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the interface at each time step remain complicated and challenging, especially when 

extending to unstructured meshes and to three dimensions.   

   Interface/surface capturing methods, such as artificial compressibility schemes, 

level set schemes and algebraic-type VOF schemes, are characterized by algebra- 

ically solving the scalar transport equation without explicitly reconstructing the 

interface, which overcome the main drawbacks of interface tracking methods. In 

artificial compressibility schemes [4, 6, 22], the free surface location is auto- 

matically captured as a contact discontinuity in the density field by enforcing 

conservation laws, thus eliminating the need for reconstructing and tracking the 

interface. In level set schemes [23-24], the interface is defined as the zero-contour of 

a distance function, which is advected with the local flow field. Although being 

conceptually simple and relatively easy to implement, level set techniques suffer from 

the errors in the mass conservation principle. 

Algebraic-type VOF methods include high-resolution differencing schemes, flux- 

limited methods, inter-gamma schemes, analytical-function fitted methods, blended 

high-resolution differencing methods. High-resolution differencing schemes [2, 25-27] 

are inclined to introduce excessive numerical diffusion and dispersion. In inter- 

gamma schemes [28-29], an extra artificial compressive term is added into the VOF 

advection equation for the purpose of compressing the interface, instead of just 

employing a compressive differencing scheme. Flux-limited methods [30-32] consist 

of a basic high-resolution advection scheme and a multi-dimensional flux limiter, 

which are conservative, monotonic and shape-preserving for both continuous and 

discontinuous density fields. In analytical-function fitted methods [33-34], different 

smooth basic functions, such as the hyperbolic tangent function and the cubic 

polynomial function, are adopted to represent a discontinuity at the grid scale in the 

flux computation of the volume fraction.  

A compressive downwind scheme can maintain the sharpness of the interface, but 

it tends to distort the interface when the flow is not aligned with the computational 

mesh. On the contrary, a more diffusive high-resolution scheme often turns out to be 

too diffusive. In order to remedy the aforementioned two problems, blended 

high-resolution differencing methods make use of the NVD/NVSF concept and 

switch continuously between a compressive downwind and a diffusive high- 

resolution scheme, according to the angle between the interface direction and the grid 

orientation. Various blended high-resolution methods have been proposed in the 
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literature, including CICSAM [1], HiRAC [3], STACS [5], SURFER [35], HRIC [36], 

FBICS [37] and THOR [38]. These methods are computationally efficient, strictly 

conserve mass, and can be easily extended to unstructured meshes and three 

dimensions, so they are capable of accurately capturing the free surface and 

modelling merging and fragmentation in multiphase flows. 

In this article, a new blended high-resolution differencing method (M-CICSAM) 

is presented, whose accuracy is compared with four existing schemes of the same 

kind. The results obtained in all the test cases clearly show the advantage of 

M-CICSAM. 

 

2. THE GOVERNING EQUATIONS 

 

The computational grids across the interface are occupied by different immiscible 

fluids, which are treated as a single effective fluid with continuous physical properties. 

The density ρ and dynamic viscosity µ, across the interface are evaluated using the 

following relations: 
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where the subscript i denotes the i
th

 fluid, and α is the volume fraction defined as the 

volume percentage of the i
th

 fluid available in a cell. The effective fluid is presumed 

to obey the same set of governing equations as a single fluid: 
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where the subscripts i and j indicate the i
th

 and j
th

 directions of the Cartesian 

coordinate system respectively, u is velocity, g is gravitational acceleration, t is time, 

fσ is the surface tension, and T is the stress tensor which contains the pressure P. 

Assuming that only two kinds of incompressible fluids are involved, Eq. (1) can 

be written as: 

1 2(1 )ρ αρ α ρ= + − ;    
1 2(1 )µ αµ α µ= + −               (4) 

Upon applying Eq. (2)-(4), the mass conservation equation becomes: 
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Subject to the incompressibility condition, 0i iU u x∇⋅ = ∂ ∂ =
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Finally, the conservative form of the scalar advection equation for the volume 

fraction α can be written as: 
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To summarize, the governing equations, including the continuity equation Eq. (2), 

the momentum equation Eq. (3) and the scalar transport equation Eq. (7), together 

with the constitutive relations given by Eq. (4), need to be solved simultaneously. In 

addition, the Continuum Surface Force (CSF) [39] model is adopted to calculate the 

surface tension force fσ.  

After setting up the governing equations for incompressible two-phase flows, the 

next step is to develop a proper space/time discretization scheme. The Pressure 

Implicit with Splitting of Operators (PISO) algorithm [40] is employed to deal with 

the pressure-velocity coupling problem on a collocated grid system. The discre- 

tization of the continuity and momentum equations follows standard practices, which 

are omitted here for the conciseness of the presentation. The discretization of the 

VOF equation, i.e. Eq. (7), is the key to accurately predicting the sharp interface 

between two immiscible fluids, so it is the focus in the remainder of this article.   

 

3. TEMPORAL DISCRETIZATION OF THE VOF EQUATION 

 

The VOF equation is integrated over a control volume V and a time interval δt 

with finite volume method. If p indicates the center of the control volume and f repre- 

sents the centroid of its boundary, upon applying Gauss’ theorem, Eq. (7) leads to: 

1
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In order to approximate the time integral of the convection term in Eq. (8), a general 

strategy is to introduce a weighting parameter η ranging between zero and one [41]. 

( ) ( ) ( ) ( )
1

1 0
n t t t

t t t

p p p f f f f f f

f

V U A U A t
δ

δα α η α η α δ
+

+
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 − + − ⋅ ⋅ + ⋅ ⋅ ⋅ =
  ∑
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(9) 

Obviously, η=0, η=1 and η=1/2 denote the Euler explicit, the Euler implicit and the 

Crank-Nicholson schemes, respectively. As is well known, the first-order implicit 

scheme, although computationally robust and efficient, introduces substantial 

numerical diffusion in the flow direction, while the first-order explicit scheme suffers 

from instability for a Courant number larger than 1. The second-order 

Crank-Nicholson scheme exhibits less diffusion, but may result in instability for a 

Courant number above 0.5 [5].  

The original CICSAM employs the second-order Crank-Nicholson scheme in the 

temporal discretization. On the one hand, it is believed that, for a sufficiently small 

time step, the variation of volumetric flux at the cell face, defined as Ff = Uf ·Af, is 

negligible in comparison with the variation of the volume fraction αf. Therefore, it is 

rational to simply adopt the most recent value of Ff in Eq. (9), yielding 
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On the other hand, the value of t

fα  is calculated according to a weighting factor, βf , 

which carries all the information about the fluid distribution and the interface 

orientation. The value of βf can be calculated with NVD/NVSF schemes. To obtain 

the value of t t

f

δα + , the weighting factor at the new time is necessary, which is not 

available. If the time step is small enough, it is reasonable to assume that the new 

weighting factor can be approximated by the value at the previous time step [1, 3], 

which is similar to the calculation of Ff . Hence, 
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(11) 

where the subscripts D and A denote the donor and acceptor cells, respectively, 

determined by the flow direction, as indicated in Figure 1.  

If a large time step is taken, the above calculations of Ff and βf become inaccurate 

and unjustified. Actually, Ubbink and Issa [1] recommended that the Courant number 

Cf , defined as the total amount of fluid convected through the donor cell per time step 

divided by the volume of the donor cell, should be less than 0.3 to accurately track the 

free surface. In order to remove the low-Courant-number constraint, Gopala and van 
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Wachem [28] proposed a so-called sub-stepping technique, where the calculation of 

the advection of the volume fraction is broken up into a few steps after the flow 

equations are solved. Furthermore, HiRAC [3] introduces a Jacobi-type dual time- 

stepping approach, which provides an efficient way of implementing the afore- 

mentioned sub-stepping technique. However, the so-called sub-stepping technique is 

computationally inefficient. Therefore, the newly proposed M-CICSAM still employs 

the Crank-Nicholson formulation, Eq. (11), in the same way as the original CICSAM. 

 

4. SPATIAL DISCRETIZATION OF THE VOF EQUATION 

 

As can be seen in Eq. (11), the weighting factor βf is required for the discretization of 

the volume fraction equation. This factor is dependent on the fluid distribution and 

the interface orientation, and also implicitly contains the far-upwind value 
Uα . With 

the aid of the NVD/NVSF concept, we obtain an effective weighting factor βf by 

mixing a compressive downwind scheme and a diffusive high-resolution scheme.  

 

4.1. The Basic Differencing Schemes of M-CICSAM 

 

As shown in Figure 2, the Convection Boundedness Criterion (CBC) for explicit flow 

calculations is widely considered to be both sufficient and necessary for the local 

boundedness property. The explicit CBC is defined mathematically as follows [42]: 

min( / ,1)
D f D f

cα α α≤ ≤% % %      for 0 1
D

α< <%             (12a) 

= f( ) =
f D D

α α α% % %            for 1
D

α ≥% , 0
D

α ≤%
   

      (12b) 

where /
f f D

c F t Vδ= ⋅
 

is the Courant number at the cell face, and the normalized 

variables 
f

α% and D
α%

 
are calculated using the following expressions: 
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-
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f
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α α
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-
=

-

D U
D

A U

α α
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α α
%                   (13) 

According to the downwind weighting factor (DWF) method of Leonard and 

Mokhtari [43], the weighting factor βf can be obtained by algebraic manipulation of 

Eq. (11) and Eq. (13).   

-
=

1.0 -

f D

f

D

α α
β

α

% %

%
                             (14) 

CICSAM believes that the Hyper-C scheme, being the upper bound of the explicit 

CBC, is the most compressive differencing scheme for the explicit discretization of 
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the volume fraction equation, and is thus most suitable for the advection of a sharp 

interface, at least when the interface is parallel to the cell face. The Hyper-C scheme 

is given by: 

 

{ }min ,1      when  0 1         

                         when 1 or 0
Hyper C

D f D

f

D D D

cα α
α

α α α
−

 ≤ ≤
= 

> <

% %
%

% % %
           (15) 

However, the Hyper-C scheme tends to compress any gradient into a step profile, 

and therefore distorts the free surface when the interface is normal to the cell face. 

CICSAM overcomes this problem by switching to a more diffusive high-resolution 

scheme. The basic non-compressive high-resolution scheme of CICSAM is the 

ULTIMATE-QUICKEST (UQ) of Leonard, which helps preserve the interface shape 

when the orientation of the interface is almost tangential to the flow direction, and 

can be written as [1, 42]: 

 
( )( ){ }min 1 6 3 / 8,     when  0 1         

                                                                 when 1 or 0

Hyper C

UQ

f D f D f D

f

D D D

c cα α α α
α

α α α
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  (16) 

It should be noted that, as the Courant number 
f

c  increases, the above- 

mentioned two basic differencing schemes gradually approach the very diffusive first- 

order upwind scheme, and the three of them become identical at a Courant number of 

1.0. Such a property undoubtedly decreases the resolution of the interface, and 

actually is regarded as one inherent drawback of the original CICSAM scheme. In the 

spirit of Leonard's ULTIMATE strategy, the explicit CBC is a result of the used 

temporal bounding, and is only needed for explicit transient schemes. Hence, when 

the Crank-Nicholson scheme is adopted for temporal discretization, it is not indis- 

pensable to employ the explicit CBC to achieve the local boundedness property. 

Ubbink and Issa [1] point out that CICSAM can ensure acceptable numerical 

accuracy when the Courant number 
f

c  is no more than 0.3. Therefore, in the basic 

compressive differencing scheme (CN-CBC) of the newly proposed M-CICSAM, it is 

sensible to retain the Hyper-C formulation for 0.3
f

c ≤ . However, for large Courant 

numbers ( 0.7
f

c > ), our numerical tests indicate that the SUPERBEE formulation 

[44], which is the basic compressive scheme of STACS [5], should be adopted, as it 

provides a good balance between ensuring the necessary compression and main- 

taining the interface shape. Furthermore, for moderate Courant numbers (e.g. 

0.3 0.6
f

c< ≤ ), the formulation of { }= min / 0.3,1.0f Dα α% %  can be selected because 

of its excellent performance in terms of reducing numerical diffusion.  
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 Finally, the basic compressive differencing scheme (CN-CBC) of the newly 

proposed M-CICSAM scheme is defined as:             

      

( )
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where the SUPERBEE formulation, 
SUPERBEEf

α% , in the NVSF form [45] is described as: 
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The normalized variables 
f
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are obtained from:     
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In addition, the MUSCL scheme of Van Leer [46] is employed as the basic 

diffusive high-resolution scheme of M-CICSAM and its mathematical formulation in 

the NVSF form can be written as:          
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Obviously, the two basic differencing schemes of M-CICSAM, CN-CBC, as 

specified by Eq. (17)-(19), and MUSCL, as specified by Eq. (20), resolve the afore- 

mentioned deficiency associated with their counterparts in CICSAM, Hyper-C and 

UQ. After determining the two new basic differencing schemes, the next step is to 
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develop a proper switching strategy, through which M-CICSAM smoothly changes 

between these basic differencing schemes, depending on the angle between the 

orientation of the interface and the flow direction.  

 

4.2. The Switching Strategy of M-CICSAM 

  

As mentioned earlier, the blended high-resolution schemes switch in a continuous 

manner between a compressive downwind scheme and a diffusive high-resolution 

scheme, depending on the angle between the flow direction and the grid lines. Thus, a 

blended face value is given by: 

( )= 1
f f f -compressive f f -diffusive
γ γα α α⋅ + − ⋅% % %

                  

(21) 

where the weighting function,

 
f

γ , as suggested by Heyns et al. [3], is: 

( )

( )
= min ,1

m

D
f

D

d

d

α
γ

α

  ∇ ⋅   
 ∇ ⋅   

r

r

                        

(22) 

where m is a constant introduced to control the dominance of the different schemes, 

( )
D

α∇  is the gradient of the volume fraction in the donor cell, and d
r

 

is the 

distance vector connecting the centers of the donor and acceptor cells. With m=2, Eq. 

(22) reduces to the switching weighting function of the original CICSAM scheme [1]; 

with m=1/2 and m=4, it reduces to the switching weighting functions of HRIC [36] 

and STACS [5], respectively.  

As shown in Figure 3, Eq. (22) has been developed in an Eulerian framework, 

which leads to physical results for one-dimensional flows. Unfortunately, with regard 

to multi-dimensional flow analysis, the aforementioned switching weighting function, 

derived from one-dimensional configuration, cannot always guarantee physically 

sensible results, which is deemed to be another inherent drawback of the classic 

blended high-resolution schemes put forward in the past decades.    

As illustrated in Figure 4, we consider the advection of an interface in a 

two-dimensional (2D) uniform velocity field, where the flow is in the diagonal 

direction and the Courant number is 0.5. In this condition, the angle between the 

interface orientation ( ( ) /
D

α∇ ( )
D

α∇ ) and the line connecting the centers of the 

donor and acceptor cells ( d
r

) is 45 degrees. According to Eq. (22), neither the 

compressive downwind scheme nor the diffusive high-resolution scheme should be 

utilized at this angle. However, it is actually reasonable to adopt a compressive 

downwind scheme at the highlighted cell face EF, which can be revealed from the 



 11 

exact solution of this 2D problem and thus demonstrates the deficiency of Eq. (22) in 

the two-dimensional situation.           

Therefore, a more reasonable switching algorithm is needed to achieve physically 

sound results irrespective of the dimensionality of the flows and the topological 

structure of computational meshes. Due to the complexity of three-dimensional (3D) 

unstructured meshes, we start by considering 2D structured meshes and then extend 

the newly proposed 2D switching strategy to 3D problems.      

The key to a successful 2D switching strategy is the inclusion of the velocity 

vector V
r

 
at the cell face in its formulation. Obviously, the angle ( 1f

θ − ) between the 

velocity vector V
r

 
and the unit vector n

r

 
outward normal to the cell face plays an 

important role in determining how to switch, but it is equally important to take into 

account the influences of the angle ( 2f
θ − ) between the interface orientation 

( ( ) /
D

α∇ ( )
D

α∇ ) and the velocity vector V
r

. 

Taking 1 45
f

θ − = ° , positive in the clockwise direction, as an example, Figures 

5-8 demonstrate the accurate flux crossing a specified donor-cell face ( EF ) during 

one time step at a Courant number of 0.5 with some representative values of 2f
θ − , 

with the aim to design a sensible 2D switching strategy for M-CICSAM. As displayed 

in Figure 8 ( 2 135  
f

θ − = °  and 2 315  
f

θ − = ° ), when the interface orientation is parallel 

to the cell face, only fluid present at the downstream cell should be convected through 

the cell face, which is in accordance with the original 1D switching strategy. Special 

attention should be paid to Figure 7 ( 2  90
f

θ − = °  and 2 270  
f

θ − = ° ) , where the 

interface orientation is neither parallel nor perpendicular to the cell face. According to 

Eq. (22), the value of 
f

α%  should be obtained by blending the compressive 

downwind and diffusive high-resolution schemes. However, by examining the exact 

fluxes of the volume fraction across EF, it can be concluded that the adoption of Eq. 

(22) is not advisable and the compressive downwind scheme is most suitable under 

this circumstance.  

Similarly, Figures 9-12 and Figures 13-16, in which the angle 1f
θ −  is equal to 0° 

and -45°, respectively, describe the exact fluxes of the volume fraction across EF at 

different 2f
θ −  values. When it comes to 0

1 90fθ − =
 

and 0

1 90fθ − = − , with the 

velocity vector V
r

 perpendicular to the unit vector n
r

, the projection of V
r

on to the 

unit vector n
r

 becomes zero, so no fluid can pass through the cell face. In theory, 

any value of 
f

α%  is appropriate in this case. Nonetheless, numerical tests show that 

the compressive downwind scheme gives the best results. For different combinations 
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of 1f
θ −  and 2f

θ −  , it is necessary to employ different switching functions to blend 

the aforementioned two basic differencing schemes, in order to obtain the precise 

fluxes of the volume fraction across EF, which are shown as the cross-hatched 

regions in these figures.   

In Table 1, the third column demonstrates the recommended switching function 

2f u
γ − −  

or  2f l
γ − −  for each combination, which will be defined in detail in the 

following and is dependent on the bounds of 1f
θ −  and the ranges of 2f

θ − , listed in 

the first two columns. In summary, the new 2D switching strategy proposed herein 

can be written as: 

( )
( )

( )1 1
1 11lower bound upper bound

f f
f f f

θ θ
α γ α γ α− −

− −
− −= ⋅ + − ⋅% % %

               
(23) 

where        

    

2

1 1

2

1 1

1
2

1 1

2

1 1

cos(2 )       if [ 90 , 45 ] 

sin(2 )        if [ 45 , 0 ]   

 cos(2 )         if [0 , 45 ]          

sin(2 )          if [45 ,90 ]      

f f

f f

f

f f

f f

θ θ

θ θ
γ

θ θ

θ θ

− −

− −

−

− −

− −

   ∈ − ° − ° 

  ∈ − ° − °  = 

   ∈ ° ° 
   ∈ ° ° 

    
 

          
(24)

 

    

1

1

1

arccos        if  is in the clockwise direction    

arccos        if  is in the anti-clockwise direction

f

f

f

V n

V n

V n

V n

θ

θ

θ

−

−

−

 ⋅
 ⋅

= 
 ⋅

−
⋅

r r

r r

r r

r r

  (25) 

( )
( )

1
2 21upper bound

CN-CBC MUSCL
f

f u f f u f
θ

α γ α γ α−

−
− − − −= ⋅ + − ⋅% % %

                 (26) 

( )
( )

1
2 21lower bound

CN -CBC MUSCL
f

f l f f l f
θ

α γ α γ α−

−
− − − −= ⋅ + − ⋅% % %

                 (27)
 

where 2f u
γ − −  is a weighting function determined by both ( )1

upper

f
θ −

, the upper 

bound of 1f
θ − , and 2f

θ − . Similarly, 2f l
γ − −  is a weighting function decided by both 

( )1

lower

f
θ −

, the lower bound of 1f
θ − , and 2f

θ − .  

In principle, as demonstrated in Eq. (23)-(25), for an arbitrary 1f
θ −  value, with 

the aid of the weighting function 1f
γ − , we are able to obtain the value of 

f
α%  by 

blending two extreme values, the values for the lower and upper bounds of 1f
θ −  

 (
( )1

lower bound

fθ
α −

−

%  and 
( )1

upper bound

fθ
α −

−

% ), which can be exactly calculated either by the com- 

pressive scheme (CN-CBC) or by the diffusive high-resolution scheme (MUSCL) for 

typical 2f
θ − values, as displayed in Figures 4-16. However, in practical situations, 
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2f
θ −  may not be equal to the typical values depicted in these Figures. Therefore, with 

regard to a specific bound of 1f
θ −  and an arbitrary 2f

θ −  value, the weighting 

function 2f u
γ − −  or 2f l

γ − −  is introduced to blend the aforementioned two basic 

differencing schemes, as described in Eq. (26)-(27).  

In practical applications, we first confirm the values of ( )1

upper

f
θ −  

and ( )1

lower

f
θ −

 

according to the first column of Table 1, then, based on the range of 2f
θ −  provided 

in the second column, we select the corresponding expressions for 2f u
γ − −  and 2f l

γ − −  

from the third column.   

 

4.3. The Far-upwind Reconstruction on Unstructured Meshes 

 

As can be seen in Eq. (13) and Eq. (19), the far-upwind node location 
Ux  and 

variable value 
Uα  are required in the calculation of the normalized variable 

f
α% . 

However, on arbitrary unstructured grids, the far-upwind node U is not readily 

available and therefore the aforementioned blended high-resolution schemes are no 

longer straightforward in their implementation. 

The existing technique commonly found in the literature resolves this issue by 

constructing a virtual far-upwind node using equal-distance and equal-gradient 

assumptions [47]. In this way, it is supposed that the distance between the upwind cell 

U and the donor cell D, du , is equal to that between D and the acceptor cell A, dd . 

It furthermore assumes that the volume fraction α  uniformly changes from U to A, 

so the following formula can be derived [1]: 

( + ) = 2 = - *

D D A U( ) d du dd ( ) d ddα ∇α α α⋅ ⋅ ⋅
r r∇               (28) 

Finally, 

= - 2*

U A D( ) d ddα α ∇α ⋅ ⋅
r

                               (29) 

where d
r

 is the unit vector from D to A. To guarantee *

U
α  is physically bounded, it 

is necessary to restrict this value within the maximum and minimum variable values, 

max

D
α  and min

D
α , at the donor cell’s nearest neighbors.  

{ }{ }= min max , ,
* * min max

U U D D
α α α α                           (30) 

Zhang et al. [48] argued that this original reconstruction technique has two 

inherent drawbacks. Firstly, the imaginary node U may be located several cells away 

from the donor cell D, when extremely non-uniform grids are deployed. Secondly, it 

is inappropriate to assume that the gradient α∇  does not change along the whole 

segment UA. In order to overcome the aforementioned two drawbacks, 
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New-Technique-2 is put forward in their paper, where a predictor-corrector procedure 

is undertaken to determine the value of du.  

As shown in a non-orthogonal mesh in Figure 17, for the interface ab between the 

donor cell D and the acceptor cell A, the face variable value 
fα  is calculated using 

auxiliary nodes D′  and A′ , which are the projections of D  and A , respectively, 

along the normal direction of the face. The distance between D′  and A′  is defined 

as dd . In the diffusion term discretization, the differences between the physical 

quantities at D′ and D  (or A′  and A ) can be approximated by explicit 

non-orthogonal correction. In the convection term discretization, however, the 

above-mentioned differences are neglected, which means that the node D′  (or A′ ) 

has the same values and gradients as the node D  (or A ), i.e., 
D

α =
D

α ′ , A
α =

A
α ′ , 

D
( )∇α =

D
( )∇α ′  and 

A
( )∇α =

A
( )∇α ′ . 

All the donor-cell’s nodes are taken into account except for the two end nodes of 

the chosen face (a, b). A vector quantity from each node to D is calculated, such as 

cD
→

, dD
→

, eD
→

 and fD
→

, depicted as the dashed lines in Figure 17. If the dot product 

of a vector with the unit outward normal vector n
r

 of the chosen face has a positive 

value, then this vector’s projection along the outward normal direction is recorded, 

such as d D
→

′ , e D
→

′  and f D
→

′  for the case of Figure 17. Finally, the average of these 

projections is computed to determine the predictor value of du . In general, 

= Average( + + + + )
predictor 1 2 3 n

du N D N D N D N D′ ′ ′ ′⋅ ⋅⋅ ⋅ ⋅ ⋅          (31) 

where 1
N D′ , 2

N D′ , ⋅⋅⋅⋅⋅⋅  and n
N D′  are the magnitudes of the projections, such as 

d D
→

′ , e D
→

′  and f D
→

′
 in the case of Figure 17, whose dot products with the unit 

outward normal vector n
r

 of the face are positive. Then, in the corrector step, 

= min( , )
original predictor

du du du                               (32) 

where 
predictor

du and 
original

du are the distances calculated in the predictor step and the  

original reconstruction technique, respectively, as shown in Figure 18. 

Moreover, in New-Technique-2, a parabolic function is used to represent the 

volume fraction variation over the interval [ U
x , D

x ], based on D
α , D

( )∇α and A
α . 

Mathematically,
 

 

 2

2

- -
= + (- ) +* A D D

U D D

( ) dd
du ( ) du

dd

α α ∇α
α ∇α α

×
×             (33) 

For the purpose of ensuring the physical boundedness of *

U
α , Eq. (30) is also 

adopted to restrict the value of *

U
α , and the bounds are set to be the maximum and 
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minimum values of the donor cell D and all its neighbor cells except for the acceptor 

cell A. Reference [48] clearly shows that New-Technique-2 results in a better 

performance in terms of overall accuracy and convergence, when compared with the 

original reconstruction technique. In total, eleven classic NVSF schemes were tested 

on arbitrary unstructured meshes. 

Therefore, for M-CICSAM, New-Technique-2, described by Eqs. 30-33, is 

selected as the far-upwind reconstruction technique on arbitrary unstructured meshes. 

Then, the formulation of the new VOF interface capturing scheme (M-CICSAM) 

have been completed. The implementation of M-CICSAM is straightforward, because 

the value of 
f

α
 

can be calculated in
 
the same way for all the faces irrespective of 

the dimensionality of control volumes
 
and the topology of grids. 

In summary, M-CICSAM overcomes three inherent drawbacks of the previous 

blended high-resolution schemes by employing two new basic NVSF differencing 

schemes (Eqs. 17-20), a novel 2D switching strategy (Eqs. 23-27 and Table 1), and an 

improved far-upwind reconstruction technique (Eqs. 30-33). In the next section, the 

relative performance of different blended high-resolution schemes is examined by 

various numerical tests.   

 

5. NUMERICAL TEST CASES 

 

This section presents several classic numerical examples to evaluate the relative 

performance of five blended high-resolution interface capturing schemes, including 

CICSAM, HRIC, STACS, THOR and M-CICSAM.  

Prescribed velocity fields are used and no attempt is made to consider the 

coupling between the volume fraction and momentum equations. For the purpose of 

comparison, the average error is defined as: 

1
=

N
n a

i i

i

E
N

α α−∑                             (34) 

where n

i
α  is the calculated solution after n time steps, a

i
α  the exact analytical 

solution and N the number of control volumes [1,3].  

 

5.1. Test 1: Advection of a square droplet in a uniform velocity field   

   

In this problem, we consider the advection of a 0.3×0.3 square droplet in an oblique 

uniform velocity field of (u, v)=(2, 1). As shown in Figure 19, the computational 



 16 

domain is a square of side length 1.2, and the square droplet is initially centered at 

(0.3, 0.3), with its exact position centered at (0.9, 0.6) after 0.3 s. A uniformly spaced 

mesh of 120×120 cells is employed in this test, as presented in Figure 20. 

Computations are performed at seven different time steps, yielding Courant numbers 

of 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8, respectively.  

Table 2 summarizes the errors of various blending high-resolution schemes at 

different Courant numbers and Figure 21 gives a graphical representation of these 

errors. Obviously, when compared with the other four schemes, M-CICSAM leads to 

more accurate solutions, especially at high Courant numbers. Figures 22-26 demon- 

strate the contour plots of the volume fraction for different schemes at a Courant 

number of 0.6 at the end of the computation. As displayed in Figures 22-24, HRIC, 

THOR and CICSAM introduce unacceptable levels of numerical diffusion even at a 

moderate Courant number, because the basic compressive schemes in these algori- 

thms approach the first-order upwind scheme with increasing Courant number [1, 36]. 

Special attention needs to be paid to the STACS scheme [5], which appears to be 

more effective than HRIC, THOR and CICSAM in terms of preserving interface 

sharpness at Courant numbers above 0.5, as displayed in Table 2 and Figures 21-25. 

Moreover, Figure 21 seems to show that the performance of STACS is almost 

independent of the Courant number in this test. However, Figure 21 indicates that 

STACS tends to introduce more numerical diffusion when compared with CICSAM, 

HRIC, THOR and M-CICSAM at Courant numbers less than 0.3. The afore- 

mentioned behavior of STACS can be mainly attributed to the adoption of the famous 

SUPERBEE scheme, which is very compressive, but relatively more diffusive than 

the Hyper-C scheme of CICSAM at small Courant numbers [1, 5].   

The newly proposed M-CICSAM is able to most effectively maintain the interface 

sharpness and preserve the interface shape at all Courant numbers, showing its 

apparent superiority over the remaining four schemes.  

 

5.2. Test 2: Advection of a round droplet in a uniform velocity field 

 

As illustrated in Figure 27, the same physical domain and velocity field as the square 

droplet case are adopted in conducting the second test, in which a circle with a 

diameter of 0.3 is initially centered at (0.3, 0.3), with its exact position centered at 

(0.9, 0.6) after 0.3 second. In this test, an unstructured mesh composed of 14678 cells, 

instead of the aforementioned uniform rectangular mesh of 120×120 cells, is 
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employed, as depicted in Figure 28. Since it is hard to specify the Courant number 

over unstructured meshes, the same seven time steps as the first test are used in 

performing the computations, resulting in relatively higher maximum Courant 

numbers on the unstructured grid. 

The average errors of various blended high-resolution schemes at different 

Courant numbers are demonstrated in Table 3 and Figure 29. Furthermore, Figures 

30-34 present the contour plots of the volume fraction for different schemes at a 

Courant number of 0.6 after the lapse of 0.3 s. As expected, almost the same 

conclusions as the first test can be deduced from the numerical results, and 

M-CICSAM is more accurate in terms of maintaining the interface shape and 

preserving the interface sharpness, especially at high Courant numbers.  

 

5.3. Test 3: Advection of a slotted circle in a rotational flow field 

 

In the third test, as illustrated in Figure 35, we consider the rotation of a slotted circle 

with a radius of 0.3, and a slot that is 0.12 wide and 0.3 long. The slotted circle is 

initially centered at (0.35, 0.35), and the rotational velocity field is given by: 

0( ),U y y= −Ω× −       0( )V x x= Ω× −                   (35) 

where 0 0( , ) (0.35,0.35)x y =  is the center of rotation and Ω=0.5 is the angular speed. 

Computation has been carried out on an unstructured mesh consisting of 10208 

control volumes, whose resolution is comparable to a uniformly spaced mesh with 

100×100 cells, as shown in Figure 36. The problem is solved with seven different 

time steps, yielding Courant numbers of 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8, 

respectively, based on the grid size of the corresponding structured mesh. 

The average errors after one revolution are summarized in Table 4, and a 

graphical representation of these errors is given by Figure 37. As with previous tests, 

predictions generated by different schemes at a Courant number of 0.5 are presented 

in Figures 38-42 in the form of contour plots of the volume fraction. As expected, 

with increasing Courant number, HRIC, THOR and CICSAM lead to much more 

diffusive predictions. Again, STACS introduces more numerical diffusion at small 

Courant numbers, when compared with HRIC, THOR, CICSAM and M-CICSAM, as 

evidenced in Figure 37. M-CICSAM performs better than the other four interface 

capturing schemes by more effectively preserving the interface sharpness and shape 

at all Courant numbers, as displayed in Figure 37 and Figure 42. 
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5.4. Test 4: Advection of a circle in a shear flow field 

 

The former three tests show the superiority of M-CICSAM when the flow field is 

either uniform or rotational. In those cases, the fluid moves as a rigid body and thus 

the computation does not involve any topological change of the interface. However, 

in most real interfacial flow cases, the situation is far more complicated and the initial 

shape is not preserved [1, 3, 28]. With the purpose of evaluating the ability of 

different schemes to handle shearing and stretching of the interface, the fourth test 

involves the advection of a circle, with radius 0.2π and center (0.5π, 0.2(1+π)), in a 

shear flow field, as described in Figure 43. The velocity field is given by: 

sin( ) cos( ),U x y= ⋅     cos( ) sin( )V x y= − ⋅                  (36) 

where , [0,   ] x y π∈ . As shown in Figure 44, calculations are carried out on a non- 

uniform unstructured mesh consisting of 25636 control volumes, which is comparable 

to a uniformly spaced mesh of 160×160 cells. Like the third test, computation is 

performed with seven different time steps, yielding Courant numbers of 0.2, 0.3, 0.4, 

0.5, 0.6, 0.7 and 0.8, respectively, based on the grid size of the corresponding 

structured mesh. The simulation is firstly run for N=1000 time steps, then the flow is 

reversed with an additional N=1000 time steps of simulation. Hence, the interface 

should return to its initial shape at the end of the simulation.  

Table 5 presents the average errors of different schemes, and Figure 45 gives a 

graphical representation of these errors. Figures 46-50 display the contour plots of the 

volume fraction after 1000 and 2000 time steps of simulations at a Courant number of 

0.5. Obviously, HRIC, THOR and CICSAM lead to unacceptable levels of numerical 

diffusion at high Courant numbers, as shown in Figures 45-48.  

Compared to the aforementioned three schemes, STACS leads to more accurate 

numerical predictions at Courant numbers above 0.5, as evidenced in Table 5 and 

Figure 45. However, as noticed before, STACS introduces more numerical diffusion 

at Courant numbers less than 0.3. 

Even in this more challenging situation, as demonstrated in Table 5 and Figures 

45-50, M-CICSAM still predicts the best profiles at all Courant numbers, which is in 

accordance with the conclusion drawn from the previous tests and verifies its 

advantage once again. 

  

6. CONCLUSIONS 
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A refined VOF interface capturing scheme, denoted as M-CICSAM, is developed 

in this paper. Essentially, this modified CICSAM combines two new basic 

differencing schemes, adopts a novel 2D switching strategy, and uses an improved 

far-upwind reconstruction technique suitable for arbitrary unstructured meshes. By 

theoretical analysis, it is concluded that M-CICSAM overcomes three inherent 

drawbacks of the original CICSAM. Four representative blended high-resolution 

schemes, including HRIC, STACS, THOR and CICSAM, are chosen to compare with 

M-CICSAM by solving four pure advection problems. The numerical results clearly 

show that M-CICSAM leads to more accurate predictions, especially at high Courant 

numbers, as it maintains the sharpest edges and preserves the best interface shapes in 

all the tests considered.   
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Table 1. The switching weighting functions 
2f u

γ
− −  

and 
2f l

γ
− −

 for different combinations of 

1f
θ

−
 and 

2f
θ

−
 in the new 2D switching strategy of M-CICSAM 

The Lower/Upper  

Bound of 
1f

θ
−

 

The Range of 

2f
θ

−
 

The Recommended Formulation for 

 
2f u

γ
− −  

or 
2f l

γ
− −

 

[ ]0 45  ° °，  
( )

( )

2

cos 2 arccos
V

D

V
D

α

α

  ∇ ⋅  ⋅  ∇ ⋅    

r

r  

[ ] 45 90 ° °，  0 

[ ]  90 135° °，  0 

[ ]  135 180° °，  
( )

( )

2

cos 2 arccos
V

D

V
D

α

α

  ∇ ⋅  ⋅  ∇ ⋅    

r

r  

[ ]  180 225° °，  
( )

( )

2

cos 2 arccos
V

D

V
D

α
π

α

   ∇ ⋅   ⋅ −   ∇ ⋅      

r

r  

[ ]  225 270° °，  0 

[ ]  270 315° °，  0 

0°  

[ ]  315 360° °，        

( )

( )

2

cos 2 arccos
V

D

V
D

α
π

α

   ∇ ⋅   ⋅ −   ∇ ⋅      

r

r  

 

[ ]0 45  ° °，  0 

[ ] 45 90 ° °，  
( )

( )

2

cos 2 arccos
V

D

V
D

α

α

  ∇ ⋅  ⋅  ∇ ⋅    

r

r  

[ ]  90 135° °，  1 

[ ]  135 180° °，  
( )

( )

2

sin 2 arccos
V

D

V
D

α

α

  ∇ ⋅  ⋅  ∇ ⋅    

r

r  

[ ]  180 225° °，  0 

[ ]  225 270° °，  
( )

( )

2

cos 2 arccos
V

D

V
D

α
π

α

   ∇ ⋅   ⋅ −   ∇ ⋅      

r

r  

[ ]  270 315° °，  1 

45°  

[ ]  315 360° °，  
( )

( )

2

sin 2 arccos
V

D

V
D

α
π

α

   ∇ ⋅   ⋅ −   ∇ ⋅      

r

r  
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Table 1. (Continued) 

The Lower/Upper  

Bound of 
1f

θ
−

 

The Range of 

2f
θ

−
 

The Recommended Formulation for 

 
2f u

γ
− −  

or 
2f l

γ
− −

 

[ ]0 45  ° °，  
( )

( )

2

sin 2 arccos
V

D

V
D

α

α

  ∇ ⋅  ⋅  ∇ ⋅    

r

r  

[ ] 45 90 ° °，  1 

[ ]  90 135° °，  
( )

( )

2

cos 2 arccos
V

D

V
D

α

α

  ∇ ⋅  ⋅  ∇ ⋅    

r

r  

[ ]  135 180° °，  0 

[ ]  180 225° °，  
( )

( )

2

sin 2 arccos
V

D

V
D

α
π

α

   ∇ ⋅   ⋅ −   ∇ ⋅      

r

r  

[ ]  225 270° °，  1 

[ ]  270 315° °，  
( )

( )

2

cos 2 arccos
V

D

V
D

α
π

α

   ∇ ⋅   ⋅ −   ∇ ⋅      

r

r  

45− °  

[ ]  315 360° °，  0 

 

[ ]0 45  ° °，  1 

[ ] 45 90 ° °，  1 

[ ]  90 135° °，  1 

[ ]  135 180° °，  1 

[ ]  180 225° °，  1 

[ ]  225 270° °，  1 

[ ]  270 315° °，  1 

90°  

[ ]  315 360° °，  1 

 

[ ]0 45  ° °，  1 

[ ] 45 90 ° °，  1 

[ ]  90 135° °，  1 

[ ]  135 180° °，  1 

[ ]  180 225° °，  1 

[ ]  225 270° °，  1 

[ ]  270 315° °，  1 

90− °  

[ ]  315 360° °，  1 
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Table 2 Average errors of various blended high-resolution schemes at different Courant 

numbers for Test 1 

Scheme Co=0.2 Co=0.3 Co=0.4 Co=0.5 Co=0.6 Co=0.7 Co=0.8 

CICSAM 1.047E-03 1.567E-03 2.501E-03 4.778E-03 1.047E-02 2.049E-02 2.956E-02 

HRIC 5.343E-03 5.149E-03 9.118E-03 1.900E-02 3.087E-02 3.690E-02 3.994E-02 

THOR 1.918E-03 2.997E-03 4.811E-03 9.259E-03 1.830E-02 2.941E-02 3.785E-02 

STACS 5.344E-03 5.414E-03 5.461E-03 5.546E-03 5.855E-03 6.145E-03 6.456E-03 

M-CICSAM 1.011E-03 1.421E-03 2.312E-03 2.452E-03 2.541E-03 4.750E-03 5.037E-03 

 

Table 3 Average errors of various blended high-resolution schemes at different Courant 

numbers for Test 2 

Scheme Co=0.2 Co=0.3 Co=0.4 Co=0.5 Co=0.6 Co=0.7 Co=0.8 

CICSAM 3.406E-03 3.858E-03 5.295E-03 1.056E-02 1.956E-02 2.553E-02 2.918E-02 

HRIC 5.122E-03 6.208E-03 1.519E-02 2.490E-02 2.997E-02 3.142E-02 3.170E-02 

THOR 3.967E-03 6.376E-03 1.189E-02 1.747E-02 2.575E-02 3.270E-02 3.708E-02 

STACS 6.038E-03 6.184E-03 6.366E-03 6.554E-03 6.727E-03 6.980E-03 7.138E-03 

M-CICSAM 3.353E-03 3.471E-03 4.236E-03 4.651E-03 4.662E-03 5.556E-03 5.725E-03 

 

Table 4 Average errors of various blended high-resolution schemes at different Courant 

numbers for Test 3 

Scheme Co=0.2 Co=0.3 Co=0.4 Co=0.5 Co=0.6 Co=0.7 Co=0.8 

CICSAM 2.014E-02 2.162E-02 2.677E-02 3.348E-02 4.375E-02 5.528E-02 6.607E-02 

HRIC 2.662E-02 2.948E-02 4.199E-02 5.592E-02 7.041E-02 8.110E-02 8.757E-02 

THOR 2.060E-02 2.227E-02 2.780E-02 3.904E-02 5.439E-02 6.821E-02 7.986E-02 

STACS 3.383E-02 3.493E-02 3.496E-02 3.516E-02 3.545E-02 3.556E-02 3.563E-02 

M-CICSAM 1.379E-02 1.464E-02 1.552E-02 1.708E-02 1.949E-02 2.448E-02 2.687E-02 

 

Table 5 Average errors of various blended high-resolution schemes at different Courant 

numbers for Test 4  

Scheme Co=0.2 Co=0.3 Co=0.4 Co=0.5 Co=0.6 Co=0.7 Co=0.8 

CICSAM 6.642E-03 1.088E-02 1.766E-02 3.877E-02 7.123E-02 9.927E-02 1.222E-01 

HRIC 7.320E-03 1.348E-02 4.170E-02 7.771E-02 1.060E-01 1.275E-01 1.442E-01 

THOR 5.173E-03 6.812E-03 1.439E-02 3.804E-02 7.493E-02 1.061E-01 1.304E-01 

STACS 1.213E-02 1.542E-02 1.899E-02 2.365E-02 2.981E-02 3.733E-02 3.990E-02 

M-CICSAM 3.973E-03 5.373E-03 6.144E-03 8.588E-03 1.381E-02 2.294E-02 2.707E-02 
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Figure 1. Schematic representation of the NVD/NVSF nomenclature. 

. 

 

 

Figure 2. The Explicit CBC in the normalized variable diagram (NVD).  

 

 

 

Figure 3. Advection of a fluid block at a Courant number of 0.5 using the original switching 

weighting function described by Eq. (22) for one-dimensional flow: 

(a) the interface is parallel to the cell face; (b) the interface is perpendicular to the cell face. 
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Figure 4. Advection of an interface at a Courant number of 0.5 in an oblique velocity field for 

two-dimensional flow. 

 

 
Figure 5. The exact volumetric fluxes of volume fraction advected through the highlighted cell 

face EF for 
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Figure 6. The exact volumetric fluxes of volume fraction advected through the highlighted cell 

face EF for 
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Figure 7. The exact volumetric fluxes of volume fraction advected through the highlighted 

cell face EF for 
1

45
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θ
−

= ° : (a) 
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= ° ; (b) 
2
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f
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−

= ° . 

 

 

Figure 8. The exact volumetric fluxes of volume fraction advected through the highlighted 

cell face EF for 
1
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Figure 9. The exact volumetric fluxes of volume fraction advected through the highlighted 

cell face EF for 
1

0
f

θ
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= ° : (a) 
2
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= ° ; (b) 
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f
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−
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Figure 10. The exact volumetric fluxes of volume fraction advected through the highlighted 

cell face EF for 
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0
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= ° : (a) 
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−
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Figure 11. The exact volumetric fluxes of volume fraction advected through the highlighted 

cell face EF for 
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0
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Figure 12. The exact volumetric fluxes of volume fraction advected through the highlighted 

cell face EF for 
1

0
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= ° ; (b) 
2

315
f

θ
−
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Figure 13. The exact volumetric fluxes of volume fraction advected through the highlighted 

cell face EF for 
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Figure 14. The exact volumetric fluxes of volume fraction advected through the highlighted 

cell face EF for 
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= − ° : (a) 
2

45
f

θ
−

= ° ; (b) 
2

225
f

θ
−

= ° . 

 

 

Figure 15. The exact volumetric fluxes of volume fraction advected through the highlighted 

cell face EF for 
1

45
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= − ° : (a) 
2

90
f

θ
−
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Figure 16. The exact volumetric fluxes of volume fraction advected through the highlighted 

cell face EF for 
1

45
f

θ
−

= − ° : (a) 
2

135
f

θ
−

= ° ; (b) 
2

315
f
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−
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Figure 17. The predictor step of the New-Technique-2 reconstruction technique. 

 

 

 
 

Figure 18. The corrector step of the New-Technique-2 reconstruction technique. 
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Figure 19. Schematic representation of the advected square droplet. 

 

 

Figure 20. Physical domain and structured mesh used for the advection of a square droplet in 

an oblique uniform velocity field. 

 

 

Figure 21. Comparison of accuracy of various blended high-resolution schemes at different 

Courant numbers in Test 1. 
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Figure 22. Contour plots of the advected square droplet at a Courant number of 0.6:  

(a) the exact solution; (b) HRIC. 

 

 

Figure 23. Contour plots of the advected square droplet at a Courant number of 0.6:  

(a) the exact solution; (b) THOR. 

 

 

Figure 24. Contour plots of the advected square droplet at a Courant number of 0.6:  

(a) the exact solution; (b) CICSAM. 
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Figure 25. Contour plots of the advected square droplet at a Courant number of 0.6:  

(a) the exact solution; (b) STACS. 

 

 

Figure 26. Contour plots of the advected square droplet at a Courant number of 0.6:  

(a) the exact solution; (b) M-CICSAM. 

 

 

Figure 27. Schematic representation of the advected round droplet. 
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Figure 28. Physical domain and unstructured mesh used for the advection of a round droplet 

in an oblique uniform velocity field. 

 

 

Figure 29. Comparison of accuracy of various blended high-resolution schemes at different 

Courant numbers in Test 2. 

 

 

Figure 30. Contour plots of the advected round droplet at a Courant number of 0.6:  

(a) the exact solution; (b) HRIC. 
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Figure 31. Contour plots of the advected round droplet at a Courant number of 0.6:  

(a) the exact solution; (b) THOR. 

 

 

Figure 32. Contour plots of the advected round droplet at a Courant number of 0.6:  

(a) the exact solution; (b) CICSAM. 

 

 

Figure 33. Contour plots of the advected round droplet at a Courant number of 0.6:  

(a) the exact solution; (b) STACS. 
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Figure 34. Contour plots of the advected round droplet at a Courant number of 0.6:  

(a) the exact solution; (b) M-CICSAM. 

 

 

Figure 35. Schematic representation of the rotating slotted circle. 

 

 

Figure 36. Physical domain and unstructured mesh used for the advection of a slotted circle in 

a rotational flow field. 
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Figure 37. Comparison of accuracy of various blended high-resolution schemes at different 

Courant numbers in Test 3. 

 

 

Figure 38. Contour plots of the rotating slotted circle at a Courant number of 0.5:  

(a) the exact solution; (b) HRIC. 

 

 

Figure 39. Contour plots of the rotating slotted circle at a Courant number of 0.5:  

(a) the exact solution; (b) THOR. 



 40 

 

Figure 40. Contour plots of the rotating slotted circle at a Courant number of 0.5:  

(a) the exact solution; (b) CICSAM. 

 

 

Figure 41. Contour plots of the rotating slotted circle at a Courant number of 0.5:  

(a) the exact solution; (b) STACS. 

 

 

Figure 42. Contour plots of the rotating slotted circle at a Courant number of 0.5:  

(a) the exact solution; (b) M-CICSAM. 
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Figure 43. Schematic representation of the circle in shear flow field. 

 

 

Figure 44. Physical domain and unstructured mesh used for the advection of a circle in a 

shear flow field. 

 

 

Figure 45. Comparison of accuracy of various blended high-resolution schemes at different 

Courant numbers in Test 4. 
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Figure 46. Contour plots of the droplet in shear flow at a Courant number of 0.5 (HRIC): 

(a) after 1000 steps forward, (b) after 1000 steps forward followed by 1000 steps backward. 

 

 

Figure 47. Contour plots of the droplet in shear flow at a Courant number of 0.5 (THOR): 

(a) after 1000 steps forward, (b) after 1000 steps forward followed by 1000 steps backward. 

 

 

Figure 48. Contour plots of the droplet in shear flow at a Courant number of 0.5 (CICSAM): 

(a) after 1000 steps forward, (b) after 1000 steps forward followed by 1000 steps backward. 
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Figure 49. Contour plots of the droplet in shear flow at a Courant number of 0.5 (STACS): 

(a) after 1000 steps forward, (b) after 1000 steps forward followed by 1000 steps backward. 

 

 

Figure 50. Contour plots of the circle in shear flow at a Courant number of 0.5 (M-CICSAM):  

(a) after 1000 steps forward, (b) after 1000 steps forward followed by 1000 steps backward. 

  

 

 

 

 


