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Abstract

This paper develops a computational framework for optimizing the
parameters of data assimilation systems in order to improve their perfor-
mance. The approach formulates a continuous meta-optimization problem
for parameters; the meta-optimization is constrained by the original data
assimilation problem. The numerical solution process employs adjoint
models and iterative solvers. The proposed framework is applied to op-
timize observation values, data weighting coefficients, and the location of
sensors for a test problem. The ability to optimize a distributed measure-
ment network is crucial for cutting down operating costs and detecting
malfunctions.
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1 Introduction

Data assimilation improves our understanding of natural phenomena by in-
tegrating measurements of the physical system with computer-generated pre-
dictions. Important theoretical and practical questions regarding the optimal
strategies for collecting the data, and for incorporating it such as to obtain the
maximum informational benefit, are yet to be answered. This paper develops
a computational framework for improving the performance of data assimilation
systems by optimally configuring various parameters of the measuring network.
The methodology developed herein has applicability to many other inverse prob-
lems and dynamic data driven applications.

The research is carried out in the context of “four-dimensional variational”
(4D-Var) data assimilation, arguably the most advanced framework for assim-
ilating observations distributed in time and space with predictions performed
with nonlinear numerical models. 4D-Var is extensively used in meteorology,
climatology, hydrology and other environmental studies [1–5]. In the 4D-Var
approach the data assimilation problem is posed as a PDE-constrained non-
linear optimization problem, where model states and parameters are tuned in
order to obtain predictions that fit best the measurements. In this work the
strategies used to collect and process the data are considered to be parameters
of the 4D-Var data assimilation system, and are themselves improved via an
additional optimization process.

Previous related research has been motivated by the need to quantify the
contribution of various 4D-Var parameters on the performance of the system.
The fastest directions of state error growth have been identified with the help of
singular vectors [6, 7]. In order to quantify the amount of information carried
by each individual data point, information theory [8, 9] or statistical design [10]
methodologies have been used. An adjoint-sensitivity analysis approach has
been employed to assess the contributions of individual observations to reducing
forecast errors (observation impact) [11–13]. These methods have been used to
qualitatively guide targeting strategies for adaptive observations [14, 15]. The
optimal configuration of observing networks has proved to be very challenging
challenging even for the simpler problem of state-estimation [16]. For data
assimilation, optimal sensor configuration problem was only partially solved
using concepts from control theory such as observability [17]. Observing system
simulation experiments [18, 19] offer an ad-hoc solution by searching for good
network configurations though the entire set of all possible ones.

This research advances the current state of science by developing a sys-
tematic approach to tune various 4D-Var parameters in order to improve the
performance of the data assimilation system. The proposed framework defines a
“meta”-optimization problem on top of the 4D-Var solution. The meta-problem
seeks finds the optimal parameter values with respect to a performance func-
tional, and is constrained by another optimization problem – the 4D-Var. The
numerical solution process utilizes the 4D-Var sensitivity equations [20–22]; to
the best of our knowledge the present work is the first study to employ this
approach. We illustrate the application of the proposed framework to find opti-
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mal observation values, observation weights, and sensor locations. The proposed
framework is general and can be employed to meta-optimize any other param-
eters of a 4D-Var data assimilation system.

The paper is structured as follows. Section 2 reviews the formulation of
the 4D-Var data assimilation problem, and the associated sensitivity equations.
Section 3 constructs the new optimization based framework for improving the
data assimilation system. Numerical results obtained with the two-dimensional
shallow water equations illustrate the applicability of the framework in Section
4. Conclusions and directions for future research are provided in Section 5.

2 4D-Var Data Assimilation

In this section we review the 4D-Var data assimilation problem formulation
[2, 23–26], and the sensitivity equations of the 4D-Var solution with respect to
various system parameters [21]. These elements provide the building blocks for
optimizing the data assimilation system, including the sensor network configu-
ration.

2.1 Formulation

Data assimilation (DA) combines three sources of information: a priori estimates
on the system states (“background”), knowledge of the governing physical laws
(“model”), and measurements of the real system (“observations”). The three
sources of information are reconciled through a series of computational steps in
order to generate improved (“analyzed”) estimates of the model states or model
parameters.

4D-Var data assimilation takes a Bayesian approach and seeks maximum
likelihood estimates of these values with respect to the posterior probability
density (conditioned by observations). 4D-Var assimilation is formulated as a
PDE-constrained nonlinear optimization problem where the analysis (the most
likely initial state) xa

0 is obtained by minimizing the following (negative log-
likelihood) cost function:

J (x0) =
1

2

(
x0 − xb

0

)T ·B−10 · (x0 − xb
0) (1a)

+
1

2

N∑
k=0

(Hk(xk)− yk)
T ·R−1k · (Hk(xk)− yk) ,

xa
0 = arg min

x0

J (x0) subject to xk =Mt0→tk(x0) . (1b)

Here Mt0→tk represents the numerical model used to evolve the initial state
vector x0 to future times tk, k = 0, . . . , N . This is called the forward model
(fwd) or forecast model. Hk is the observation operator which maps the model
state xk ≈ x(tk) onto the observation space. The error covariance matrices
B0 and Rk quantify the uncertainty in the background state (xb

0) and in the
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observations (yk for each tk), respectively; they are prescribed by the user and
their choice influences the quality of the resulting analysis.

The name “four-dimensional” indicates that the method operates with time-
distributed observations. When assimilating observations only at the initial
time t0, the method is known as “three-dimensional variational” (3D-Var), as
the additional time dimension is not present.

2.2 Numerical solution

The analysis (initial) state xa
0 is the unconstrained minimizer of (1b) and satis-

fies the first-order optimality condition:

∇x0 J (xa
0) = B−10

(
xa
0 − xb

0

)
+

N∑
k=0

MT
0,kH

T
kR
−1
k (Hk(xa

k)− yk) = 0 , (2)

where M0,k =M′t0→tk
(x0) is the tangent linear propagator associated with the

numerical modelM, while MT
0,k represets its adjoint counterpart. Hk = H′k(xk)

is the linearized observation operator at time tk.
The minimizer xa

0 is computed numerically using gradient-based methods
such as quasi-Newton [27], nonlinear conjugate gradients [28], or truncated New-
ton [29]. These methods require the derivatives of J to the initial model states
x0, which can be computed using the methodology of adjoint models [24, 25].
Adjoint models have been successfully implemented in optimization, sensitiv-
ity analysis and uncertainty quantification [26, 30, 31]. In previous research
we have constructed adjoint models of order up to two and have compare the
performance of different gradient-based optimization algorithm for solving (1b)
[31].

2.3 Sensitivity equations

Using the framework of sensitivity analysis and adjoint models, one can compute
how small changes in the data assimilation parameters translate into changes
in the resulting analysis. The derivation below follows the 4D-Var sensitivity
approach of Daescu [21].

Consider the 4D-Var problem (1b) where cost function J depends on a
vector of parameters u ∈ Rm:

xa
0(u) = arg min

x0

J (x0,u) subject to xk =Mt0→tk(x0,u) .

The optimal solution xa
0 satisfies the first order optimality condition for any ū:

∇x0
J (xa

0(ū), ū) = 0 . (3)

The 4D-Var Hessian is positive definite at the optimum, ∇2
x0,x0

J (xa
0(ū), ū) > 0.

The implicit function theorem [32] applied to (3) guarantees that there exists
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a neighborhood of ū where the optimal solution xa
0(u) is a smooth function of

the parameters, and

∇u xa
0(u) = −∇2

u,x0
J (xa

0(u),u) ·
(
∇2

x0,x0
J (xa

0(u),u)
)−1

. (4)

The gradient of the analysis to the set of parameters is the negative product
between the gradient of the first-order optimality condition with respect to the
set of parameters, and the inverse of the 4D-Var Hessian with respect to model
states.

In our previous research we have developed methods to compute efficiently
the sensitivity to observations and the “observation impact” using second-order
adjoint models, preconditioners [33], and low-rank approximations based on the
singular value decomposition [34].

A complete set of sensitivity equations for observations, observation covari-
ances, background and background covariances can be found in the original
derivation of Daescu [21]. Each of the three applications presented later in this
paper requires a different sensitivity equation, which is provided along with the
description of the problem.

3 Improving the 4D-Var Data Assimilation Sys-
tem via Continuous Optimization

This section develops a methodology to improve the performance of the 4D-Var
data assimilation system by optimizing the system parameters with respect to
a certain objective. Our specific goal in this paper is to enhance the observing
network, but other aspects of the system can be treated in a similar manner.
The proposed continuous optimization approach is general, elegant, and easy
to implement, since it reuses the same adjoint models and numerical libraries
employed for solving the 4D-Var problem.

3.1 General formulation of the parameter optimization
problem

The first step in defining the optimization problem is to choose the aspects of
the data assimilation system that one seeks to improve. The objective function
is a metric defined on the analysis (the output of the assimilation system).
The optimization process finds the values of a set of system parameters which
minimize (or maximize) the chosen metric. In a continuous optimization setting
the objective function must be defined over a continuous space, where additional
constraints can also be imposed.

Many data assimilation studies [11, 15, 21] quantify the performance of the
4D-Var system by the discrepancy between the model forecast (initialized from
the analysis xa

0) at verification time tv and a verification forecast xverif
v , defined

at the same time. The verification xverif
v represents a control (reference) estimate
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of the true state. The magnitude of this discrepancy can be measured by the
quadratic “verification” cost function

Ψ(u) = Ψ
(
xa
v(u)

)
=

1

2

(
xa
v(u)− xverif

v

)T
C
(
xa
v(u)− xverif

v

)
. (5)

The weighting matrix C can be prescribed to scale the error or to restrict it
to a certain subdomain. Throughout this paper we take it equal to be the
identity matrix, therefore each component of the error vector (xa

v − xverif
v ) con-

tributes equally towards the value of Ψ. The analysis xa
0 depends on all sources

of information being assimilated: background, observations etc. The function
Ψ depends directly on xa

0(u), and therefore depends indirectly on the system
parameters u.

The continuous parameter optimization problem seeks the parameter value
uopt which minimizes the verification functional (5)

uopt = arg min
u

Ψ
(
xa
v

)
subject to

{
∇x0
J
(
xa
0,u
)

= 0 ,

xa
v =Mt0→tv (xa

0) .
(6)

The optimization problem is constrained by the first order optimality condition
(3), which implicitly defines the dependency of the analysis xa

0(u) on the sys-
tem parameters u, and by the model equations, which relate xa

v(u) to xa
0(u).

Note that (6) is an “optimization-constrained optimization problem” with the
following equivalent formulation

uopt = arg min
u

Ψ
(
xa
v

)
subject to

{
xa
0 = arg minx0

J
(
x0,u

)
,

xa
v =Mt0→tv (xa

0) .
(7)

Gradient-based methods can be employed to solve (6). Each iteration re-
quires computing the value of the cost function Ψ(xa

v), which in turn requires
solving the 4D-Var optimization problem (1b) to obtain xa

0. The two opti-
mization problems (6) and (1b) are nested in an outer loop-inner loop fashion.
The inner (4D-Var) optimization (1b) must be solved as accurately as possible
in order for the optimality condition constraint in (6) to hold. This requires
additional computational effort.

Each outer iteration also requires the gradient of Ψ with respect to u. The
first-order optimality condition reads

∇uΨ
(
xa
v(uopt)

)
= 0 . (8)

Using chain-rule differentiation on (8):

∇uΨ(xa
v(u)) = ∇u xa

0(u) · ∇x0
xa
v · ∇xa

v
Ψ(xa

v)

= ∇u xa
0(u) ·MT

0,v ·C
(
xa
v − xverif

v

)
= −∇2

u,x0
J ·

(
∇2

x0,x0
J
)−1 ·MT

0,v ·C
(
xa
v − xverif

v

)
. (9)

Equation (9) is evaluated as follows. The scaled errors at the verification time tv
are propagated backwards in time to t0 via the adjoint model. This vector is then
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multiplied by the sensitivity of the analysis with respect to model parameters
(4). Specifically, a linear system with the 4D-Var Hessian matrix is solved, and
the result multiplied by the second derivative of the 4D-Var cost function.

The last step in fully defining the metaoptimization problem for the data as-
similation system is to specify the system parameters u that we seek to optimize.
In this paper we consider three particular 4D-Var parameters:

1. Observation values: u ≡ y,

2. Observation error covariance: u ≡ R−1k , and

3. Observation locations (in 2D space): u ≡ (`x, `y).

Each of the three choices for u is defined in a continuous space. Measure-
ments can take any value within the allowable range of the observed physical
variable. Error covariances are defined from the expected value and standard
deviation. Sensor locations represent physical locations in the space domain.
Neither one imposes any restrictions in defining the continuous optimization
problem.

It is important to note that the verification cost function (5) is not the only
metric of the data assimilation system one can seek to improve. Previous work
in experimental design to optimize sensor networks for direct state estimation
(unconstrained by a PDE system) defines the verification cost function based
on the Fisher Information Matrix corresponding to the observations [16]. The
objective is to optimize an algebraic aspect of the information matrix, related to
its spectrum or determinant. Alternatively, an optimal placement of sensors for
data assimilation has been proposed such as to maximize the dynamical system
observability [17].

3.2 Optimization of observation values

The first application for our continuous optimization approach is reconstructing
the optimal values of assimilated observations, i.e observations that would lead
to a 4D-Var analysis as close as possible to the verification xv

0. The mismatches
between the original dataset and the optimal dataset (“what we should have
measured”), are useful to detect faulty sensors or errors in the handling and
processing of measurement data.

This is achieved by minimizing the verification cost function Ψ with respect
to the values of selected observations:

(yk)opt = arg min
yk

Ψ
(
xa
v

)
subject to

{
∇x0
J
(
xa
0,yk

)
= 0 ,

xa
v =Mt0→tv (xa

0) .
(10)

A numerical solution requires the gradient of Ψ with respect to observations.
Differentiating the optimality condition (2) with respect to yk gives

∇2
yk,x0

J (xa
0) = −R−1k Hk M0,k ,
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which is used in (9) to obtain the following expression for the gradient of the
verification functional to observations:

∇yk
Ψ = R−1k Hk M0,k

(
∇2

x0,x0
J (xa

0)
)−1

MT
0,v C

(
xa
v − xverif

v

)
.

3.3 Optimization of observation weights

The second application of our framework is the tuning of observation covari-
ances. Each individual data point (yk)(i) has an associated error variance
(σ2

k)(i), a scalar value which serves as a weighting coefficient during assimi-
lation. The values of (σ2

k)(i) reflect the level of trust one has in the data. This
can be related to sensor accuracy and other characteristics of the measurement
process.

We use our framework to obtain the optimal values for the (σ2
k)(i) weights for

which the verification cost function Ψ is minimized. The optimized weights are
obtained through a dynamic approach that will reflect how the data assimilation
process made use of the input data (observations). Smaller standard deviations
will be associated to observations which have a significant contribution, while
larger standard deviations will reflect redundant or corrupt data. It is expected
that the data assimilation problem formulated with the improved weights will
provide superior forecasts. In addition, the optimal weight values can be used
to configure the sensor scanning strategy in terms of intensity or frequency, or
to remove certain measuring instruments from the network.

In the derivation below we assume that observation error covariances at
each time instant are diagonal matrices Rk = diag{(σ2

k)(i)}. The optimization
variables in our formulation are the diagonal elements of all Rk, and we seek to
compute the optimal values (σ2

k)(i) for which Ψ attains its minimum:

(Rk)opt = arg min
Rk

Ψ
(
xa
v

)
subject to

{
∇x0
J
(
xa
0,Rk

)
= 0 ,

xa
v =Mt0→tv (xa

0) .
(11)

From the 4D-Var sensitivity equations [21] the gradient of Ψ to Rk is:

∇Rk
Ψ =

(
R−1k [H(x)− y]

)
⊗ ∇yΨ(Rk) , (12)

where the operator ⊗ denotes the Kronecker matrix product, and the expression
(12) holds for non-diagonal Rk matrices as well.

Previous studies [22] have performed background and error covariance tuning
by parameterizing the error covariance matrices as

B0(s0) = s0 ·B0, Rk(sk) = sk ·Rk ,

and by optimizing the scaling parameters s0 and sk such that more weight is
associated either to the background or to the observations.

Our approach differentiates between individual observation weights and op-
timizes for each component of Rk. Based on (12) the optimization problem (11)
can be formulated and solved for non diagonal observation error covariances as
well.
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3.4 Optimization of observation locations

The third application of our optimization framework is finding the optimal lo-
cations for the sensors.

In a real data assimilation system observations are available at a sparse set of
preselect locations where the measuring instruments are installed. We consider
the case where the measured quantities correspond to computed variables in the
model. The observation operator H (1a) interpolates the model solution xk in
physical space to the locations of the sensors measuring yk. Each component of
the observation vector yk is associated with its location in physical space, e.g.,
in two dimensions identified by the Cartesian coordinates (`x, `y). Similarly,
each component zi of the model solution z ≡ xk is associated with a grid point
with coordinates (`xi , `yi).

The formulation of the interpolation operator Hk explicitly contains the
coordinates of the sensor locations (i.e. of the points where interpolation is
performed). Therefore the 4D-Var cost function J , and the analysis xa

0, both
depend on these locations. We denote the set of all sensor locations within the
assimilation window by

L =
⋃

all sensors

{(`x, `y, tk)} .

The sensor location optimization problem is formulated as follows:

Lopt = arg min
`x,`y

Ψ
(
L) subject to

{
∇x0
J
(
xa
0, L
)

= 0 ,

xa
v =Mt0→tv (xa

0) .
(13)

In this study we choose the Inverse Distance Weighting (IDW) [35] interpolant
as theHk operator. We apply it to the spatial locations only and do not attempt
to optimize for the time distribution of measurements. IDW is a general scheme
and is very popular in geographic information systems and climate modeling.

IDW interpolates the model solution values zi through a linear combina-
tion of all available data points, each weighted by their inverse distance to the
interpolation location. For each interpolation location (`x, `y) we have

Hk(`x, `y; z) =


∑
i

d−1i zi∑
i

d−1i

, if di 6= 0 ,

zi, if di = 0 ,

(14)

where di =
[
(`x − `xi)

2
+ (`y − `yi)

2
]1/2

.

Differentiation of the first order optimality condition of 4D-Var (2) yields

∇2
`x,x0
J = ∇`xHk(`x, `y;xa

k) (15a)

+MT
0,k (∇`xHk(`x, `y;xa

k))
T
R−1k (Hk(`x, `y;xa

k)− yk) ,

∇2
`y,x0
J = ∇`yHk(`x, `y;xa

k) (15b)

+MT
0,k

(
∇`yHk(`x, `y;xa

k)
)T

R−1k (Hk(`x, `y;xa
k)− yk) .
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The gradient of Ψ to coordinates `x and `y is then computed from (9)

∇`xΨ = ∇2
`x,x0
J ·

(
∇2

x0,x0
J (xa

0)
)−1

MT
0,v C

(
xa
v − xverif

v

)
, (16)

∇`yΨ = ∇2
`y,x0
J ·

(
∇2

x0,x0
J (xa

0)
)−1

MT
0,v C

(
xa
v − xverif

v

)
.

Differentiation of (14) with respect to `x, `y gives the gradients of Hk with
respect to sensor locations:

∇`xHk(`x, `y; z) =

∑
i

∑
j

(di)
−2(dj)

−1 (`x − `xi) zi (zi − zj)∣∣∣∣∑
i

(di)−1
∣∣∣∣2

,

and

∇`yHk(`x, `y; z) =

∑
i

∑
j

(di)
−2(dj)

−1 (`y − `yi) zi (zi − zj)∣∣∣∣∑
i

(di)−1
∣∣∣∣2

.

The innovation vectors Hk(`x, `y;xa
k) − yk evaluated at the analysis solution

are likely to have small values. For this reason the derivatives (15) are well
approximated by the simpler expressions

∇2
`x,x0
J ≈ ∇`xHk(`x, `y;xa

k) , ∇2
`y,x0
J ≈ ∇`yHk(`x, `y;xa

k) , (17)

which do not require additional adjoint integrations.

4 Applications

We illustrate the proposed metaoptimization approach for the three applica-
tions presented in Section 3 using the two dimensional shallow water equations
system.

4.1 Test problem

The two-dimensional shallow-water equations (2D swe) [36] approximate the
movement of a thin layer of fluid inside a basin:

∂

∂t
h+

∂

∂x
(uh) +

∂

∂y
(vh) = 0

∂

∂t
(uh) +

∂

∂x

(
u2h+

1

2
gh2
)

+
∂

∂y
(uvh) = 0 (18)

∂

∂t
(vh) +

∂

∂x
(uvh) +

∂

∂y

(
v2h+

1

2
gh2
)

= 0 .

Here h(t, x, y) is the fluid layer thickness, and u(t, x, y) and v(t, x, y) are the
components of the velocity field of the fluid. The gravitational acceleration is
denoted by g.
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We consider on a spatial domain Ω = [−3, 3]2 (spatial units), and an in-
tegration window is t0 = 0 ≤ t ≤ tf = 0.1 (time units). Boundary conditions
are specified periodic. The space discretization is realized using a finite volume
scheme, and the time integration uses a fourth Runge-Kutta scheme, following
the method Lax-Wendroff [37]. The model uses a square q × q uniform spa-
tial discretization grid, which brings the number of model (state) variables to
n = 3 q2.

Our adjoint models are built using the automatic differentiation tool TAMC
[38, 39]. Perturbations are propagated forward in time using the tangent-linear
model (tlm), and backwards in time using the first-order adjoint model (foa),
which can also efficiently computes the gradient of a cost functional defined on
the model states. The product between the Hessian of a cost functional and a
user-defined vector can be computed with the second-order adjoint model (soa)
[31].

4.2 Data assimilation setting

The 4D-Var system is set up for a simple version of the “circular dam” problem
[40]. Where not specified otherwise, the 4D-Var parameters are configured as
follows.

The reference initial height field h is a Gaussian bell of a width equal to 10
gridpoints centered at the midpoint of the grid, and the reference initial velocity
vector components are constant u = v = 0. The physical interpretation is that
the front of water falls to the ground (h decreases) under the effect of gravity
and creates concentric ripples which propagate towards the boundaries. Figures
1 represent snapshots of the reference trajectory at initial and final time.

The computational grid is square and regular with q = 40 grid points in
each direction, for a total of 4800 model variables (states). The simulation time
interval is set to 0.01 seconds, using N = 100 timesteps of size 0.0001 (time
units).

The h component of the a priori estimate (background) xb
0 is generated by

adding a correlated perturbation to the h reference solution at initial time. The
background error covariance B0 corresponds to a standard deviation of 5% of
the reference field values. For the u and v components we use white noise to
prescribe perturbations. The spatial error correlation uses a Gaussian decay
model, with a correlation distance of five.

Synthetic observations are generated at the final time t100, by adding ran-
dom noise to the reference trajectory. Since the observation errors are assumed
uncorrelated, the observation error covariance matrix R100 is diagonal. The
standard deviation for observation noise is 1% of the largest absolute value of
the observations for each variable. We consider observations of all variables at
each grid point and the observation operator H to be linear. The minimization
of the 4D-Var cost function is performed with the L-BFGS-B solver [41] using
a fixed number of 100 iterations. For our problem, this guarantees that the
analysis is sufficiently close to the minimum.
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Figure 1: The height field h at the beginning and at the end of the reference
trajectory.

For the verification cost function Ψ we choose C to be the identity matrix
and the verification time tv = t100, which corresponds to the final time of
our assimilation window. The meta-optimization problems (10), (11), and (13)
are also solved using L-BFGS-B [41], which performs 10 “outer” iterations to
minimize Ψ(u) with respect to u. Each outer iteration requires the solution of
a 4D-Var data assimilation problem, which is obtained by running 100 “inner
iterations” of L-BFGS-B to minimize J (x0,u) with respect to x0.

4.3 Optimization of observation values

This experiment employs the methodology developed in Section 3.2 to correct
the values of faulty observations; this is made possible by the redundant infor-
mation available in the verification functional.

The reference height field h at the initial time is shown in Figure 2(a), and
reference solution at the final time t100 in Figure 2(b); the latter is used to
generate synthetic observations. Assimilation of perfect observations in a twin
experiment framework yields an analysis that is close to the reference.

Here we consider the case where some of the observations are corrupted.
Specifically, we consider synthetic observations corresponding to the field shown
in Figure 3(a). The difference between these corrupted observations and the
reference ones (Figure 2(b)) consists in the orientation of the field, now aligned
along the perpendicular axis. For example, this could be the result of an indexing
mistake when processing large data. Then assimilation of this faulty dataset
yields the h analysis shown in Figure 3(b), and is clearly distinct from the
reference solution (Figure 2(a)).

We apply the methodology developed in Section 3.2 to define and solve an
optimization problem that corrects the observation values yk such that the 4D-
Var analysis becomes more accurate (i.e., closer to the reference).

The initial guess for yk are the faulty observations from Figure 3(a). We
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Figure 2: The reference height field h at the initial and final (observation) times.
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Figure 3: The faulty (unoptimized) observations of the height field h and the
corresponding 4D-Var analysis.

solve the optimization problem (10) using five iterations of L-BFGS [41] and
plot the decrease of the cost function values Ψ(yk) at each iteration in Figure
4(a), At first, the error between the 4D-Var analysis and the verification is
large, but then it decreases monotonically with each iteration. Most of the cost
function decrease happens at the second iteration, with subsequent iterations
contributing less significantly to the convergence. The optimal observations
computed after five iterations are plotted in Figure 4(b). They are similar to the
reference values in Figure 2(b). This validates the approach developed in Section
3.2. Note that the process is computationally efficient, with the optimization
converging in less than five iterations. The true error norm corresponding to
the reanalyzed initial solution xa

0 before and after the optimization is shown in
Table 1 and confirms that the 4D-Var process benefits from the new observation
values.
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Figure 4: The minimization of the verification cost function (10) and the opti-
mized observations at assimilation time t100.

Table 1: Error norm of the 4D-Var reanalyzed initial solution before and after
optimizing observation values.

Initial observations Optimized observations

‖xa
0 − xreference

0 ‖ 1.8216 0.0703

4.4 Optimization of observation weights

This experiment illustrates the methodology developed in Section 3.3. In prac-
tice measurements contain various amounts of noise, for example due to various
sensor accuracies. The observation error covariances specified initially are only
rough approximations of the true error statistics. We seek to tune the obser-
vation error covariances by solving the optimization problem (11). Improved
values of observation error statistics can be obtained by taking advantage of the
additional information encapsulated by the verification cost function.

The experiment is set up as follows. We construct a synthetic observational
data set for h from the model trajectory at the final time (Figure 5(a)). White
noise is added to the perfect values to simulate observational errors. The noise
magnitude is nonuniform: it is larger in a contiguous area of rectangular shape,
as illustrated in Figure 5(b). Initially the data assimilation system uses the
observation error covariance Rk = I. The same noise levels are specified for all
grid points, and the data assimilation system is initially unaware of the larger
observation errors in the selected area.

Data assimilation using the initially specified error covariances yields the
analysis shown in Figure 5(c). This analysis is similar to the reference initial
solution (Figure 1), and is not indicative of a misspecification of observation
error covariances. The small mismatch, however, can be quantified numerically
through the verification functional Ψ.

The initial observation variances (diagonal elements of Rk) are equal to 1
(unit), meaning that all data points are equally trusted. We now seek to im-
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Figure 5: The h observations, the prescribed observation noise, and the resulting
4D-Var analysis using the initial specification of the error covariances.
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Figure 6: The minimization of the verification cost function, the optimized
h observation error covariances, and the resulting 4D-Var analysis using the
improved values.

prove the values of the observation error covariances, and thus improve the
performance of the data assimilate system. This is done by solving the opti-
mization problem (11) for the diagonal entries of Rk, when the data values y
are fixed.

Five iterations of the numerical optimization solver L-BFGS are performed,
and the decrease in the values of Ψ are plotted in Figure 6(a). The solver con-
verges monotonically and achieves a reduction of the verification cost function
by a factor of six. The 4D-Var analysis (initial time) is also improved by using
the new data weights, as can be shown in Table 2. The optimized values for the
observation error variances are plotted in Figure 6(b) (each variance is at the
location of the corresponding sensor). The tuned values are considerably larger
in the area where observations were perturbed more significantly. and thus the
information with high noise levels is given a considerably reduced weight. This
result is significant because it shows the possibility to tune the data weights
such as to pick up the structure of observational noise, without having direct
knowledge of the noise levels.

The analysis with initial error covariances is shown in Figure 5(c), and the
analysis with optimized weights is plotted in Figure 6(c).
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Table 2: Error norm of the 4D-Var reanalyzed initial solution before and after
optimizing the observation weights.

Initial weights Optimized weights

‖xa
0 − xreference

0 ‖ 0.4915 0.0985

4.5 Optimization of observation locations

We now apply the methodology developed in Section 3.4 to optimize the spa-
tial configuration of the sensor network such as to improve the performance of
the data assimilation system. The approximate gradients (17) are used in the
numerical calculations.

This experiment is set up slightly different. The observation network is
sparse and consists of 300 sensors measuring the fluid height h. The physical lo-
cations of the sensors are specified by a given initial layout; each sensor location
is described by its Cartesian coordinates, which can vary continuously within
the domain. We change the coordinates of each sensor, i.e., the spatial config-
uration of the sensor network, by solving the optimization problem (13). The
minimization of the verification error translates into an improved performance
of the data assimilation system after relocating the observations.

The optimization problem is solved for three scenarios, distinguished by
the initial sensor locations. Each scenario starts from an equidistant spatial
distribution of sensors, as shown in Figures 7(a), 8(a), and 9(a), respectively. L-
BFGS is ran for solving (13) over 30 iterations, and the corresponding decreases
in cost function values for each scenario are plotted in Figures 7(b), 8(b), and
9(b), respectively. We can notice that for the first two scenarios the cost function
decrease is converging to a minimum. Meanwhile, the iterative solver broke
down for the third scenario after decreasing the cost function within the first 20
iterations.

The resulting optimal locations for each scenario are shown in Figures 7(c),
8(c), and 9(c), respectively.

In each scenario the optimization adjusts slightly the locations of the sen-
sors; this is sufficient for obtaining a considerable reduction in the verification
cost function Ψ, i.e., for obtaining a measurable improvement in the data assim-
ilation system performance. Table 3 contains the true error norm of the 4D-Var
reanalyzed initial solution for each solution and we can notice corresponding
improvements.

While the performance is improved in each of the three scenarios, the com-
puted solutions are clearly only local minima of (13), located in the vicinity of
the corresponding initial configurations. Note that the global optimum coincides
for all three cases, and represents the best locations of 300 sensors within the
domain. The convergence to a local optimum is to be expected for the quasi-
Newton approach used herein, as the gradients mostly contain information that
is locally valid.
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Figure 7: The optimization of sensor locations for the first testing scenario:
initial locations, numerical solver convergence, and optimal locations.
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Figure 8: The optimization of sensor locations for the second testing scenario:
initial locations, numerical solver convergence, and optimal locations.
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Figure 9: The optimization of sensor locations for the third testing scenario:
initial locations, numerical solver convergence, and optimal locations.
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Table 3: Error norm of the 4D-Var reanalyzed initial solution before and after
optimizing sensor locations.

Assimilation Scenario Initial locations Optimized locations

1 0.3923 0.1960
2 ‖xa

0 − xreference
0 ‖ 0.3213 0.1906

3 0.3327 0.2897

5 Conclusions and Future Work

This paper, develops a computational framework for improving the performance
of 4D-Var data assimilation systems. The approach is based on optimizing
various 4D-Var parameters with respect to a forecast aspect quantified by a
verification cost functional. The particular aspect considered here is the norm
of a forecast error estimate. System parameters include the observation values,
the observation covariances, and the location of sensors.

The verification functional is defined on the analysis, i.e., on the solution
of the data assimilation problem. We formulate a constrained continuous op-
timization problem to find the best parameter values for the data assimila-
tion system. The cost function is the verification functional, and the con-
straints are the optimality conditions of the 4D-Var system. Thus we have an
“optimization-constrained optimization problem”. The computational solution
employs gradient-based numerical optimization methods. The gradient of the
forecast aspect of interest with respect to data assimilation system parameters
is computed (relatively) efficiently using adjoint models and the framework of
4D-Var sensitivity analysis. The proposed methodology is the first of its kind
and can be readily integrated in data assimilation studies for weather, climate,
air-quality and many others.

Our study shows that an optimization problem constrained by the 4D-Var
problem itself is tractable and can improve the quality of analyses generated
by the data assimilation system. Numerical results obtained with a test shal-
low water equations system illustrate how the proposed approach successfully
optimized the values of observations, observation error covariances, and sensor
locations.

This research opens the path for solving a multitude of problems related to
the optimal configuration of specific 4D-Var data assimilation systems. Future
work will extend the optimization procedure to other parameters of the data
assimilation system such as the background covariance and, in the context of
weakly constrained 4D-Var, the model error covariances. The approach will
benefit from developing more efficient techniques to compute the derivatives
and improving the convergence of the optimization process. We plan to consider
alternative formulations of the verification cost functional, such as ones based
on information theory, and to extend the framework to include mixed integer
optimization problems. This will extend the capabilities of the framework to
optimize the observing network by turning sensors on or off, or by selecting the
best alternatives from a given set of feasible locations.
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