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Abstract

Direct-Coupling Analysis is a group of methods to harvest information about
coevolving residues in a protein family by learning a generative model in an
exponential family from data. In protein families of realistic size, this learning
can only be done approximately, and there is a trade-off between inference
precision and computational speed. We here show that an earlier introduced
l2-regularized pseudolikelihood maximization method called plmDCA can be
modified as to be easily parallelizable, as well as inherently faster on a single
processor, at negligible difference in accuracy. We test the new incarnation
of the method on 148 protein families from the Protein Families database
(PFAM), one of the largest tests of this class of algorithms to date.
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1. Introduction

A momentous challenge for research, companies, and society at large is
how to use better and in novel ways vast swathes of accrued information,
often referred to as ”Big Data”. Such data can be collected and catalogued
in many different ways, and then analyzed by different actors, potentially in
new fashion to pursue very different objectives than for which the data was
originally gathered. In this paper, we report on progress on one important
example where data on homologous proteins2, collected by many research
groups around the world, can be decoded to reveal amino-acid contacts within
protein structures to very good accuracy. An existing pseudolikelihood max-
imization approach currently delivers higher accuracy than other methods,
but at the cost of longer running times. We here introduce a new version
of this earlier method, and show that it yields predictions with practically
identical precision, but with a large computational speed-up.

Protein Structure Prediction (PSP) aims to reap information about the
three-dimensional structure of a protein from any suitable data, but in par-
ticular from its amino-acid sequence. Advances are regularly evaluated in the
framework of CASP (The Critical Assessment of protein Structure Predic-
tion) [1]. Although much progress has been made, the consensus opinion has
become that ab initio PSP, i.e. predicting the three-dimensional structure

1List of abbreviations used:

PSP Protein Structure Prediction
CASP Critical Assessment of protein Structure Prediction
DCA Direct-Coupling Analysis
PFAM Protein Families database
plmDCA pseudolikelihood maximization Direct-Coupling Analysis
MSA Multiple Sequence Alignment
FN Frobenius Norm
APC Average Product Correction
CFN Corrected Frobenius Norm
PDB Protein Data Bank
UNIPROT Universal Protein Resource
NMR Nuclear Magnetic Resonance
SIFTS Structure Integration with Function, Taxonomy and Sequence
TPR True-Positive Rate

2In this paper, we use ”protein” interchangeably with ”protein domain”.
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of a protein from its amino-acid sequence only, is not feasible. On the other
hand, homology PSP, i.e. predictions taking cues from known structures of
proteins that are homologous, is often possible, although in many respects
remaining an art.

Direct-Coupling Analysis (DCA) belongs to an intermediate level of PSP
where predictions are made not from a single amino-acid sequence, but from
the set of amino-acid sequences of a family of homologous proteins. The
interest of this approach is at least twofold. First, the number of known
amino-acid sequences grows at a much faster rate than the number of known
protein structures, their ratio today being about 1:300, and this can be ex-
pected to remain the case for the foreseeable future. Therefore, while today
if a protein is a member of a family containing many homologues then very
often at least one of the homologues has a known structure, this may be less
and less likely to be true in the future. Second, it is of interest to know
if the information contained not just in one amino-acid sequence, but in a
whole family of sequences — usually evolutionary related and hence subject
to the same evolutionary constraints — is sufficient to determine the three-
dimensional structure. In fact, it has been known for almost 20 years that
the evolutionary history leaves a trace in the correlations between amino
acids at different positions along a protein which contains nontrivial infor-
mation, see e.g. [2, 3, 4], but before DCA this information was not fully
exploitable. PSP by DCA is thus, apart from its intrinsic scientific interest,
also a showcase for Big Data and how it can be exploited to arrive at new
useful knowledge checkpoints. For a broader review of coevolution analysis
for elucidating protein structures, see e.g. [5].

This paper is organized as follows: in Section 2 we introduce DCA and
review and summarize the main approaches used up to now. In Section 3
we then present the pseudolikelihood maximization approach in more detail,
first the previous version presented in [6], and then the faster parallel version
introduced here. In Section 4 we present the data (and extraction thereof)
on which our analysis is based, and in Section 5 we compare the speed and
accuracy of the two versions of the pseudolikelihood maximization, followed
by extensive experiments on the new version. Finally, in Section 6 we discuss
our results. Supplementary Information to this paper gives additional data
on protein families used and a family-per-family view of performance.
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2. A primer on Direct-Coupling Analysis

Let us represent the amino-acid sequence of a protein as σ = (σ1, σ2, · · · , σN).
We assume that we have a Multiple Sequence Alignment (MSA), which is a
table {σ(b)}Bb=1 of such amino-acid sequences of B proteins that have been
aligned to have a common length N . In this work we will limit ourselves
to using MSAs obtained from the PFAM database [7, 8]. We will discuss
how such tables look in Section 4 below and here just observe that each row
in the table will represent a protein, and each column a position in the se-
quence. At row b and position i we hence have a symbol σ

(b)
i which can be

one of the 20 naturally occurring amino acids or a ”-”, representing a gap in
the alignment. For a list of amino acids and the symbols and abbreviations
representing them, see Appendix A.

The essence of DCA is then to assume that the rows, i.e. our aligned ho-
mologous proteins, are independent events drawn from a Potts-model prob-
ability distribution,

P (σ) =
1

Z
exp

(
N∑
i=1

hi(σi) +
1

2

N∑
i,j=1

Jij(σi, σj)

)
, (1)

and to use the interaction parameters Jij as predictions of spatial proximity
among amino-acid pairs in the protein structure. Interpreting the Jij this way
can be biologically justified as follows: it is well-known that the detrimental
effects of a single-site mutation, that alone would impair the function of the
protein, can be countered by a compensatory mutation at a nearby site.
Consequently, short intra-domain position-position distances can, and do,
show up as pairwise couplings among the columns in the table {σ(b)}Bb=1.

To avoid trivial overparameterization we will define Jij(k, l) = Jji(l, k) if
i and j are different and Jij = 0 if i = j. The double sum in (1) hence goes
over all unordered pairs of distinct positions along the columns in the table,
i.e.

P (σ) =
1

Z
exp

(
N∑
i=1

hi(σi) +
∑

1≤i<j≤N

Jij(σi, σj)

)
. (2)

Throughout the paper, we will, unless otherwise specified, assume single
position-indexes to run across 1 ≤ i ≤ N , pairwise position-indexes to run
as 1 ≤ i < j ≤ N , and amino-acid indexes to span 1 ≤ k ≤ q, where
q = 21 (20 amino acids and one additional state for the alignment gap).
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Determining the Jij from the observations {σ(b)}Bb=1 is a nontrivial inference
problem, since for N large enough the normalization constant Z, the number
of terms of which (qN) grows exponentially with the protein length, cannot
be computed efficiently and exactly. Let us note that if we would have a
multidimensional Gaussian model P ∼ exp

(
−1

2
x ·Mx

)
, then it is natural

to consider the matrix elements Mij as ”causes” or ”direct couplings”, in
contrast to correlations which are given by the inverse matrix (M−1)ij; two
elements may be strongly correlated although not directly coupled if instead
indirectly coupled through intermediaries. Analogous but computationally
less elementary considerations should also pertain to the model in (2).

A bedrock principle of model learning in the frequentist interpretation
of statistics is maximum likelihood, which means to minimize over a set of
parameters θ the negative log-likelihood function:

L(θ;σ) = − logP (σ|θ), (3)

where σ are the observations which enter as parameters in the function on
the left-hand side, and where we have defined L as minus the logarithm of P .
If we have B independent observations from the same model it is customary
to divide the negative log-likelihood function by B and work with l = 1

B
L.

In our case, where P is given by (2), we have

l(h,J) = − 1

B

B∑
b=1

ln

[
1

Z
exp

(
N∑
i=1

hi(σ
(b)
i ) +

∑
1≤i<j≤N

Jij(σ
(b)
i , σ

(b)
j )

)]

= lnZ −
N∑
i=1

q∑
k=1

fi(k)hi(k)−
∑

1≤i<j≤N

q∑
k,l=1

fij(k, l)Jij(k, l),

(4)

where we have introduced the empirical one-point and two-point correlation
functions

fi(k) =
1

B

B∑
b=1

δ(σ
(b)
i , k), (5)

fij(k, l) =
1

B

B∑
b=1

δ(σ
(b)
i , k) δ(σ

(b)
j , l). (6)

δ(a, b) is the Kronecker symbol taking value 1 if both arguments are equal,
and 0 otherwise. Since (2) is of the form of a Gibbs-Boltzmann distribu-
tion of equilibrium statistical-mechanics, it maximizes the entropy under the
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constraints that the expectation values of all its ”energy” terms are given.
Learning the parameters {h,J} (exactly) from minimizing l above is there-
fore equivalent to learning them by maximizing (exactly) the entropy given
the observed fi(k) and fij(k, l). This is a special case of a classical fact con-
cerning sufficient statistics in exponential families of probability distributions
[9, 10, 11, 12]. As mentioned above, the problem with (4) is that for large
systems Z is not efficiently and exactly computable, and exact maximum
likelihood learning is hence not feasible. One solution to this dilemma is to
keep the form of (4) but approximating Z; the mean-field method of [13] and
the message-passing method of [14], both discussed below, are in this class,
as well as other and more sophisticated methods which have so far not been
tested on the PSP problem [15, 16, 17, 18].

The first attempt to predict spatial proximity by inferred interaction pa-
rameters was by Lapedes et al [19] (unpublished) in 1999 using an iterative
method where the normalizing constant Z was estimated by Monte Carlo.
The calculations involved were very time-consuming and required supercom-
puting resources, and since at that time the number of known amino-acid
sequences was much lower than today the wider implications were not noted.
The same procedure was used in 2005 by Russ and collaborators as a way to
conceive new protein sequences [20]. The next contribution was by Weigt et
al [14] in which a message-passing scheme was used, effectively computing
Z in a Bethe-Peierls approximation. These calculations are still somewhat
cumbersome and in practice only proteins of moderate size (N less than
about 80) could be addressed, but very impressive results where nonetheless
attained on the important example of two-step signal transduction pathways
in bacteria. Slightly later, Burger and Van Nimwegen [21] applied a Bayesian
network model to the problem of predicting contact residues, followed by Bal-
akrishnan and coworkers whose method GREMLIN was the first to utilize
(l1-regularized) pseudolikelihood maximization for DCA [22].

The field then really took off from the 2011 paper [13], where Z was ap-
proximated by the lowest-order mean-field expansion, which means using the
same formula as for learning a Gaussian model. This approach allowed for
drastically shorter running times, since the central computation only amounts
to inverting the correlation matrix between which amino acid is present at
some position i and and which amino acid is present at some other position
j along the chain (cij(k, l) = fij(k, l)− fi(k)fj(l)), and eventually led to the
first successful DCA-based algorithms for predicting whole 3D-structures of
proteins [23, 24]. Since the number of parameters in the model (2) is large
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(around 400N2), typically much greater than the number of examples B
learnt from, some kind of regularization is necessary to avoid overfitting.
In [13], the regularization is performed implicitly by asserting that correla-
tions are computed combining real counts in a table of aligned sequences and
added pseudocounts, which then renders the correlation matrices invertible.
In the PSICOV routine of Jones et al [25], the regularization is also performed
by applying an l1 penalty forcing the inverse correlation-matrix to be sparse.
A recent further development modifies (2) to a Hopfield-Potts model where
the independent interaction parameters are much fewer in number [26, 27].

In [6] two of us introduced a different procedure which relies on l2-
regularized pseudolikelihood maximization and a new and efficient score
SCFN
ij for ranking pairwise couplings within the protein structure. This

method will here be referred to as plmDCA (pseudolikelihood maximiza-
tion Direct-Coupling Analysis). We will review the basis of this approach
in Section 3 below. The GREMLIN method of [22] uses an l1-regularized
pseudolikelihood objective, and does not utilize a score akin to SCFN

ij for
ranking couplings. In a recent contribution, however, Kamisetty et al in
[28] presented a new version of GREMLIN which also uses an l2-regularized
pseudolikelihood objective and the interaction score SCFN

ij , and which then
goes further and expands the model to incorporate prior data (such as struc-
tural context information). In a parallel development, Skwark, Abdel-Rehim
and Elofsson in [29] has combined plmDCA, PSICOV and protein align-
ments from multiple sources using random forests to a meta-predictor termed
PconsC.

Several methods now integrate plmDCA into their computational frame-
works, some mentioned above (see also EVfold3 [24]), so a reduction in ex-
ecution time is highly desirable. The goal of this paper is to present a new
version of plmDCA which achieves close to identical prediction accuracy as
the original plmDCA, at a much lower computational cost. An evaluation of
all the different DCA approaches is out of scope of the present paper, but to
guide the reader and perchance newcomer to the field, the current consensus
seems to be that the message-passing approach of [14] and the Bayesian net-
work model of [21] are the weakest, and are both outperformed by the simpler
mean-field method of [13]. The l1-regularized pseudolikelihood approach of
[22] has, to our knowledge, not yet been matched against other methods.

3http://evfold.org/evfold-web/evfold.do
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plmDCA [6] and PSICOV [25] on the other hand both outperform the mean-
field method, and out of the two plmDCA has been reported to have the
higher accuracy [29]. Both the meta-predictor of [29] and the integration of
prior information in [28] improve upon the performance of plmDCA, the lat-
ter particularly in the important regime of small B, i.e. when few sequence
homologues are available. The Hopfield-Potts inference of [26] has, as far as
we are aware, only been performed using the mean-field method, and then
works from less well to equally well as the method of [13] (but with many
fewer parameters). The method of Lapedes et al [19] has not been evaluated
again using modern data and modern computer resources, and its relative
performance as to prediction accuracy is hence unknown.

Numerous freshly conceived methods expand the concepts and applica-
bility of DCA in various directions [30, 31, 32, 33, 34, 35, 36, 37, 38]. The
field is growing rapidly, and other approaches are likely to appear in the near
future.

3. Symmetric and asymmetric pseudolikelihood maximization

Pseudolikelihood maximization [39] starts from a different learning crite-
rion than minimizing l, which in principle should give less accurate predic-
tions than (3), but which is instead efficiently computable without further
approximations (such as mean-field). The alternative learning criterion is to
maximize the conditional probability of observing one variable given all the
others, i.e. P (σr = σ

(b)
r |σ\r = σ

(b)
\r ), which for the model (2) comes out as

P (σr = σ(b)
r |σ\r = σ

(b)
\r ) =

exp

hr(σ(b)
r ) +

N∑
i=1
i 6=r

Jri(σ
(b)
r , σ

(b)
i )


∑q

l=1 exp

hr(l) +
N∑
i=1
i6=r

Jri(l, σ
(b)
i )

 , (7)

where, to simplify the notation, we assume Jri(l, k) to mean Jir(k, l) when
i < r. Given B observations we can hence define a negative pseudo-log-
likelihood function

gr(hr,Jr) = − 1

B

B∑
b=1

ln
[
P (σr = σ(b)

r |σ\r = σ
(b)
\r )
]
, (8)
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for each amino-acid position r = 1, . . . , N . Here, Jr denotes {Jir}i 6=r. Simi-
larly to (4), this can be rewritten as

gr(hr,Jr) = − 1

B

B∑
b=1

hr(σ(b)
r ) +

N∑
i=1
i 6=r

Jri(σ
(b)
r , σ

(b)
i )

− ln

 q∑
l=1

exp

hr(l) +
N∑
i=1
i6=r

Jri(l, σ
(b)
i )





= zr −
q∑

k=1

fr(k)hr(k)−
N∑
i=1
i6=r

q∑
k,l=1

fri(k, l)Jri(k, l),

(9)

where zr is a position-specific normalization constant,

zr =
1

B

B∑
b=1

ln

 q∑
l=1

exp

hr(l) +
N∑
i=1
i 6=r

Jri(l, σ
(b)
i )


 . (10)

When data is abundant, maximizing conditional likelihood (exactly) is apt
to give the same result as maximizing full likelihood (exactly). In the ter-
minology of statistics, pseudolikelihood maximization is hence a consistent
estimator, which is an important theoretical advantage of this approach to
infer the interaction coefficients in (2).

Yet, given finite data maximizing conditional likelihood will deviate from
maximizing full likelihood, and is in addition not in itself a fully specified
method. Suppose we minimize gi in (9) over the parameters {hi,Ji}, and
at the same time minimize for another node j the corresponding gj in (9)
over the the parameters {hj,Jj}. This will give us two inferred values of
the matrix Jij, one from gi and one from gj. We shall denote these J∗iij
and J∗jij respectively. These two will, in general, be different, while in the
model (2) they have to be the same. Several ways can be imagined to resolve
this inconvenience. The most straight-forward is to combine the N negative
pseudo-log-likelihood functions into one overall score function, and then min-
imize this with the constraints that Jij is the same in both gi and gj (for all
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pairs of different i and j):

{h∗,J∗} = arg min
h,J

[lpseudo(h,J)] , (11)

lpseudo(h,J) =
N∑
r=1

gr(hr,Jr). (12)

This approach was used in [6] and will here be referred to as symmetric pseu-
dolikelihood maximization (symmetric as in J∗iij = J∗jij ). While this has proved
to be an accurate method to predict amino-acid contacts, it has the drawback
of being somewhat slow, as it depends on a high-dimensional optimization.

In this paper we investigate the more radical approach — previously
studied by two of us in [40] on synthetic data in the special case of binary
variables (q = 2) — where all gr are separately minimized, and the predictor
of Jij is taken as the combination

J∗ij =
1

2

(
J∗iij + J∗jij

)
. (13)

We will refer to this approach as asymmetric pseudolikelihood maximization.
Due to the much lower dimensionality of each subproblem, minimizing all
the gr separately is a lighter task than minimizing lpseudo. Furthermore,
because the N minimizations (which in statistics language are multiclass
logistic regression problems) are completely independent, the asymmetric
variant easily lends itself to execution in parallel across many cores.

Although the engine of plmDCA is the maximization of pseudolikelihoods,
various add-on techniques, tailored for the particular application to PSP,
have been shown crucial for optimal performance; in fact, the increase in
accuracy in [6] over [13] was shown to stem as much from a change in the score
used to rank amino-acid interactions (discussed below) as from the choice of
pseudolikelihood over mean-field. We therefore now turn to describing in
particular the sequence reweighting, regularization and scoring used for the
asymmetric plmDCA. Most current versions of DCA include one variant or
another of each of these three, and new tactics for tackling these tasks are
likely to appear. For instance, a Bayesian approach using priors may be
assimilated to a regularizing penalty on the parameters, and it is now known
from [28] that this improves prediction performance when B is small. It
is also quite conceivable that more appropriate reweighting procedures can
be found, perhaps including phylogenetic information, and similarly for the
scoring.
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3.1. Reweighting

Protein sequences in databases are very unevenly distributed, and there
can be many rows in the data table which are closely similar. For instance,
some types of species (e.g. human pathogens) are likely to have been se-
quenced many times, and many variants of the same protein from different
variants of one species, or from closely related species, can be (and are) found
in a database. A common heuristic approach to correct for such a bias is se-
quence reweighting, which was used in [6]. Essentially it means that each
sequence contribution is multiplied with a weight that is inversely related to
the number of similar sequences in a given MSA. Two sequences are consid-
ered similar if more than a fraction of x (0 ≤ x ≤ 1) of the positions in their
chains are in the same state (one of the amino acids or a gap). To state this
explicitly, each sequence σ(b) is assigned a weight wb = 1/mb, where mb is
the number of sequences in the MSA that are similar to σ(b):

mb = |{a ∈ {1, ..., B} : similarity(σ(a),σ(b)) ≥ x}|. (14)

Using this technique, the frequencies and normalization in (9) are adjusted
as

fi(k) =
1

Beff

B∑
b=1

wbδ(σ
(b)
i , k),

fij(k, l) =
1

Beff

B∑
b=1

wbδ(σ
(b)
i , k)δ(σ

(b)
j , l),

zr =
1

Beff

B∑
b=1

wb ln

 q∑
l=1

exp

hr(l) +
N∑
i=1
i 6=r

Jri(l, σ
(b)
i )


 ,

(15)

where Beff =
∑B

b=1wb is the effective number of sequences. Appropriate
values for x were in [13] found to be in the range 0.7− 0.9. In this work we
use x = 0.8.

3.2. Gauge invariance and regularization

Although the convention Jij(k, l) = Jji(l, k) removes most of the overpa-
rameterization in (1), there remains in (2) a more subtle redundancy: any
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constant ci can be added to all elements in hi without changing any prob-
abilities, since such a change will be compensated by a change of Z in (2),
or by zr in (9). Also, any function ui(k) can be added to Jij(k, l) and si-
multaneously subtracted from hi(k). Hence, a probability distribution of the
form (2) is not uniquely represented; many distinct parameter sets corre-

spond to the same distribution. Equation (2) has Nq + N(N−1)
2

q2 parame-
ters, but it is easy to show that the number of nonredundant parameters is
N(q − 1) + N(N−1)

2
(q − 1)2. This overparameterization is in the statistical-

physics literature referred to as a gauge invariance, and eliminating it as a
gauge choice [13, 14]. For example, the message-passing equations in [14]
were derived under the Ising gauge,

∑q
s=1 Jij(k, s) = 0,∑q
s=1 Jij(s, l) = 0,∑q
s=1 hi(s) = 0.

(16)

Including a regularization term typically removes this gauge freedom. In [6],
for example, l2 regularization was used, where instead of minimizing lpseudo
one minimizes [lpseudo +Rl2 ] with

Rl2(h,J) = λh

N∑
i=1

‖hi‖22 + λJ
∑

1≤i<j≤N

‖Jij‖22,

‖hi‖22 =

q∑
k=1

hi(k)2,

‖Jij‖22 =

q∑
k,l=1

Jij(k, l)
2.

(17)

λh and λJ are regularization strengths to be specified by the user. Suitable
values were in [6] found to be λh = λJ = 0.01, and it was observed that this
type of regularization implies the gauge

λJ
∑q

s=1 Jij(k, s) = λhhi(k),
λJ
∑q

s=1 Jij(s, l) = λhhj(l),∑q
s=1 hi(s) = 0.

(18)

For the asymmetric plmDCA, we shall demonstrate how regularization elimi-
nates the need to fix a gauge. We will also use an l2 penalty, added separately
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to each of the N objective functions; instead of minimizing gr, we minimize

g(reg)r (hr,Jr) = gr(hr,Jr) + λh‖hr‖22 + λ′J

N∑
i=1
i6=r

‖Jri‖22. (19)

We denote the coupling-regularization parameter λ′J instead of λJ to highlight
the fact that it is not equivalent to λJ in (17). Indeed, the correct relationship
is λ′J ∼ 0.5λJ , since in the asymmetric plmDCA each Jij is regularized twice,

once in g
(reg)
i and once in g

(reg)
j (note that adding all g

(reg)
r gives lpseudo +

2Rl2 and not lpseudo + Rl2). Thus, following [6], proper input values4 to the
asymmetric plmDCA are λh = 0.01 and λ′J = 0.005. We now proceed to
show that this regularization choice enforces a particular gauge. We first
write g

(reg)
r out explicitly:

g(reg)r (hr,Jr)

= − 1

Beff

B∑
b=1

wb log
[
P (σr = σ(b)

r |σ\r = σ
(b)
\r )
]

+ λh‖hr‖22 + λ′J

N∑
i=1
i 6=r

‖Jri‖22

= − 1

Beff

B∑
b=1

wb

hr(σ(b)
r ) +

N∑
i=1
i 6=r

Jri(σ
(b)
r , σ

(b)
i )

− log

 q∑
l=1

exp

hr(l) +
N∑
i=1
i 6=r

Jri(l, σ
(b)
i )





+ λh‖hr‖22 + λ′J

N∑
i=1
i 6=r

‖Jri‖22.

(20)

4To promote backward compatibility of the asymmetric plmDCA with the symmetric,
the distributable code (as well as the full algorithm description in Section 3.4) still uses
λh and λJ as input, and as a first step takes λ′J = 0.5λJ . This way, recommended input
remains as λh = λJ = 0.01.
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From this, we can compute its partial derivatives:

∂g
(reg)
r

∂hr(s)
= − 1

Beff

B∑
b=1

wb

(
I[σ(b)

r = s]− P (σr = s|σ\r = σ
(b)
\r )
)

+2λhhr(s),

(21)

∂g
(reg)
r

∂Jri(s, k)

= − 1

Beff

B∑
b=1

wbI[σ
(b)
i = k]

(
I[σ(b)

r = s]− P (σr = s|σ\r = σ
(b)
\r )
)

+ 2λ′JJri(s, k).

(22)

g
(reg)
r is smooth, so minimizing it means looking for point at which these

derivatives are all zero. Setting (21) to zero and summing over s gives
2λh

∑q
s=1 hr(s) = 0 (since the sum across b vanishes). Similarly, setting (22)

to zero and summing over s shows that 2λ′J
∑q

s=1 Jri(s, k) = 0, while sum-
ming instead over k gives λ′J

∑q
k=1 Jri(s, k) = λhhr(s). Thus, the estimates

coming from g
(reg)
r are going to satisfy the gauge

λ′J
∑q

s=1 Jri(k, s) = λhhr(k)∑q
s=1 Jri(s, l) = 0∑q
s=1 hr(s) = 0.

(23)

This seemingly creates an issue: our intent is to combine J∗iij and J∗jij via a
simple average, (13), but since the gauge (23) depends on the node r, J∗iij
and J∗jij are going to be delivered to us satisfying different gauges. The way
we address the issue is to first shift both matrices to the same gauge. For a
set {h,J} in an arbitrary gauge, we obtain the corresponding set {ĥ, Ĵ} in
the Ising gauge (16) using the transformation

Ĵij(k, l) = Jij(k, l)− Jij(:, l)− Jij(k, :) + Jij(:, :),

ĥi(k) = hi(k)− hi(:) +
N∑

j=1,j 6=i

{Jij(k, :)− Jij(:, :)} .
(24)

where ”:” denotes average over the indicated variable. We hence first use
(24) separately on J∗iij and J∗jij , and then average element-wise. We remark
that since both this gauge change and the average are linear operations, the
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order in which they are performed does not matter, and hence the issue is
only apparent. Would one, however, want to attempt a more sophisticated
combination of J∗iij and J∗jij , converting them to the same gauge first would
be appropriate.

3.3. Scoring

For each pair (i, j), the inference procedure spawns an entire matrix Ĵ∗ij.
To tally pairwise interactions by strength Sij, some score is needed to reduce

Ĵ∗ij to a scalar. In this work, as in [6], we use the Frobenius Norm (FN)

FNij = ‖Ĵij‖2 =

√√√√ q∑
k,l=1

Ĵij(k, l)2, (25)

corrected by the Average Product Correction (APC) introduced in [41] (though
not for the Frobenius norm), giving our score

SCFN
ij = FNij −

FN:jFNi:

FN::

. (26)

In [6], two of us introduced this Corrected Frobenius Norm (CFN) and found
it to perform significantly better than both the FN and the Direct Informa-
tion score used in [13]. Why the particular form in (26) works so well for
DCA is currently unknown.

Note that the parameters to be plugged into (25) are in the Ising gauge;
this should be seen as part of the definition of the CFN score. Changing
gauges allows shifting parts of the Hamiltonian from the couplings over to
the fields (parts of Jij can be put into hi and hj) or vice versa. Since we
use a large

∑q
k,l=1 Jij(k, l)

2 to indicate spatial proximity between positions i
and j, we do not want these Jij(k, l) to contain anything which could have
been explained by the fields instead; the ”field part” would have little to do
with the pair-interaction we are trying to score. In other words, we want
to shift as much as possible of the Hamiltonian into the fields. The Ising
gauge takes this reasoning into account, as among all gauge choices it makes∑q

k,l=1 Jij(k, l)
2 as small as possible.
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3.4. A rundown of the asymmetric plmDCA

For clarity, we now recap each step of the asymmetric plmDCA proce-
dure. An implementation in C/MATLAB is available5. The input is an MSA
{σ(b)}Bb=1 , a reweighting threshold x (0 ≤ x ≤ 1) and regularization param-
eters λh and λJ . Typical values are x = 0.8 and λh = λJ = 0.01. The steps
are:

1. Set λ′J = 0.5λJ .

2. Calculate weights {wb}Bb=1 according to

wb =
1

|{a, 1 ≤ a ≤ B : similarity(σ(a),σ(b)) ≥ x}|
, (27)

where similarity(σ(a),σ(b)) is the fraction of positions where σ(a) and

σ(b) have the same amino acid. Set Beff =
B∑
b=1

wb.

3. Minimize separately for all positions r = 1, . . . , N the function

g(reg)r (hr,Jr) = − 1

Beff

B∑
b=1

wb

hr(σ(b)
r ) +

N∑
i=1
i 6=r

Jri(σ
(b)
r , σ

(b)
i )

− log

 q∑
l=1

exp

hr(l) +
N∑
i=1
i 6=r

Jri(l, σ
(b)
i )





+ λh‖hr‖22 + λ′J

N∑
i=1
i 6=r

‖Jri‖22,

(28)

with gradient

∂g
(reg)
r

∂hr(s)
= − 1

Beff

B∑
b=1

wb

(
I[σ(b)

r = s]− P (σr = s|σ\r = σ
(b)
\r )
)

+2λhhr(s),

(29)

5http://plmdca.csc.kth.se/
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∂g
(reg)
r

∂Jri(s, k)

= − 1

Beff

B∑
b=1

wbI[σ
(b)
i = k]

(
I[σ(b)

r = s]− P (σr = s|σ\r = σ
(b)
\r )
)

+ 2λ′JJri(s, k).
(30)

This generates two estimates for each coupling matrix Jij: J∗iij from

g
(reg)
i and J∗jij from g

(reg)
j .

4. Shift the N(N − 1) obtained coupling matrices into the Ising gauge
using the formula

Ĵij(k, l) = Jij(k, l)− Jij(:, l)− Jij(k, :) + Jij(:, :), (31)

where ”:” means average over the respective indices (amino acids). Note
that we do not need to compute the corresponding Ising-gauge fields
ĥ∗, since only the couplings are used in what follows.

5. Get the final coupling matrix estimates, unique to each pair (i, j), by
taking the averages

Ĵ∗ij =
1

2

(
Ĵ∗iij + Ĵ∗jij

)
. (32)

6. Calculate pairwise interaction scores SCFN
ij through the two steps

FNij =

√√√√ q∑
k,l=1

Ĵ∗ij(k, l)
2, (33)

and

SCFN
ij = FNij −

FN:jFNi:

FN::

, (34)

where ”:” means average over the respective indices (positions along
the chain).

4. Data

As discussed earlier, plmDCA requires an MSA, i.e. a table of aligned
evolutionary related amino-acid sequences, as an input for the inference. In
these tables, each row is a string containing one amino-acid chain coded by
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the one-letter abbreviations of amino acids. An example of an MSA is shown
in Fig. 1. The MSAs used in this work are downloaded from PFAM, a free-
to-use online database of amino-acid sequences divided into almost 15,000 so
called domain families based on their evolutionary relationship. Families
consist of a varying number of amino-acid sequences, their sizes ranging
from a couple of dozens to tens of thousands. For each family PFAM offers
an MSA, making the database an easy-to-use benchmark tool for providing
input to test the performance of a DCA algorithm. For each PFAM-family,
the website also offers pointers to experimentally measured structures in
the PDB-database (see below) which in turn can be used to verify contact
predictions.

The profile Hidden Markov-Model used to generate the alignments in
PFAM is designed in such a way that it only aligns the matching states of
sequences, and when they are not alignable, it denotes the position in the
corresponding sequence with a gap (”-”) [8]. Insert mutations, on the other
hand, are not aligned, and if an amino acid is recognized as an insert, the
column is simply listed into the alignment as a lowercase letter, but does not
affect the rest of the alignment in any way. Thus, an insert in one sequence
introduces an additional gap to all other sequences, which would induce bias
into the data if inserts would be kept while performing DCA. For this reason,
inserts are removed from the PFAM-alignments before DCA, as was done also
in [6, 13, 14, 23, 24].

Experimentally determined protein structures are collected into another
online database, Protein Data Bank (PDB), accessible via its member or-
ganization’s (PDBe, PDBj and RCSB) websites [42]. It is a freely avail-
able, weekly updated database currently containing almost 100,000 three-
dimensional protein structures. The traditional, and by far most utilized
technique for protein structure determination is X-ray crystallography, but
also NMR-spectroscopy has been widely applied [43]. For consistency, we use
only X-ray structures to benchmark plmDCA.

Testing the accuracy of a DCA method is done by comparing contacts
predicted from the MSA with contacts found from a corresponding X-ray
structure from PDB. Distances between residues in the X-ray structure is
measured from the α-carbons of the amino acids. A single PDB-structure is
always just one realization from a given domain family, meaning it is usually
not of the same length as the MSA obtained from PFAM. Position indexing
between PFAM and PDB has to be matched via a third database, UNIPROT
[44]. UNIPROT is a protein-sequence database whose entries are matched
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position by position to the entries in PDB, courtesy of the so called SIFTS-
project [45]. This mapping allows linking PFAM-families to corresponding
X-ray structures in PDB. To relate the indexing of PFAM-alignments and
PDB-structures, we used the Backmapper software [46].

The PDB distance-files essentially list measured distances between each
pair of amino acids, so how should one define a contact in the X-ray struc-
tures? Histograms of pairwise distances between amino acids in 17 PFAM-
families studied in [6] give reason to argue that amino acids closer than 8.5Å
in space, and further than four positions apart along the amino-acid backbone
of the protein, should constitute most of the interacting residues. Excluding
amino-acid pairs with |j − i| ≤ 4 essentially means disregarding the strong
interactions among the neighboring residues and local secondary structure.
In contrast to these, pairs of amino acids that are close in space but distant
in the sequence order carry information on the global spatial conformation
of the chain. In this work, the same restriction is applied.

Our set of protein structures for which contacts were predicted consists
of 148 PDB-entries. The initial idea was to run the asymmetric plmDCA for
all the 150 first PFAM families (PF00001-PF00150), but, due to for example
the requirement of existence of at least one X-ray crystallography structure
with resolution better than 3Å, not all of the 150 first PFAM families were
tested. The final set of family/structure-pairs also includes some PFAM-
families outside of the 150 first entries, as some of the experimental structures
include sequences from multiple domain families. The final list of PFAM-
families and PDB-structures used can be found from Tables S1 and S2 along
with a list of rejected families (Table S3) and the reason for rejection.

5. Results

It is not immediately clear that the symmetric and asymmetric implemen-
tations of plmDCA should yield the same results. One might imagine that
if Equations (9) have their minimas in very different parts of the parameter
space for different positions, this could prevent our asymmetric plmDCA from
reaching, or even coming close to, the minimum of Equation (11). To assess
the performance of the asymmetric plmDCA, we applied it to the 27 families
used for the symmetric plmDCA in [6]. The predictions of the two meth-
ods are compared in Fig. 2, using as an accuracy measure the True-Positive
Rate (TPR). The x-axis indicates what number of strongest contacts (with
|j− i| > 4) are considered, and the y-axis shows which fraction of these were
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identified as true contacts in the corresponding crystal structure. A TPR
of 1.0 means all of the predicted contacts were identified as contacts also in
the crystal structure. Fig. 2 clearly shows that the difference in accuracy
between the two algorithms is negligible.

Fig. 3 shows the running durations for the domain families used in [6],
using one CPU for the symmetric plmDCA and a varying number of CPUs
for the asymmetric plmDCA. These times were attained on a computing
cluster with the following hardware specifications:

- 107 nodes of type HP ProLiant BL465c G6, each equipped with 2x Six-
Core AMD Opteron 2435 2.6GHz processors. 80 of the nodes have 32GB
memory, while the remaining 27 have 64GB memory.

- 118 nodes of type HP SL390s G7, each equipped with 2x Intel Xeon
X5650 2.67GHz (Westmere six-core each). Every SL390s G7 node has 48GB
of memory.

The minimizations, which are by far the most time-consuming part of
plmDCA, were performed using a Limited-memory BFGS quasi-Newton de-
scent scheme. The obvious overall take-away from Fig. 3 is that that the
asymmetric implementation can be performed much faster than the sym-
metric. Using the latter, some families need several hours, whereas they
terminate within minutes using the new program, even employing as few as
6 CPUs. In fact, on just one CPU (on the same machine), the asymmet-
ric variant still converges several times faster than the symmetric (data not
shown). The drop in running time is, however, not linear with the number
of cores, but is somewhat dependent on the architecture of the computing
system used. In Fig. 3, the error bars show standard deviations for ten runs,
and are shown only for the case of 12 cores to avoid cluttering the figure. The
small deviation from the mean shows that running times for different runs
with the same input data and parameter values do not significantly vary.

Due to the relatively long running times of the symmetric plmDCA al-
gorithm, only a limited number of smaller families (both with respect to B
and N) were used to asses its performance in [6]. With the faster asymmet-
ric plmDCA, there are no such restrictions for sizes. Thus, the selection of
families used in this study is more representative (see Tables S1 and S2).
Fig. 4 shows a comparison of the TPRs between the 27 families used in [6]
and the 148 family-structure-pairs used in this study. This, along with the
figures of individual families (Fig. S1-S6), shows that the average accuracy
of plmDCA drops slightly when family sizes (both N and B) have more vari-
ation. We point out, however, that the ”proper” regularization strengths
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λh = λJ = 0.01 reported in [6], which are also used here, are based on exper-
iments where N was only in the range 50-100 or so. Thus, a small decrease
in accuracy could signify that on a diverse data set where N spans several
hundred, new optimal values need to be located (possibly as functions of N
and/or B). Moreover, it is evident that the differences in precision between
families can be remarkable. For a large number of families almost all of the
hundred top-scoring contacts actually exist in the crystal structure, while for
a few the TPR is as low as 0.1-0.3 (e.g. PF00236 and PF09213). Neverthe-
less, plmDCA predicts legitimate contacts with persistence across families,
further reinforcing the rationale behind DCA.

There are 19 families in the data set with two or more crystal structures.
Of these, 16 do not exhibit considerable differences between the prediction
accuracy for different proteins. Three families, namely PF00045, PF00051
and PF00089, however show variability.

In the case of PF00045, there are four structures in the data set all of
which are predicted reasonably accurately. Yet, the top ranking contacts
are more accurately predicted for ”human matrix metallopeptidase 9” (1itv)
than for the other three. Predictions of contacts for these, of which two come
from human proteins, ”gelatinase A” (1ck7) and ”C-terminal hemopexin-like
domain of collagenase 3” (1pex), and the third comes from ”porcine synovial
collagenase” (1fbl), are almost exactly equally accurate.

A clearer difference between prediction accuracy of proteins from within
the same family is seen for PF00051, Kringle domain. Here, the TPR over
the hundred top scoring contacts is almost 0.8 for ”human tissue plasmino-
gen activator” (1pml), while for ”human urokinase plasminogen 67 activator”
(2fd6) it is only around 0.2. It is unlikely that this would be due to faulty dis-
tances in the PDB-file, since the other families found from the same structure
allow for good predictions (PF00021/2fd6 and PF07654/2fd6).

Prediction accuracies of the two structures corresponding to family PF00089
also differ significantly. While the contacts in ”human neutrophil elastase”
(2z7f) are predicted almost 100% correctly for the first hundred top scoring
pairs, the TPR for the other structure from the same family, the ”Glu 18
variant of turkey ovomucoid inhibitor third domain complexed with strepto-
mycesgriseus proteinase B at PH 6.5” (1sge), is below 0.8.

To further asses the impact of the size of the input alignment to the
contact prediction results, we show in Fig. S7, for all the family-structure-
pairs, the TPR for the 100 top-scoring position pairs as a function of length
of the chain N , number of samples B, and the product of these two. B clearly
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correlates positively with accuracy, although there are some outliers between
B = 104 and B = 105. There appears not to be an obvious dependency of
the TPR on the value of N .

6. Discussion

In this work, we have shown that an asymmetric implementation of a
pseudolikelihood maximization approach to predict spatial amino-acid con-
tacts from many homologous protein sequences, plmDCA, works equally well
as a previously developed symmetric variant presented in [6], while drasti-
cally decreasing the running time of the algorithm. This allows plmDCA to
be applied to more diverse sets of proteins than formerly possible, and to be
competitive with e.g. mean-field based methods as to execution speed.

The difference between symmetric and asymmetric plmDCA lies in the
output step when different predictions of an interaction matrix Jij, as seen
from position i or as seen from position j, are harmonized. In the symmetric
version one tries to maximize a combined pseudolikelihood function over all
the parameters at once, conceptually somewhat similar to conventional maxi-
mum likelihood. In the asymmetric version one instead separately makes two
predictions J∗iij and J∗jij , and then combines them, here as J∗ij = 1

2

(
J∗iij + J∗jij

)
.

An important theoretical point, which we discuss at some length, is how reg-
ularization fixes the gauges of J∗iij and J∗jij and that these gauges are generally
different.

From the computational point of view, the symmetric plmDCA of [6]
solves one optimization problem in Nq (1 + (N − 1)q/2) parameters, while
the asymmetric plmDCA solves N independent optimization problems each
in q (1 + (N − 1)q) parameters. We observe that significantly fewer descent
steps are needed in these subproblems than in the high-dimensional single
optimization, possibly accounting for why the asymmetric plmDCA is faster
also when not utilizing parallel computing. Although one could imagine a
parallel implementation also of the symmetric plmDCA — e.g. by carry-
ing out the evaluation of lpseudo =

∑N
r=1 gr and its gradient across several

cores (although this would require significantly more cross-talk between the
threads) — the asymmetric version is inherently parallel and can be trivially
sped up using up to N CPUs virtually without overhead. For most protein
families, the factor N is in the range 50-500. Such a steep increase in execu-
tion rate is well worth the insignificant precision change observed in Fig. 2,
and we therefore propose the asymmetric plmDCA be preferred in the future.
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Other ways to reduce execution time are conceivable, some of which were
attempted during the course of this work. We experimented with various
starting guesses for {h,J} using mean-field estimates (regularized by pseu-
docounts as in [13]), but found these to reside too far from the pseudolikeli-
hood maxima to offer substantial speed-up over cold-starting at the origin.
We also tried constraining the entire minimization to the subspace of a gauge
choice such as (16), but this merely increased the number of descent steps
until termination.

Furthermore, several ways of further boosting the prediction accuracy
were explored. We considered other combinations of J∗iij and J∗jij , such as

J∗ij(k, l) = min(J∗iij (k, l), J∗jij (k, l)) and J∗ij(k, l) = max(J∗iij (k, l), J∗jij (k, l)),
but found these to contain essentially the same information as the arithmetic
average. We also probed several possible score alternatives, such as (i) an

APC-corrected general lp norm ‖Jij‖p =
(∑q

k,l=1 Jij(k, l)
p
)1/p

for varying p,

(ii) the score proposed in [30], i.e.

Dij =

q∑
k,l=1

PD
ij (k, l)ln

PD
ij (k, l)

fi(k)fj(l)
, (35)

where
PD
ij (k, l) ∝ fi(k)fj(l)e

Jij(k,l), (36)

(iii) ignoring contributions from the gap state in (25), or (iv) replacing the
APC with an average sum correction,

Sij = FNij − FN:j − FNi: + FN::, (37)

but on our dataset none of these replacements achieved accuracies as high as
those of SCFN

ij .
To conclude, plmDCA, the high accuracy of which no longer implies long

waiting periods, should provide a natural choice for analysts interested in
applying state-of-the-art PSP to their protein of interest, as well as for re-
searchers looking to further extend the theory and practical applicability of
DCA.
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[3] U. Göbel, C. Sander, R. Schneider, A. Valencia, Correlated mutations
and residue contacts in proteins., Proteins: Struct. Funct. Genet. 18
(1994) 309. doi:10.1002/prot.340180402.

[4] E. Neher, How frequent are correlated changes in families of protein
sequences?, Proc. Natl. Acad. Sci. U. S. A. 91 (1) (1994) 98–102.

[5] D. S. Marks, T. A. Hopf, C. Sander, Protein structure prediction from
sequence variation, Nature Biotechnology 30 (11) (2012) 1072–1080.
doi:doi:10.1038/nbt.2419.
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Figure 1: An example of an MSA downloaded from PFAM. Each row represents a single
amino-acid sequence, with the identifier of the sequence leftmost in the figure. Columns
corresponds to aligned positions along the chains. Amino acids are coded with one-
letter abbreviations (see Appendix A), and gaps are coded with ”-”. The symbol ”.”
in the alignment refers to a column identified as an insert mutation. Color coding refers
to chemical properties of the various amino acids, and is at present not used in DCA.
Only a small piece of the full alignment is shown here. The figure was generated from
http://pfam.sanger.ac.uk/family/pf00014# tabview=tab3 using PFAM viewer.
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Figure 2: Y-axes show TPRs and x-axes indicate the number of predicted contacts (with
|j− i| > 4) using the symmetric (blue) and asymmetric (red) implementations of plmDCA
for all the families used in [6]. All results are obtained using the same set of parameters,
namely λh = λJ = 0.01 and x = 0.8.
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Figure 4: The y-axis is the average TPRs for the 27 families used in [6] (blue) and the
148 family-structure-pairs of Tables S1 and S2 (red), and the x-axis gives the number of
predicted contacts (with |j − i| > 4). Error bars show one standard deviation in the TPR
values for the corresponding number of predicted contacts.
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Name One letter code Abbreviation
Alanine A Ala
Cysteine C Cys
Aspartic acid D Asp
Glutamic acid E Glu
Phenylalanine F Phe
Glycine G Gly
Histidine H His
Isoleucine I Ile
Lysine K Lys
Leucine L Leu
Methionine M Met
Asparagine N Asn
Pyrrolysine O Pyl
Proline P Pro
Glutamine Q Gln
Arginine R Arg
Serine S Ser
Threonine T Thr
Selenocysteine U Sec
Valine V Val
Tryptophan W Trp
Tyrosine Y Tyr

Table A.1: Names, one-letter codes and abbreviations for the 22 proteinogenic amino acids
[47].
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