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Abstract

This paper is devoted to the derivation of absorbing boundary conditions for the Klein-
Gordon and Dirac equations modeling quantum and relativistic particles subject to classical
electromagnetic fields. Microlocal analysis is the main ingredient in the derivation of these
boundary conditions, which are obtained in the form of pseudodifferential equations. Nu-
merical schemes are derived and analyzed to illustrate the accuracy of the derived boundary
conditions.
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1. Introduction

1.1. Introductory remarks

This paper deals with the derivation of transparent and absorbing boundary conditions
(TBC, ABC) for the time dependent Dirac (TDDE) and time dependent Klein-Gordon equa-
tions (TDKGE) modeling the interaction of classical electromagnetic fields with quantum
particles. Both equations are relativistic version of the Schrödinger equation for spin-0 par-
ticles (TDKGE) and spin±1/2 particles (TDDE). TDDE is an order 1 linear system of
4 equations, while the TDKGE is an order 2 linear equations. When dealing with the dis-
cretization of complex wave-like equations, such as the linear or nonlinear wave, Schrödinger,
Maxwell, Klein-Gordon, Dirac equations, a crucial question is the reduction of the size of the
computational domain. Reducing the computational domain allows to simultaneously reduce
data storage and computational complexity. However, when local or nonlocal internal waves
reach the boundary of the domain where too simple boundary conditions (e.g. Neumann,
Dirichlet) are imposed, they may be reflected so that spurious waves are generated in the
domain and interact with physical waves. Avoiding this issue is an old problem that many
papers have addressed, such as famous Engquist and Majda’s paper [10], but also [16] and
more recently [2, 4]. In this paper, we apply two techniques to rigorously derive TBC&ABC
for these 2 equations. The proposed approaches are derived using microlocal analysis and
pseudodifferential operators in the spirit of [17, 18, 26, 28] and more specifically [22]. Some
original techniques that we will use were proposed by [3, 4, 5] in the framework of Maxwell’s
equations and linear and nonlinear Schrödinger equations. The general approach presented
by Barucq et al. is now become standard and is applied to several kinds of equations, such
as evolution equations with cubic nonlinearity [30]. This paper is an instance of these ap-
proaches in the framework of relativistic quantum mechanics for laser-particle TDDE and
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TDKGE.
The complexity of the solution to laser-molecule TDDE in realistic situations is well-known.
For instance, when a intense femtosecond laser pulse (∼ 1015s) of frequency ω0 interacts with
a molecule, it involves multiscale phenomena, in time and space (zitterbewegung ∼ 10−21s,
[29]), in frequency (high order harmonics generation, often beyond 100ω0), etc. As a conse-
quence a fine discretization necessitates high order methods, adaptive mesh refinement, etc
[11, 12, 23]. The price to pay is naturally a huge computational complexity of the involved
methods.

In this paper, we derive ABC for TDDE and TDKGE on a circle, although the technique
can be extended to more general smooth surfaces.

1.2. Microlocal approach

General Principle. The goal of this paragraph is to recall some important notions and
ideas about the derivation of TBC/ABC using microlocal analysis in order to make the paper
accessible to non-specialists. For details, we refer to [17, 18, 26] for the theory and to [4, 5]
for applications to the linear and nonlinear Schrödinger equation and Maxwell’s equations
[2]. The framework that we consider here is as follows. Let a 2-d partial differential equation
(or system) in R2 × [0, T ]

P (x, y, t, ∂t, ∂x, ∂y)u(x, y, t) = 0, u(x, y, 0) = u0(x, y), (1)

where P = P (x, y, t, ∂t, ∂x, ∂y) belongs to the set of order m pseudo-differential operators,
denoted by OPSm. Time T > 0 is chosen such that system (1) is well-posed. Operator P
has a symbol which is denoted by p ∈ Sm (which is equal to det(P) where P = σ(P ) if (1)
is a system).

We now recall some basic definitions and facts about wavefronts, bicharacteristic strips,
and operator factorizations. Details can be found in the classical references [17], [18], [1],
[28]. For u ∈ D′(R2×R+) the wavefront WF (u), is defined as the set of singularities in real
x = (x, y, t) and co-variable spaces ζ = (ξ, η, τ) that is

WF (u) =
{
(x, ζ) ∈ R6 − {0} : ζ ∈ Σx(u)

}
,

where Σx(u) is the set of singular frequencies defined as

Σx(u) =
{
ζ : |û(ζ)| 6 Ck0(1 + |ζ|)−k0, ∀k0

}c

.

Bicharacteristic strip is a key notion to derive TBC/ABC. For P belonging to OPSm, its
leading symbol pm(x, ζ), has a degree of homogeneity equal to m and the bicharacteristic
strips are integral curves of the following Hamilton-Jacobi equations

∂sx = ∇ζpm, ∂sζ = −∇xpm.
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First, it is easy to see that the solution to (1) propagates along bicharacteristic strips, whose
union is equal to the wavefront of the solution. In addition if (x0, ζ0) = (x0, y0, t0, ξ0, η0, τ0)
belongs toWF (u) so does (x, ζ) =

(
x(s), y(s), t(s), ξ(s), η(s), τ(s)

)
(for s > 0). If pm(x0, ζ0) =

0, such strips are called the null-bicharacteristic strips. The wavefront of the solution is the
union of all the bicharacteristic curves emanating from points where the principal symbol is
zero. For the derivation of ABC, a fundamental question will be the identification of points
(x0, ζ0) of the cotangent bundle of the domain boundary, which belong to the wavefront
(see below). From there, outgoing/incoming bicharacteristic strips will be identified, and
P will be factorized into pseudo-differential operators, according to outgoing or incoming
strips. We also recall that WF (u) is included in the hyperbolic region of P , that is the
region where det(pm) has real roots. These roots belong to WF (u) and, as recalled above,
the corresponding null-bicharacteristic strips will remain in WF (u). A general algorithm to
derive TBC/ABC consists of

• Determining the symbol of Operator P .

• Determining the roots of the leading symbol det(pm).

• Constructing the bicharacteristic strips and selecting outgoing ones.

• Factorizing P as product of operators to specify the outgoing wave field.

The factorization of P is in principle possible thanks to theorems (which is recalled in a
general framework) such as [1].

Theorem 1.1. Let us consider P ∈ OPSm a differential operator of the form
∑

k+l6m ak,lD
k
xD

l
t.

Then, there exists a factorization of the form

P =
(
Dx − λ1(x, t)Dt

)
· · ·
(
Dx − λm(x, t)Dt

)
+ order (m− 1) terms,

where λjξ denotes the distinct real roots (in the hyperbolic region) in τ of the principal symbol
pm =

∑
k+l6m ak,lξ

kτ l. Here, we have set: Dx,t := −i∂x,t.

Geometrical Transformation. We now specify a little more the mixed problem that we
will consider. We first introduce a bounded domain Ω ⊆ R2, which will be assumed to be
convex, with smooth fictitious boundary Γ, and such that it strictly contains supp(u0). We
denote ΩT := Ω × [0, T ]. We search for B such that the solution ũ to the following mixed
problem





P (x, y, t, ∂t, ∂x, ∂y)ũ(x, y, t) = 0, on ΩT ,
Bũ = 0, on Γ× [0, T ],
ũ(x, y, 0) = u0(x, y), on Ω,

(2)

in the appropriate Hilbert space H , is such that ‖u|Ω− ũ‖H is as small as possible. Roughly
speaking, when the error is zero, the BC are said to be transparent (TBC), and absorbing if
not (ABC). For TDDE and TDKGE, we will search for B in the form

Bu =
( ∂

∂n
+ Λ+

)
u = 0 on Γ .
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For any (x0, y0) ∈ Γ and n((x0, y0)) normal vector to Γ at (x0, y0), we study the outgoing
and incoming (reflected) bicharacteristic strips. Although the approach which is used here
is applicable to any domain with smooth boundary, it is natural (if possible) to choose a
fictitious domain Ω with simple geometry. In this paper we will consider circular domains
Ω of radius R and center (0, 0). In that case the curvature is constant which simplifies
a lot the algebraic, analytical and numerical computations. We then introduce locally on
the boundary a system of polar coordinates which are denoted by (r, θ) with co-variables
(ρ, ω), and (er, eθ) are the normal and angular directions at the boundary Γ. In particular,
any point (r = 0, θ) belongs to the boundary. We also consider the annular region Γr =
{(r, θ), r ∈ [0, ε)}. We now introduce the cotangent bundle to ΣT = Γ × [0, T ], denoted by
T ∗(ΣT ). Its hyperbolic region, in which the solution will propagate, is defined by

H(ΣT ) =
{
(θ0, t0, ω0, τ0) ∈ T ∗(ΣT ) : det

(
pm(0, θ0, t0, ρ0, ω0, τ0)

)
= 0 has real roots in ρ0

}
.

Naturally the elliptic region (where the symbol does not vanish) does not contain any rele-
vant information as (“pû = 0”), and the glancing region is reduced to (θ0, t0, ξ0, t0) due to
geometrical assumptions on Ω.

The Hamiltonian equations with initial condition (0, θ0, t0, ρ
±
0 , ω0, τ0) write





r′(s) =
∂pm

∂ρ
, θ′(s) =

∂pm

∂ω
, t′(s) =

∂pm

∂τ
,

ρ′(s) = −∂pm
∂r

, ω′(s) = −∂pm
∂θ

, τ ′(s) = −∂pm
∂t

.

Formally, we recall that these equations can be rewritten in the form Hpmγ(s) = 0, where
γ(s) =

(
r(s), θ(s), t(s), ρ(s), ω(s), τ(s)

)
denotes the bicharacteristic curves andHpm ∈ T

(
T ∗(ΣT )),

which has a basis (∂r, ∂θ, ∂t, ∂ρ, ∂ω, ∂τ ). We then select the outgoing (resp. incoming) bichar-
acteristic strips, which corresponds to r′(s) > 0 (resp. r′(s) < 0), and we associate to these
strips an operator Λ+ (resp. Λ−). Moreover, P can be formally factorized in the form

P =
( ∂

∂n
+ Λ+

)( ∂

∂n
− Λ−

)
+R, R ∈ OPS−∞ . (3)

In addition, from Theorem (1.1), P can be rewritten as follows.

P = Pm + order (m− 1) terms,

with

Pm :=
(
Dr − λ1(r, θ, t)Dt

)
· · ·
(
Dr − λm(r, θ, t)Dt

)
,

where λjρ denotes real distinct roots, such that, the positive ones, would correspond to the
outgoing waves. TBC is then of the form of a Dirichlet-to-Neumann (DtN) operator

(
∂n + Λ+

)
u = 0 on Γ,
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where Λ+ is associated to the part of Pm involving the positive roots only. An instance of
this approach will be detailed in the following section. In this goal, asymptotic analysis will
be used to analytically determine Λ+. We need to recall the following (general) definition,
see [1]

Definition 1.1. Consider P (x, D) a scalar order m operator, with symbol p(x, ξ) ∈ C∞.
There exists a sequence {pm−j(x, ξ)}j∈N such that for ξ 6= 0, and any β ∈ N3

Dβ
x

(
p−

n∑

j=0

pm−j

)
= O

(
|ξ|m−n−1

)
, ∀n ∈ N, and when |ξ| → +∞ .

In that case, we note p(x, ξ) ∼
∞∑

j=0

pm−j(x, ξ) and P (x, ∂x) ∼
∞∑

j=0

Pm−j(x, ∂x), where Pj =

Op(pj).

Another useful definition is as follows.

Definition 1.2. A symbol p ∈ Sm is said to be classical if p ∼
∞∑

j=0

pm−j, where the pm−j are

homogeneous functions of degree m− j, that is for |ξ| > 1 and λ > 1,

pm−j(x, λξ) = λm−jpm−j(x, ξ) .

For TBC/ABC, we can generally prove that Λ+ ∈ OPSm and that its total symbol λ+

satisfies the following expansion [1]

λ+ ∼
∞∑

j=0

λ+m−j, (4)

where λ+m−j ∈ Sm−j for j ∈ N andΛ+
m−j := Op(pm−j) ∈ OPSm−j. Then, Λ+ will be

approximated by Op(
∑∞

j=0 λ
+
m−j). The sequence will be determined by the identification of

the symbols of the same order in the left- and right-hand sides of (3) assuming λ+ is classical
(4).

1.3. Organization of the paper

The rest of the paper is organized as follows. In Section 2, we derive ABCs for 1-d and
2-d TDKGE using the technique based on bicharacteristic strips described above. Section 3
is devoted to the construction of ABCs for TDDE using a diagonalization technique derived
from several works, mainly [3, 4, 5]. In Section 4, we propose other possible approaches
to construct ABCs for TDDE and TDKGE as well as some connections between ABCs for
TDKGE and TDDE. Section 5 is dedicated to numerical illustrations. Finally, we conclude
in Section 6.
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2. Absorbing Boundary Conditions for the Klein-Gordon Equation

2.1. One-dimensional Case

2.1.1. Empirical absorbing conditions

This short section is devoted to the derivation of simple empirical ABCs. We want here
to emphasis the fact that simple options could be provided to limit spurious wave reflections.
However, the weakness of this approach is double. First we do not provide any mathematical
information on the reflected wave (accuracy, etc) and then the parameters are empirically
chosen, not according to a rigorous procedure. The general principle, which is applicable
to any kind of wave equation (Schrödinger, wave equation, Maxwell, Klein-Gordon, etc)
consists of absorbing the waves that reach the boundary of the computational domain in
a buffer zone using a well designed function. We consider the 1-d Klein-Gordon (KG) and
Dirac (D) boundary value problems





PKG,Dψ(x, t) = 0, x ∈ [−a, a],
BKG,Dψ(x, t) = 0, x ∈ {−a, a},
ψ(x, 0) = ψ0(x) ∈ C(or C2) ,

with
{
PKG = c2∂2x − ∂2t − ieV ∂t − ic2qeAx∂x − ie∂tV − ic2e∂xAx + e2V 2 − c2e2A2

x −m2c4,
PD = i∂t − αx

(
− ic∂x − eAx(x, t)

)
− βmc2 + eI2Vc(x),

where

αx =

(
0 1
1 0

)
, β =

(
1 0
0 −1

)
, I2 =

(
1 0
0 1

)
.

In the equation, e denotes the particle charge,m its mass and c the speed of light. The electric
potential (V,Ax) depends on (x, t). Coulomb potential Vc depends on space only. The goal is
to provide a boundary operator BKG,D, limiting spurious reflections at the fictitious domain
boundary {−a, a}. Here is the principle of the proposed approach

• Let us denote by ε and γ two positive real numbers, where ε ≪ a.

• We solve




PKG,Dψ(x, t) = 0, x ∈ [−a, a],
BKG,Dψ(x, t) = 0, x ∈ {−a, a},
ψ(x, 0) = ψ0(x), x ∈ [−a, a] .

(5)

• We multiply solution ψ by a function defined for instance, as follows

f(x, t) =





1− e−γ( x−a
x−a+ε

)2 , x ∈ (a− ε, a],

1− e−γ( x+a
x+a−ε

)2 , x ∈ [−a,−a + ε),
0, elsewhere .

(6)

7



Naturally ε and γ are two constants empirically chosen that may depend on Ax, V , Vc.
However numerical examples show that it can be an easy-to-implement alternative to more
rigorous (but also more computationally costly) boundary conditions. Note that this ap-
proach is easily extendable to higher dimension, although in that case the empirical choice
of parameters is even more problematic (as ε, γ may also depend on the geometry of the
fictitious boundary).

2.1.2. Absorbing boundary conditions for Klein-Gordon’s equation in 1-d with a constant
laser

Let us first consider that we are solving the KG equation for a constant laser, which
means that V and Ax are both x and t independent. In this case, the KG equation is given
by

PKGϕ = (c2∂2x − ∂2t − ieV ∂t − ic2eAx∂x + e2V 2 − c2e2A2
x −m2c4)ϕ(t, x) = 0.

Let us denote by τ the time Fourier covariable. In this case, Fourier transforming the above
equation leads to

(
c2∂2x − ic2eAx∂x + (τ 2 + eτV +

(
e2V 2 − c2e2A2

x −m2c4)
))
ϕ̂(τ, x) = 0.

Computing the roots of this equation yields

λ±1 (τ, x) =
ieAx

2
± 1

c

√
−τ 2 − eV τ − e2V 2 +

3

4
c2e2A2

x +m2c4, (7)

and the solution writes as the superposition of two plane waves

ϕ̂(τ, x) = A+eλ
+

1
(τ,x)x + A−eλ

−

1
(τ,x)x. (8)

The left traveling solution is associated with λ−1 (easy to see for the laser free equation).
Therefore, to get the outgoing solution, one must have A− = 0. Deriving according to ∂x
provides the following relation

(∂x − λ+1 )ϕ̂(τ, x) = 0, (9)

which shows that the equation selects the outgoing solution to the domain boundary. Going
back to the physical domain by inverse Fourier transform, one gets the TBC

(c∂x −
√
∂2t + ieV ∂t − e2V 2 +

3

4
c2e2A2

x +m2c4 − iceAx

2
)ϕ(t, x) = 0, on ΣT . (10)

The above DtN operator is nonlocal in time. In the laser free case, one has

(c∂x − ∂t)ϕ(t, x) = 0, (11)

which is just the local TBC for the wave equation part going to the left.
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2.1.3. Absorbing boundary conditions for Klein-Gordon’s equation in 1-d with a variable laser

The approach which is used to derive ABCs for the Klein-Gordon equation was originally
presented in [2], [3], [4] for linear and nonlinear Schrödinger equations. We focus here on the
computational details. We recall that the laser-particle Klein-Gordon equation PKGϕ = 0,
writes

[
(i∂t − eV (x, t))2 − c2

(
i∂x + eAx(x, t)

)2 −m2c4
]
ϕ = 0, in [−a, a],

which we expand into

PKGϕ =
[
c2∂2x − ∂2t − ieV ∂t − ic2eAx∂x +OD

]
ϕ = 0, in [−a, a],

where OD is the zeroth-order operator given by

OD := −ie∂tV − ic2e∂xAx + e2V 2 − c2e2A2
x −m2c4 . (12)

We search for an ABC at x = ±a under the form of approximate DtN operators. The
principle of the technique developed in [4] consists of factorizing PKG in two operators as
follows

PKG(t, x, ∂t, ∂x) =
(
c∂x − Λ−(t, x, ∂t, ∂x)

)(
c∂x + Λ+(t, x, ∂t, ∂x)

)
+R(t, x, ∂t, ∂x),

where R(t, x, ∂t, ∂x) is a smoothing operator (in OPS−∞) and Λ±(t, x, ∂t, ∂x) are two pseu-
dodifferential operators to be determined such that Λ+(t, x, ∂t, ∂x) (resp. Λ

−(t, x, ∂t, ∂x)) has
only outgoing (resp. only incoming) bicharacteristic strips at the domain boundary. First,
we notice that (omitting (t, x, ∂t, ∂x) for the sake of conciseness)

(
c∂x − Λ−

)(
c∂x + Λ+

)
= c2∂2x + c

(
Λ+ − Λ−

)
∂x + cOp

(
∂xλ

+
)
− Λ−Λ+ .

By identification of the operators of different orders in front of ∂x, we obtain

c
(
Λ+ − Λ−

)
= −ic2eAx

and

cOp(∂xλ
+)− Λ−Λ+ = −∂2t − ieV ∂t +OD.

Denoting λ± = σ(Λ±) we get at the symbol level

{
c(λ+ − λ−) = −ic2eAx,
c∂xλ

+ − λ−#λ+ = τ 2 − eV τ + σ(OD) .
(13)

Now according to [28], any classical symbol of S1 can be asymptotically expanded as λ± ∼∑+∞
j=0 λ

±
1−j , where λ

±
1−j is the symbol of a pseudodifferential operator of homogeneity degree
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1 − j, for j ∈ N. In order to determine the expansion terms it is sufficient to recursively
identify the terms of same homogeneity in system (13). For j = 0, one gets

{
λ+1 − λ−1 = 0
−λ−1 λ+1 = τ 2 .

(14)

For the next homogeneity, we obtain for j = 1
{
c(λ+0 − λ−0 ) = −ic2eAx

∂xλ
+
1 − λ−1 λ

+
0 − λ−0 λ

+
1 + i∂ξ,τλ

−
1 ∂x,tλ

+
1 = −eV τ . (15)

For j = 2, we have the following expression




c(λ+−1 − λ−−1) = 0
∂xλ

+
0 − λ−1 λ

+
−1 − λ−0 λ

+
0 − λ−−1λ

+
1

+i∂ξ,τλ
−
1 ∂x,tλ

+
0 + i∂ξ,τλ

−
0 ∂x,tλ

+
1 +

1

2
∂2ξ,τλ

−
1 ∂

2
x,tλ

+
1 = σ(OD)

(16)

and finally for j = 3




c(λ+−2 − λ−−2) = 0
∂xλ

+
−1 − λ−1 λ

+
−2 − λ−0 λ

+
−1 − λ−−1λ

+
0 − λ−−2λ

+
1

+i∂ξ,τλ
−
1 ∂x,tλ

+
−1 + i∂ξ,τλ

−
0 ∂x,tλ

+
0 + i∂ξ,τλ

−
−1∂x,tλ

+
1

+
1

2
∂2ξ,τλ

−
1 ∂

2
x,tλ

+
0 +

1

2
∂2ξ,τλ

−
0 ∂

2
x,tλ

+
1 − i

6
∂3ξ,τλ

−
1 ∂

3
x,tλ

+
1 = 0 .

(17)

By using system (14), we have
{
λ+1 = λ−1 ,
λ+1 = ±(−τ 2)1/2 = ±iτ .

At this point, we have to select the forward characteristic, which corresponds to the one that
satisfies x′(s) > 0 at x = +a (resp. x′(s) < 0 at x = −a), where

x′(s) = ∂ξp2, t′(s) = ∂τp2,
ξ′(s) = −∂xp2, τ ′(s) = −∂tp2,

with principal symbol p2(x, t, ξ, τ) = −c2ξ2+τ 2 and for (±a, t0, ξ0, τ0) such that p2(x0, t0, ξ0, τ0) =
0. We get the following roots ξ = ±τ/c in the hyperbolic region of the operator (correspond-
ing to propagating waves). Now as x′(s) = −2c2ξ, we conclude that the forward characteristic
is then the one associated to −τ/c at x = +a (and +τ/c for x = −a), that is λ+1 = iτ .
Fixing the principal symbols λ±1 (as previously) defines uniquely the asymptotic expansion
of λ± and also the classical first-order pseudodifferential operators Λ±. For building an ac-
curate boundary condition, we compute the next three terms of the symbolical asymptotic
expansion. This leads to




λ+0 =
i

2
(eV − ceAx),

λ+−1 =
i

2

[
σ(OD)−

i

2
σ(OGx

) +
i

2
σ(OGt

)− 1

4
σ(OF )

]
τ−1,

λ+−2 = λ+−2 =
1

4

[
∂x − ∂t − ieV

][
σ(OD)−

i

2
σ(OGx

) +
i

2
σ(OGt

)− 1

4
σ(OF )

]
τ−2,

(18)
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where the operators OF , OGx
and OGt

are defined as follows




OGx
:= e∂xV − ce∂xAx,

OGt
:= e∂tV − ce∂tAx,

OF := e2V 2 − c2e2A2
x .

(19)

Let us now provide the following factorization result which is at the basis of constructing
ABCs of arbitrary order for the general situation. We do not give the details of the proof
which can be obtained by adapting the results in [].

Proposition 2.1. There exists two unique first-order pseudodifferential operators Λ+
k and

Λ−
k such that

PKG =
(
c∂x + Λ+

k

)(
c∂x − Λ−

k

)
+R2−k,

where R2−k ∈ OPS2−k and Λ+
k = Op

(
σ+
k

)
, with

∑k−1
j=0 λ

+
1−j. Here, we have fixed λ+1 := iτ

and the λ+1−j are defined in (18) for j = 1, 2, 3.

By truncating the formal expansion
∑∞

j=0 λ
+
1−j up to the k first terms, a k-th order ABC

is obtained through the boundary condition
(
c∂n + Λ+

k

)
ϕ = 0, on ΣT . (20)

We recall that the Riemann-Liouville operator is defined as follows (for ν > 0)

D−νf(t) =
1

Γ(ν)

∫ t

0

(t− s)(ν−1)f(s)ds (21)

and has a symbol which is equal to (iτ)−ν . When Ax = V = 0, which is the laser-free
TDKGE, we easily see that

σ+
3 =

1∑

j=0

λ+1−j = iτ +
m2c4

2iτ

so that

Λ+
2 = ∂t +

m2c4

2
∂−1
t .

More generally, for Ax 6= 0, V 6= 0, we have




Λ+
1 = ∂t,

Λ+
2 = ∂t +

ieV

2
− iceAx

2
,

Λ+
3 = ∂t +

ieV

2
− iceAx

2
− 1

2

(
OD − 1

4
OF − i

2
OGx

+
i

2
OGt

)
∂−1
t

where OD, OF , OG are defined in (12), (19).
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2.2. Two-dimensional TDKE

2.2.1. Laser-free TDKGE in 2-d

We consider a circular domain of radius R, on which we plan to provide an ABC. In
that case, it is natural to consider polar coordinates in all Ω and conditions have to be
imposed at r = R. Another possibility is to keep cartesian coordinates and to search for
local coordinates on the circle. In fine, the treatment at the boundary will be the same.
However the second approach is more general as it is applicable, in principle, to any smooth
boundary, whatever the system of coordinates used inside the domain. For r ∈ [0, ε) with
ε > 0 small enough and denoting by χr = (R+ r) the radius of the circular domain Ωr with
boundary Γr := ∂Ωr , the TDKGE in local polar coordinates in Σr = Γr × [0, T ] writes,

P
(r,θ)
KG ϕ =

[
− ∂2t + c2∂2r − c2

1

χr
∂r + c2

1

χ2
r

∂2θ −m2c4
]
ϕ(t, r, θ) = 0, (22)

for (r, θ) ∈ Γr, and t ∈ R+. Variables (r, θ, t) have duals denoted by (ρ, ξ, τ). The principal

symbol of P
(r,θ)
KG is given by

p2(r, θ, t, ρ, ξ, τ) = τ 2 − c2ρ2 − c2

χ2
r

ξ2.

We are first interested in the bicharacteristic strips at the domain boundary (where r = 0).
We have to select a point, in the hyperbolic region of this operator, that will belong to the
wavefront of the solution,

p2(0, θ0, t0, τ0, ρ0, ξ0) = τ 20 − c2ρ20 −
c2

χ2
r

ξ20 = 0.

The solutions are ρ±0 = ±(
τ 20
c2
− ξ20
χ2
r

)1/2. The hyperbolic region of the cotangent bundle T ∗
(
Σr

)

is the region where τ 20 /c
2 − ξ20/χ

2
r > 0 (then pm has real roots). In the elliptic region the

waves are evanescent. The Hamilton-Jacobi equations write




r′(s) = ∂ρpm, ρ′(s) = −∂rpm,
θ′(s) = ∂ξpm, ξ′(s) = −∂θpm,
t′(s) = ∂τpm, τ ′(s) = −∂tpm .

The outgoing characteristics are defined by the condition r′(s) > 0. Since r′(s) = ∂ρpm =
−2ρ, we prove that the outgoing characteristic corresponds to

ρ− = −(
τ 2

c2
− ξ2

χ2
r

)1/2.

To build the ABC, we now consider a factorization of the operator P
(r,θ)
KG as

P
(r,θ)
KG (r, θ, t, ∂t, ∂r, ∂θ) = (c∂r − Λ−(r, θ, t, ∂θ, ∂t))(c∂r + Λ+(r, θ, t, ∂θ, ∂t)) +R
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where Λ± ∈ OPS1 has a total symbol λ± and a principal symbol equal to ρ±, respectively,
and R ∈ OPS∞. We now have to explicitly compute Λ±. Since we have

P
(r,θ)
KG ∼

(
c∂r − Λ−

)(
c∂r + Λ+

)
= c2∂2r + c

(
Λ+ − Λ−

)
∂r + cOp(∂rλ

+)− Λ−Λ+ ,

the expression (22) of P
(r,θ)
KG leads to the following system by identification





c(λ+ − λ−) = − c2

χr

c∂rλ
+ − λ−#λ+ = τ 2 − c2

χ2
r

ξ2 −m2c4 .

As an element of S1, λ± can be expanded as λ± ∼∑∞
j=0 λ

±
1−j . Furthermore, let us recall

We also recall that, denoting λ−#λ+ = σ
(
Λ−Λ+

)
,

σ
(
Λ−Λ+

)
= λ−#λ+ =

(∑∞
j=0 λ

−
1−j

)(∑∞
j=0 λ

+
1−j

)
− i

(∑∞
j=0 ∂ρ,ξ,τλ

−
1−j

)(∑∞
j=0 ∂r,θ,tλ

+
1−j

)

−1

2

(∑∞
j=0 ∂

2
ρ,ξ,τλ

−
1−j

)(∑∞
j=0 ∂

2
r,θ,tλ

+
1−j

)
+
∑

α>3

(−i)α

α!
∂αρ,ξ,τλ

−
1−j∂

α
r,θ,tλ

+
1−j .

In the following, we will use the notation

σα
(
Λ−Λ+

)
=

(−i)α

α!
∂αρ,ξ,τλ

−∂αr,θ,tλ
+

As before, we consider symbols up to those in S−2 that is, we approximate λ± by
∑3

j=0 λ
±
1−j ,

and we identify terms of the same homogeneity order. This leads in λ−#λ+ to

• Order 2: λ−1 λ
+
1 .

• Order 1: λ−1 λ
+
0 + λ−0 λ

+
1 − i∂ρ,ξ,τλ

−
1 ∂r,θ,tλ

+
1 .

• Order 0: λ−−1λ
+
1 +λ

−
0 λ

+
0 +λ

−
1 λ

+
−1−i∂ρ,ξ,τλ

−
1 ∂r,θ,tλ

+
0 −i∂ρ,ξ,τλ

−
0 ∂r,θ,tλ

+
1 − 1

2
∂2ρ,ξ,τλ

−
1 ∂

2
r,θ,tλ

+
1

• Order -1: λ−−2λ
+
1 + λ−−1λ

+
0 + λ−0 λ

+
−1 + λ−1 λ

+
−2 − i∂ρ,ξ,τλ

−
1 ∂r,θ,tλ

+
−1 − i∂ρ,ξ,τλ

−
0 ∂r,θ,tλ

+
0

− i∂ρ,ξ,τλ
−
−1∂r,θ,tλ

+
1 − 1

2
∂2ρ,ξ,τλ

−
1 ∂

2
r,θ,tλ

+
0 − 1

2
∂2ρ,ξ,τλ

−
0 ∂

2
r,θ,tλ

+
1 +

i

6
∂3ρ,ξ,τλ

−
1 ∂

3
r,θ,tλ

+
1 .

In fact, in the laser-free configuration, as λ±1−j only depends on r, τ, ξ, we easily verify that

σα
(
Λ−Λ+

)
= 0 for α 6= 0. We deduce





c(λ+1 − λ−1 ) = 0,

−λ−1 λ+1 = τ 2 − c2

χ2
r

ξ2 ,

we get up to leading order:




λ+1 = λ−1

λ+1 = ±(−τ 2 + c2

χ2
r

ξ2)1/2 .
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As we select the forward bicharacteristics

λ+1 =
(
− τ 2 +

c2

χ2
r

ξ2
)1/2

,

Then




c(λ+0 − λ−0 ) = − c2

χr

c∂rλ
+
1 − λ−1 λ

+
0 − λ−0 λ

+
1 = 0

so that




λ−0 = λ+0 +
c

χr

−λ+1
(
2λ+0 +

c

χr

)
= −c∂rλ+1

and




λ+0 =
c

2λ+1

(
∂rλ

+
1 − c

χr

)

c∂rλ
+
1 = c∂r

(
− τ 2 +

c2

χ2
r

ξ2
)1/2

.

Considering the next order




c(λ+−1 − λ−−1) = 0

c∂rλ
+
0 − λ−1 λ

+
−1 − λ−0 λ

+
0 − λ−−1λ

+
1 = −m2c4





c(λ+−2 − λ−−2) = 0

c∂rλ
+
−1 − λ−1 λ

+
−2 − λ−0 λ

+
−1 − λ−−1λ

+
0 − λ−−2λ

+
1 = 0

and for λ+−1 we get





λ+−1 = λ+−1

λ−−1 =
1

2λ+1

(
m2c4 + c∂rλ

+
0 − λ−0 λ

+
0

)

and finally λ+−2 gives us





λ+−2 = λ+−2

λ−−2 =
1

2λ+1

(
− λ+−1

(
2λ+0 +

c

χr

)
+ c∂rλ

+
−1

)
.
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Thus

∑3
j=0 λ

+
1−j = (−τ 2 + c2

χ2
r

ξ2)1/2 +
c

2λ+1

(
∂rλ

+
1 − c

χr

)
+

1

2λ+1
[m2c4 + c∂rλ

+
0 − λ−0 λ

+
0 ]

=
1

2λ+1

(
− λ+−1

(
2λ+0 +

c

χr

)
+ c∂rλ

+
−1

)
.

(23)

We denote
∑3

j=−1 λ
+
1−j by λ

+
(−2,1) and Λ+

(−2,1) = Op(λ+(−2,1)). Thus

Proposition 2.2. There exist 2 operators Λ+
(−2,1), Λ

−
(−2,1) such that

P r,θ
KG =

(
c∂x + Λ+

(−2,1)

)(
c∂x − Λ−

(−2,1)

)
+R−3

where R−3 ∈ OPS−3. And as a consequence, the TBC
[
c∂r + Λ+

]
ϕ = 0

is approximated by the following ABC:
[
c∂r + Λ+

(−2,1)

]
ϕ = 0 .

In the next chapter we will explicitely define the pseudo-differential operators appearing
in (23).

2.2.2. Laser-particle TDKGE in 2-d

We now consider the full TDKGE including the electromagnetic field: A(x, y, t) and
V (x, y, t) which represent the vectorial and scalar potentials satisfying Maxwell’s equations.
They are assumed given and regular enough. As before, we fix ~ = 1. The equation writes

[(
i∂t − eV (x, y, t)

)2 − c2
(1
i
∇− eA(x, y, t)

)2 −m2c4
]
ϕ = 0 .

Expanding the equation leads to
[
− ∂2t + c2∆− ieV ∂t − ic2eA · ∇ − ie∂tV − ic2e∇ ·A+ e2V 2 − c2e2A2 −m2c4

]
ϕ = 0 .

The domain Ω is again a disk of radius R. We then need to rewrite in Σr, for r ∈ [0, ε) with
ε > 0 small enough, the TDKGE in polar coordinate, that is (details are skipped)

P r,θ
KGLϕ =

[
− ∂2t + c2∂2r −

c2

χr
∂r +

c2

χ2
r

∂2θ − ieV ∂t − ic2eAr∂r − i
c2

χr
eAθ∂θ

−ie∂tV − ic2e∂rAr − i
c2

χr
eAr −

ic2e

χr
∂θAθ − c2e2A2

r − c2e2A2
θ + e2V 2 −m2c4

]
,

where
{
Ax = Ar cos(θ)− Aθ sin(θ),
Ay = Ar sin(θ) + Aθ cos(θ) .
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Some notations are introduced. First the following operators :




OB := −
( c2
χr

+ c2µAr

)
∂r

OF := −c
2µ

χr

Aθ∂θ

OD := −µ∂tV − c2µ∂rAr −
c2µ

χr

Ar −
c2µ

χr

∂θAθ + e2V 2 − c2e2A2 −m2c4

and the functions




µ := ie

qOB
:= − c2

χr

− c2µAr

qOF
:= −c

2µ

χr

Aθ

qOD
:= −µ∂tV − c2µ∂rAr −

c2µ

χr
Ar −

c2µ

χr
∂θAθ + e2V 2 − c2e2A2 −m2c4 .

This allows us to rewrite the equation in a more compact form

(
c2∂2r − ∂2t +

c2

χ2
r

∂2θ − µV ∂t +OB +OF +OD

)
ϕ = 0

As before we plan to factorize this operator P
(r,θ)
KG in the form

(
c∂r − Λ−

)(
c∂r + Λ+

)
. We

recall that
(
c∂r − Λ−

)(
c∂r + Λ+

)
= c2∂2r + c

(
Λ+ − Λ−

)
∂r +Op(∂rλ

+)− Λ−Λ+ .

So that, by identification of terms of same order




(
Λ+ − Λ−

)
∂r =

1

c
OB

cOp(∂rλ
+)− Λ−Λ+ = −∂2t − µV ∂t +

c2

χ2
r

∂2θ +OF +OD

so that in term of symbolic computation




λ+ − λ− =
qOB

c

c∂rλ
+ − λ−#λ+ = τ 2 − iµV τ − c2

χ2
r

ξ2 + iqOF
ξ + qOD

.

It is now possible to identify the sequence (λ±1−j)j.





λ+1 − λ−1 = 0

−λ−1 λ+1 = τ 2 − c2

χ2
r

ξ2 .

16



This leads to




λ+1 = λ−1

λ+1 = ±(−τ 2 + c2

χ2
r

ξ2)1/2 .

We deduce that λ+1 = (−τ 2+ c2

χ2
r

ξ2)1/2, corresponding to the outgoing bicharacteristic strips,

for the same reason as in the laser-free TDKGE. Both equations have indeed the same
principal symbol. In addition. Next, and using the explicit formula of σα

(
Λ−Λ+

)
for α =

0, 1, 2, 3, we successively get




λ+0 − λ−0 =
qOB

c
c∂rλ

+
1 − λ−1 λ

+
0 − λ−0 λ

+
1 = −iµV τ + iqOF

ξ .

Then

λ+0 = − 1

2λ+1

[
− iµV τ + iqOF

ξ − c∂rλ
+
1

]
+
qOB

2c

λ−0 = − 1

2λ+1

[
− iµV τ + iqOF

ξ − c∂rλ
+
1

]
− qOB

2c
.

Next,




λ+−1 − λ−−1 = 0

c∂rλ
+
0 − λ−1 λ

+
−1 − λ−0 λ

+
0 − λ−−1λ

+
1 + i∂ξλ

−
1 ∂θλ

+
0 + i∂τλ

−
1 ∂tλ

+
0 = qOD

.

and




λ+−2 − λ−−2 = 0

c∂rλ
+
−1 − λ−1 λ

+
−2 − λ−0 λ

+
−1 − λ−−1λ

+
0 − λ−−2λ

+
1 + i∂ξλ

−
1 ∂θλ

+
−1+

i∂τλ
−
1 ∂tλ

+
−1 + i∂ξλ

−
0 ∂θλ

+
0 + i∂τλ

−
0 ∂tλ

+
0 +

1

2
∂2ρ,ξ,τλ

−
1 ∂

2
r,θ,tλ

+
0 = 0 .

λ+−1 =
1

2λ+1

[
− qOD

+ c∂rλ
+
0 + i∂ξλ

−
1 ∂θλ

+
0 + i∂τλ

−
1 ∂tλ

+
0 − λ+0 λ

−
0

]
. (24)

Similarly we deduce

λ+−2 =
1

2λ+1

[
− λ+−1[λ

+
0 + λ−0 ] + c∂rλ

+
−1 + i∂ξλ

−
1 ∂θλ

+
−1+

+i∂τλ
−
1 ∂tλ

+
−1 + i∂ξλ

−
0 ∂θλ

+
0 + i∂τλ

−
0 ∂tλ

+
0 +

1

2
∂2ρ,ξ,τλ

−
1 ∂

2
r,θ,tλ

+
0

]
.

(25)

As before we can state
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Proposition 2.3. There exists 2 operators Λ+
(1−k,1), Λ

−
(1−k,1) such that

P r,θ
KGL =

(
c∂x + Λ+

(1−k,1)

)(
c∂x − Λ−

(1−k,1)

)
+R−k

where R−k ∈ OPS−k and

Λ+
(1−k,1) = Op

( k∑

j=0

λ+1−j

)

where (λ+1−j)j, are given by (24).

At this point, we plan to find explicit ABC. We recall
√
1 + x = 1 +

1

2
x− 1

8
x2 +O(|x|3)

(for |x| < 1). As a consequence for τ large (high time-frequency) λ+1 is expanded in:

λ+1 =

√
−τ 2(1− c2ξ2

χ2
rτ

2
)

= iτ

√
1− c2ξ2

χ2
rτ

2

= iτ − ic2ξ2

2χ2
rτ

− ic4ξ4

8χ4
rτ

3
+O(τ−5) .

Remark 2.1. In the following, λ±j will be computed in the regime τ ≫ 1.

Next we approximate λ+0 , which is a function of ∂rλ
+
1 and

1

2λ+1
. First, we easily show that

1

2λ+1
=

1

2iτ − c2

χ2
r

iξ2τ−1

= −i

2
τ−1 − ic2

4χ2
r

ξ2τ−3 +O(τ−5)

and now the differential term:

c∂rλ
+
1 =

ic2ξ2

χ3
r

τ−1 =
ic4ξ4

2χ5
r

τ−3 +O(τ−5) .

As a consequence λ+0 can be approximated by:

λ+0 =
1

2λ+1

(
− iµV τ + iqOF

ξ − c∂rλ
+
1

)
+
qOB

2c

=

(
i

2
τ−1 +

ic2

4χ2
r

ξ2τ−3 +
ic4

8χ4
r

ξ4τ−5

)(
− iµV τ + iqOF

ξ − ic2ξ2

χ3
r

τ−1 − ic4ξ4

2χ5
r

τ−3

)
+
qOB

2c
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and

λ+0 =
µ

2
V +

qOB

2c
− qOF

2
ξτ−1 +

(
c2

2χ3
r

+
µc2

4χ2
r

V

)
ξ2τ−2 +O(τ−3) .

From there, we derive the expression up to a O(τ−3). This choice is motivated by the com-
plexity of the symbolic expression beyond that order, that would lead to complex operators,
hard to approximate and that could deteriorate stability and efficiency of the overall scheme.

Note that λ−0 = λ+0 − qOB

c
. Next we approximate λ+−1:

λ+−1 =
1

2λ+1

(
− qOD

+ c∂rλ
+
0 + i∂ξλ

−
1 ∂θλ

+
0 + i∂τλ

−
1 ∂tλ

+
0 − λ+0 λ

−
0

)
.

In that goal, we expand c∂rλ
+
0 and λ+0 λ

−
0 .

c∂rλ
+
0 =

µc

2
∂rV +

1

2
∂rqOB

− c

2
∂rqOF

ξτ−1 +
c

2χ2
r

(
− 3c2

χ2
r

− µc2

χr

V +
µc2

2
∂rV

)
ξ2τ−2 +O(τ−3)

and by truncating at O(τ−3)

λ+0 λ
−
0 =

µ2

4
V 2 − q2OB

4c2
− µ

2
qOF

V ξτ−1 +

(
µV qOH

+
q2OF

4

)
ξ2τ−2 +O(τ−3) .

Where qOH
:=

c2

2χ3
r

+
µc2

4χ2
r

V . In addition,

i∂ξλ
−
1 ∂θλ

+
0 =

(µ
2
∂θV +

∂θqOB

2c

) c2
χ2
r

ξτ−1 − c2∂θqOF

2χ2
r

ξ2τ−2 +O(τ−3)

and

i∂τλ
−
1 ∂tλ

+
0 = −µ

2
∂tV − ∂tqOB

2c
+
∂tqOF

2
ξτ−1 − c2

2χ2
r

(µ
2
∂tV +

∂tqOB

2c

)
ξ2τ−2 +O(τ−3) .

λ+−1 =
(
− i

2
τ−1 +O(τ−3)

)[
− qOD

− µ

2
∂tV − ∂tqOB

2c
+
µc

2
∂rV +

1

2
∂rqOB

−µ
2

4
V 2 +

q2OB

4c2
− c

2
∂rqOF

ξτ−1 +
(µ
2
∂θV +

∂θqOB

2c

) c2
χ2
r

ξτ−1 +
∂tqOF

2
ξτ−1

+
µ

2
qOF

V ξτ−1 +O(τ−2)

]
.

We now set




qOI
:=

iqOD

2
− iµc

4
∂rV − i

4
∂rqOB

+
iµ2

8
V 2 − iq2OB

8c2
+

iµ

4
∂tV +

i

4c
∂tqOB

qOJ
:=

ic

4
∂rqOF

− iµqOF

4
V − i

4
∂tqOF

−
(µ
2
∂θV +

∂θqOB

2c

)
ic2

2χ2
r

.
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λ+−1 can finally be written truncating the terms higher than τ−3:

λ+−1 = qOI
τ−1 + qOJ

ξτ−2 +O(τ−3) .

Again truncating terms higher than O(τ−3) from

λ+−2 =
1

2λ+1

[
− λ+−1[λ

+
0 + λ−0 ] + c∂rλ

+
−1 + i∂ξλ

−
1 ∂θλ

+
−1+

+i∂τλ
−
1 ∂tλ

+
−1 + i∂ξλ

−
0 ∂θλ

+
0 + i∂τλ

−
0 ∂tλ

+
0 +

1

2
∂2ρ,ξ,τλ

−
1 ∂

2
r,θ,tλ

+
0

]
.

We note that λ+0 + λ−0 = 2λ+0 − qOB

c
. We set

qOG
= 2λ+0 − qOB

c

= µV − qOF
ξτ−1 +

(
c2

χ3
r

+
µc2

2χ2
r

V

)
ξ2τ−2 +O(τ−3) .

Moreover




i∂ξλ
−
1 ∂θλ

+
−1 =

c2

χ2
r

∂θqOI
ξτ−2 +O(τ−3)

i∂τλ
−
1 ∂tλ

+
−1 = −∂tqOI

τ−1 − ∂tqOJ
ξτ−2 +O(τ−3)

i∂ξλ
−
0 ∂θλ

+
0 = −iqOF

2

(µ
2
∂θV +

∂θqOB

2c

)
τ−1

+
(
iqOF

∂θqOF

4
+ 2i

(µ
2
∂θV +

∂θqOB

2c

)( c2
2χ3

r

+
µc2

4χ2
r

V
))
ξτ−2 +O(τ−3)

i∂τλ
−
0 ∂tλ

+
0 =

iqOF

2

(µ
2
∂tV +

∂tqOB

2c

)
ξτ−2 +O(τ−3) .

Finally we observe that ∂2ρ,ξ,τλ
−
1 ∂

2
r,θ,tλ

+
0 /2 = O(τ−3). We now deduce that

λ+−2 =
(
i

2

(
qOI

qOG
− c∂rqOI

+ ∂tqOI

)
− qOF

4

(µ
2
∂θV +

∂θqOB

2c

))
τ−2 .
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It is now possible to write out the whole approximation

∑3
j=0 λ

+
1−j = iτ − ic2

2χ2
r

ξ2τ−1 +
µ

2
V +

qOB

2c
− qOF

2
ξτ−1

+

(
c2

2χ3
r

+
µc2

4χ2
r

V

)
ξ2τ−2 + qOI

τ−1 + qOJ
ξτ−2

+
(
i

2

(
qOI

qOG
− c∂rqOI

+ ∂tqOI

)
− qOF

4

(µ
2
∂θV +

∂θqOB

2c

))
τ−2 +O(τ−3)

= iτ +
µ

2
V +

qOB

2c
+

(
− ic2

2χ2
r

ξ2 − qOF

2
ξ + qOI

)
τ−1

+

(( c2

2χ3
r

+
µc2

4χ2
r

V
)
ξ2 + qOJ

ξ +
i

2

(
qOI

qOG
− c∂rqOI

+ ∂tqOI

)

−qOF

4

(µ
2
∂θV +

∂θqOB

2c

))
τ−2 +O(τ−3) .

Denoting by λ+(−2,1) :=
∑3

j=0 λ
+
1−j, which is an approximation of λ+. Going back to operators,

Λ+
(−2,1) is given by1

Λ+
(−2,1) = ∂t +

µ

2
V +

1

2c
OB +

(
− c2

2χ2
r

∂2θ −
1

2
OF∂θ + iOI

)
∂−1
t −

((
− c2

2χ3
r

+
µc2

4χ2
r

V
)
∂2θ

−iOJ∂θ +
i

2

(
OIOG − c∂rOI + ∂tOI

)
− 1

4
OF

(µ
2
∂θV +

∂θOB

2c

))
∂−2
t .

We have proven the following proposition

Proposition 2.4. For τ sufficiently large, a family of ABC for laser-particle TDKGE is
given by

(
c∂r + Λ+

(1−j)

)
ϕ = 0, j = 1, 2, 3, 4

where for

• j = 0:

Λ+
(1,1) = ∂t

• j = 1:

Λ+
(0,1) = Λ+

(1,1) +
µ

2
V +

1

2c
OB

1O
·
stand for op(qO

·

)
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• j = 2:

Λ+
(−1,1) = Λ+

(0,1) +

(
− c2

2χ2
r

∂2θ −
1

2
OF∂θ + iOI

)
∂−1
t

• j = 3:

Λ+
(−2,1) = Λ+

(−1,1) −
(
−
( c2

2χ3
r

+
µc2

4χ2
r

V
)
∂2θ − iqOJ

∂θ

+
i

2

(
OIOG − c∂rOI + ∂tOI

)
− 1

4
OF

(µ
2
∂θV +

∂θOB

2c

))
∂−2
t .

In practice, the order of the ABC will be chosen in accordance with the order of accuracy of
the scheme which is used to solve the TDKGE inside the domain Ω.

3. Absorbing Boundary Conditions for Dirac Equation in 2-d

In this section, we are interested in the derivation of ABC for the 2-d TDDE. The
strategy which is used is slightly different from the one used for TDKGE, although some
close connections exist and will be discussed later. The idea here is to apply a diagonalization
procedure as usually done for hyperbolic systems. See for instance [15].

3.1. Dirac equation

We denote by PD the 2-dimensional Dirac operator such that PDu = 0 in a bounded
domain Ω, and as before we derive a condition on ∂Ω to avoid spurious wave reflections.

PD := ∂t + αx

(
c∂x − ieAx

)
+ αy

(
c∂y − ieAy

)
+ i(Vc + eV )I4 − iβmc2

where

• Vc : Ω → R is a Coulomb potential.

• V : Ω×R+ → R is a combination of the self-consistent and external electric potentials.

• A : Ω × R+ → R2 is a combination of the electromagnetic potential generated by the
particle charge and by an external potential.

• m is the mass of the particle, e their charge, c the speed of light.

• u : R+ × Ω → C4 is the Dirac wavefunction, that is a spinor field initially normalized
to 1: ‖u(0, ·)‖(

L2(Ω)
)4 = 1.
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• Hermitian Dirac matrices αx, αy, β are defined by




αx =

(
02 σx
σx 02

)
, σx =

(
0 1
1 0

)
,

αy =

(
02 σy
σy 02

)
, σy =

(
0 −i

i 0

)
,

β =

(
I2 02
02 −I2

)

and 02 and I2 are respectively the zero and identity matrices in M2(C). The following
relations hold: α2

x = α2
y = β2 = I4 and {αx, αy} = {αx, β} = {αy, β} = 04.

• J = (Jx, Jy) with Jx = ec
(
u, αxu

)
C4
, Jy = ec

(
u, αyu

)
C4
, denotes the current density

and ρ denotes the particle density which is equal to e
∑4

i=1 |ui|2.
In the following, we will assume that (A, V ) is given at any time.

3.2. Laser-particle TDDE in 2-d

As before, we consider a circular domain ΩR of radius R, and the system is rewritten at
the boundary in polar coordinates, where r ∈ [0, ε) with ε > 0:

(
∂r + L(r, θ, t, ∂θ, ∂t)

)
u = 0. (26)

with L = L1 + L0 ∈ OPS1 and Li is an operator of order i(= 0, 1). We denote R2
+ :=

R∗
+× [0, T ] and ν(x0,y0) a neighborhood of (x0, y0). Finally we denote ΣR

T := ∂ΩR × [0, T ] and
ΣR+r

T = ∂Ω+
R+r × [0, T ] with Ω+

R+r a disc of radius R + r containing ΩR. We then study the
TDDE in the region Ω+

R+r − ΩR and design boundary conditions such that incoming waves
at r = 0 are set to zero or equivalently to vanish waves that leave the crown surrounding
ΩR. Some basic computations lead on ΣR+r

T to

L1 :=
1

c
α̃x∂t +

1

χr
α̃xα̃y∂θ, L0 :=

1

c
α̃xβ̃

with χr =
1

R + r
and

α̃x =




0 0 0 e−iθ

0 0 eiθ 0
0 e−iθ 0 0
eiθ 0 0 0




and

α̃y =




0 0 0 −ie−iθ

0 0 ieiθ 0
0 −ie−iθ 0 0

ieiθ 0 0 0



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and

β̃ = iβmc2 + i(eV + Vc)I4 − ie(Arα̃x + Aθα̃y)

that is

β̃ =




i

(
Vc + eV +mc2

)
0 0 −ieAre

−iθ − eAθe
−iθ

0 i

(
Vc + eV +mc2

)
−ieAre

iθ + eAθe
iθ 0

0 −ieAre
−iθ − eAθe

−iθ
i

(
Vc + eV −mc2

)
0

−ieAre
iθ + eAθe

iθ 0 0 i

(
Vc + eV −mc2

)




Now as

α̃xα̃y =




i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 −i




and α̃xβ̃ =



−ieAr + eAθ 0 0 ie−iθ
(
Vc + eV −mc2

)

0 −ieAr − eAθ ieiθ
(
Vc + eV −mc2

)
0

0 ie−iθ
(
Vc + eV +mc2

)
−ieAr + eAθ 0

ieiθ
(
Vc + eV +mc2

)
0 0 −ieAr − eAθ




we get, denoting by L1 = σ(L1),

L1 =




− ω

χr
0 0

iτ

c
e−iθ

0
ω

χr

iτ

c
eiθ 0

0
iτ

c
e−iθ − ω

χr

0

iτ

c
eiθ 0 0

ω

χr




and L̃ := iρI4 + L1. The leading symbol p1 is defined by

p1(r, θ, t, ρ, ξ, ω) = det
(
L̃(r, θ, t, ξ, ω)

)

where

L̃ =




iρ− ω

χr

0 0
iτ

c
e−iθ

0 iρ+
ω

χr

iτ

c
eiθ 0

0
iτ

c
e−iθ

iρ− ω

χr
0

iτ

c
eiθ 0 0 iρ+

ω

χr



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p1 has 2 double real roots

ρ± = ±
(τ 2
c2

− ω2

χ2
r

)1/2

in the hyperbolic region of the cotangent bundle, defined by

H(ΣR+r
T ) =

{
(θ, t, ω, τ) ∈ T ∗(ΣR+r

T ) :
(ω2

χ2
r

− τ 2

c2

)
< 0
}
⊆ T ∗(ΣR+r

T )

as

p1(r, θ, t, ρ, ξ, ω) =
(
ρ2 − τ 2

c2
+
ω2

χ2
r

)2

In H(ΣR+r
T ), the outgoing bicharacteristic correspond to r′(s) > 0, that is

r′(s) =
∂p1

∂ρ
= 4ρ

(
ρ2 −

(τ 2
c2

− ω2

χ2
r

))
(s)

So that r′(s) > 0 iff

(
ρ > 0 and ρ2 >

(τ 2
c2

− ω2

χ2
r

))
or
(
ρ < 0 and ρ2 <

(τ 2
c2

− ω2

χ2
r

))

in a small conic neighborhood of H(ΣR
T ). We denote by N0 the transition matrix such that

L1 = N0σ(Λ1)N−1
0 where

σ(Λ1) =




−i

(τ 2
c2

− ω2

χ2
r

)1/2
0 0 0

0 −i

(τ 2
c2

− ω2

χ2
r

)1/2
0 0

0 0 i

(τ 2
c2

− ω2

χ2
r

)1/2
0

0 0 0 i

(τ 2
c2

− ω2

χ2
r

)1/2




and

N0 =




− iτe−iθ

c
(√ω2

χ2
r

− τ 2

c2
− ω

χr

) 0
iτe−iθ

c
(√ω2

χ2
r

− τ 2

c2
+
ω

χr

) 0

0 − iτeiθ

c
(√ω2

χ2
r

− τ 2

c2
+
ω

χr

) 0
iτeiθ

c
(√ω2

χ2
r

− τ 2

c2
− ω

χr

)

0 1 0 1
1 0 1 0




(27)
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We denote by V0 the operator Op(N0) ∈ OPS0, with naturally V0V
−1
0 = I + R and R ∈

OPS−∞. We apply a technique originally proposed by Taylor, and developed in details by

Antoine et al. in [2] for electromagnetism. Starting from
( ∂
∂r

+L
)
u = 0, we set w := V −1

0 u.

The equation becomes

( ∂
∂r

+ Λ1

)
w0 = R0w0

where

R0 := −V −1
0 L0V0 − V −1

0

∂V0

∂r

From there, Taylor’s method can be implemented. The principle consists of block-diagonalizing
the original system up to a certain order. More precisely, we search successive approximations
of the solution, in the form of a sequence

∂w−m

∂r
+

m−1∑

j=−1

Λ−jw−m = R−mw−m

where w−m = (I +K−m)w−m+1 (m > 1), Λ−m+1 ∈ OPS−m+1 and R−m ∈ OPS−m. In fine,
and according to [28], [2], we have

Proposition 3.1. The solution u to (26), is such that w ∼ V u, where the solution w to

( ∂
∂r

+ Λ
)
w ∼ 0

is given by Π∞
p=m+1(I +K−p)w−m, where

σ(Λ) =

(
σ(Λ−) 0

0 σ(Λ+)

)
∈M4(C)

and Λ± are 2 first order operators of diagonal principal symbol. In addition, Operator V is
defined as Π1

j=−∞(I +K−j)V
−1
0 , for K−j ∈ OPS−j. Sign ∼ is to be understood, as equality

up to a smoothing or regularizing operator.

This is equivalent to say that the operator PD = ∂r +L can in fact be approximately block-
diagonalized, or equivalently can be rewritten in the form (∂r + Λ) +R, via the ”transition
operator” V , where R, V and Λ are defined explicitly in the proposition above.

We now explicitely implement the diagonalizing method, and we first search for an operator
K−1 ∈ OPS−1 with K−1 = σ(K−1), such that w−1 is defined by

w−1 = (I +K−1)w0
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and w−1 satisfies the equation

∂w−1

∂r
+ (Λ0 + Λ1)w−1 = R−1w−1

According to [2]

(K−1)ij =





σ0(R0)ij

λ1,j − λ1,i
∀(i, j) ∈ Jn,

0 ∀(i, j) ∈ Jd

where




Jn :=
{
(1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 2), (4, 1), (4, 2)

}
,

Jd :=
{
(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (4, 3), (4, 4)

}

and, denoting R0 = σ0(R0) which represents the order 0 part of R0.

(Λ0)ij =

{
(R0)ij, ∀(i, j) ∈ Jd,
0, ∀(i, j) ∈ Jn

By construction, see [2],

(Λ−m+1)(i,j) =

{ (
−
[
K−m,Λ1] +Op

(
σ−m+1(R−m+1)

)])
ij
, ∀(i, j) ∈ Jd,

0, ∀(i, j) ∈ Jn

and

∂w−m

∂r
+

m−1∑

j=−1

Λ−jw−m = R−mw−m

where
∑m−1

j=−1Λ−j is a block diagonal first order operator with principal symbol

σ1

( m−1∑

j=−1

Λ−j

)
= λ




−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1




where we have set

λ := i

(τ 2
c2

− ω2

χ2
r

)1/2

In fine, ABC are deduced from

∂w−
−m

∂r
+ Λ−w−m = 0
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where Λ− ∈M2(C)

Λ− =

{ (∑m−1
j=−1Λ−j

)
kl
, for (k, l) ∈

{
(1, 1), (1, 2), (2, 1), (2, 2)

}

0, otherwise

and

w = Π∞
p=m+1(I +K−p)w−m

where for w = (w1, w2, w3, w4) ∈ C4.

At this point we have to evaluate R0. We again refer to [2] for a detailed description of
algebraic symbolic computations. We just apply these formulas skipping the computational
details. That is

σ0

(
V −1
0

∂V0

∂r

)
= N−1

0

(∂N0

∂r

)

We now have to estimate σ0(V
−1
0 LV0). We first easily prove that

σ0
(
V −1
0 LV0

)
= N−1

0 L0N0

where

N−1
0 =




1

α− β
0 0

β

β − α

0
e−2iθ

α− β

α

α− β
0

1

β − α
0 0

α

α− β

0
e−2iθ

β − α

β

β − α
0




and




α :=
iτe−iθ

c
( ω
χr

−
√
ω2

χ2
r

− τ 2

c2

)

β :=
iτe−iθ

c
( ω
χr

+

√
ω2

χ2
r

− τ 2

c2

)
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that could be rewritten after simplifications

N−1
0 =




− iτeiθ

2c

√

ω2

χ2
r
− τ2

c2

0 0 − τ2

2c2
√

ω2

χ2
r
+ τ2

c2

(
ω
χr

−

√

ω2

χ2
r
− τ2

c2

)

0 − iτe−iθ

2c

√

ω2

χ2
r
− τ2

c2

τ2

2c2
√

ω2

χ2
r
− τ2

c2

(
ω
χr

−

√

ω2

χ2
r
− τ2

c2

) 0

iτeiθ

2c

√

ω2

χ2
r
− τ2

c2

0 0 τ2

2c2
√

ω2

χ2
r
− τ2

c2

(
ω
χr

−

√

ω2

χ2
r
− τ2

c2

)

0 iτe−iθ

2c

√

ω2

χ2
r
− τ2

c2

− τ2

2c2
√

ω2

χ2
r
+ τ2

c2

(
ω
χr

−

√

ω2

χ2
r
− τ2

c2

) 0




Now

∂N0

∂r
=




αr 0 βr 0
0 −e2iθβr 0 −e2iθαr

0 0 0 0
0 0 0 0




where

αr =
∂α

∂r
, βr =

∂α

∂r

So that

N−1
0

∂N0

∂r
=




αr

α− β
0

βr

α− β
0

0
βr

β − α
0

αr

β − α
αr

β − α
0

βr

β − α
0

0
βr

α− β
0

αr

α− β




This enables us to determine R0 then K−1. First setting





γ1 := −ieAr − eAθ

c

γ2 :=
ie−iθ(Vc + eV −mc2)

c

γ3 := −ieAr + eAθ

c

γ4 :=
ie−iθ(Vc + eV +mc2)

c
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Then N−1
0 L0N0 is equal to




αγ1+αγ∗

4
β+γ2−βγ3

α−β
0 0

βγ1+γ∗

4
β2+γ2−βγ3
α−β

0
γ3β∗e−2iθ+γ4αβ∗+γ1α−γ∗

2
e−2iθ

α−β
0

α∗γ3e−2iθ+γ4|α|2+γ1α−γ∗

2
e−2iθ

α−β
γ1α+γ4|α|2+γ3α−γ2

α−β
0

γ1β+αβγ∗

4
+γ3α−γ2

α−β
0

0
|β|2γ4+β∗γ3e−2iθ+γ1β−γ∗

2
e−2iθ

β−α
0

α∗βγ4+e−2iθα∗γ3+γ1β−γ∗

2
e−2iθ

β−α




We recall that:

K−1 =
1

2λ




0 0
(
σ0(R0)

)
13

(
σ0(R0)

)
14

0 0
(
σ0(R0)

)
23

(
σ0(R0)

)
24(

σ0(R0)
)
31

(
σ0(R0)

)
32

0 0(
σ0(R0)

)
41

(
σ0(R0)

)
42

0 0




We now have to determine an explicit expression for K−1 in order to deduce K−1, and
to derive explicit TBC/ABC. In this goal, it is necessary to approximate K−1, to provide
an expression of K−1 involving simple (differential/pseudodifferentiel) operators. A natural
approach consists of considering different kinds of regimes. Typically, we will consider high
time-frequency regimes to avoid small oscillations, that is such that τ ≫ 1. Naturally, other
frequency regimes (on ω ≫ 1, ω/τ ≫ 1, ≪ 1, etc) could be considered from there. The
asymptotic expansion for large τ for K−1’s components is as follows. A simple way to achieve
approximation K−1 consists of expanding N−1

0 and N0 for large τ . First as

αr =
ie−iθτ

(
ωc−

√
ω2c2 − τ 2r2

)2
(
ωc−

√
ω2c2 − τ 2r2 − τ 2r2√

ω2c2 − τ 2r2

)

=
ie−iθτ

(
ωc−

√
ω2c2 − τ 2r2

)2
(
ωc− ω2c2√

ω2c2 − τ 2r2

)

then for large τ , αr as well as βr are O(τ
−1) and α− β is O(1). As a consequence N−1

0 ∂rN0

is a O(τ−1) and has then no contribution to σ0(R0) which is then equal to σ0(N−1
0 L0N0).

We easily see now that

α− β =
2ice−iθ

τ

√
ω2

χ2
r

− τ 2

c2
, α + β =

2ie−iθωc

rτ

and

α2 + β2 = −2c2

τ 2

(2ω2

χ2
r

− τ 2

c2

)

and we remark that for large τ

1

α− β
= −e

iθ

2

(
1 +

1

2

ω2c2

r2τ 2
)
+O(τ−4)
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and

α = − τe−iθ

c
(√τ 2

c2
− ω2

χ2
r

+ i
ω

χr

) = −e−iθ
(
1− iωc

τχr

)
+O(τ−2)

so that

α

α− β
=

1

2

(
1− iωc

τχr

)
+O(τ−2)

and

β

β − α
=

1

2

(
1 +

iωc

τχr

)
+O(τ−2)

Note that

N (−1,0)
0 :=




−e−iθ
(
1− iωc

τχr

)
0 e−iθ

(
1 +

iωc

τχr

)
0

0 −eiθ
(
1 +

iωc

τχr

)
0 eiθ

(
1− iωc

τχr

)

0 1 0 1
1 0 1 0




(28)

and

(
N−1

0

)(−1,0)
:=




−e
iθ

2
0 0

1

2

(
1 +

iωc

τχr

)

0 −e
−iθ

2

1

2

(
1− iωc

τχr

)
0

eiθ

2
0 0

1

2

(
1− iωc

τχr

)

0
e−iθ

2

1

2

(
1 +

iωc

τχr

)
0




(29)

In fact, here only the order 0 terms in τ , are of interest:

N−1
0 =

(
N−1

0 )(0,0) +O(τ−1), N0 = N (0,0)
0 +O(τ−1)

where

(
N−1

0

)(0,0)
:=




−e
iθ

2
0 0

1

2

0 −e
−iθ

2

1

2
0

eiθ

2
0 0

1

2

0
e−iθ

2

1

2
0




, N (0,0)
0 =




−e−iθ 0 e−iθ 0
0 eiθ 0 −eiθ
0 1 0 1
1 0 1 0


 (30)
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Then for large τ we have

σ̃0(R0) = −
(
N−1

0

)(0,0)L0N (0,0)
0 −

(
N−1

0

)(0,0)(∂N0

∂r

)(0,0)

In addition

1

2λ
= −ic

2τ
− iω2c3

4τ 3r2
+O(τ−4)

So that we approximate K−1 by K(−1,0)
−1 defined by

K(−1,0)
−1 = −ic

2τ




0 0
(
σ0(R0)

)
13

(
σ0(R0)

)
14

0 0
(
σ0(R0)

)
23

(
σ0(R0)

)
24(

σ0(R0)
)
31

(
σ0(R0)

)
32

0 0(
σ0(R0)

)
41

(
σ0(R0)

)
42

0 0




As




σ0(N−1
0 L0)11 =

1

c

(
eiθ(iAre− eAθ) + eiθi(Vc + eV +mc2)

)

σ0(N−1
0 L0)14 =

1

c

(
− i(Vc + eV −mc2)− (iAre + eAθ)

)

σ0(N−1
0 L0)22 =

1

c

(
ie−iθ(Vc + eV +mc2) + e−iθ(ieAr + eAθ)

)

σ0(N−1
0 L0)23 =

1

c

(
i(Vc + eV −mc2)− iAre+ eAθ

)

σ0(N−1
0 L0)31 =

1

c

(
− eiθ(iAre− eAθ) + eiθi(Vc + eV +mc2)

)

σ0(N−1
0 L0)34 =

1

c

(
i(Vc + eV −mc2)− iAre− eAθ

)

σ0(N−1
0 L0)42 =

1

c

(
ie−iθ(Vc + eV +mc2)− e−iθ(ieAr + eAθ)

)

σ0(N−1
0 L0)43 =

1

c

(
i(Vc + eV −mc2)− iAre+ eAθ

)

Then we deduce ˜σ0(N−1
0 L0N0)

2

c




−ieAr − i(Vc + eV ) 0 imc2 − eAθ 0
0 eAθ + imc2 0 −i(Vc + eV )− iAre

−eAθ − imc2 0 −ieAr + i(Vc + eV ) 0
0 i(Vc + eV )− ieAr 0 eAθ − imc2




We can now define the operators associated to the symbols derived above. They are
written as combination of classical differential and Riemann-Liouville operators. We will
denote by K

(−1,0)
−1 the approximate operators such that K(−1,0)

−1 = K−1 + O(τ−2). We recall
that to any symbol (iτ)−n (for n ∈ N∗) is associated a Riemann-Liouville operator defined
by ∂−n

t .
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Proposition 3.2. For large τ and neglecting the terms beyond O(τ−3), Operator K
(−1,0)
−1 is

approximated by

K̃
(−1,0)
−1 = C̃∂−1

t

where

C̃ =




0 0 −imc2 + eAθ 0
0 0 0 i(Vc + eV ) + iAre

eAθ + imc2 0 0 0
0 −i(Vc + eV ) + ieAr 0 0




As a consequence, the outflowing part of the wave is selected by annihilating up to a certain
order, the part of w−m which propagates in the opposite direction of the outward normal
vector to the boundary [8].

Proposition 3.3. The ABC at order 0 and 1 (corresponding to vanish the outgoing waves
from the small crown surrounding ΩR) are defined as follows. Setting w0 = V −1

0 u and
w−1 = (I +K−1)w0, the ABC write

• At order 0:
(
V −1
0 u

)
1,2

=
(
w0

)
1,2

= 0 on ΣR

• At order 1:
(
V−1u

)
1,2

=
(
w−1

)
1,2

= 0 on ΣR, where V−1 =
(
I +K−1

)
V −1
0 .

This simply consists of vanishing the incoming waves (inside ΩR).

No additional condition (beyond the TDDE itself) on outgoing waves is required. In order

to actually determine an explicit ABC,
((
I +K−1

)
V −1
0 u

)
1,2

= 0, it is necessary to evaluate

V −1
0 and K−1V

−1
0 . In this goal, and as above we have to expand N−1

0 and K−1N−1
0 for τ

large using (29) and an asymptotic expansion. From the above study, we deduce that:

(
V −1
0

)(0,0)
=




−e
iθ

2
0 0

1

2

0 −e
−iθ

2

1

2
0

eiθ

2
0 0

1

2

0
eiθ

2

1

2
0




, V
(0,0)
0 =




−e−iθ 0 e−iθ 0
0 −eiθ 0 eiθ

0 1 0 1
1 0 1 0


 (31)

We also have

(
V −1
0

)(−1,0)
=




−e
iθ

2
0 0

1

2

(
1 +

ic

χr

∂θ∂
−1
t

)

0 −e
−iθ

2

1

2

(
1− ic

χr
∂θ∂

−1
t

)
0

eiθ

2
0 0

1

2

(
1− ic

χr
∂θ∂

−1
t

)

0
eiθ

2

1

2

(
1 +

ic

χr
∂θ∂

−1
t

)
0




(32)

33



and

V
(−1,0)
0 =




−e−iθ
(
1− ic

χr

∂θ∂
−1
t

)
0 e−iθ

(
1 +

ic

χr

∂θ∂
−1
t

)
0

0 −eiθ
(
1 +

ic

χr

∂θ∂
−1
t

)
0 eiθ

(
1− ic

χr

∂θ∂
−1
t

)

0 1 0 1
1 0 1 0



(33)

Now using, (K−1)
(−1,0) and (V0)

(−1,0), we get an explicit expression of V
(−1,0)
−1 which is:

V
(−1,0)
−1 =

1

2

(
A(−1,0) B(−1,0)

C(−1,0) D(−1,0)

)
(34)

with

A
(−1,0)
−1 =

1

2

( (
− (imc2 − eAθ)∂

−1
t − 1

)
eiθ 0

0
(
(i(Vc + eV ) + ieAre)∂

−1
t − 1

)
e−iθ

)

B
(−1,0)
−1 =

1

2

(
0 −(imc2 − eAθ)∂

−1
t + 1

(i(Vc + eV ) + ieAre)∂
−1
t + 1 0

)

C
(−1,0)
−1 =

1

2

( (
1− (eAθ + imc2)∂−1

t

)
eiθ 0

0
(
1 + (i(Vc + eV )− ieAr)∂

−1
t

)
e−iθ

)

D
(−1,0)
−1 =

1

2

(
0 1 + (eAθ + imc2)∂−1

t

1− (i(Vc + eV )− ieAr)∂
−1
t 0

)

The process continues with higher order ABC but are not computed here. The discretization
of this condition will be discussed in Section 5. The ABC which are derived so far depends
on the 4 components of the unknown and are independent of the derivative with respect to
r. The ABC,

(
V0u

)
1,2

= 0, then
(
V0 +K−1V0)u

)
1,2

= 0 are easily analytically evaluated.

3.3. Application to 1-d Dirac equation

A direct application to the above conditions in a 1-d framework simply necessitates to
vanish angular derivatives and set θ to 0. The domain is denoted by (−a, a) and the equation
simply writes

(
∂r + L(r, θ, t, ∂t)

)
u = 0.

where

L1 =
1

c
α̃x∂t L0 =

1

c
α̃xβ̃
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α̃x =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0




and

β̃ = iβmc2 + i(eV + Vc)I4 − ieAxαx

that is

β̃ =




i

(
Vc + eV +mc2

)
0 0 −ieAx

0 i

(
Vc + eV +mc2

)
−ieAx 0

0 −ieAx i

(
Vc + eV −mc2

)
0

−ieAx 0 0 i

(
Vc + eV −mc2

)




and α̃xβ̃ =



−ieAx 0 0 i

(
Vc + eV −mc2

)

0 −ieAx i

(
Vc + eV −mc2

)
0

0 i

(
Vc + eV +mc2

)
−ieAx 0

i

(
Vc + eV +mc2

)
0 0 −ieAx .




We deduce that the TDDE in 1-d writes



c∂xu1 + ∂tu4 − ieAxu1 + i(Vc + eV −mc2)u4 = 0
c∂xu2 + ∂tu3 − ieAxu2 + i(Vc + eV −mc2)u3 = 0
c∂xu3 + ∂tu2 + i(Vc + eV +mc2)u2 − ieAxu3 = 0
c∂xu4 + ∂tu1 + i(Vc + eV +mc2)u1 − ieAxu4 = 0

As

V
(−1,0)
0 =




−1 0 1 0
0 −1 0 1
0 1 0 1
1 0 1 0


 ,
(
V −1
0

)(−1,0)
=

1

2




−1 0 0 1
0 −1 1 0
1 0 0 1
0 1 1 0 .




The first right (resp. left) ABC writes:

u1 − u4 = 0, u2 − u3 = 0, (resp. u1 + u4 = 0, u2 + u3 = 0)

Similarly we derive explicit ABC from
(
V −1
0 +K−1V

−1
0

)
1,2
u = 0 with V

(−1,0)
−1 equal to

1

2




−imc2∂−1
t − 1 0 0 1− imc2∂−1

t

0 (i(Vc + eV ) + ieAxe)∂
−1
t − 1 (i(Vc + eV ) + ieAxe)∂

−1
t + 1 0

1− imc2∂−1
t 0 0 1 + imc2∂−1

t

0 1 + (i(Vc + eV )− ieAx)∂
−1
t 1− (i(Vc + eV )− ieAx)∂

−1
t 0 .




The second ABC writes:
(
− imc2∂−1

t − 1
)
u1 +

(
− imc2∂−1

t + 1
)
u4 = 0

and
(
(i(Vc + eV ) + ieAx)∂

−1
t − 1

)
u2 +

(
(i(Vc + eV ) + ieAxe)∂

−1
t + 1

)
u3 = 0 .
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4. Other techniques

We now present some alternative techniques to the derivation of ABC for TDDE or
TDKGE.

4.1. Volkov approach

We here give some elements of derivation of ABC based on the Volkov wavefunction in
3-d. The principle is based on the fact that the TDDE have explicit solutions called Volkov
wavefunctions, when the Coulomb potential is set zero. The approach is very similar to
the one proposed in [24], for laser-molecule time dependent Schrödinger equations (TDSE).
Roughly speaking the idea is as follows. We first rewrite the TDDE in the form





∂tu = (P1 + P2)u on R3 × [0, T ]

u(·, 0) = ui(·) on R2
(35)

where in 3-d

P1 = −αx

(
c∂x − ieAx

)
− αy

(
c∂y − ieAy

)
− αz

(
c∂z − ieAz

)
− iβmc2, P2 = −(iVc + eV )I4

and

αz =

(
02 σz
σz 02

)

with

σz =

(
0 −1
1 0

)

We introduce a fictitious domain Ω such that supp(u0) ⊆ Ω and supp(Vc) ⊆ Ω. As usual,
we determine an operator B





∂tũ = (P1 + P2)ũ on Ω× [0, T ]

ũ(·, 0) = u0(·) on Ω

B · ũ = 0 on ∂Ω× [0, T ]

such that u|Ω ∼ ũ. We remark that in Ωc ⊆ R3, the Dirac equation writes

∂tu = P1u (36)

It turns out that this equation admits an exact solution in R3, see [25], that we will call uv.
Denoting and assuming that
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• the incoming wave is a plane electromagnetic wave, that is V = 0. Its amplitude is
denoted by A0.

• A := (Ax, Ay, Az)
T is supposed to be in the form A(x, t) = A0f(ωt − k · r), with

x = (x, y, z), f is a given function, ω (resp. k) the imposed incoming pulse frequency
(resp. 3-d photon momentum).

• A := (0,AT ), k := (ω,k), n := k/‖k‖, e := A/‖A‖2 and α = (αx, αy, αz).

Volkov wavefunction uv is searched in the form

uv(x, t) = e−i(p0t−p·x)φ(τ)

where p := (p0,p) is a constant four-component vector chosen such that p20−‖p‖2 = m2 and

τ = t− k · r
ω

. Now, according to [25]:

Proposition 4.1. For c set to 1 and for c an arbitrary constant bispinor, a solution to (35)
is given by

uv(x, t) =
[
1 +

eαs

2(p · k)A
] c√

2p0
eiS(τ)

where the phase function is given by

S(τ) = −p0t+ p · x +

∫ τ [e(p ·A)

p · k − e2‖A‖2
2(p · k)

]
dτ, τ = t− k · r

ω

with

αs = αx + αyey + αzez +
k

2ω

(
α× α

)
· (n× e), p · k = p0ω − p · k

In fine, we should sum this solution over all the momenta (p0,p) which naturally leads a
huge computational complexity. An important effort should be done on developing efficient
techniques to evaluate this Volkov wavefunction for the laser-particle TDDE. Note that, it is
naturally possible to select certain frequency regimes in order to reduce the computational
cost due to the overall sum.

Beyond, the computational difficulty to numerically evaluate this function, it is unfortu-
nately not possible to directly impose uv as boundary condition, due to the fact this vectorial
function is defined as an integral in R3. As a consequence to be valid, the Coulomb potential
have to be zero everywhere. In that case (Vc ≡ 0), imposing

B · u = uv on ∂Ω

would constitute a TBC. In the general case (Vc 6= 0) it is then necessary to include the
Coulomb potential in the expression of uv, to obtain a relevant ABC. A natural idea consists
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of splitting the equation as follows. Assuming that the solution is known at time tn, and for
some small ∆tn > 0, the solution to





∂tũ = (P1 + P2)ũ for (tn, tn +∆tn]

ũ(·, tn) = ũ0(·)

can be approximated, using the Trotter-Kato formula [9], by the solution of





∂tũ = P1ũ for (tn, tn +∆tn]

ũ(·, tn) = ũn(·)

∂tũ = P2ũ for (tn, tn +∆tn]

ũ(·, tn) = e∆tnP1ũn(·)

(37)

In the appropriate Hilbert spaceH , we can prove that ‖e∆tn(P1+P2)ũ(·, tn)−e∆tnP1e∆tnP2)ũ(·, tn)‖H
is a O

(
∆t2n[P1, P2]

)
. This gives an approximate Volkov-Coulomb wavefunction for TDDE

denoted un+1
vc . As a consequence, the new mixed problem consists of solving, for all n such

that
∑n

i=1∆ti 6 T ,





∂tũ = (P1 + P2)ũ on Ω× (tn, tn+1]

ũ(·, tn) = un(·) on Ω

ũ = un
vc on ∂Ω× (tn, tn+1]

where at time tn, the numerical solution is denoted un+1 and un+1
vc is solution to (37). Higher

order ABC are naturally possible. The main interest of this approach comes from the fact
that both

∂tũ = P1ũ, ∂tũ = P2ũ

can be solved “analytically” (the equation system is a trivial diagonal system). As a conse-
quence, from the analytical point of view, it is possible to derive very accurate ABC (simply
by increasing the order of the operator splitting). However, we face a similar problem as
the one for TDSE. To have a small error, ∆tn has to be chosen small. The issue comes
from the fact that the solution to ∂tũ = P1ũ in (37) possesses an oscillatory spatial inte-
gral of frequency 1/∆tn. As a consequence, a fine numerical computation of this integral,
requiring ∆tn ≪ 1, can be computationally costly. The approach which was proposed in
[24] for TDSE is still applicable here. This consists of using Filon’s approximation of highly
oscillatory integrals (typically the convergence is a positive power of the time step [19], [20]).
This approach for TDDE, will be implemented and studied in a forthcoming paper, devoted
to accurate numerical discretization of ABC for TDDE and TDKGE.
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4.2. Basic transformations on TDKGE and TDDE

In the last 2 sections we have derived ABC for TDKGE and TDDE using two distinct
but close techniques. This section is devoted to some simple transformations on TDKGE.
We show that these transformations allow to rewrite these equations in such form that
existing techniques can (almost directly) be applied to derive ABC. The presentation will
be laser-free, although most of these ideas are applicable with laser-particle equations.





PKG,Dψ(x, t) = 0

BKG,Dψ(x, t) = 0

ψ(x, 0) = ψ0(x) ∈ C (or C4)

with x = (x, y) and




PKG = c2
(
∂2x + ∂2y + ∂2z

)
− ∂2t −m2c4

PD = iI4∂t + icαx∂x + icαy∂y + icαz∂z − βmc2 .

• TDKGE to reaction-diffusion equation. We set

χ :=

(
χ1

χ2

)
=

(
ϕ
∂tϕ

)
.

In that case, it is easy to show that χ satisfies the following equation

∂tχ = A(∂2x + ∂2y + ∂2z )χ+Bχ

where

A =

(
0 0
c2 0

)
, B =

(
0 1

−m2c4 0

)
.

Reaction-diffusion problems are naturally very studied in the literature (in chemistry,
fluid dynamics, etc) in particular from a boundary condition point of view.

• TDKGE to TDDE. There exists a fundamental connection between field-free TDKGE
and TDDE. Indeed, we easily check that

(
∂2x + ∂2y + ∂2z −

1

c2
∂2t +m2c4)I4 =

(
αx∂x + αy∂y + αz∂z +

i

c
I4∂t +mc2β

)

x

(
αx∂x + αy∂y + αz∂z +

i

c
I4∂t +mc2β

)
.

(38)

As a consequence, the derivation of TBC/ABC from TDKGE (resp. TDDE) can be
useful to derive TBC/ABC to TDDE (resp. TDKGE). We roughly describe a possible
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approach. Assuming that ABC have been derived for TDDE. The factorization (38),
consists of writing TDKGE as

I4PKG = PDP
∗
D .

Now, we have seen that PD can be block-diagonalized, which formally writes

PD = V −1(I4∂r − Λ)V +R

where the transition operator V can be explicitly constructed, and R ∈ OPS−∞.
Similarly, we have seen that PKG can be factorized as follows

I4PKG = I4(∂r + Λ+)(∂r − Λ−) +R .

As a consequence we can formally state that

(∂r + Λ+)(∂r − Λ−)I4 =
(
V −1(I4∂r − Λ)V

)(
V −1(I4∂r − Λ)V

)∗
+R

where Λ and Λ± are first order operators and V and an operator of leading order 0.
From there it is possible to find connections between these 3 operators. We do not
go further in this direction, but we think that this could be an interesting question to
study.

5. Numerical Simulations

This section is devoted to some basic 1-d illustrations of the boundary conditions derived
above. More advanced numerical simulations, as well as derivation of accurate discretiza-
tion of 2-d boundary conditions and analysis of the overall schemes will be presented in a
forthcoming paper.

5.1. Discretization for TDKGE

The discretizations which are proposed in this paper are relatively naive but still accurate.
We respectivelly denote by ∆x the space step and ∆tn time step at time tn =

∑n
i=1. As usual

ϕn
j denotes an approximation of the exact solution φ, in (j∆x, tn), for j ∈ Z and n ∈ N∗.

The initial data is a wavepacket defined by

ϕ0(x) =
ck0

mc2 +
√
m2c4 + c2k20

exp
(
− 1

4x2
+ ik0x

)

where the wavenumber k0 = 5. In the following, we impose ~ = c = m = e = 1.

Case 1

We first consider the laser-free Klein-Gordon equation on a bounded domain [−a, a], approx-
imated by an explicit scheme:

ϕn+1
j − 2ϕn

j + ϕn−1
j = ∆t2

[
c2

∆x2
(
ϕn
j+1 − 2ϕn

j + ϕn
j−1

)
−m2c4ϕn

j

]
.
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As seen above, an ABC at +a is given by

c∂xϕ(x, t) + ∂tϕ(x, t) +
m2c4

2

∫ t

0

ϕ(x, s)ds = 0 (39)

which is an improvement of the simple condition:

(
∂t + c∂x

)
ϕ(x, t) = 0 . (40)

Above and in the following j ∈ {1, · · · , N}, with x1 = −a and xN = +a. We numerically
compare the following conditions:

• Dirichlet: ϕ(±a, t) = 0, for all t;

• transport (40) (whose symbol includes λ+1 and λ+0 );

• improved transport (39) (whose symbol includes λ+1 , λ
+
0 and λ+−1);

We represent, as usual, the quantity
(
t, x, log

∣∣u(x, t)
∣∣
)
which enlights the reflections at the

domain boundary. In the tests we choose ∆x = ∆tn = ∆t = 0.04 for all n, T = 18 and
a = 10. At the left boundary is implemented Dirichlet’s boundary condition. At the right
boundary, we implement the transport condition Fig. 1, and improved transport Fig. 2.
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Figure 1: Klein-Gordon with Dirichlet (left) and transport (right) boundary conditions

As expected, the improved transport condition (39) derived in this paper is better than
the 2 other implemented ones ((40) and Dirichlet).
Case 2

In the second example, we consider a laser-particle Klein-Gordon equation. This time, the
scheme (and the derived ABC) is more complex and writes

ϕn+1
j − 2ϕn

j + ϕn−1
j = ∆t2

[
c2

∆x2
(
ϕn
j+1 − 2ϕn

j + ϕn
j−1

)
+

An
j

2∆t

(
ϕn+1
j − ϕn−1

j

)

+
Bn

j

2∆x

(
ϕn
j+1 − ϕn

j−1

)
+ Cn

j ϕ
n
j

]
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time iterations
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Figure 2: Klein-Gordon with Dirichlet (left) and improved transport (right) boundary conditions

time iterations

sp
ac

e

Dirichlet − Empirical

 

 

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

500

−10

−8

−6

−4

−2

0

2

Figure 3: Klein-Gordon with Dirichlet (left) and empirical (right) boundary conditions

where




An
j = −ieV (xj , tn)

Bn
j = −ieAx(xj , tn)

Cn
j = −ie∂tV (xj , tn)− ic2∂xAx(xj , tn) + e2V 2(xj, tn)− c2e2A2

x(xj , tn)−m2c4

with boundary conditions imposed at x = ±a, according to (18) and (20). At −a, we
impose a Dirichlet boundary, and at +a, we impose i) a transport condition (operator symbol
includes only λ+1 ) Fig. 4, ii) a transport condition including an order 0 operator (operator
symbol includes λ+1 and λ+0 ) Fig. 5 iii) a transport condition including an order 0 and
order −1 operators (operator symbol includes λ+1 , λ

+
0 and λ+−1) Fig. 6. We assume that

A(t) = A0 cos(ωt), V (t) = E0 sin(ωt) with A0 = 1, E0 = 0.1, and ω = 1. Again a = 10,
∆x = ∆t = 0.4.

As expected the absorption is improved by including additional operators in the ABC.

Stability for the interior scheme: laser-free-TDKGE. The stability analysis for the
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Figure 4: Laser-Klein-Gordon with Dirichlet (left) and transport (right) boundary conditions
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Figure 5: Laser-Klein-Gordon with Dirichlet (left) and improved transport at order 0 (right) boundary
conditions
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Figure 6: Laser-Klein-Gordon with Dirichlet (left) and improved transport at order −1 (right) boundary
conditions

interior scheme in the laser-free case is standard. Denoting by g the amplificator factor, and
using the usual notations [27], we get for all θ ∈ [−π, π)

g2(θ)− 2
(
1− β(θ)

)
g(θ) + 1 = 0

with

β(θ) = 2c2
∆t2

∆x2
sin2(θ/2)− ∆t2m2c4

2
.
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Stability is ensured when the roots g1, g2 of this characteristic equations are less or equal to
1, for all θ ∈ [−π, π). It is easy to prove that the scheme is stable provided that β(θ) 6 2
for all θ, that is ∆t satisfies

∆t 6
∆x

c

√
1 +

m2c2

4
∆x2

.

Stability for the interior scheme: laser-TDKGE. In the laser-KG case. In that case,
we expect the time step to be time-dependent, as the equation equation involves a time-
dependent laser field. The characteristic equation in g writes:

g2(θ)− 2αn

(
1− βn(θ)

)
g(θ) +

ᾱn

αn

= 0

with

αn =
(
1 +

∆tnA
n
j

2

)−1

and

βn(θ) = 2
c2∆t2n sin

2(θ/2)

∆x2
+∆t2n

Cn
j

2
− i∆t2nB

n
j

sin(θ)

∆x

or explicitely

βn(θ) = ∆t2n
− ie∂tV (xj , tn)− ic2∂xAx(xj , tn) + e2V 2(xj , tn)− c2e2A2

x(xj , tn)−m2c4

2

+2
c2∆t2n sin

2(θ/2)

∆x2
−∆t2neAx(xj , tn)

sin(θ)

∆x
.

or

βn(θ) =
2c2∆t2n
∆x2

(∆x2(−ie∂tV (xj , tn)− ic2∂xAx(xj , tn) + e2V 2(xj , tn)− c2e2A2
x(xj , tn)−m2c4)

4c2

+ sin2(θ/2)− ∆xeAx(xj , tn) sin(θ)

2c2

)
.

Again the stability condition can be written as a function of βn using

|g1(θ)g2(θ)|2 =
∣∣∣
ᾱn

αn

∣∣∣
2

= 1 (41)

and g1(θ) + g2(θ) = 2αn(1 − β(θ)). According to (41), the product of the root modulus is
equal to 1. We also assume that there exist M1,2 positive and bounded constants such that
‖V ‖∞ 6M1 and ‖Ax‖∞ 6M2. The roots are given by

g1,2(θ) =
(
1− βn(θ)

)[
αn ±

√
αn(αn − 1)

]
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and must satisfy |g1,2(θ)| 6 1 for all θ. Numerically, a stability condition can easily be

determined at each time step, ∆tt 6 ∆t
(int)
n . For instance, assuming V = ∂xAx = 0, then

αn = 1 and the scheme is stable provided βn 6 2, for all θ, that is:

βn(θ) 6 |βn(θ)| 6
2c2∆t2n
∆x2

(
1 +

∆x2(c2e2M2
2 +m2c4)

4c2
+

∆xeM2

2c2

)
6 2 .

We conclude that in that simplified situation ℓ2-stability is ensured provided that

∆tn 6 ∆t(int)n :=
∆x

c

1√
1 +

eM2

2c2
∆x+∆x2

(e2M2
2

4
+
m2c2

4

) .

Discretization of the boundary conditions. The discretization which is proposed is
done according the boundary conditions derived in Proposition 2.1:

ϕn+1
N = ϕn

N − c∆tn

∆x
(ϕn

N − ϕn
N−1)− i∆tn

ce

2
(V n

N −An
x,N)ϕ

n
N −∆tnK

n
N

∑n
k=0∆tkϕ

k
N .

We can rewrite this equation

ϕn+1
N = Ln

Nϕ
n
N +Mn

Nϕ
n
N−1 −∆tnK

n
N

∑n−1
k=0 ∆tkϕ

k
N .

where we have set




Kn
N :=

1

4

(
2On

D,N − On
F,N − 2iOn

Gx,N + 2iOn
Gt,N

)

Ln
N := 1− c∆tn

∆x
−∆t2nK

n
N − i∆tn

ce

2
(V n

N − An
x,N)

Mn
N :=

c∆tn

∆x

As for all n > 1, ϕn
N does not appear in the interior scheme, the stability analysis can be

done independently at the boundary. We need to show that

∆x|ϕn+1
N |2 6 ∆x

N∑

j=1

|ϕn
j |2 .

which is trivially satisfied if ∆tn 6 ∆t
(a)
n for ∆t

(a)
n ensuring simultaneously that

|Kn
N | 6 1, |Ln

N | 6 1, |Mn
N | 6 1 .

Similarly, the scheme is stable for ∆tn 6 ∆t
(−a)
n .
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Remark 5.1. Boundary conditions can also be derived following Section 2.1.2 and approx-
imated in the spirit of [7]. Set

Z := −∂2t + e2V 2 − c2e2A2
x −m2c4 .

The ABC can formally be written at +a

c∂x − i

√
Z − i

ceAx

2
.

Padé’s approximants for k = 1, · · · , m for m > 1, write

amk = eiα/2
(
m cos2

[(2k − 1)π

4m

])−1

, dmk = eiα tan2
[(2k − 1)π

4m

]
α ∈ R

and as a consequence, we have the classical approximation:

√
Z ∼

m∑

k=1

amk −
m∑

k=1

amk d
m
k

(
Z + dmk

)−1
.

Set vnk :=
(
Z + dmk

)−1

ϕn, that is
(
Z + dmk

)
vnk = ϕn. Then, at x = xN = a with N ∈ N such

that a = N∆x

c∂xϕ
n+1
N − i

m∑

k=1

akϕ
n+1
N +

i

2

m∑

k=1

amk d
m
k v

n+1
k +

i

2

m∑

k=1

amk d
m
k v

n
k − i

ceAn
x

2
ϕn
N = 0

where

vn+1
k =

vnk

(
2− ∆t2n

2

(
Mn

k − dmk )− ieV n
N

)
− vn−1

k

(
1− ieV n

N

)
−∆t2nϕ

n+1
N

1 + ∆t2n
2
(Mn

k − dmk )

where Mn
N = m2c4 − e2(V n

N )
2 + e2c2(An

x,N)
2. An

x,N and V n
N denote Ax(a, tn) and V (a, tn).

Finally, we approximate ∂xϕ
n+1 at a by ∆x(ϕn+1

N − ϕn+1
N−1), where ϕ

n+1
N−1 is computed by the

interior scheme. In order to illustrate this approach we have solved the laser-free TDKGE
on (−10, 10) with c = m = 1, see Fig. 7. The following numerical data are chosen: N = 400
grid points, m = 100 (for which convergence is reached) and α = −π/4.
Conclusion: stability of the numerical scheme. We can conclude that, from the interior
scheme analysis that for ∆tn 6 ∆t

(int)
n

∆x
N−1∑

j=2

|ϕn+1
j |2 6 ∆x

N−1∑

j=2

|ϕn
j |2

and from the exterior scheme analysis that for ∆tn 6 ∆t
(a)
n and ∆tn 6 ∆t

(−a)
n

∆x|ϕn+1
N |2 6 ∆x|ϕn

N |2, ∆x|ϕn+1
1 |2 6 ∆x|ϕn

1 |2 .
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Then for ∆tn 6 min
(
∆t

(int)
n ,∆t

(−a)
n ,∆t

(a)
n

)
the scheme is ℓ2−stable, that is

∆x

N∑

j=1

|ϕn+1
j |2 6 ∆x

N∑

j=1

|ϕn
j |2 .
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Figure 7: Klein-Gordon with Dirichlet (left) and Padé (right) boundary conditions

5.2. Discretization for TDDE

In this section, we propose a simple numerical illustrations of the derived boundary
conditions for one-dimensional TDDE. The quantity which is represented here is again(
t, x, log

∣∣ψ1(x, t)
∣∣
)
which enlights the reflections at the domain boundary. We first rewrite

PD in the form

PD = i∂t − iA∂x +Bmc2

where

A =

(
c 0
0 −c

)
, B = i

(
0 mc2

−mc2 0

)
.

A simple and natural condition to impose at ±a is (∂t ± c∂x)ψ1,2 = 0. We call such as
condition a transport boundary condition, and corresponds in fact to order 0 condition in
Proposition (3.3). We can easily check that for a CFL=1 upwind scheme, Dirichlet’s bound-
ary condition (solution set to zero at the boundary) is equivalent to impose this transport
condition. Initially, we set:

ψ1(x, 0) = exp
(
− x2

δ2

)
exp(ik0x), ψ2(x, 0) =

ck0

mc2 +
√
m2c4 + c2k20

exp
(
− x2

δ2

)
exp(ik0x)

where c = 1, k0 = −50, δ = 0.5, m = 1. The numerical domain is (−a, a) with this time
a = 5. The final time is T = 10 and ∆t = ∆x = 1/60. One-dimensional ABC can easily be
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deduced from Proposition 3.2.
The numerical scheme we consider is as follows. We denote by (φn

j , ψ
n
j ) and approximation

of the exact two-spinors at (xj , tn), (ψ1(xj , tn), ψ2(xj , tn)). The numerical scheme writes





φn+1
j = φn

j + c
∆t

∆x
(φn

j+1 − φn
j ) + ∆tmc2ψn

j

ψn+1
j = ψn

j − c
∆t

∆x
(ψn

j − ψn
j−1)−∆tmc2φn

j .

Stability for the interior scheme: laser-free-TDDE. One denotes g1(θ), g2(θ) the
amplification factors for φ and ψ, with θ ∈ [−π, π), and ξ∆x, where ξ is the dual variable
to x.





gn+1
1 (θ) =

(
1 + c

∆t

∆x
(eiθ + 1)

)
gn1 (θ) + ∆tmc2gn2 (θ)

gn+1
2 (θ) =

(
1− c

∆t

∆x
(1− e−iθ)

)
gn2 (θ)−∆tmc2gn1 (θ) .

A necessary and sufficient condition for stability is |g1(θ)|, |g2(θ)| are less than 1 for any
θ ∈ [−π, π). That is g1,2 are roots of the following equation with ν = c∆t/∆x,

g2(θ)− 2
(
1− 2ν sin2(θ/2)

)
g(θ)− 4ν sin2(θ/2) + 4ν2 sin2(θ/2) + 1 + ∆t2m2c4 = 0 .

We deduce g1(θ)g2(θ) = 1 + ∆t2m2c4 − 4ν sin2(θ/2)(1 − ν) and g1(θ) + g2(θ) = 2(1 −
2ν sin2(θ/2). To ensure stability, we naturally need |g1(θ)g2(θ)| 6 1 for all θ ∈ [−π, π). Then
a sufficient condition for ℓ2−stability writes

c
∆t

∆x
6 1 .

Stability at the boundary condition: laser-free-TDDE. The implementation of the
above boundary conditions for TDDE is straightforward. We can indeed rearrange the
scheme. For j 6= 0 and j 6= N





ψn+1
1,j =

ψn
1,j+1 + ψn

2,j+1 + ψn
1,j−1 − ψn

2,j−1

2
+ ∆tmc2

ψn
1,j + ψn

2,j

2

ψn+1
2,j =

ψn
1,j+1 + ψn

2,j+1 − ψn
1,j−1 + ψn

2,j−1

2
−∆tmc2

ψn
1,j + ψn

2,j

2
.

At order 0, we impose ψn
1,0 − ψn

2,0 = 0 at the left boundary, and ψn
1,N + ψn

2,N = 0 at the right
one. Remark that for the very particular interior scheme which is considered here, Dirichlet’s
boundary conditions are equivalent to this order 0 condition (transport). At the next order
−1 is simply replaced by a Riemann-Liouville integrals. Stability is again trivially satisfied
under CFL condition.
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Figure 8: ABC for log(ψ1) a) order 0, b) order −1

6. Conclusion

This paper objective was to rigorously derive absorbing boundary conditions for quantum
relativistic equations. Both Klein-Gordon and Dirac equations were considered for quantum
particle subject to classical electromagnetic fields. Using usul microlocal analysis tools,
sequences of more and more accurate absorbing boundary conditions were derived for these
equations. Simple numerical discretizations and simulations were proposed and analysez to
illustrate the accuracy of these ABC. Several analytical questions still remain to be addressed:

• The well-posedness of the mixed problem





PD,KGwD,KG = 0 on ΩD,KG × [0, T ]

BD,KGwD,KG = 0 on ∂ΩD,KG × [0, T ]

wD,KG(·, 0) = u0
D,KG on ΩD,KG

where the index D stands for Dirac and KG for Klein-Gordon, is naturally the very
first important question.
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Figure 9: ABC for log(ψ2) a) order 0, b) order −1

• The error analysis which consists of estimating ‖uD,KG − wD,KG‖H(ΩD,KG) in the ap-
propriate Hilbert space H(ΩD,KG), where uD,KG satisfies





PD,KGuD,KG = 0 on R2 × [0, T ]

uD,KG(·, 0) = u0
D,KG

is also a fundamental question from a practical point of view. These questions were
for instance treated in [8] for Maxwell’s equations.

From a computational point of view, several problems have also to be considered.

• Although it is easy to derive accurate numerical schemes for the TDKGE and TDDE
on unbounded domains, the inclusion of boundary conditions, especially for spectral,
finite element or implicit finite volume and difference schemes which necessitate the
solving of linear systems, may introduce some computational difficulties. As an ex-
ample, the numerical approximation of TDSE with absorbing boundary conditions
derived in a similar way, necessitates a very subtle discretization to maintain the un-
conditional ℓ2-stability of a simple Crank-Nicolson type scheme in 1-d [6]. In addition,
the conditioning of matrices involved in the linear systems may increase [21].
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• A key problem, which is naturally coupled with the ones described above, is the deriva-
tion of accurate and efficient discretization of the pseudo-differential operators involved
in the derived ABC. Some of them are nonlocal in time and in space such as the
Riemann-Liouville operators (21) which complicates their approximation.

• The implementation of these conditions in numerical codes for the computation of
multidimensional TDKGE and TDDE is naturally the final objective. For instance,
production particle/anti-particle paires using intense and short laser pulses is a very
active research area [14], [13]. However, the corresponding simulations, based on laser-
particle TDDE, necessitate huge computational efforts [12], [11]. Accurate and efficient
ABC could reduce drastically the computational cost of these simulations.

These questions will be treated in forthcoming papers and will justify the use of such ab-
sorbing boundary conditions.
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